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ABSTRACT

A two-dimension recursive image restoration filter
is developed for images degraded by blur and a class of
uncorrelated, signal-dependent noise. Unlike conventional
image restoration techniques, the filter does not require
any a priori information of the original image and adopts
a nonstationary image model. All the parameters needed
for the filter are estimated from the noisy image. The
~filter has a simple recursive structure, and is able to
 adapt itself to the nonstationary content of the image
and to different types of signal-dependent noise.

The second major subject area of this dissertation
is on speckle reduction techniques. Speckle noise
inherently exists in all types of coherent imagery such
as synthetic aperture radar imagery, acoustic imagery,
and laser illuminated imagery. Past work on speckle
reduction assumed that speckle noise is multiplicative
and uncorrelated. We model the speckle according to the
exact physical process of coherent image formation. The
problem of how to generate discrete speckle 1images
accurately without aliasing 1is discussed in detail. A
local linear minimum mean square error speckle reduction
filter is developed for intensity speckle images, where
only the speckle intensity is observable. Unlike other
existing approaches, this filter considers the second
order statistics of speckle and uses a nonstationary

image model. The two~-dimensional recursive

xi




implementation of this filter is also developed as a fast
computation algorithm. In some applications, both the
amplitude and phase of the speckle image are observable.
In the past, the additional phase information is ignored
in designing the speckle reduction filter. Here, we
develop a nonlinear maximum a posteriori (MAP) filter for
complex amplitude speckle images. The MAP equations can
be expressed in terms of the filtered estimate and
filtered covariance matrix of a nonstationary two-
dimensional recursive filter and a cubic equation. Thus
the MAP estimate can be solved iteratively by using the
recursive filter as a fast computation algorithm and
using the cubic equation as a constraint to optimize the

estimate at each iteration.
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Chapter 1

INTRODUCTION

1.1 Nonstationary Recursive Restoration of Images with

Signal-Dependent Noise

The field of image restoration has been progressing
rapidly in the 1last decade. Various image restoration
and enhancement methods have been proposed for removing
degradations due to blurring and noise [1-1,1-2]. The
effectiveness of an image restoration algorithm depends
on the validity of the image model, the criterion used to
judge the quality of the restored image, and the

statistical model for the noise process.

Early . developments centered on nonrecursive
processing in the discrete frequency domain [1-1,1-2]
using the fast Fourier transform algorithm as a
computational tool. While it is possible to perform
image restoration within reasonable time, these
approaches assumed a stationary image model and precluded
local processing and real-time processing possibilities.
| Recent work of Woods et al. [1-3,1-4] extended the one-
' dimensional recursive Kalman filter to two-dimensions

' based on a stationary image model. The two-dimensional




recursive filter is implemented in the space domain with
a2 reduced update approximation to reduce computation.
This approach can easily process images with space-

variant blur.

In a conventional stationary image model, all the
statistical information in the image is carried by the
constant mean and stationary covariance function. Hunt
et al. [1-5] proposed a nonstationary mean Gaussian image
model. In this model, an image is modeled as consisting
of stationary fluctuations about a nonstationary ensemble .
mean. The ensemble mean has the gross structure that
represents the context of the ensemble. This image model
was later used by Trussell and Hunt [1-6], and Lo and
Sawchuk [1-7] to perform maximum a posteriori (MAP)
estimation of images degraded by film-grain noise and
Poisson noise respectively. The:. algorithms are nonlinear
in nature and a nonrecursive sectioning method is used to

do locel processing.

In this dissertation, we adopt a nonstationary mean
and nonstationary variance (NMNV) image model that is an
extension of Hunt's model. In this model, an image is
decomposed into two components, a nonstationary mean and
a nonstationary white residual process that can be
characterized by its nonstationary variance. A 2-D
recursive restoration filter for a class of uncorrelated
signal-dependent noise [1-8] 1is derived based on this

nonstationary image model and the linear minimum mean



square error (LMMSE) criterion. The filter uses a reduced
update concept similar to Woods' to ease computation
requirements, and 1is able to adapt itself to the
nonstationary content of the image and to different types
of signal-dependent noise. All the statistical parameters
needed for the filter are estimated from the degraded
image. Various ways of estimating these ensemble
statistics from the noisy image are discussed and their
performances are compared. Simuleation results for
3dditive noise, multiplicative noise, and Poisson noise

are presented.

1.2 Speckle Reduction Techniques

Another important problem area that reguires
nonstationary image processing techniques 1is speckle
reduction. This is a second major subject area of this
dissertation. Speckle noise inherently exists in all
types of coherent imagery such as synthetic aperture
radar (SAR) imagery for remote sensing, acoustic imagery
and laser illuminated imagery. Speckle is due to the
random interference of the wavelets scattered by the
microscopic fluctuations of the object surface within a
resolution element [1-9]. Unlike multiplicative noise or
Poisson noise, speckle noise is not only signal-dependent
but also correlated. Although speckle statistics can be
used to provide fine information on object structure and
sur face roughness, speckle 1is objectionable in all

imaging situations because its high contrast and wide

o

|
|



ifrequency range dramatically reduce understandability and
'resolution when compared to incoherent imaging or to
|coherent imaging of non-scattering objects. Therefore,
' speckle reduction 1is of primary concern in coherent
fimaging systems.

Speckle reduction <can be achieved by averaging
multiple frames of uncorrelated speckle images of the
same object on an intensity basis [1-9]. The signal-to-
noise (SNR) ratio of the processed image is increased by
a factor of Ml/z, where M is the number of frames. While
this method 1is effective £for speckle reduction when
multiple frames of  uncorrelated speckle images are
available, it does not consider the image statistics and
the correlation of speckle. Many authors [1-10,1-11,1-12]
applying digital image processing techniques for speckle
reduction assumed speckle noise is multiplicative and
applied multiplicdtive noise filters to smooth the
speckle noise. This multiplicative noise assumption, in

'general, is only a rough approximation for speckle noise.

In this dissertation, we model the speckle according
to the exact physical process of coherent image
formation. Thus, the model includes signal-dependent
effects and accurately represents the higher order
statistical properties of speckle that are important to
the restoration procedure. The problem of how to
accurately generate discrete speckle images without

aliasing is also discussed [1-13].



In developing speckle reduction techniques, we
' restrict ourselves to the case called "fully developed"
speckle [1-9]. 1In the optical case, where only the
speckle intensity is observable, we develop a linear
minimum mean square error (LMMSE) filter based on the
NMNV image model. Unlike other approaches, this filter
considers the second order statistics of speckle. Both
low pass filtering and multiplicative noise filtering are
_ special cases of this filter under some simplifying
assumptions. The two-dimensional recursive implementation
of this filter [1-14] 1is also developed as a fast

computation algorithm.

In the SAR and ultrasonic domains, both the
amplitude and phase of the speckle image are observable.
It is shown that the additional phase information of the
speckle image is useful for speckle reduction. A

nonlinear maximum a posteriori (MAP) filter is developed

for this case. The nonlinear MAP eguation is solved
using an iterative method, involving a nonstationary two-
dimensional recursive filter and the solution of a cubic
equation in each iteration. Simulation results are

presented.
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1.3 Organization and Contributions of the Dissertation

This dissertation consists of two interwoven parts.
'In the first part, a nonstationary 2-D recursive image
Erestoration filter is developed for a class of
uncorrelated signal-dependent noise. In the second part,
;we concentrate on discrete speckle modeling and speckle
reduction techniques. The organization of the
dissertation 1is shown in Fig. 1. In Chapter 2,
stationary and nonstationary image models used for image
restoration are examined. A nonstationary mean and
nonstationary variance 1image model 1is introduced for
future use. Different types of signal-dependent noise

that are frequently -encountered in image formation

systems are discussed.

In Chapter 3, a speckle model is developed according
to the exact physical process of coherent image
formation. The statistical analysis of speckle for a
general scattering surface is very complex and is still a
subject of great interest. It 1is desirable to generate
discrete speckle 1images with @a digital computer for
simulation studies of these statistics. The sampling
theorem plays an important role in generating discrete
speckle images accurately. In general, we need to
oversample the object surface function by a factor of W
to avoid aliasing effects. The minimum value of W is
proportional to the variance of the surface roughness.

Discrete speckle images generated by this method will be




i CHAPTER 1 .
FART L ¢ Introduction PART XL
Nonstationary Speckle
Recursive l Modeling
Restoration and Speckle
of Images with CHAPTER 2 Reduction
Signal - Image Models Techniques
Dependent and Noise
Noise Models

|

CHAPTER 4 CHAPTER 3
Image Speckle Modeling
Restoration - and Discrete
Review Speckle Generation
CHAPTER 5 CHAPTER 7

Adaptive Noise
Smoothing of

Images with Signal
Dependent Noise

Speckle Reduction
Techniques for
Intensity Speckle
Images

v

CHAPTER 6
Nonstationary
2-D Recursive
Restoration

!

AN

CHAPTER 8
MAP Speckle
Reduction Filter for
Complex Amplitude
Speckle Images

N4

CHAPTER 9
Summary and Conclusions

Figure 1.1 Organization of the dissertation




exactly the same as the speckle images produced by an
equivalent optical system. For "fully developed" speckle,
where the object surface is extremely rough compared with
the optical wavelength, it becomes computationally
demanding to gene;ate these discrete speckle images. Two
new discrete generation models are introduced to obtain
statistically equivalent speckle images without much

computation.

In Chapter 4, past work on image restoration ‘and
image enhancement is reviewed and compared according to

following properties:

1. Type of algorithm - - recursive vS.

nonrecursive.

2. Image model - stationary vs. nonstationary.

3. Noise model - signal-independent vs. signal-
dependent.
4, Restoration criterion - numer ical vs.

subjective.

In Chapter 5, we develop an adaptive noise smoothing
. filter for images without blur that have been degraded by
;a class of uncorrelated signal-dependent noise. The

filter has a very simple structure (point processor), and




is able to adapt itself to the nonstationary content of -

the image and to different types of signal-dependent
noise. All the statistical parameters needed for the
filter are estimated from the degraded image. Various
ways of estimating these ensemble statistics from the
noisy 1image are discussed, and their performances are
compared. Simulation results for additive noise,

multiplicative noise, and Poisson noise are presented.

In Chapter 6, the adaptive noise smoothing filter is
extended to image restoration where the image is degraded
by blurring and noise. The filter is no longer a point
processor, and a 2-D recursive implementation of the
filter is considered. With the nonstationary mean and
nonstationary variance image model, the state space model
of the image can be easily implemented and is shown to be
a shift operator. This simplifies the prediction step of
the recursive filter considerably if we wuse indirect
addressing techniques. The optimal filter requires
excessive computation because of the high dimension of
the state vector. A suboptimal filter similar to Woods'
reduced update Kalman filter is used to reduce
computation. Boundary problems can be easily resolved

because of the image model assumed.

In Chapter 7, we consider speckle reduction
techniques for the optical case where only the speckle
intensity is observable. Various speckle reduction models

are presented according to the speckle data format

!
'




available. If the recorded speckle image is undersampled
such that the sampling interval 1is 1larger than the
correlation 1length of the speckle, the speckle noise
samples are statistically independent and multiplicative
in nature. In this case, the adaptive noise smoothing
filter developed in Chapter 5 can be used for speckle
reduction. A one-point MAP filter that considers the
negative exponential distribution of the speckle
intensity is derived for this case. The one-point MAP
estimate is shown to be the solution of a cubic equation.
For the case that the speckle image is adequately sampled
such that the correlation structure of the speckle is
preserved, we derive a local linear minimum mean square-
error (LLMMSE) filter that uses the correlation
information of the speckle to further reduce the speckle
noise. A nonstationary 2-D recursive implementation of
this filter is developed as a fast computation algorithm.
The MAP filter for the case of correlated samples is very
complicated and the difficulties of deriving it are
explained. For the case where multiple frames of
independent speckle images are available, these speckle
reduction techniques can be applied after the multiple
frame averaging technigue to further reduce the speckle

noise.

In Chapter 8, we present a MAP filter for the
digitally processed synthetic aperture radar (SAR) images
where both the amplitude and phase of the speckle image

are available. The MAP equations are nonlinear and can

10



only be solved by iterative methods. Fortunately, we are
able to express the MAP equations in terms of the
filtered estimate and filtered covariance matrix of the
nonstationary 2-D recursive filter developed in Chapter
6. The resulting MAP equation is a cubic equation, and
has the same form as the one-point MAP eguation of the
optical case with independent speckle samples. Thus the
MAP equations can be easily solved iteratively by using
the 2-D recursive filter as a fast computation algorithm
and imposing a one-point MAP constraint (solution of a
cubic equation) to optimize the estimate at each
iteration. This is the first known use of amplitude and

phase information in speckle reduction.

In the final chapter a summary of results is given
along with the future research directions in image |,
modeling, recursive restoration, and speckle reduction

technigues.

11




Chapter 2

IMAGE MODELS AND NOISE MODELS

2.1 Introduction

The effectiveness and complexity of an image
? restoration algorithm depends heavily on the image model
assumed. Image models are usually made implicit by the
' assumptions of the restoration schemes. For example, in
order to apply a Wiener filter for image restoration, we
implicitly assume that an image is a wide-sense
stationary random field. In a conventional stationary
image model, all the statistical information of the image
is carried by ‘a <constant mean and a stationary
correlation function. The statistical properties of an
image are characterized globally rather than locally.
The disadvantage of a stationary image model is that the
restoration filter designed accordingly is insensitive to
abrupt changes of the image and tends to smooth the
edges. It is obvious that an image is best described by
a nonstationary image model. However, stationary problems

are much easier to solve than the nonstationary problems.

The nonstationary image models can be characterized

into four different levels:

12



1. Stationary mean and nonstationary covariance

image model

2. Nonstationary mean and stationary covariance

image model

3. Both nonstationary mean and nonstationary

covariance image model

4. Higher order nonstationary statistics image
model.

In sections 2.3.1 and 2.3.2, we discuss some of the
nonstationary image models used for image restoration. In
section 2.3.3 we introduce a nonstationary mean and
_nonstationary variance image model that is a special case
of the third level nonstationarity. The validity of this

image model is examined for real images.

Most image restoration technigues model the noise
process as additive, signal-independent white noise. It
is well known, however, that many physical noise
processes occurring in image formation systems are
inherently signal-dependent. For example, the film-grain
noise produced by a photographic emulsion during the
process of 1image recording and reproduction and the
photon noise in any image detected at low light levels.

Restoration algorithms based on a signal-independent

13



noise model are expected not to have good performance in
the signal-dependent noise environment. In section 2.4,
we discuss various signal-dependent noise models and
their statistical properties, including multiplicative
noise, Poisson noise, and film-grain noise. 1In the final

section, summary and conclusions are presented.

;2.2 Image Formation and Discrete Image Representations

The fundamental linear model describing the image

‘formation process is given by
+ o0

g(x,y) = f[h(p,aix,y) £(p, 9 dpdq (2.1)

where g (x,y) is the degraded image, h(p,g;x,y) 1is the

point spread function (PSF) of the image formation

system, and f(p,g) is the original object intensity. If

the point spread function is space-invariant, we have the

familiar two dimensional convolution expression

+
9(x,y) = [ [h(x-p,y-a) £(p,9) dpda. (2.2)
—o
In order to represent a continuous image in a discrete
space for digital processing, it is necessary to sample
the continuous image according to the two-dimensional
sampling theorem [2-1]. For a bandlimited image g(x,y)

with spatial freguency cutoffs of fy4e tand £ in the x

yc’
and vy directions respectively, the two-dimensional

sampling theorem simply states that, in order to recover

14




| the continuous image function from its samples, the
'sampling spacings in the x and y directions, Ax and Ay

5respectively, must satisfy the condition
ax<1/2f,. and Ay<1/2f.. (2.3)

From Eg. (2.2), the resulting discrete samples can be
expressed as

+ =
g(max,n Ay)=ffh(m Ax-p,n Ay-q) £ (p,q) dpdq. (2.4)

This continuous-discrete formulation is a very practical
description of the image formation system because the
original object is usually continuous, while the recorded
image is discrete because o0of detectors, sampl ing
processes, and discrete display systems. However, the
continuous object f(p,q) cannot be represented in a
digital computer and, consequently, only discrete
approximations are ©possible. If £(p,q) is also
bandlimited and satisfies the condition in Eg. (2.3),

Eg. (2.4) can be written as

g(max,nAY}=:£::£:h(mAx—iAx,nAy—jay)f(iAx,jAy). {2:5)
i3

There are two different discrete image representations

for this discrete-discrete model, the spatial-variable

representation and the lexicographic representation

[2-2]. Without loss of generality, setting the sampling

[



spacings equal to 1, we have the spatial-variable

representation

q(m.n)=EZh(m—i,n-j)f(i.j). (2.6)
-

‘In this representétion, the two-dimensional relationship
of the neighboring pixels are easily perceived. For
recursive iﬁage processing algorithms, the locally
recursive structure is usually pursued, and the spatial-
variable representation 1is most suitable for these

applications.

The lexicographic representation essentiélly raster
scans the two-dimensional image sahples and stacks them
into a single vector. Considering the discrete image
g(m,n) of size M by M for example, then its lexicographic

representation is

fge1,1) ]
g(l,2)

9 = |g9(1,M) (2.7)

g(2,1)

g (M, M)
i.e., the (i,jf£h element of the M by M image 1is the

[(i-1)*M+jlth element of the vector. Using this
representation, the two-dimensional convolution in

Eg. (2.6) can be written in matrix-vector form

16




g = Hf (2.8)

where g is an M2%1 vector, f is an N2*1 vector, and H is
an M2#y 2 point-spread matrix with certain block
properties reflecting the effect of a raster scanning
operator on both f(m,n) and g(m,n). With this
transformation, we <can simply use the matrix-vector
notations as in Eqg. (2.8) to formulate the two-
dimensional image formation system as a one-dimensional
problem. It is usually easier to formulate nonrecursive
algorithms with the lexicographic representation. We
will use both representations in the following chapters.
The transformation between them is implicitly given in

Eq. (2.7)

2.3 Nonstationary Image Models

In this section, we discuss various nonstationary

image models used for image restoration.

2.3.1 Stationary Mean and Nonstationary Covariance Image

Model

Lebedev and Mirkin [2-3] proposed a composite image
model which assumes that an image is composed of many
different stationary components. Each component has a
distinct stationary correlation structure. An image
model having five classes was chosen. Four of them were

ianisotropic, correlated in the directions 09, 459, 90°,

~and 135°. The last class had an isotropic structure. In

17




this model, the nonstationary content of an image at each
point is described by a nonstationary <correlation
function that is a linear combination of five stationary

components.

Ingle and Woods [2-4] applied a reduced update
Kalman filter to 1image restoration by wusing this
composite imeage model. The result is a bank of Kalman
filters running in parallel, and each Kalman filter was
designed according to the correlation function of one
component. Instead of using the weighted sum of all the
outputs of the Kalman filters, they used a decision
scheme to choose the output of one filter at each point
to reduce computation. This resulted in a "multiple
model" recursive estimation technigue. In this case, each
point is assigned a stationary correlation function. The
nonstationary content of an image is described by the

spatial distribution of these five stationary models.

2.3.2 Nonstationary Mean and Stationary Covariance Image

Model

Hunt et al. [2-5] proposed a nonstationary mean and
stationary covariance Gaussian image model. They assumed
that an image f can be decomposed into a nonstationary
mean component ¥, and a stationary residual component

£o=£-I

The nonstationary mean describes the gross
structure of an image and the residual component

describes the detail wvariation of +the image. They
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described a "thought experiment" to support their model.
Suppose that we have several thousand driver's license
pictures showing head and shoulders of human subjects. If
we compute the ensemble mean of these pictures, most
likely we will have @& nonstationary mean picture
consisting of a fuzzy oval face, some dark spots for the
eyes, mouth and the boundary of the shoulders. This 1is
referred to as a context-dependent image ensemble. Most
of the structural information of the context-dependent
image ensemble is contained in the nonstationary mean
vector f. For the ease of computation and mathematical
tractaebility, the covariance function is assumed tc be
stationary and the Jjoint probability density function

(PDF) of f is assumed to be Gaussian, i.e.,
2
P(£)=((2mN"1cel) "1/ 2expl-1/2 (£-F) Tegt (£-) ]

where ICfI is the determinant of the covariance matrix

Cgr and N is the size of the image. Hunt [2-6] derived a

~maximum a posteriori (MAP) estimate for a nonlinear image

formation model based on this nonstationary mean image

model. The MAP estimate 1is the solution of a set of
nonlinear equations. Trussell and Hunt [2-7] used the

sectioning method and the modified Picard iteration to

- reduce the computation efforts. They also made an

1 2
; assumption that C¢ = ofI to simplify the computation.




'2.3.3 Nonstationary Mean and Nonstationary Variance

(NMNV) Image Model

In a conventional stationary image model, an image f
is assumed to be a wide-sense stationary random field
with constant mean vector and block Toeplitz covariance
matrix. The joint probability density function is
implicitly assumed to be multivariate Gaussian. All the
statistical information of the image is carried by the
covariance matrix. For a real world image as in
.Fig. 2.1(a), it is apparent from the picture that the
image is not a stationary random field and the histogram
(Fig. 2.1(b)) of the image 1is not Gaussian. Thus the
iconventional stationary image model is an oversimplified
;model assumed for computational purposes. The
nonstationary mean Gaussian image model assumes that an
image f can be decomposed into a nonstationary mean f and
a stationary residual f,=£f-E. If we approximate the
nonstationary ensemble mean by a local mean estimate
calculated over a 3*3 uniform window, and subtract the
local mean from the original image, we have the residual
image f, that is shown for our example in. Pigs 2. lle)s It
is obvicus from the picture that f; is still a correlated
nonstationary process. However, the shape of the
histqgram is more Gaussian (Fig. 2.1(d)). The stationary
assumption about f; is still- for computational
simplicity. ecause some of the structural information is
now carried by the mean, it is reasonable to assume that

the covariance structure may be simplified compared with
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(a) Original image (b) Histogram of (a)

\

(c) Residual image of the (d) Histogram of (c)
original image and the

local mean image

Figure 2.1 Nonstationary mean and stationary

covariance image modeling
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(a) Normalized residual image with unit
variance

(b) Normalized unit variance residual image
with an intelligent filter to calculate
the local statistics

Figure 2.2 Nonstationary mean and
nonstationary variance image
modeling
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. the conventional stationary image model. Trussell and
Hunt [2-7] assumed that the covariance matrix of £0 could
i be approximated by a diagonal matrix OEI, where 01 is a
scalar and I is the identity matrix. In this case, all
' the information is carried by the nonstationary mean.
While letting the <covariance matrix «carry all the
statistical information, as in a conventional stationary
image model, is not satisfactory, neither is letting the
nonstationary mean carry all the information. Therefore,
it is heuristically reasonable to include more structure

in the identity covariance matrix of the nonstationary

mean Gaussian image model.

In order to consider the nonstationarity of the
image and not to complicate the computation too much, we
assume that f; is a nonstationary white process. i.e., fj
.is independent and is characterized by its nonstationary
variance. This nonstationary mean and nonstationary
variance (NMNV) image model has been used implicitly in
some extent in the sectioned MAP method. There it was
assumed that the nonstationary image can be divided into
many sections and each section has the covariance matrix
C(i}I, where c(1) is a scalar that varies from section to
section. The section size 1is chosen according to the
length of the point spread function and the extent of
stationarity assumed. An overlap-save sectioning method
is used to suppress the convolution wraparound effect at
the section boundary. For the noise smoothing problem

(no blur), the section size can be reduced to a single
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point and this becomes a NMNV image model. However, for
the image restoration problem, the minimum section size

cannot be reduced to a single point.

We can substitute the local variance for the
nonstationary variance, and normalize £, in Fig. 2.1(c)
to have unit variance, i.e.

fo(m,n)
f(')(m,n) = —_— (2.9)

1

where vf(m,n} is the 1local variance of fO at position i
(m,n). The normalized unit variance residual image £6 is ;
shown in Fig. 2.2(a). Note that in the uniform intensity |
region, there is no correlation and 26 looks like white
noise. This verifies that the NMNV image model is valid
in those regions. However, in the neighborhood of an
edge, visible correlations still exist in the normalized
residual image. If we want to include these correlations
into the image model, we need to specify a nonstationary
mean and nonstationary covariance image model. While this
ies the direction to go, the possible performance
improvement of wusing this model is hindered by the
complexity of the restoration filter and the model

identification procedure.

There 1is another factor that contributes to the
correlation of the residual image in Fig. 2.2(a). Note
that we wused the 1local mean to substitute for the

ensemble mean in the procedure. When there is a sharp
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edge in the image, the averaging window tends to blur the
local mean estimate by using pixels on both sides of the
edge. To avoid this we can use a intelligent filter that
| recognizes an edge and calculates the local mean only
;using those pixels on the one side of the edge.
%Fig. 2.2(b) 1is the normalized residual image where the
élocal mean and local variance are calculated by such a
éfilter. Note that the correlations around the edges are
 reduced, and the residual image is more 1like a white

| noise process.

From the discussion above, we know that the validity
of the NMNV image model depends on the methods we use to
estimate the 1local mean and variance. Therefore, the
process of estimating local statistics can be thought of
as a way to find an operation that transforms an image
into a white noise process in order to facilitate the

restoration procedure.
2.4 Noise Models

2.4.1 Signal-Independent Additive Noise Model

This model is commonly wused in digital image

restoration. The degradation model is given by
g(m,n) = h(m,n)®£f(m,n) + v(m,n) (2.10)

where g (m,n) is the degraded image, h(m,n) is the



blurring function, f(m,n) is the object intensity, v(m,n)
is the signal-independent, additive white noise, and @ is
the two-dimensional convolution operator. If we use the
lexicographic representation, Eq. (2.10) can be expressed

as

g = Hf + v. ; (2.11)
The block diagram of this noise model is illustrated in
Fig. 2.3. The additive noise model is a good description

of the thermal noise in image sensors.

"2.4.2 Signal-Dependent Uncorrelated Noise Models

Many physical noises are inherently signal-
idependent. In this section, we discuss a class of signal-
idependent noise that is spatially uncorrelated. In
particular, multiplicative noise, film-grain noise, and

Poisson noise.
(A) . Multiplicative noise model

The block diagram of a multiplicative noise model is
illustrated in Fig. 2.4. The mathematical expression is
given by

g(m,n) = [h(m,n)Bf(m,n)] v(m,n) ' (2.12)

where v(m,n) is a signal-independent white noise with
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BLURRING
f —»{ MATRIX » g

Figure 2.3 Block diagram of image degraded by blur
and additive noise

LINEAR

H =

f(m,n)—» FILTER » g(m,n)

h(m,n)

v(m, n)

Figure 2.4 Block diagram of image degraded by blur
and multiplicative noise
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mean Vv and variance gi ; The signal-dependent

characteristic of this noise model becomes clear if we
express Eg. (2.12) in terms of a signal part and a noise

part, that 1is
g(m,n)=vh(m,n)®f(m,n)+[v(m,n)-¥] [h(m,n)®f(m,n)]. (2.13)

The signal-dependent nature of multiplicative noise is
easily verified by noting that the variance of the noise

part depends on the signal.
(B) . Film—grain noise model

Film-grain noise describes the intrinsic noise
produced by a photographic emulsion during the process of
image recording and reproduction. Huang [2-8] modeled the

film-grain noise as

g(m,n)=d(h(m,n)®f(m,n))

+ cd(h(m,n)®f (m,n)) L/ 3v(m,n) (2.14)

where v(m,n) is a white Gaussian noise, with mean zero
and variance one, ¢ is a scalar, and d(.) 1is the
nonlinear D-logE function. Naderi and Sawchuk [2-9]
proposed a more accurate film-grain model which includes
additional complex optical and chemical effects. Huang's
model is similar to the additive form of the
multiplicative noise model and is signal-dependent

uncorrelated noise. Naderi-Sawchuk's model contains a
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blurring function after the noise "degradaiioﬁ"éhém'tﬁﬁé
produces signal-dependent and correlated noise. This

case will be discussed in the next section.
(C). Poisson noise model

Because of the guantum nature of light, photon noise
imposes a2 fundamental limitation on detected images. The
emission of photons is described by a Poisson point
process with the average rate of emission proportional to
‘the incident intensity [2-10]. We use the following
;notation to describe a Poisson random number generator

‘with a constant proportionality factor A
g(m,n) = Poissonh(f(m,n)}. (2..15)

‘The probabilistic description of Poisson noise is given

by

(hE (usmy T et g RE i)

P(g(m,n) [f(m,n)) = (2.16)
g(m,n) )

|

!The conditional mean and variance of g(m,n) for a given

Ef(m,n) are

1]
I
i
]
i

E[g(m,n) |[f(m,n)] = XA £f(m,n) (2.17)

var[g(m,n) | f(m,n)] =X f(m,n). (2.18)
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The signal-dependent nature of Poisson noise is
demonstrated by the dependence of its variance on the
signal. The uncorrelated property of Poisson: noise is
based on the assumption of independent photon counters.
Poisson noise occurs 1in medical 1imaging, astronomical
imaging and low light level television systems. Fig. 2.5
is the block diagram of images degraded by blur and

Poisson noise.

2.4.3 Signal-Dependent Correlated Noise Models

Speckle [2-11] noise inherently exists in all types
of coherent imagery. Many speckle reduction technigues
assume that speckle noise is multiplicative and
uncorrelated. This 1is only a rough approximation. In
fact, speckle is not only signal-dependent but also
correlated. The correlation function of speckle 1is of

fundamental importance for speckle reduction.

The detail of speckle modeling and its statistical
properties will be discussed in Chapter 3. Briefly
speaking, speckle is the result of phase noise
(multiplicative noise degradation in the complex
amplitude domain of the object) which then proceeds
through a 1linear filter and an intensity detector. The
exchange of the sequence of degradations, first
multiplicative noise then blur, makes speckle noise
correlated and much more difficult to process when

compared with signal-dependent uncorrelated noise.
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!2.5 Conclusions
i

A truly nonstationary image model which includes a
inonstationary mean and a nonstationary covariance
ifunction is desirable. However, the complexity of the
iresulting restoration filter and the difficulties of
‘estimating the image model parameters from the degraded
image may overshadow the possible performance improvement
of using such an image model. Therefore, a NMNV image
model is introduced. The nonstationary mean describes the
gross structure of the image and the nonstationary
variance contains the edge information. These model
parameters can be easily estimated from the degraded

image. The wvalidity of the NMNV image model depends on

the method used to estimate the model parameters.

Many physical noise processes are inherently signal-
dependent. We separate these noise processes into two
classes according to the spatial correlation of the
noise. This classification allows a unified approach to
the design of restoration filters for a class of signal-
dependent noise processes, rather than deriving a
different filter for each individual case. The NMNV image

model is most convenient for this application.
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Chapter 3

SPECKLE MODELING AND DISCRETE SPECKLE IMAGE GENERATION

3.1 Introduction

The invention of the 1laser revealed a strange
phenomenon known as "speckle". The origin of speckle is
now well understood [3-1,3-2]. Speckle is due to the
random interference of the wavelets scattered by the
microscopic fluctuations of the object surface contained
in one resolution element when illuminated with highly
coherent 1light. Due to our lack of knowledge of the
detailed structure of the object surface, speckle is best
described by its statistical properties. The general
statistical analysis of speckle is very complicated and
is still the subject of active research, especially in
the application of speckle measurements to obtain surface
roughness properties [3-3]. In order to obtain useful
expressions of the statistics of speckle, we will make

some assumptions about the object surface.

A major difficulty in speckle modeling arises in the
modeling of the scattering surface. Goodman [3-1] used a
discrete model for so called "fully developed" speckle

that occurs when the phenomenon can be described by a
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complex circular Gaussian random process. In his model,
the object surface is assumed to be a collection of a
large number of independent scatterers, and the random
phases introduced by the surface structure are uniformly
distributed in the interval [0,27m]. The statistics of
fully developed Speckle ~can be easily calculated using
these assumptions, and give results in agreement with the
experimental measurements where the object surface is
very rough compared with the optical wavelength.
Pedersen [3-4] used a more sophisticated surface model

that assumes that the object surface is a continuous

Gaussian random field and at the same time takes into
account spatial <correlations of the surface height i
fluctuations. This 1is a more physically realistic
. surface model, but the calculation of speckle statistics
is much more difficult Dbecause it requires the
Eautocorrelation function of the object surface which is

not available in most applications.

Discrete speckle image can be generated according to
its true physical model with a digital computer for
simulation studies. Previous work by Guenther et al.
[3-5] generates discrete speckle images according to the
first order ©probability density function of "fully
developed" speckle. The discrete speckle image generated
by this method is a simplification of the true physical
process of speckle image formation and is lack of the
second order statistical properties of speckle. Fujii et

al. [3-6] generated discrete speckle images
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deterministically according to the true physical model of
speckle to study the surface roughness properties.
However, they ignored the importance of the sampling
theorem and the resulting discrete speckle images will
not be the same as those produced by an equivalent

optical system because of the aliasing effect.

In this chapter, we discuss the statistical
properties of general speckle. It is shown that explicit
expressions for general speckle statistics are difficult
to obtain. These statistics may be studied by using
discrete speckle images generated by a digital computer.
The problem of generating discrete speckle 1images
accurately to &evoid aliasing effects is addressed. The
sampling theorem plays an important role in this
analysis. Generally speaking, we need to oversample the
object surface function by a factor that is proportional
to the variance of the surface roughness. For the case
of "fully developed" speckle where the object surface is
extremely rough compared with the optical wavelength, the
statistics of speckle can be easily derived. However,
the sampling rate ' required for accurately generating
discrete "fully developed" speckle images is very high
and imposes a computation problem because of the large
number of samples required in the simulation. 1Instead of
generating a discrete sampled version of a continuous
 speckle image with so much computation time, we introduce
- a new discrete model to generate statistically equivalent
speckle images. Various methods for effectively

generating these discrete speckle images are discussed.
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32,2 Mathematiical Model of Speckle

Consider the coherent imaging system illustrated 1in
Fig. sl A transparency of complex amplitude
transmittance t(x,y) is illuminated by a unit-amplitude

coherent beam. Here, t(x,y) can be represented as

t(x,y) = £/2(x,y)exp(G4(x,¥)) (3.1)

where fl/z{x,y) is the amplitude of the object
transmittence, and ¢(x,y) 1is the phase due to the.
roughness of the transparency surface. The complex

amplitude field at the image plane is given by

_tg(x,y)=fffl/z(p,q}exp(jqa(p,q))h{x-p,y-q)dpdq (3.2)

— o

where h(x,y) ic the coherent point spread function [3-7]
of the system and is related to the pupil function P(r,s)

in the pupil plane by

h(x,vy) — PAE, s)exp[j (rx+sy)]drds
ff 7

where fo is the 1lens focal 1length, and ) is the

wavelength. The pupil function P(r,s) has the property
that

1 for (r,s) inside the pupil
P(r,s)=

0 otherwise.

If the pupil function is symmetric with respect to the

36



wo3lsAs burbewr JULaIdYO) T°f 2InbTJI

v o 0, o, o,
< < >< —><€ >
Aouaipdsunyy
<
T
o
Amlllll
aup|d (s 4)d co__cc_zE:___
abow

__QDQ jusai49yod

37




origin, then h(x,y) is a real function. This is assumed

to be the case in the following discussion.

The speckle intensity in the image plane is given by

g(x,y) = Ib(x,y)2. (3.3)

Note that if the transparency surface 1is perfectly
smooth, i.e., ¢ (p,qg) is constant, then b(x,y) 1is the
desired ‘coherent image of the object except for a
constant phase factor and there is no speckle. Otherwise,
speckle occurs in the image plane. A block diagram of
the speckle image model is illustrated in Fig. 3.2Z. In
this model, the random phase noise arising from the
roughness of the object surface first multiplies the
signal. This product signal is then filtered by a linear
system and is recorded in the image plane. Note that it
is the quantity exp[j¢(p,q)] rather than ¢ (p,9) that
directly feeds into the speckle model. Because

exp[jé(p,g)] is periodic in ¢ with period 2w, i.e.,
explj (¢ (p,a)+2nT) J=exp[j®(p,q)] for any integer n,

it is possible that different phase functions will
produce the same speckle intensity pattern. Usually only
the speckle intensity is observable. However, in some
applications, both the amplitude and phase of the speckle
image are accessible. The task of speckle reduction
techniques is to recover the signal from the observations

degraded by speckle.

38



Tepow ST302ds JO wexbeTp }OoOTd Z°€ 2aInbrg

(K *x)Pl)dx

(A ‘%) b ¢&—

T

(A*x)y

1

(k%3

(A %) 2,

39




3.3 General Speckle

In this section, we first formulate the statistics
of speckle for general surfaces, then we derive some
useful expressions for surfaces with Gaussian height

fluctuations. A method for accurately generating discrete

speckle images is discussed in detail.

3.3.1 Statistical Properties

Consider the coherent imaging system in Fig. 3.1.
Let d be the mean thickness of the transparency and
d(p,qg) be the height function of the transparency surface
relative to its mean thickness. Assume that d(p,q) is a
wide-sense stationary random field with normalized
autocorrelation function Pgz(p,q). The Fourier transform
of P4(p,q) is the power spectral density function of the
sur face and indicates the bandwidth of d(p,g). Let dO be
the maximum value of d(p,g), then the total phase delay

caused by passing through the transparency is given by

¢ (p,a)= 21 [n(3+3(p,q) )+ (dg=d(p,q) )]

_ 2T, = 2

= =5 (nd+dg)+ = (n 1)d(p,q) (3.4)
where n 1is the refractive index of the transparency
material. The constant phase delay term in Eg. (3.4) can

be neglected and we have

¢ (p,q)= 2—"; (n-1)é(p,q) .
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¢(p,g) is also a stationary random field because it is a
|scaled version of d(p,q). The variance and normalized !

correlation function of ¢(p,q) are

- 2%, . 2 .2
0¢~ [T(n 1% Oq
and

D¢(PrCI) = pd(prQ)

{
|
iwhere 0$ and Ué are the variances of ¢ (p,q) and d(p,q)

respectively. If the transparency is not thick compared

|
|
I

éwith the optical wavelength, the complex amplitude field
iacross a plane immediately behind the transparency can be

‘approximated as

fi/ztp.q)=f1/z(p,q)eXp(j¢(p,q)).

and the complex field in the image plane is given by

Q(x,y)ﬁ[]Eux-p.y-q)flfztp,q)exp(j¢(p,q)Jdpdq-

Note that although ¢ (p,g) 1is closely related to the
physical process of speckle image formation, exp(jd(p,q))

is the guantity directly involved in the system.

We now turn to discuss the statistical properties of
speckle. Since the intensity distribution f(p,g) of the
original object is wunknown a priori, it can only be

modeled as a random field. However, in deriving the



statistics of a speckle image, it is sometimes
instructive to first look at f(p,g) as a given function
and calculate the conditional statistics, then treat
f(p,q) as a random field to obtain the overall statistics
(unconditional statistics). In the following discussion,

the conditional statistics will be specified explicitly.

A gquantity of great interest 1is the conditional
autocorrelation function of b(x,y) given £(p,q), which

has the form

Ry (X,yiX1,¥71£) = E[b(x,y)b (x1,y7) | £]

=fffffl/2(PrQ) fl/z(r,S)E[exp[jqj(p'q)_j(b{r,s}j}

 h(x-p,y-9)h(xy-r,y;-s)dpdqgdrds

=ffff £1/2(p,q) £1/2(r ,9) Reyp (44) (P-1,9-9)

h(x-p,y-9) h(xy-r,y;-s)dpdqdrds. (3.5)

In order to calculate Rb(x,y;xl,yllf], we need to know
the explicit form of Rexp(j¢)(p-r,q-s) which is usually
not available in most applications. In general, numerical
integration has " to be —carried out for a given
Rexp(j¢)(p—r,q-s) to obtain the autocorrelation function
of b(x,y). Other second order statistics can be

calculated similarly with multiple integrations.

For the special case where d(p,q) 1is a Gaussian
random field, we can obtain explicit expressions for
speckle statistics. The joint characteristic function of

a zero-mean Gaussian distribution has the form
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M{Wl rwz) = E [exp(jwl ‘i’l} exp(jW2 ¢’2] ]
2

=exp[-l/2(wf c$+w2 c;+2p¢ Wiw,y) ] (3.6)

where ¢2 and p

¢ ¢

correlation coefficient of two Gaussian random variables

are, respectively, the variance and

%_ and % . The autocorrelation function of exp(j¢(p,q))

is given by
Rexp(j¢) (APAQ) =E{explj (¢ (p,q)-¢ (py,q7))1}. (3 7)

From Egqs. (3.6) and (3.7), it is easy to see that

Rexp(j¢) (AP,AQ) = M(1,-1)

= expl-0] (1-pg(4p,Aq))]. (3.8)

The autocorrelation function has a bias term exp(- c;

which indicates that exp(j$ (p,q)) has a nonzero mean. The

mean of exp(j¢(p,g)) can be shown to be
Elexp(i¢(p,a))] = exp(-04 /2).

The covariance function of exp(j$) has the form
2

F = g — - F s

Cexp(j¢) (APr8A) = Reyp(jg) (AP, Aq)-exp (= )

= exp(-0g) [exp(0o P, (Bp,Aq))-1]. (3.9)

- The normalized covariance function of exp(jé¢(p,qg)) is

given by




2
; = _exp[9P¢ (Ap,Ag)] -1
Dexp(}¢)(gp,gq) Xpexpfoé)p— %

In Fig. 3.4, °P exp (] ¢)(gp,0) is plotted for different

values of Oé for the case when D¢(&p,0) has a triangular

shape 2s in Fig. 3.3. It 1is easy to see that the

effective width of p (Ap,Aca) is much narrower than

exp(3¢)

the width of D¢{Ap,gq) for large 0; . Therefore, the

effective bandwidth of exp(j9p,qa)) depends not only on
the bandwidth of ¢ (p,q), but more importantly, on the

variance of ¢ (p,q).

Let w, and wy be the widths defined by

a

respectively. The retio of w, to w, can be written as

l—e_'l
W. = (3.10)

1= i—ln[exp(oz-l)-l-l--e_l]
c; ¢ :

In Fig. 3.5, W, is plotted with respect to U;. This curve

r
is an approximate indication of the bandwidth ratio
between exp(j¢(p,0)) and ¢ (p,q9), and is of fundamental
importance for accurately generating discrete speckle
images. From Eg. (3.10), it 1is easy to see that W,
2

asymptotically approaches (l-e_l)oé when 94 becomes

large.
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;3.3.2 Discrete Speckle Image Generation

| Since exp(j¢(p,q)) 1is a highly nonlinear function
fwhich expands the bandwidth of ¢ (p,q) significantly when
‘the variance of $(p,q) 1is large, we should be very
jcareful about choosing the sampling frequency in order to
iavoid the aliasing effect. W, shown in Fig. 3.5 is
~essentially the bandwidth ratio of exp(j®(p,q)) to ¢(p,q)
;when ¢(p,q) 1is Gaussian. Consequently, if we want to
;represent b(x,y) accurately from the discrete samples of
:fl/z(p,q) and ¢ (p,q) , the sampling frequency should be at
least W, times greater than the bandwidth of ¢(p,q)
according to the sampling theorem. This fact is usually
ignored in the literature. An ambiguous statement is that
"speckle will not occur if the imaging system can resolve
the surface wvariation". As shown in the above
‘discussion, the extent of speckle 1is determined by the

effective bandwidth of exp(j ¢(p,q)), which is much larger
)

¢

the imaging system may resolve ¢(p,q), speckle will occur

than the bandwidth of ¢ (p,q) for large ¢%2 . Even though

2
¢
simulation study of speckle patterns for different

if o, 1is large. Fujii et al. [3-6] conducted a computer
surface profiles. They used the same sampling frequency
for different U;. If cé is large, the computer generated
speckle patterns will be much different from those
produced by an equivalent optical system because of the

aliasing effect.

The discrete speckle image generation model for a

’



' gener2l surface case 1is illustrated in Fig. 3.6. The
| original object amplitude fl/z(x,y) and the object phase
function ¢(x,y) are sampled at a rate M times larger than
the Nyquist freguency of ¢ in order to avoid the aliasing |
effect possibly arising from the nonlinear transformation
exp(jd(p,q)). Then the discrete samples fl/z(i,k) and
exp(jo(i,k)) are multiplied and the product is filtered

by a low pass filter with passband W;. The output of the
filter is the discrete complex amplitude speckle b(m,n).
The speckle intensity image g(m,n) is obtained by taking
the squared magnitude of b(m,n). At this stage, g(m,n)
is an oversampled image because its bandwidth is only 2W;y
which is in general much smeller than the sampling

freguency of the system.

Discrete speckle images can be easily generated
according to the model given in Fig. 3.6. In order to
observe the differences in speckle patterns clearly, we
generate one-dimensional speckle intensity patterns for a
general surface. We also assume that the object
intensity is constant and ¢ (p,9) is a wide-sense
stationary Gaussian process for simplicity. Instead of
calculating the ratio M of the system sampling frequency
beforehand, we interpolate the phase samples by a factor
of 2 each time until the output discrete speckle
intensity pattern does not change. This means that no
aliasing occurs at this stage. In Fig. 3.7(a), we
generated 128 independent Gaussian random variables as

the discrete phase samples of a continuous Gaussian
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sur face. The standard deviation of the phase samples is
4, Fig. 3.7(b) 1is the speckle pattern of & constant
intensity object when the passband of the optical pupil
is 32 samples wide. No interpolation of the phase
samples is made at this step. It is sufficient to
display only 64 samples of the speckle intensity pattern
because the optical pupil is 32 samples wide. Fig. 3.7(c)
is the sguared magnitude of the Fourier transform of
exp(j¢ ). After interpolating the object phase samples by
a factor of 8, the speckle intensity pattern converges
and is shown in Fig. 3.7(d). Fig. 3.7(e) is the sguared
magnitude of the Fourier transform of exp(j¢ ) after
interpolation. Note that the speckle intensity patterns
of Fig. 3.7(a) and (c¢) are entirely different. The flat
spectrum in Fig. 3.7(c) indicates the severe aliasing for

the case without phase interpolation.

3.4 Fully Developed Speckle

The explicit mathematical expressions of the
statistics of speckle for general surface conditions are
difficult to obtain and depend on the autocorrelation
function of the object surface which is not available in
most applications. If the object surface 1is extremely
rough compared with the optical wavelength, from Fig. 3.5
we see that the effective bandwidth of exp(j¢ (p,q)) 1is
proportional to 0; and 1is many times larger than the
bandwidth of ¢(p,g). In this case, exp(j¢(p,g)) can be

considered as a white noise field for any practical
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' purpose when compared to the optical pupil. This 1is
called "fully developed" speckle. The statistical
properties of this fully developed speckle can be easily
derived by using this "almost white" approximation, and
are in agreement with the experimental measurements.
These statistics are very important for developing

speckle reduction technigues.

3.4.1 Statistical Properties

From Egq. (3.5) and the "almost white" assumption,
the conditional autocorrelation function of b(x,y) for

fully developed speckle can be written as

Ry (X,¥i%Xq,y71|£)

ﬂff £1/2(p,q) £1/2(r ,8)Roy (44 (P-T 1a-5)

h(x-p,y-9) h(xy-r,y -s)dpdgdrds

E./:/‘ f(prq)h(x-p!Y-Q)h(xl-er:L_q}

B Ul}(p;q}h(x-p,y—q}h(xl-p,yl—q)dpdq (3.11)

where

B =/]Rexp(j¢) (p-r ,q*S) drds,
T

. and region T is the extent of the object surface. The

conditional mean of speckle intensity g(x,y) is given by

Elg(x,y) |f] = Ry(x,yix,yl£)
= Bfff(P:q)hz(x-P:Y“Q)deQ- ' (3.12)




Note thet the conditional mean of g(x,y) is equal to the
incoherent image of the system except for a scalar
B. This suggests that we can have a good estimate of the
incoherent image of the system by averaging over a large
number of uncorrelated speckle intensity images of the
same object. The scalar B is determined from the area of
the autocorrelation function of exp(j¢(p.,q)), and only
affects the relative intensity level of speckle. From
Eg. (3.8), we know that Rexp(j¢)(p,q) has a bias term
exp{—ci) if ¢(p,q) is a zero-mean Gaussian variable. For
fully developed speckle, 04 >>T so this bias term is very
small and can be neglected. If 0; is small and ¢(p,g) has
large bandwidth, i.e., Rexp(j¢}{p,q) is still very narrow
compared with h(p,g) but has a bias term exp(-cé ) that
can not be neglected, Eg. (3.11) then becomes

Rb(x 'YXy u‘[1| f)

-[[[] /2@ /2 00Regp 50) (B o)

h(x-p,y-q) h(x,-r,y,-s)dpdadrds

- fffffl/z(p,q)fl/z(r,s,h(x_p,y_q)h(xl_p,yl_q,

[exp(-0$)+(Rexp(j¢)(P-r:q—s)—exp(—ci))]dpdqdrds

= exp(-0y) [ffflﬂ(p,q)h(x_p,y_q)dpdq]
E[[El/z(r,s)h(xl~r,yl-s)drds]

+ Blfff(p.q)h(x-p.«y-q)h(xl—p,yl—q)dpdq (3:13)

where
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' By ff[Rexp(j¢) (p-r,g-s) .—ex’p(_oéj)]drds.

' Here, By can be taken out of the integral since the
. autocorrelation function of exp(j¢ ) 1is very narrow
: compared with h. Note that f fl/z(p,q)h(x—p,y—q)dpdq in
; Eg. (3.13) is the coherent image of fl/z(p,q). The

- conditional mean of g(x,y) now becomes

E[g(x,y) | f]=exp (-94) [f/:fl/z(p.q)h(x—pfy-q)dpdq] 2
+Blfff(p.cf)hzfx-pwy-q)dpdq (3.14)

Iwhich is a weighted sum of the coherent image intensity
and the incoherent image intensity of £(p,q). The
coherent image part is the result of the smooth object
surface that contributes to the in phase component of the

. object in the image plane. Therefore, a large bandwidth
of exp(j¢(x,y)) 1is not sufficient to specify fully
developed speckle. We also require that exp(j$ (x,y)) has
Zero mean. It 1is interesting to see that the
autocorrelation function of b(x,y) for fully developed
speckle only depends on the original object intensity and
the coherent point spread function. The knowledge of the
autocorrelation function of exp(j¢(p,qg)) is not required

and only serves as a scaling factor in the expression.

Goodman [3-1] wused a discrete model for fully
developed speckle and assumed that the object surface can
be modeled as a «collection of a large number ofz

independent scatterers. The statistics derived based on

T
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~this simplified discrete surface model are the discrete
representations of the statistics derived by using the
 "3lmost white" approximation. Since our goal is to use
digital methods for speckle reduction, we will derive all
the statistics needed in discrete form by using Goodman's

speckle model.

Without loss of generality, assuming that the object
surface is a collection of evenly spaced independent
scatterers. Let h(m,n) be the coherent point spread

function of the system, we have

E(m,n}=:£::£:fl/2{i,k)exp(j¢(i,k))h(m—i,n—k) (3.15)
i k

where fl/z(i,k) is the sampled object transmittance
function, and ¢(i,k) is the phase sample. The speckle

intensity is given by
g(m,n)=1b(m,n) | 2. (3.16)

We now restate the "fully developed" speckle assumptions

of Goodman's model.

T BT ) and ¢ (1i,k) are statistically
independent and ¢ (i,k) 1is independent of all
other random phases. (i.e., the signal and the
phase noise are statistically independent, and

the phase noise is a white noise seguence.)
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2. ¢(i,k) is uniformly distributed in  the
interval (0,2r]. (i.e., the object surface is
extremely rough compared with a wavelength,
and the phase excursions of many times 27
radians are equivalent to a uniform

distribution on the primary interval.)

3. The spacing between these independent phasors
is very small compared with the coherent point
spread function such that b(m,n) is a linear
combination of a great many independent
scatterers.

Assumption (2) is the result of rough object surface, and
assumption (3) 1is the consequence of considering the
sampling theorem for accurately generating a discrete
speckle image in the rough surface case. These
assumptions are 1in agreement with the principles of
accurately generating discrete speckle images for general
sur face conditions. Assumption (1) may seem too strong
for fully developed speckle. As shown in the previous
discussion, the approximation we need to calculate the
statistics of fully developed speckle is that
exp(jo(x,y)) 1is "almost white", without requiring that
$(x,y) is "almost white". However, here ¢(i,k) is the
phase value of the physical object surface in the primary
interval (0,2mr] and it has a much larger bandwidth than
the surface functioﬁ. Therefore, assumption (1) is also

in agreement with previous results.

57



From assumptions (1) and (3), the phasors
exp(j #(i,k)) are independent and the extent of h(m,n) is
broad compared with the sampling interval. These imply
that b(m,n) is a superposition of a large number of
independent random phasors. According to the central
limit theorem, - the complex random field b(m,n)
asymptotically approaches a Gaussian random field as the
number of phasors tends to infinity. Therefore, for fully
developed speckle, b(m,n) can be approximated very well
with a complex Gaussian random field. The conditiénal
autocorrelation function of b(m,n) given £(i,k) is given

by

Ry (m,n;my,nq | £)= E[b(m,n)b" (my,ny) | £]

-E{ml/z(l k) £1/2 (¢ ,s)h(m-1i,n-k)

h(ml r “1 s)exp[j¢(i,k)=-jo(r,s)]|f}

=> D h(m-i,n-k)h(my-i,ny-k) £(i,k) (3.17)
ik
where we have used the fact that
1 if (i,kK)=(r,s)
Elexp(j¢(i,k)=-J¢(r,s))]=
0 otherwise.
It is easy to see that Eg. (3.17) is the normalized
discrete representation of Eq. (3.11). The unconditional

autocorrelation function of b(m,n) is

Ry (m,n;my,nq)= E[R,(m,n;my,ny|£)]
=22h(m—i,n——k)h(ml—i,nl—k}'f{i,k) (3.18)

where F(i,k) is the ensemble mean of f(i,k).
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- and imaginary parts of b(m,n) are given by

The conditional mean of the speckle intensity is given by

E[g(m,n) |£f] = Ry (m,n;m,n|f)
=> > h2(m-i,n-k) £(i,k) . (3.19)
IX

We now turn to calculate the first order probability !
density function of the speckle intensity. The mean of

the real and imaginary parts of the complex amplitude

speckle are

|
E[bF (m,n)]=E[Z; £1/2(i,k)h(m-1i,n-k) cos¢ (i, k)] |
1
=Y 2 E(£1/2(i k) E[cosé (i, k) Th(m-i,n-k)
1k
=0 (3.20)

and

E[b (m,n)]=E[-ZkE £1/2 (i ,k)h(m-1,n-k) sing (i,k)]
i
=Y > E[£1/2(i,k) 1E[sind (i k)] h(m-i,n-k)
K

i
=0 (3:21)

where we have used assumption (2) to calculate

E[cosp(i,k)] and E[sin®(i,k)]. The variance of the real

var[ bf(m,n) ]
LYY £1/2(¢,5) £1/2 (i ,k) h(m-r ,n-5) h(mi-1,n-k)

ik r s
cosd(r,s)cosd(i,k)]

=1/222E[f(i,k)]hz(m*i,n-k}, (3.22)
ik
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Var[bi(m,n)]=l/ZZ:ZE[f(i k) 1h2 (m=1i ,n=k) (3.23)
T ke

and

E[br(m,n)bi(m,n)]
YY1 2(r,s) £1/2(i,k) h(n-r,n-5) h (m-1,n-k)
i1 krs

cos¢(r,s)sing (i,k)]

5 (3.24)

where we have used the following equalities

E[cos¢(r,s)cosd(i,k)] = E[sind(r,s)sin¢(i, k)]
1/2 for (r,s)=(i,k)
0 otherwise,
and
E[cos¢(r,s)sind(i,k)] = 0 for all (i,k),(r,s). (3.25)
From these statistics and the complex Gaussian
approximation of b(m,n), we can write down the joint

probability density function of the real and imaginary

parts of b(m,n),

P (b% (m,n) ,bl(m,n))

1 [6% (m,n) 12+ [b> (mi,n) 12
- - exp< - (3.26)
27102 (m,n) 202 (m,n)
where
o2 (m,n) = 1/2ZZE[E(1,k)]hz(m-i,n—k]. (3.27)
ik

This is a circular complex Gaussian probebility density
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" function. It is worthwhile to mention that the real and

imaginary parts of the complex amplitude speckle are

- uncorrelated. Because they are also jointly Gaussian,

they are statistically independent.

In some appliﬁations, only the intensity of the
speckle image can be measured. To obtain the probability

density function of g(m,n), we express b(m,n) in polar

coordinates

1/2

b(m,n) = g1/2(m,n)ed 8(m/n) (3.28)

where 6(m,n) is in the primary interval (0,2m]. Applying
the standard technigue for the transformation of random

variables, we have the joint probability density function

P(g(m,n) ,s (m,n))

{(4 ﬂoz{m.n))‘lexp(-g(m,n)/2 oim,n)) for g(m,n)>0

0 otherwise. (3.29)

. The marginal probability density functions are given by

2T
p(g(m,m)) =/ B(g(mm),6(mn))ds
0
{(20?(m.n))'lexp(—g(m,n)/Zozfm,n)) for g(m,n)=z0

0 otherwise, ; (3230
which is a negative exponential density and
P(6(m,n)) =f0m P(g(m,n),6(m,n))dg
{(Zﬂ)'l for o<e<2m

0 otherwise,
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which is a uniform density.

Note that P(g(m,n),s8(m,n))=P(g(m,n))P(p(m,n)). This means
that the intensity and phase are statistically
independent at any point (m,n). The signal-to-noise

ratio at any point (m,n) is given by

SNR (m,n) = E[g(m,n)]/Vart/2(g(m,n)] = 1 .

Another important characteristic of speckle is the
speckle "size", or the correlation area of speckle. It is
roughly the size of the incoherent point spread function
of the system. This makes speckle a serious problem 1in
coherent imaging systems because the speckle size 1is on
the order of the resolution limit of the system. The
conditional crosscorrelation function of f(m,n) and

g(m,n) can be expressed as

Reg (m,njmy 0yl £)= E[£(m,n)g(my,ny) | £]
=E{f(m,n) ZZZZ h(m;-i,n;-k)h(m;-r,n;-s)
ik L s
£1/2 (3 k) £1/2(r,s) exp[ 30 (i ,k) =36 (r,s) ]| £}

=f(m,n) Y Y h?(my-i,ny-k) £(i,k). (3.31)
5

Taking an expectation over Eg. (3.31) with respect to f,

we have the unconditional crosscorrelation function

ng (mfn;ml fnl)

i ); %hz‘“‘l'ir“rki E[f(m,n) £(i,k)]

==Z:%&h2(ml—i,nl*k)Rf(m,n:i,k), (3.32)
1 :
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The conditional autocorrelation function of g(m,n) is

given by

Ry (m,n;my,ny|£f)
=E[b(m,n)b" (m,n)b(my,ny)b* (my,ny) | £]
=E[g(m,n) | £]E[g (my,n) | £]+|Ry(m,n;my,nql£) 12 (3.33)

where we applied the following complex circular Gaussian

moment theorem [3-2]:

Theorem: Let u,v,s and t be complex circular .l
Gaussian random variables. Then

Elu'v"st] = E[u"s]E(v t1+E[u"tIE(v"s].

The conditional autocovariance function of g(m,n) has the

form

Cq(m,nsmy 0yl £)=IRy(m,nsmy 0yl £) 12, (3.34)

The unconditional autocorrelation function of g(m,n) can

be written as

Ry (m,n;my,ny)=E [Rg(m,n;my ,nq|£)]
= Y Y Y Re (i,ksr,s)h% (m=i,n-k) h?(my-r,ny-s)+
1.k r B
}:Zk )_;,ZS: Re (i,k;r,s)h(m-i,n-k)h(mj-i,nj-k)
1
h(m—r,n-s)h(ml-r,nl—s). (3.35)

Similerly, the unconditional autocovariance function of

g(m,n) can be written as
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Cg(m,n:ml,nl)

=E§ZZ Celi,ksr .S)hz(rn-i,n—k)hz(ml—r,nl—sw
1 r s

E%Erj}_;, R¢ (1,k;r,8)h(m-1i,n-k)h(mj=i,ny-k)

1
h(m-r,n-s)h(m;-r,n;y-s). (3.36)

These statistics are the basis for developing speckle

reduction techniques.

3.4.2 Discrete Speckle Image Generation - Single Phase

Model

To generate discrete speckle images accurately for
fully developed speckle, the samplers in Fig. 3.6 need to
be operated at a very high frequency in order to avoid
the aliasing effect. This causes a serious computation
problem because of the large number of samples required
in the simulation. From the discussions in the 1last
section, we know that Goodman's discrete model is
statistically a good approximation for the case of rough
surfaces. Instead of generating a "real" speckle image
with so much computation time, we can generate a
statistically edquivalent speckle image based on this
model, if our final goal is to analyze speckle images by
their statisticel properties. Another advantage of this
approach is that we only need to characterize the object
sur face statistically rather than to specify it
deterministically as in the general speckle generation

model .
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; Fig. 3.8 illustrates the "single phase" model for
? generating statistically equivalent discrete fully
;developed speckle images. This generation model 1is the
same as Goodman's discrete model. The random phase ¢(i, k)
is generated from a uniform random number generator in
the interval ( 0,27 ]. ¢ (i,k) bears no relation to the
physical object <surface but has the same statistical
assumptions. The sampler 1is operated at the same
frequency as the random number generator. The product of
exp(j¢ (i,k)) aqd fl/z(i,k) goes through a low pass filter
and a magnitude squared operator to obtain the speckle
intensity image g(m,n). Note that an implicit assumption
in calculating the statistics of speckle for the very
rough surface case is that b(m,n) has a complex circular
Gaussian distribution. To satisfy this requirement, the
sampling freaquency of the "single phase" model should be
large enough that the coherent point spread function
covers many independent random phasors. Although the
sampling requirement of the single phase model is more
relaxed than that of the general speckle generation

model, it is still computationally demanding.

3.4.3 Discrete Speckle Image Generation - Multiple Phase

Model

The complex amplitude speckle b(m,n) generated from

the single phase model can be expressed as

b(m,n)= ¥ £1/2(i k) exp(§9(i,k)) h(m-i,n-k) (3.37)
T K
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where the sampling frequency wused in this model 1is
usually several times larger than the bandwidth of the
system and signel. Let wus assume that the sampling
frequency of the single phase model is r times larger
than the maximum of the bandwidths of the incoherent
imaging system and the signal in both x and y directions.

It is reasonable to have the following approximations

£1/2 (rivs,rk+t) ¥ £1/2(ri,rk)
and

h(ri+s,rk+t)=h(ri,rk) for -(r-1)/2<s,t<(r-1)/2

where r is assumed to be an odd integer. Using these
approximations, the complex amplitude speckle at
coordinate (rm,rn) in the single phase model can be

expressed as

P P
E(rm,rn)g'Z:Z:fl/z(ri,rk)IE: Y exp(jo(ri+s,rk+t))]
ik =—pDt=-—
h(rm-ri,rn—rkfi 5 (3.38)

where p=(r-1)/2. Let

a(ri,rk) = ) 3 exp(jd(rits,rk+t)),
: st
then Eg. (3.38) can be written as

Q(rm,rnrgz:z:fl/z(ri,rk)g(ri,rk)h(r(m-i),r(n-k)).
ik
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Reducing the samples by a factor of r in both x and vy

directions, we heve the "multiple phase" model
b(m,n) =Y 3 £1/2(i,k)a(i, k) h(m-i,n-k) (3.39)
i K

where position (m,n) of the multiple phase model is the
corresponding point (rm,rn) of the single phase model.
Note that the sampling rate of this model is reduced by a
factor of r in both x and v directions, and still
guarantees that b(m,n) is close to a complex circular
Gaussien randcm variable. The complex random veriable
a(i,k) in Eg. (3.39) asymptotically approaches a circular
Gaussian random variable as the number of independent
phasors tends to infinity. Instead of summing over a
large number of independent phasors in the generation
process, we can assume that a(i,k) is a complex circular
Gaussian rendom veriable and generate a(i,k) directly
from a complex circular Gaussian random number generator.
The block diagram of this discrete speckle generation
model is illustrated in Fig. 3.9. This generation model
not only reduces the sampling rate to the minimum value
required for accurately representing the statistics of
speckle, but also totally eliminates the dependence of

the generation model on the object surface.
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3.4.4 Simulation Results

In this section, we show some two-dimensional
discrete speckle images generated according to fhe single
phase and multiple phase models. The original girl image
of size 256 is shown in Fig. 3.10(a). Figure 3.10(b) is
the discrete speckle image of (a) by using the single
phase speckle generation model. The optical pupil is
assumed to be a square with length eqgual to 64 samples
(1/4 of the image). The low pass filtering is carried
out in the discrete frequency domain by using the fast
Fourier transform. The speckle size is very large in this
case and we can barely recognize the image. Figure
3.10(c) is generated from the same model except that the
opticel pupil size is 128 samples. Figure 3.10(d) is the
discrete speckle image of (a2) by using the multiple phase
spéckle generation model and a 128 samples wide pupil.

As expected, the speckle size is reduced in (c¢) and (4d).

3.5 Multiplicative Model for Speckle

Consider the special case where the bandwidth of the
signal is very small compared to the bandwidth of the
linear filter h(m,n). For this case, the speckle

intensity g(m,n) in Eg. (3.37) can be approximated by

g{m.n)=|)_:); £1/2 (i ,k) exp (3¢ (i,k)) h(m-i,n-k) |2
1
=1 £/2(m,n) T3 h(m-i,n-k) exp (3o (i, k)) |2

i k

=f(m.n)|Z)Eh(m—i,n—k)exp(jd:(i,k))12. (3.40)
1
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Figure 3.10 Examples of discrete speckle images

(a)
(b)

ke
(a)

Original image

Speckle simulated
phase model - 1/2
Speckle simulated
phase model - 1/4
Speckle simulated
phase model - 1/4

using the single
bandwidth

using the single
bandwidth

using the multiple
bandwidth
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' Let

v(m,n) = | 3 Y h(m-i,n-k)exp(i¢(i,k))I2, (3.41)
i Kk
. then we have the multiplicative model for fully developed
speckle
g(m,n) = £(m,n)v(m,n) (3.42)

where v(m,n) is signal-independent with a negative
exponential distribution. Unlike the uncorrelated
- multiplicative noise model introduced in section 2.4.2,
the multiplicative noise v(m,n) in Eg. (3.42) is a
correlated noise. The correlation properties of v(m,n)
are the same as those of the fully developed speckle
derived in section 3.4.1 with the substitution of f(m,n)
by 1. Therefore, the power spectral density function of
v(m,n) is the same as the incoherent transfer function of
the imaging system. Because we are only interested in the
signal which has much smaller bandwidth than the noise
spectrum, in principle, we can undersample the speckle
intensity image g(m,n) such that the sampling frequency
is comparable to the bandwidth of f£(m,n). In this case,
v(m,n) becomes uncorrelated because the correlation
length of the noise is much smaller than the sampling
interval. The block diagram for this uncorrelated,
multiplicative speckle model is shown in Fig. 3.12. Note
that this model is &also valid without assuming that the
bandwidth of f(m,n) is much smaller than the bandwidth of
the system, as long as the sampling interval is larger
than the correlation length of speckle. However, in this

case we introduce aliasing in the object spectrum.
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f(m,n)—

% g(m, n)

NEGATIVE
EXPONENTIAL
RANDOM NUMBER
GENERATOR

Figure 3.11 Multiplicative model

of speckle
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1 3.6 Summary and Conclusions

i

f The statistical properties of general speckle are
idifficult to obtain analytically and reguire the
?autocorrelation function of the object surface. A
éspecial case of interest is "fully developed" speckle
gwher:e the object surface is very rough compared with the
?optical wavelength. Under this condition, the statistical
;properties of speckle can be easily derived and only
~depend on the original object intensity and the coherent
_point spread function of the system. The autocorrelation
function of the object surface does not appear in the

expressions and only serves as a normalization factor.

Discrete speckle image generation is a goocd way to
study the statistics of general speckle. Due to the
bandwidth expansion caused by the nonlinear function
exp(jo(p,g)), we need to oversample the object phase
function by a factor of W proportional to the variance of
the object surface, in order to avoid the aliasing
effect. This general speckle generation method becomes
computationally demanding for fully developed speckle. A
single phase generation model similar to Goodman's
discrete speckle model is introduced to reduce
computation efforts. Unlike the general speckle
generation model, the object surface function is not
required in the single phase model. Only some statistical
assumptions about the random phase function are needed.

However, the speckle images generated in this way are
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only statistically equivalent to those speckle images
produced by an equivalent optical system. A multiple
phase generation model is introduced to further simplify
the computation process. This model is not only
computationally simple, but also eliminates the {

dependence of the generation model on the object surface.

Under the assumption that the signal bandwidth is
very small compared with the bandwidth of the system,
speckle can be approximated by a multiplicative noise
model. This model is the result of some approximations to

the true physical process of coherent image formation. In

. Chapters 7 and 8, we will discuss various speckle
reduction techniques for differeht speckle models. A
- summary of. all the discrete speckle generation models

" discussed in this chapter is given in Table 3.1.
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Chapter 4

IMAGE RESTORATION - REVIEW

4.1 Introduction

The field of image processing has been expanding
rapidly in the 1last decade. Var ious image restoration
and enhancement methods have been proposed for removing
degradations due to blurring and noise, The
effectiveness of an image restoration algorithm depends
on the validity of the image model, the criterion used to
judge the oguality of the restored image, and the

statisticel model for the noise process.

Farly techniques concentrated on nonrecursive
algorithms implemented in the discrete freguency domain.
The necessery‘COmputations are cerried out by the fast
Fourier transform (FFT) techniques. The use of the FFT
makes it possible to do image restoration within
reasonable time. However, this approach cannot deal with
images degraded by space-variant blur easily and assumes
a stationary imege model. More recent work has centered
on two-dimensionel recursive filtering technigues
developed from the one dimensional Kelman filtering

algorithm [4-1,4~-2,4-3]. The main problems of two-
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dimensional recursive filtering are both the difficulty
in establishing a suitable 2-D recursive model and the
ﬁigh dimensionality of the resulting state vector. The
advantages of 2-D recursive filters are that they can be
implemented in the space domain and can handle the space-

variant blur easily.

Progress in image modeling has been relatively slow.
The conventional image model assumes that an image is a
wide-sense stationary field. 1In recent years, Hunt [4-4]
proposed &a nonstationary mean Gaussian image model. 1In
his nonstationary image model, an image is modeled as
stationary fluctuations about .a nonstationary ensemble
mean which has the gross structure that represents the
context of the ensemble. Lebedev and Mirkin [4-5]
suggested a composite image model which assumes that an
image is compo sed of ' many different stationary

components.

In contrast to " the signal-independent, additive
noise model assumed in most image restoration algorithms,
many physical noise processes are inherently signal-
dependent. Naderi and Sawchuk [4-6] derived a
nonstationary discrete Wiener filter for a signal-

. dependent film-grain noise model. In addition to the
generality of the noise model, the filter is able to
adapt itself to the signal-dependent noise. Lo and
Sawchuk [4-7] developed a nonlinear MAP filter for images

idegraded by Poisson noise.
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In designing the restoration filter, the
characteristics of the receiver, which in many cases is
the human viéual system, are usually ignored. " Anderson
and Netravali [4-8] considered the properties of the
human wvisual system and derived an anisotropic filter
based on a subjective visibility function. The filter has
better performance than the conventional stationary

Wiener filter.

In order to compare these existing methods, we will
discuss the image restoration algorithms according to the

following properties:

Type of algorithm - recursive vs. nonrecursive.

Image model - stationary vs. nonstationary.

Noise model - signal-independent vs. signal-dependent.

Restoration criterion - numericel vs. subjective.
4.2 Type of BAlgorithm - Recursive vs. Nonrecursive

4.2.1 Nonrecursive Algorithms

Consider the linear space-invariant image formation
model with additive, signal-independent observation
noise. The lexicographic representation of this model is

given by

g =Hf + v (4.1)

where g is the N2*] degraded image vector
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f is the N2*1 original image vector

v 1is the N2*1 noise vector

H is the N2#*N2 blurring matrix with block
Toeplitz structure.
If the extent of the blurring function is much narrower
than the size of the image, the blurring matrix H can be
approximated by a circulant matrix. With this circulant
approximation and the use of FFT techniques, the
computational process' of image restoration <can be

simplified considerably. The typical nonrecursive

LY
- algorithm is the discrete Wiener filter that was derived

| by Helstrom [4-9]. The discrete Wiener filter has the

form

where C¢ and C,, are the covariance matrices of £ and v

£ = cuT (acT+c ) "1g (4.2)

- respectively. If we assume that the signal and noise are

stationary fields, then we can use the circulant
approximation and FFT techniques to compute the estimate.

Even with FFT techniques, this still requires a

substantial amount of calculation which currently

precludes real time image processing. Note that if the
image field 1is nonstationary or the blur is space-
variant, we cannot use the FFT algorithm directly and
there 1is no simplification of Eg. (4.2) for fast

computation.
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'4.2.2 Recursive Algorithms

The power of Kalman filter in one dimensional signal
processing is well recognized. The recursive Kalman
|filter has great computational advantages over
?nonrecursive methods, and is easy to implement with a
digitel computer for reai time processing. Nahi and
‘Assefi [4-1] converted the planar information of an image
into a scan-ordered image and derived a Kalman filter to
process the data line by line. Nahi [4-10] extended the
procedure to include vector processing, where several
lines were processed simultaneously. Silverman et al.
[4-2,4-11] considered general motion blur and derived a
recursive restoration filter on a line by line basis. All
these scan-ordered recursive algorithms are basically one
dimensional approaches. The scanning process converts two

dimensional image data into a one dimensional ordering.

Woods and Radewan [4-3] extended the Kalman
filtering technigues to two dimensions. They assumed
that the ideal image is a stationary Markov field. After
applying the 2-D spectrel factorization routine [4-12]
and using the spatisl-verieble representation, we have an

(L*L) th order dynamic model for the original image,

f(m,n}=ZZc(k,l)f(m—k,n—l] + u(m,n) (4.3)
R+

where the region R+={k20,l>0} W {k<0,1>0}, u{m,n) is &

white noise field and c(k,l) are the coefficients of the
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model determined from the spectrum of the image field.
Eg. (4.3) is known as the nonsymmetric half-plane (NSHP)
model. To simplify the discussion, we assume there is no
blur degradation. Then the observation equation has the

form
g(m,n)=£f(m,n)+v(m,n) (4.4)
where g(m,n) 1is the degraded image, £f(m,n) 1is the

original object intensity, and v(m,n) is a signal-

independent white noise. Defining the state vector

_{(mrn)=[f(mrn) E(m,n=-1)ye0s,E(m,1);€(m-1,N);c0e,

f(m-1,1);f(m-L,N)...,f(m-L,n-L)],

 where N is the size of the image and L is the order of

the image model, Egs. (4.3) and (4.4) can be expressed as

x(m,n+l) = Ax(m,n) + Bu(m,n) (4.5)

g(m,n) = Cx(m,n) + v(m,n) ' (4.6)

where A is the system propagation matrix determined by |

c(k,1l), and
8T = ¢ = [1,0,0,...,0].

This is the state space model for estimating the image
signal from noisy observations. Note that in Egs. (4.5)

and (4.6), the spatial index (m,n) indicates the



"present"” position inside the image, and the matrix-
vector formulation (state space representation) is the
result of 1lexicographic ordering. It is straightforward
to apply the Kalman filter equations [4-13] to this
model. However, the dimension of the matrices is of order
L*N. This causes-a serious problem both for computation
and memory requirement because N, the size of the image,
is usually a large number. Woods and Radewan suggested a
suboptimal reduced update Kalman filter that only updated
those points of the state vector within a cerfain
distance from the present point. This 1is a good
approximation because pixels 1in an 1image have no
predictable correlation beyond a certain distance. With
this reduced update idea, there are only O(Lz) points to
' be updated ‘at each point. Further approximation can be
made to reduce the wupdate region of the filtered
covariance matrix. With this reduced update Kalman

filter, 2-D recursive processing becomes feasible.

Recursive filters can be easily extended to deal
with space-variant blur, while nonrecursive methods can
only be extended. to include these variations at the
expense of large computation time. Both the recursive
and nonrecursive algorithms discussed here use a
stationary image model and the MMSE criterion. In
general, imeges are nonstationary and the human visual
system is sensitive to a small amount of noise in a
uniform intensity region, but is unable to perceive the

same amount of noise in the surroundings of an edge. As a
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- result, these algorithms sacrifice resolution near edges

and do too much noise smoothing.

4.3 Image Model - Stationary vs. Nonstationary

The effectiveness of an image restoration algorithm
f depends on the validity of the image model assumed. Image
models are usually implicit in the assumptions of the
; restoration scheme. For example, in order to apply a
' Wiener filter to image restoration, we implicitly assume
| that an image is a wide-sense stationary random field
. with constant mean and space-invariant covariance
function. As shown in Chapter 2, it is obvious that an
image is best described by a nonstationary image model.
However, stationary problems are much easier to solve
than the nonstationary problems. The disadvantage of
jusing a stationary image model is that the restoration
~ filter accordingly designed 1is insensitive to abrupt
- changes of the image and tends to smooth the edges. For
:this reason, various restoration filters based on
| nonstationary image models were recently proposed (see

i section 2.3).

Lee [4-14] derived a local statistics algorithm for

Enoise smoothing. He considered an additive noise model
g(m,n) = £(m,n) + v(m,n) (4.7)

where v(m,n) is a signal-independent, =zero-mean, white
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noise. In his algorithm, local statistics were estimated
over a (2p+l)*(2g+1l) window. The local mean and 1local
varieance of g(m,n) are defined as

1 1=m+p J=n+g

“g(mrn)* }E: g(i,3) (4.8)
(2p+l)(2q+l)i

=m-p j=n-q
and
: 2
Vg (m,n)= ZZ(g(i,j)—ug(m,n)) (4.9)
(2p+1) (2g+1) - g
1 ]
respectively. From Eg. (4.7), we have the following
relations
E[f(m,n)] = El[g(m,n)] (4.10)
and
Var [f(m,n)] = Var[g(m,n)] - Var([v(m,n)] (4.11)

where Var[f(m,n)] is the ensemble variance of f(m,n). i
we substitute the local statistics for the ensemble
statistics in Eas. (4.10) and (4.11) and apﬁly weighted
least square estimation techniques, we have the local

statistics filter
f(m,n) = uf(m,n)+k{m,n)(g(m,n)ﬂig(m,n}} (4.12)
where pg(m,n) is the local mean of f(m,n), and

vq(m,n)—Var[v(m,n]]
k(m,n) =

v _(m,n) . (4.13)
g
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' The local statistics algorithm was later extended to
:include multiplicative noise. 1In fact, the algorithm
'implicitly used a nonstationary mean and nonstationary
5variance image model. For the additive noise case, the
élocal statistics algorithm is the linear optimal filter
iin the minimum mean square error sense, and is equivalent
' to the sectioned MAP method [4-15] when the section size
'is only one point. However, for the multiplicative noise
Imodel, we will show in Chapter 5 that the 1local

. statistics algorithm is suboptimal.

4.4 Noise Model - Signal Independent vs. Signal Dependent

Most image restoration technigues model the noise
‘process as additive, signal independent white noise. It
~is well known, however, that many physical noise
fprocesses occurring in image formation systems are %
 inherently signal-dependent. For example, the film-grain
inoise produced by a photographic emulsion during the
iprocess of image recording and reproduction and the |
iphoton noise in any detected image at low light levels
iare signal-dependent. Restoration algorithms based on a
signal-independent noise model are not expected to be

very effective in the signal-dependent noise environment.

Walkup and Choens [4-16] derived a Wiener filter for
signal-dependent film-grain noise. Kondo et al. [4-17]
developed a Wiener filter for an additive, signal-
modulated noise model and multiplicative noise model.

The signal-modulated noise model considered is
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g(x,y) = h(x,y)®f(x,y)+[h(x,y)®f(x,y)]Iv(x,y) (4.14)

where ® denotes the 2-D convolution operator, and v(x,Yy)
is a signal-independent noise. The Wiener filter for

this model has the form
Wf(wx ,wY)

*
3| (wx,wy)
- _ - 5 (4.15)

where Sg(wy,w and Sv(wx,wy) are the power spectral

y)
density functions of the original object and the noise

process respectively. H(wy,w is the Fourier transform

y)
of h(x,y) and * denotes the complex conjugate. The
photon noise is inherent in any detected image,
especially at low light levels. The emission of photons
follows an inhomogeneous Poisson process with the rate
parameters proportional to the original object
intensities. Goodman and Belsher [4-18] derived a linear
minimum mean square error filter for images degraded by
photon noise. Note that these filters that consider the
signal-dependent property of the noise process are

implemented in the discrete freguency domain and assume &

stationary image model.

Naderi and Sawchuk [4-6] developed a discrete Wiener
filter for a more accurate film-grain noise model based

on a nonstationary mean image model. The filter operated
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iadaptively according to the nonstationary mean of the
?image. Trussell and Hunt [4-15] considered the nonlinear
' D-logE characteristic curve of the recording film and
fderived a nonlinear MAP estimate for this nonlinear
:observation model. Lo and Sawchuk [4-7] developed a
'nonlinear MAP estimate for images degraded by Poisson

‘noise. The MAP filter is optimal in the sense that it

‘maximizes the a posteriori probability density function.
i However, the filter has highly nonlinear structure and
'iterative schemes have to be used to solve the nonlinear
~equations over sections of the image. These filters were
:implemented in the space domain by using nonrecursive

algorithms.

As discussed in Chapter 3, speckle noise is a major

- obstacle in coherent imaging systems. Most of the
methods for speckle noise reduction assume that the

speckle noise is multiplicative. This is only a rough

approximation for speckle under some restricted

conditions. We will consider a more accurate model for

speckle and derive optimal filters for speckle noise

reduction in Chapters 7 and 8.

4.5 Restoration Criterion - Numerical vs. Subjective

There is no universal agreement on the criterion
that should be used to Jjudge the quality of a restored
image. The minimum mean square error (MMSE) criterion

adopted by many image restoration algorithms is based on
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the numerical closeness of the restored image to the
original image. The numerical criterion is well defined
and easy to compare. The drawback of this approach is
that the numerical closeness does not imply that the
restored image "looks good" to a human observer. The
human wvisual system 1is véry complex and not well
understood, however, research in vision shows that the
MMSE criterion is not & suitable measure if it is used
globally. Pearlman [4-19] derived an optimal filter based
on a subjective distortion criterion which was derived
from an eye-brain system model. Anderson and Netravali

[4-8] introduced a subjective visibility function and

- used the "Backus-Gilbert" approach to make a balance

between the resolution and noise smoothing. They first

defined the "masking function" M(m,n) at point (m,n) as a
measure of local spatial detail. The masking function had

high wvalues at picture elements around the edges.

'~ Subjective tests were per formed to determine a

i"visibility function" which gave the relative visibility

of wunit noise for different spatial details. The
visibility function was then plotted with respect to the
masking function value, and the curve was found to
decrease exponentially. This indicated that the human
visual system is not very sensitive to the noise around
the edges. Then they used the "Backus-Gilbert" approach

to minimize the joint objective function J,

J=bv, + (1-b)V, (4.16)
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where b is a "tuning" parameter to balance the resolution

and the amount of noise smoothing, V. and V, are the

v
measure functions for the noise term and resolution term

| respectively. A family of filters were derived for

|
|

different values of b. At each pixel, the visibility
function was used to tune the filter via the parameter b
in order to suppress the same amount of subjective noise
over the whole picture. They also considered an
anisotropic filter which can recognize an edge and avoid
averaging across it to preserve edge sharpness. Abramatic

and Silverman [4-20] generalized the idea and related it

. to the classical Wiener technigues.

4.6 Conclusions

The standard Wiener filter for image restoration is
a nonrecursive algorithm based on a stationary image
model and minimum mean square error criterion. The poor
guality of images restored using the Wiener filter is
partly due to the minimum mean square error (MMSE)
criterion that is not a good measure for visual quality,
and more importantly also due to the stationary

assumptions of the image model.

Recursive filtering not only has a computational
advantage over nonrecursive filtering, but also
emphasizes on local processing concept. Recent work on
image restoration is trying to improve the standard

Wiener filter by using a more sophisticated image model
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and error criterion. Recursive implementation is usually

desirable in order to do real-time processing. Therefore,

. various filters using nonstationary image models and

. recursive implementations are proposed. Another approach

is to design a filter based on a subjeétive criterion

such that the restored image will "look" better. However,

" these filters are usually very complex and only consider

the additive, signal-independent noise. In the next two
chapters, we will develop a nonstationary two-dimensional
recursive image restoraticn filter which has a simple

structure and works for signal-dependent noise.




Chapter 5

ADAPTIVE NOISE SMOOTHING FILTER FOR IMAGES WITH
SIGNAL-DEPENDENT NOISE

:5.1 Introduction

From the ©preceding review of existing

image

~restoration techniques and the discussion of different

statistical image models and noise models, we think the

following features are desirable

restoration filter:

1.

The filter should be recursive in nature and

suitable for real-time processing

The filter should incorporate a nonstationary
image model and adapt itself to the

nonstationary content of an image

The filter should require minimal a priori
information about the original image, but

should be able to use this information if

available

in designing an image
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4, The filter should be easily modified to deal
with different noise models, either signal-

independent or signal-dependent noise ,

5. The filter should incorporate a subjective
error criterion making wuse of human wvisual
system properties.

Woods' 2-D reduced update Kalman filter [5-1] assumes a
stationary image model and requires a priori information
about the original image in order to construct the state
space model. In practice, we generally only have the
degraded image. A common procedure for obtaining this a
priori information is to use the correlation properties
of a statistically similar image. While this seems
reasonable, the mean square error increases significantly
due to the substitution. The reduced update Kalman filter
was later modified for a "multiple image model" [5-2] to
consider the nonstationary nature of the image. Here,
obtaining the a priori information becomes a more serious
. problem.- The resulting filter uses an identification-
| estimation procedure and requires excessive computation.
The sectioning MAP method [5-3] uses a nonstationary mean
| Gaussian image model. The algorithm is nonrecursive and
requires the joint probability density function (complete
statistics) of the signal and noise. In general, the MAP
: estimate requires the solution of a set of nonlinear

equations and 1is difficult to obtain. The sectioning
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method is wused to reduce computation and to do local

processing. The MAP filter is optimal, but in some

. applications, it might be acceptable to trade off

. theoretical performance for ease of implementation. This
| becomes more appropriate when we consider the adaptive

~ filtering techniques where the filter parameters have to

be estimated from the noisy observations.

Another approach to an improved restoration filter

3 was proposed by Anderson and Netravali [5-4]. Instead of

i using a2 nonstationary image model, they used a subjective

error criterion including human visual system and derived

a2 nonrecursive filter that adapts 1itself to make a

compromise between the 1loss of resolution and noise
smoothing. Abramatic and Silverman [5-5] generalized
this procedure and related it to the classical Wiener

filter.

The signal-dependent properties of many physical

noise processes are usually ignored in the restoration

. procedure. In this chapter, we develop an adaptive noise

smoothing filter for images degraded by a class of
signal-dependent, uncorrelated noise by using the linear
minimum mean square error (LMMSE) criterion and a
nonstationary image model. - The filter has very simple
structure (point processor) and is able to adapt itself
to the nonstationary content of the image and to
different types of signal-dependent noise. All the

statistical parameters required for the filter are
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estimated from the degraded image, and no a priori
information of the original image is needed. The methods
used to estimate the ensemble statistics from the
degraded image are critical to the quality of the
results. Various ways of estimating these ensemble
statistics are discussed and their performance is
compared. The adaptive noise smoothing filter has a form
similar to Abramatic's filter, and the relationship
between the nonstationary image modeling approach and the
nonlinear subjective filter approach becomes clear.
Based on this connection, we show that the minimum mean
sguare error criterion is not a bad criterion if it is
used locally. The explicit structure of the adaptive
noise smoothing filter for multiplicative noise, film-
grain noise, and Poisson noise is der ived for
completeness. The comparison of the adaptive noise
smoothing filter with Lee's local statistics algorithm
[5-6] shows that the introduction of the nonstationary
mean and nonstationary variance (NMNV) image model is not
only valuable for systematically deriving the optimal
estimator structure, but also wvery useful for the
extension of the adaptive noise smoothing filter to image
restoration when the images are degraded by both blurring
and signal-dependent noise. This problem will Dbe

discussed in Chapter 6.




5.2 Local Linear Minimum Mean Square Error Filter for a

Class of Signal-Dependent Noise

In this section, we will derive a linear minimum
mean square error (LMMSE) filter for images degraded by a
class of signal-dependent noise based on the NMNV image

model introduced in section DieBaiZ In order to

~distinguish this filter from the conventional LMMSE

;filter that is derived based on a stationary image model,

'we shall call it a local linear minimum mean square error

(LLMMSE) filter to emphasize that the minimum mean square

‘error criterion is used locally rather than globally.

Consider the observation equation
g = Hf + v (5.1)

where g is the degraded observation, f is the original
signal, v 1is a =zero mean noise that can be signal-
independent or signal-dependent, and H is the blurring

matrix. Define

E[£]=F and E[(£-F) (£-F)T1=C, (5.2)

where T and Cg are the mean and covariance matrix of f
respectively. The minimum mean sguare error (MMSE)
estimate of f given observation g is the conditional mean

estimate

:f_= E[flg]. (5.3)




In general, the MMSE estimate is nonlinear and depends on
the probability density functions of f and v. The
explicit form of the MMSE estimator is difficult to
obtain for the general case. If we impose a linear
constraint on the estimator structure, we have the local

! linear minimum mean square error (LLMMSE) estimator [5-7]

~

frommse = E +CfgC§1(ﬂ“§) (5.4)

- where Ceqg is the crosscovariance matrix of f and g, Cq

and g are the covariance matrix and mean of g |

respectively. Unlike the MMSE filter that requires the
conditional mean, the LLMMSE filter only requires the
second order statistics of the signel and noise. It is
well known that Gaussian probebility density function is
characterized by its second order statistics, and
consequently the LLMMSE estimate for Gaussian statistics
is equal to the MMSE estimate. Another important property
of the LLMMSE filter is that it is unbiased.

To have the explicit structure of the LLMMSE filter,
we need to calculate the covariance matrices in

Eq. (5.4). The cross-covariance matrix Cfg is given by

Cgqg = EL(E-E) (g-9)T)
E{(£-F) [H(£-F)+v] T}

CeHT+E[ (£-F)vT). (5.5)

Similarly, the covariance metrix C, can be calculated as

9



Cg = El(g-3) (g-3) T
E{ [H(£-F)+v] [H(£-F)+v]T}

HCgHT+C +HE[ (£-F) vT1+E[v(£-F)T1uT (5.6)
1

| where C, is the covariance matrix of v. If we assume

that E[(£-F)vT1=0, then Egs. (5.5) and (5.6) become

Cgq = CgHT (5.7)

(5.8)

;
I
|
i
i
i
1

 This condition is generally satisfied by many physical
i
noise processes.

Considering the special case of no blurring where H
is an identity matrix, the cross-covariance matrix Cfg
becomes a diagonal matrix because we use the NMNV image
model and Cg is a diagonal matrix. The covariance matrix
& is also diagonal if the noise process v is

9

uncorrelated, i.e., Cy is diagonal. Therefore, under

these conditions, it 1is not necessary to invert the

covariance matrix C, in Eg. (5.4) and the LLMMSE filter

g9
for this class of noise can be expressed by a set of

scalar equations

2
of(m,n)

(g(m,n)-g(m,n))(5.9)

fLLMMSE(m'n)=f(m'n]+g%(m,n}+03(mpn)

In summary, the following conditions are required to make

the LLMMSE filter a point processor.

1. There is no blur degradation, i.e., H=I.
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2. The degraded image g(m,n) can be expressed as
g(m,n) = £(m,n) + v(m,n) (5.10)

where f(m,n) is the original image, and v(m,n)
is the noise term which <can be signal-

dependent or signal-independent.

3. The noise term v(m,n) is uncorrelated, i.e.,

E[v(m,n)v(ml,nl)]=0 for (m,n)#(ml,nl).

4, The conditional mean of v(m,n) given f denoted

by Elv(m,n)|f] satisfies the condition that |

E[v(m,n) |£f] = 0 (5.11) |

This is a sufficient condition for

E[(£-F)vT1=0.
Note that Egqg. (5.10) uses an additive form to describe
the noise degradation. This does not imply that the g
noise has to be an "additive" noise in the usual sense.
Any noise degradation can always be expressed in terms of
the signal part and the noise part, although this may not
be the most convenient way to represent it. The
formulation in Eg. (5.10) with condition (4) imposes the

constraint
E[g(m,n) |f] = E[£(m,n) |£f] = £(m,n). (5.12)

This by no means limits the generality of the noise
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model. It simply assumes that the noisy observation
.g(m,n) has been normalized such that it has the same
intensity level as the original image, and that the noise
term v(m,n) has no bias. This condition is generally
:satisfied by many physical noise models. The
~uncorrelated, signal-dependent noise models discussed in
section 2.4.2 such as multiplicative noise, film-grain
noise, and Poisson noise all satisfy these three
'conditions. Instead of deriving a different filter for
each individual case, we use a unified approach to design
a2 noise smoothing filter for this class of signal-

‘ dependent noise.

In BEg. (5.9),; if the .a priori statistics of the

image are known, then %LLMMSE(m'n) is a function of

" g(m,n) only, and each pixel can be processed separately
at the same time. This parallel processing characteristic
- is very attractive and permits real-time image

iprocessing. Using the normalized assumption that
|

' g(m,n)=FE(m,n), we can rearrange Eq. (5.9) as
|

%LLMMSE{mrDJ=(1-w{m,n})f(m;n)+w(m;n39(m:n) (5.13)

G%(m,n)

: where w(m,n) = > >
i cf(m,n)+cv(m,n) .

It is easy to see that the LLMMSE estimate is a weighted

sum of the ensemble mean T(m,n) and the normalized

observation g(m,n), where the weight is determined by the
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signal variance and the noise variance. For a low signal-
to-noise ratio (SNR), the LLMMSE filter puts more weight
. on the a priori mean Tf(m,n) because the observation is
too noisy to make an accurate estimate of the original
image. Conversely, for high SNR, the LLMMSE estimate puts
more weight on the noisy observation and the result is to

preserve the edge sharpness.

It is interesting to compare these properties of the
LLMMSE filter with the results obtained by Anderson and
Netravali [5-4], in which they derived a nonlinear
restoration filter based on a subjective visibility
function to make & balance between noise smoothing and
resolution. The nonlinear filter tends to average out
the random noise in the flat areas and preserve edge
sharpness so that the same amount of subjective noise is
suppressed in the whole image. The response of this
nonlinear filter is similar to that of the LLMMSE filter.
The nonlinear approach implicitly used a nonstationary
image assumption to calculate the "masking function"
value for suppressing the same amount of subjective noise
over the whole image by using an exponentially decreasing
visibility function, whereas the LLMMSE filter directly
uses a nonstationary image model and tries to minimize
the local mean sguare error. The net effect of these two
approaches are similar because one is varying the noise
? variance according to the contextual information in the
image, while the other imbeds the contextual information

directly into & nonstationary image model. Therefore,
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the local variance not only has its statistical meaning

but also serves as a spatial "masking function", and the

. LLMMSE filter is similar to a subjective smoothing filter

. with a 1linearly decreasing visibility function. The

Qseeminqu different two approaches are now related and

. support the idea that the minimum mean sguare error

- criterion is a better measure for image restoration if it

is used locally with a nonstationary image model.

5.3 Adaptive Noise Smoothing Filter

| Sedel Principle

The LLMMSE filter shown in Eg. (5.9) requires the

f ensemble mean and vwvariance of f(m,n). Usually these

statistics are not available a priori and can only be
estimated from the degraded image. If we assume that the
ensemble statistics in Eg. (5.9) can be substituted by
local statistics that are estimated from the degraded

image, we have the adaptive noise smoothing filter

5 Ve (i, n)
f(m,n) = pg(m,n)+

vf(m,n)+vv(m,ﬁ,{g(mrn)'#g(m,n))(5.14)

where pf(m,n) and pg(m,n) are the local mean of f(m,n)
and g(m,n) respectively, and vg(m,n) and v,(m,n) are the
local variance of f(m,n) and v(m,n) respectively. It is
interesting to see that the adaptive noise smoothing
filter is a nonlinear filter even though it has the same
linear form &s the LLMMSE filter. The nonlinearity is

introduced by the ratio of the local variances that are
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estimated by nonlinear functions of the noisy observation
g(m,n). The performance of the adaptive noise smoothing
filter depends heavily on the method used to calculate
the local statistics. We will discuss various methods for

calculating these local statistics in the next section.

5.3.2 Computation of the Local Statistics

The underlying assumption of the adaptive noise
smoothing filter is that an image is locally ergodic such
that the ensemble statistics can be substituted locally
by the local statistics. Therefore, it is critical to
choose the method used for estimating local statistics.
One way to obtain the local mean and local variance is to
calculate over a uniform moving average window of size
(2p+1)*(2g+1) . We have

i=m+p j=n+q

1 .
By (MR} = ey (el Z Z g(i,3) diE)

i=m-p j=n-q

and

i=m+p j=n+q

1 ¢ aga 2
Vgmin) = 3 ) (9(i,3) g (mym)) 2(5.16)

i=m-p j=n-q

where pg(m,n) and vg(m,n) are the local mean and local
variance of g(m,n) respectively. These statistics are
commonly known as the sample mean and sample variance.
They are widely used in statistical analysis and are

shown to be the maximum likelihood estimates of the
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unknown mean and variance of a Gaussian probability
density function [5-8], by assuming that the samples are
from the same ensemble. The local statistics of f£(m,n)
can be calculated from the local statistics of g(m,n) by
assuming the relationship between their ensemble
statistics also holds for the local statistics.
Therefore, the functional forms of these transformations
idepend on the particular noise structure. The 1local
statistics of f(m,n) then feed into the filter to adapt
the filter to the nonstationary content of the image and
signal-dependent characteristics of the noise. For
simplicity, let us consider the signal-independent,

additive noise model. The local mean of f(m,n) is eqgual

'to the local mean of g(m,n) because the observation is
inormalized. It is straightforward to show that the local

fvariance of f(m,n) is given by

ve(m,n) = vg(m,n)-05(m,n) . (5.17)

;with these quantities, the adaptive noise smoothing
'filter is complete. The block diagram of the adaptive

'noise smoothing filter is illustrated in Fig. 5.1.

The adaptive estimate is a balance between the local
jmean estimate pf(m,n) and the noisy observation g(m,n).

iThe local wvariance ve(m,n) is an indication of our

‘confidence on the local mean estimate. For the signal-

iindependent, additive noise model, the adaptive noise
ismoothing filter with 1local statistics defined as in

'Egs. (5.15) and (5.16) 1is the same as Lee's local
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statistics algorithm [5-6]. However, unlike Lee's
heuristic argument of using local mean and wvariance, we
introduced & nonstationary image model, and with this
image model, we can have a better understanding of the
problem and the extension of this filter to signal-
dependent noise and image restoration become obvious. For
the multiplicative noise model and signal-dependent noise
in general, we will show that Lee's approach is not

optimal.

The local statistics calculated according to
Egs. (5.15) and (5.16) assume that the samples within the

averaging window are from the same ensemble. This is not

true if there is a sharp edge within the window. The

' value of the sample variance near the edge will be larger

' than the ensemble variance because we use samples in two

entirely different ensembles to <calculate the 1local

~variance. The sample mean will tend to smear out compared

'with the ensemble mean. To avoid these effects, we

fshould have an intelligent filter that can find edges and

use the correct neighborhood of a pixel for calculating

"the local statistics. Various approaches for using edge

detectors have been proposed for designing an anisotropic

restoration filter and calculating the local statistics

[5-4,5-9]. A problem associated with these approaches is

' that edge detectors do not work well on a noisy image.

- Here, we introduce & simple functional form for

estimating the local variance by including the

- nonstationarity of the image in the function.
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The inaccurate sample mean seems to have less effect i
to the filter output than the inaccurate sample variance
because the NMNV image model only uses the nonstationary
mean to describe the gross structure of the image, while
the nonstationary variance is used to characterize the

edge information. In order to preserve the noise

- smoothing ability of ‘the local mean, we still use the

- sample mean as our local mean estimate. The new 1local

variance is defined as

3.
vg(m.n)= chtm—i,n-j) (5:18)
(2p+1) (2g+1) i3 5
(g(i,j)wg(i,j))

where c(m,n) is a weighting function. The sample variance
estimate in Eq. (5.16) implicitly assumes that g(i,3) is
locally stationary such that pg(m,n) can be used as the
local mean for all g(i,j) within the averaging window. In
our new local variance estimate, the locally stationary
assumption is removed and the 1local mean yg(i,j} b (3
allowed to vary for each g(i,j) within the window.
Therefore, this new local variance should perform well
even near the edges. Other advantages of this estimate
compared with the edge detection approach are that it is

more robust, insensitive to noise, and easy to implement.
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55.3.3 Simulation Results

The original girl image is shown in Fig. 5.2(Aa).
Figure 5.2(B) is the original image degraded by a signal-
independent, additive, white noise with variance 100. The
degraded 1image 1is processed by the adaptive noise
smoothing filter with the sample mean and sample variance

calculated over a 5*5 window as the local statistics, and

ithe smoothed image is shown in Fig. 5.2(C). In the

" uniform region, the estimate is close to the local mean

' estimate and the noise is smoothed by a large amount.

Conversely, in the edge area, the restored image is close
to the noisy observation and the edge sharpness 1is
preserved. The mean square error (MSE) between the
smoothed image and the original image is 36.7 per pixel.

This value is very small compared with the MSE of 94.1

| per pixel for the local mean estimate that is essentially

|
|

a spatially invariant low pass filter. Figure 5.2(D)
shows the adaptive noise smoothing estimate of the
original image using Eg. (5.18) to calculate the 1local
variance. This estimate seems to have better visual
quality than Fig. 5.2(C). It looks smoother both at the
step edges and ramp edges. The MSE of Fig. 5.2(D) is 34.6
per pixel which is a 1little smaller than that of the
sample variance «case, and indicates the performance
improvement of using the new local variance estimate.
The same sequence of simulation results for a low SNR
case where the noise variance is equal to 400 are shown

in Fig. 5.3.
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Figure 5.2 Adaptive noise smoothing filter for
signal-independent additive noise

(A) Original image
(B) Original degraded by additive noise
with o;=100

(C) Adaptive noise smoothing estimate
with local variance of Eg. (5.16)
(D) Adaptive noise smoothing estimate
with local variance of Eg. (5.18)
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Figure 5.3 Adaptive noise smoothing filter for
signal-independent additive noise

(A) Original image
(B) Original degraded by additive noise
with 03=400

(C) Adaptive noise smoothing estimate
with local variance of Eq. (5.16)

(D) Adaptive noise smoothing estimate
with local variance of Eq. (5.18)
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5.4 Adaptive Noise Smoothing Filter for Various Signal-

Dependent Noise Models

The general form of the adaptive noise smoothing

filter for a class of signal-dependent noise is shown in

~Eg. (5.14). It 1is instructive to have the explicit

structure of this filter for some physical noise models
that are frequently encountered in ©practical imaging
systems. In this section, we derive the explicit
structure of the adaptive nqise smoothing filter for
multiplicative noise, film-gra2ain noise, and Poisson

noise.

5.4.1 Multiplicative Noise

For the multiplicative noise model discussed in
section 2.5, the degradation model can be written as
]
g (m,n) = u(m,n)£f(m,n) (5.19)
where u(m,n)=u and E[(u(m,n)—ﬁ)2]= Uﬁ. Define the

normalized observation as

g(m,n) = g (m,n)/qd (5.20)

such that g(m,n)=%E(m,n). If we represent Eg. (5.19) in

terms of the signal part and the noise part, we have

(u(m,n)-u)

g(m,n) = £(m,n) + f(m,n). (5.21)

a

From Eg. (5.10), it is easy to see that ;
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v(m,n)=(u(m,n)/u - 1) f(m,n) (5+:22)

and 2

oZ(m,n)= _; (£2(m,n)+0%(m,n)) . (5.23)
u

' From Eq. (5.17) and Eg. (5.23), the local variance of

{f(m,n) can be calculated from the local mean and local
‘variance of g(m,n) and is given by

2052 -2
vg(m,nJ- o, Mg (m,n) /u

Ve(m,n) = — (5.24)
1+(a /3°)

‘Substituting v, (m,n) into Eq. (5.14), we have the
~adaptive noise smoothing filter for the multiplicative
noise model

v.(m,n) (g(m,n) - 7
£ g(m,n uf(m n)) (5.25)

%(m,n} = uf(m,n)+

vf(m,n}+ci(u§{m,n)+vf{m,nJ}/ﬁ2

:where g(m,n) is the normalized observation, and oa/ﬁz is
.the parameter characterizing the multiplicative noise
E1eve1. The term vf(m,n)+p%(m,n) in Eq. (5.25) shows the
. signal-dependent properties of multiplicative noise, and
‘makes the adaptive noise smoothing filter change its

.characteristic adaptively to smooth the noise.

Comparing Eg. (5.25) with Lee's 1local statistics
'algorithm for multiplicative noise [5-6], we find that
;the term gSvf(m,n)/ﬁz is missing in Lee's algorithm. This
iarises from the 1linear approximation made for the

‘nonlinear multiplicative noise model in Lee's heuristic
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derivation and maekes his filter suboptimal. The advantage
of our approach is that by introducing the NMNV image
model, we are able to derive the optimal linear filter
for a class of signal-dependent noise in a systematic
way, i.e., first represent the noise model in signal plus
noise form and calculate the variance of the noise term.
We also justify that the linear constraint should be

applied to the -estimator structure rather than the

{ nonlinear observation model.

The simulation results are shown in Fig. 5.4. The
original image is in Fig. 5.4(A). The image degraded by a
multiplicative noise with unit mean and variance equal to
0.007 is shown in Fig. 5.4(B). Figure 5.4(C) 1is the
adaptive noise smoothing estimate of the original image
by using the sample mean and sample variance as local
statistics. Figure 5.4(D) is the adaptive estimate using
the new local variance estimate as in Fig. 5.2(D). These

results are comparable with those of Fig. 5.2. Another

2

set of simulation results for oy=

5.5.

0.04 are shown in Fig.

5.4.2 Film-Grain Noise

Film-grain noise inherently exists in the process of
photographic recording and reproduction. If we process
the film in the linear region of the D-logE curve and

ignore the blurring effect of the model, we have

g(m,n) = f(m,n)+cfl/3(m.n)U(m,n) (5.26)
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Figure 5.4 Adaptive noise smoothing filter for
multiplicative noise

(A) Original image
(B) Original degraded by multiplicative
noise with 03=0.007

(C) Adaptive noise smoothing estimate
with local variance of Eq. (5.16)

(D) Adaptive noise smoothing estimate
with local variance of Eq. (5.18)
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Figure 5.5 Adaptive noise smoothing filter for
multiplicative noise

(A) Original image
(B) Original degraded by multiplicative
noise with Ua=0.04

(C) Adaptive noise smoothing estimate
with local variance of Eqg. (5.16)

(D) Adaptive noise smoothing estimate
with local variance of Eqg. (5.18)
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where u(m,n) is a signal-independent noise. This model
is very similar to the additive form of the
multiplicative noise model except for the nonlinear
effect of f1/3(m,n). Therefore, the derivation of the
adaptive noise smoothing filter is straightforward with
some knowledge of the statistics of fl/3(m,n), and is

similar to the multiplicative noise case.

5.4.3 Poisson Noise

Photon noise is a fundamental limitation of images
detected at low light levels. The degradation model of

Poisson noise is given by
g'(m,n) = Poissonk(f(m,n)) (5..27)

where )\ 1is a proportionality factor. The statistics of
the Poisson process were given in Egs. (2.16), (2.17) and

(2.18). Define the normalized observation as

Poisson, (f(m,n))

g(m,n) = g (m,n)/an = -

If we represent the normalized Poisson observation in

terms of the signal part and the noise part, we have
g(m,n)= f(m,n)+(g(m,n)-£(m,n)). (5.28)
Hence, the noise part is given by

Poissonx(f(m,n))

v(m,n)=g(m,n)-£f(m,n)= X - f(m,n)

and
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o2(m,n) = E(m,n)/A .

From these eguations, it is easy to show that the local
variance of f(m,n) can be calculated from the local mean
and local variance of g(m,n) by

uf(m,n)
Ve(m,n) = vg(m,n) - —_— (5.29)

A
Therefore, the adaptive noise smoothing filter for
Poisson noise can be written as

Ve (m,n) (g(m,n)-pg(m,n))

£(m,n) = Mg (m,n)+ (5.30)
vf(m,n)+(uf(m,n}/A)

where g(m,n) is the normalized observation, and pf(m,n)/h

is an indication of the Poisson noise level at (m,n).

The simulation results are shown in Fig. 5.6. Figure
5.6(A) 1is the original image. Figure 5.6(B) 1is the
original image degraded by a Poisson noise with A=1.
Figure 5.6(C) is the adaptive noise smoothing estimate of
the original image obtained by using the sample mean and
sample variance as local statistics. Figure 5.6 (D) is the
result of using the new local variance. The same seguence

of simulation results for )>=0.25 are shown in Fig. 5.7.
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Figure 5.6 Adaptive noise smoothing filter for
Poisson noise

(A) Original

(B) Original degraded by Poisson noise
with A=1

(C) Adaptive noise smoothing estimate
with local variance of Eqg. (5.16)

(D) Adaptive noise smoothing estimate
with local variance of Eqg. (5.18)
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Figure 5.7 Adaptive noise smoothing filter for
Poisson noise

(A) Original

(B) Original degraded by Poisson noise
with A=0.25

(C) Adaptive noise smoothing estimate
with local variance of Eqg. (5.16)

(D) Adaptive noise smoothing estimate
with local variance of Eq. (5.18)
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5.5 Conclusions

The adaptive noise smoothing filter has a very
simple structure and does not require any a priori
information from the original image. It uses a

nonstationary image model and can easily deal with

| different types of signal-dependent noise. The mean

- sqguare error criterion is used locally and has some of

E the desirable properties of a subjective error criterion.

The adaptive noise smoothing filter is adaptively

. linear and is similar to Lee's 1local statistics

algorithm. However, there are two important differences

in our approach:

1. Unlike Lee's heuristic arguments £for wusing
local mean and local variance, we introduce a
NMNV Gaussian image model. With this image
model, we can have a better understanding of
the problem and the extension of this filter
to image restoration becomes obvious. This

problem will be discussed in the next chapter.

2. For the multiplicative noise model, our
algorithm has a new term in the filter
equation. This difference arises from the
linear approximation made for the

multiplicative noise model in Lee's heuristic

120



derivation, and shows that his algorithm is
suboptimal for the multiplicative noise

(signal-dependent noise in general).

The calculation of the local mean and local variance
is critical to the quality of the restored image. The
adaptive noise smoothing filter has the advantage of
separating the estimation of statistics from the image
restoration process. Thus, we can use various
sophisticated methods to estimate the image statistics
while fixing the restoration filter structure.
Furthermore, the image statistics can be estimated by

using a recursive filter to reduce the computation.
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Chapter 6

NONSTATIONARY 2-D RECURSIVE IMAGE RESTORATION

6.1 Introduction

There have been many efforts to develop 2-D

recursive image restoration algorithms in recent years.

' The difficulties with 2-D recursive image restoration are

' in establishing a suitable recursive model and the high

| dimensionality of the state vector. These factors make

2-D recursive algorithms computationally unattractive.
Recent results on the reduced update Kalman filter by
Woods et al. [6-1,6-2] seem to overcome some of these
difficulties and have potential for real applications.
Their-algoritbm uses a staetionary image model and does
not include any of the nonstationary image properties
described in earlier chapters. Rajala et al. [6-3]
derived a 2-D recursive filter based on &a piecewise
stationary image model. They first segment the image into
disjoint regions according to the local spatial activity
of the region and determine the covariance structure of
different segments. Then they use a different Kalman
filter for each segment. Ingle and Woods [6-4] modified
the reduced update Kalman filter for a multiple image

model. They used an identification-estimation approach in
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‘which each point was assigned a stationary image model
and filtered by the specific Kalman filter. Compared
with Rajala's approach, this method emphasizes
nonstationarity at edges in the scene rather than

nonstationarity within regions.

In this chapter we develop a new recursive image
restoration filter based on the NMNV image model. The
algorithm is an extension of the adaptive noise smoothing
filter, developed in Chapter 5, to imaqe restoration.
The state space model of the NMNV image model can be
easily derived and is shown to be a shift operator. This
simplifies the prediction step of the recursive filter
considerably if we use indirect addressing techniques.
The optimal filter requires‘excessive computation because
of the high dimension of the state vector, thus a
suboptimal filter similar to the reduced update Kalman
filter [6-1] is used to reduce the computational effort.
The nonstationary 2-D reduced update filter developed
here is a numerical approximation to its nonrecursive
formulation - the nonstationary Wiener filter. Boundary
problems of recursive filtering that arise at the ends of
a scan line can be easily resolved because of the image
model assumed. Statistics needed for the filter are
estimated from the 1locel statistics of the degraded
image. The extension of this recursive filter to signal-
dependent noise, such .as multiplicative noise and Poisson

noise, is also derived.
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! 6.2 State Space Model

Consider the linear space-invariant image
degradation model

i=m+p j=n+q

g(m,n)=Z Zh(i,j)f(m+i,n+j) + v(m,n) (6.1)

i=m-p j=n-q
where g(m,n) is the degraded image, f(m,n) .is the

original image, h(m,n) 1is the point spread function of
~the system, 2p+l and 2g+1l indicate the extent of the
"blurring function, and v(m,n) is assumed to be white

'noise with

E[v(m,n)]=0 and

E [V(ml rnl) v (m2 rnz) 1=R (ml rnl) 6 (ml-m2 ,nl-nz) -
Define the raster scanned state vector x;(m,n) as

Xy (m,n)=[£f(m-p,n=-q) ,£(m-p,n-g+1),...£(m-p,N);

f(m-'p+1,1),...f{m-p+1,N}:...f(m+p,n+q-1}]T

~

éwhere N is the size of the image. The ordering of the
;state vector is similar to that of the 1lexicographic
representation that converts the 2-D image into a 1-D
' vector. Therefore, we can treat Eg. (6.1) as a 1-D moving
average process. The state space model of this process

can be written as

51(m,n+l)= Flil(m'“) + lel{m,n) (6.2)

z(m,n)= Hlﬁl(m'n) + Dlwl(m,n) + v(m,n) (6.3)

124




where wl{m,n}=f(m+p,n+q) and z(m,n)=g(m,n). The matrices

in Egs. (6.2) and (6.3) have the form

(8 L B iz 0 0]
0010 ....0 0
F.= . : Gl=
1 - 0 -
. 1 0
[0 00 weeens 0 | L

and

Hy=[h(-p,-9) ,h(-p,-q+1),...h(-p,q),0,0,...0;
OfOrctoh(-p-i-l'—q) 'h(-p+l"—q+l) 7 e e .h("p+1'q) 'O;Of!

0,0,... 0 8 00 LI I ] @ 8 & 8 @ e e 8 8 8 8 % s 8 08 88 0w

0,0,...h(p,-q) /h(p,~g+l),...,h(p,g-1)]

D1=h(Prq}-

Note that the state propagetion matrix Fy is a shift
operator that propagates the state vector within the
image. Due to the finite spatial extent of an image, the
observation equation Eq. (6.3) is not & valid description
of the degradation mcdel near the image boundary and must
be modified there. The vectors Hy and D, account for the
point spread function of the system and are raster
scanned representations of the 2-D point spread function.
Because all variables are spatial, the noncausal model is

a shifted version of the causal model and is realizable.

The NMNV image model can be characterized by

wltm,n+1) = a*wl(m,n) + w(m,n) (6.4)

125



éwhere a=0 and w(m,n)=f(m+p,n+g+l) is a shifted version of

fwl(m,n). Hence, the statistics of w(m,n) are given by

E[w(m,n)]=E(m+p,n+g+l) and
E[(w(mqy,ny)-w(my,nqy)) (w(m, rnz)—;?(mz 'Ny) )]

=Var[f(m1,n1}]5(m1-m2,nl—n2).

The major difficulty of recursive image restoration in a
~conventional stationary image model is in establishing a
' suitable recursive image model. This problem does not
éoccur for the NMNV image model because there is no
- correlation between adjacent pixels in the residual image
. and the output is simply a delayed version of the input.
;The nonstationary correlation existing in an image is
effectively imbedded in the nonstationary mean and the

nonstationary variance.

| In order to combine the degradation model in
| Egs. (6.2) and (6.3) with the image model in Eg. (6.4),

'we define the augmented state vector

X+ (m,n)
x(m,n)= =

wq (m,n)
=[f(m_prn_q) ,f(m-p,n—q+l) poemE (m-p,N) Ff(m-p+lrl) 7
£ (m+p,1) ,£(m+p,2) ,...E(m+p,n+q) 17T, (6.5)

The augmented model of Egs. (6.2), (6.3) and (6.4) can

now be written as

126




Xy (m,n+1) Fy Gy||x; (m,n) 0
= + w(m,n) (6.6)
wl(m}n+1) 0 0 wq(m,n) 1
X1 (m,n)
z(m,n)=[Hy,h(p,q)] + v(m,n), (6.7)
wl(m,n)
or
X(m,n+l) = Fx(m,n) + Gw(m,n) (6.8)
z(m,n) = Hx(m,n) + v(m,n) (6.9)
where
F. C
F= % 2 (6.10)
0 0
and

B = [h(-p,-q) ,h(-P,-9+1),...h(-pP,q) ,0,0,...0;
0,0,..ah(-p+1,_q} ,h(—p+l,-q+1) f.voch(-P'l-l’q} ’0,’0’0

00,4 h{p,~a) ;h(Dy~G+]l) yuash{Pra)] (6.11)

The relative positions of the state vector x(m,n) and
input w(m,n) is illustrated in Fig. 6.1. Note that the F
metrix remains & shift operator. It is interesting to
see that the stete propagation matrix F 1is space-
invariant even we consider & nonstationary image model.
The nonstationarity of the image is described by the
nonstationary mean and nonstationary variance of the

input process rather than by a space-variant matrix.

The nonstationary mean of the asugmented model can be
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obtained by taking the expectation on both sides of
Egs. (6.8), (6.9) and we have

‘X(m,n+1)=FX (m,n)+Gw (m,n) (6.12)

z(m,n)=HX (m,n) (6.13)

where X(m,n)=E[x(m,n)] and Z(m,n)=E[z(m,n)]. Let xg(m,n)

be the zero-mean residual state vector defined as
Xp (mrn)=§(mrn)—3(mrn)

and zg(m,n), wg(m,n) are similarly defined. Subtracting
Egs. (6.12) and (6.13) from the augmented model in

Egs. (6.8) and (6.9), we have a zero-mean residual model

Xg(m,n+l)=Fxy(m,n)+Gwgy(m,n) (6.14)

zo(m,n)=H§0(m,n)+v(m,n). (6.15)

This model preserves the same form as in Egs. (6.8) and
(6.9) except that the nonstationary mean has been taken

out as described in Egs. (6.12) and (6.13).

6.3 Nonstationary 2-D Recursive Image Restoration

In this section, we will derive a nonstationary 2-D
recursive image restoration filter for the augmented
state space model discussed in the 1last section. The
resulting recursive filter has high dimensionality and
the amount of computation makes it wunattractive for
practical applications. To overcome this problem, a
reduced update 1idea similar to Woods' reduced update
filter [6-1] is used to ease the computation

reguirements.
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6.3.1 Derivation

To derive the Kalman filter equations, we follow the
procedure used in Meditch [6-5]. Let gof(m,n) be the
optimal filtered estimate of Eo(m,n) based on the
observations 20(1,1), z0(1,2), «e«r 2g(m,n), and 30p(m'n)
be the optimal predicted estimate of Xg(m,n) based on

Zo(lgl), 20(1'2)' e e o g Zo(m’n"l)- We have

Xog(m,n)=E[xg(m,n) |25(1,1),...,25(m,n)]

and

gop(m,n)=E[§0(m,n)Izo(l,l),...,zo(m,n—l)].
Taking conditional expectations on both sides of
Eg. (6.14) for given observations zg(1,1), 20(1,2), ooy

zo(m,n—l), and reducing the index by one, we have the

relation

E[_}E_U(mrn} lzo(lrl) ,---;Zo(m;n-l)]
=E[F§0(m,n-l)+Gw0(m,n-l)Izo(l,l),...,zo(m,n—l)]

or

gop(m,n)=F30f(m,n—l)

~where we use the fact that wq(m,n-1) is independent of
j.zo(l,,l), S zo(m,n—r) and is zero mean. The predicted

i covariance matrix Pp(m,n) is given by
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Pp(m,n)

=E[ (Xq (m,n)=&gg (m,n)) (29 (m,n)-Rgy (m,n)) T}

=E[(F§0(m,n—1)+Gw0(m,n—l)-FﬁOf(m,n—l})
(Fx( (m,n-1)+Gwy(m,n-1) -F&g¢ (m,n-1)) T}

=FP¢(m,n-1) FT+GQ (m,n-1)GT

where Q(m,n—l)=E[wg(m,n—l}] is the nonstationary variance
of the original image, and Pe(m,n-1) is the filtered

covariance matrix. This is the prediction step.

The optimal filtered estimate ZXjg(m,n) can be

' obtained by using the projection theorem [6-5] and we

. have

Rog(m,n)=E[x(m,n)l24(1,1),245(1,2),...,2g(m,n)]
=E[§(m,n)Izo(l,l),zo(l,Z},...,zo(m,n-l),zop(m,n)}
=E[x(m,n) |z¢(1,1),25(1,2),...,2p(m,n=-1)]+
E[x(m,n)|2Zg,(m,n)]

=Rgp (m,n) +E [ (m,n) | Z(, (m,n) ] (6.16)

where Zop(m,n) is known as the innovation process and is

defined as

Eop(m,n}=zo(m,n)—E{zo(m,n)IzG(l,l},...,zo(m,n—l)]
=H§O(m,n)+v{m,n)—H§0p(m,n)

=Hgop(m,n)+v(m,n). d (6.17)

Here we use the fact that v(m,n) is independent of

zg(1,1), ..., 2g(m,n-1), and gop(m,n}=§0(m,n)-§0p(m,n).
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From Eg. (6.16) and Eg. (5.4) in Chapter 5, the filtered

estimate of xy(m,n) can be written as

Rog(m,n)=Kg, (m,n)+k (m,n) Zg, (m,n)

| "l
i where k(m,n)=P (m,n)P m,n). The
= X0Z0p 20p20p{ )

covariance matrix P (m,n) has the form
X0Zpp

= T
P p(m.n} = E[zotm,n)%op(m,n)]

*0%0
=E[ (Rqp (m/n)+Xqp (M, 0)) (HEgy (m,n)+v (m,n))T]

=pp(m,n)HT

Ewhere we use the orthogonality principle [6-5]

!

simple form

E[g()p(mln)z()p(m!n)] = 0-

Cross-

in the

'The covariance matrix of the innovation process can be

calculated as

The

onpzop(mrn)= E[ﬁop(m,n)ﬁop(m,n)]

=HPp{m,n)HT + R(m,n).

filtered covariance matrix Pg(m,n) is given by

Pe(m,n)=E[ (xq(m,n)-%gg(m,n)) (xg(m,n)-%pg(m,n)) 7T

=E [ (Xg (m,n)-%g, (m,n) -k (m,n) Z(, (m,n))
(2 (m,n) =gy (m,n) =k (m,n) 2o (m,n)) 7]
=E[(Xgp (m,n) -k (m,n) (HXgp, (m,n)+v(m,n)))

(%0p (m,n) =k (m,n) (HXqp (m,n)+v (m,n)))7T]

]

=(I-k(m,n)H)Py(m,n) (I-k(m,n)H)T+k (m,n)R (m,n) k¥ (m,n)

=[I—£(m,n}H]Pp(m,n}.

|
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' In summary, we have the following Kalman filter

. eguations:

Prediction step:

gop(m,n)=F£0f(m,n—1) (6.18)
P, (m,n) =FPg (m,n-1)FT +GQ(m,n-1)GT (6.19)
Filtering steé:

5(m,n)=Pp(m,n)HT[HPp(m,n)HT+R(m,n)]‘1 (6.20)
Rog (m,n)=Ko, (m,n)+k (m,n) [2( (m,n) -HZ(, (m,n)] (6.21)
Pf(m,n)=(I—g(m,n)H)Pp(m,n)_ (6.22)

6.3.2 Computational Aspects

The dimensionality of the nonstationary recursive
filter is equal to (2p*N+2g+l) where 2p+l and 2g+l are
the widths of the blurring function in the vertical and
horizontal directions respectively. Here, N is the image
size which is usually a large number. Due to the high
dimensionality of the state vector, the computational and
memory regquirements make the optimal Kalman filter
approach impractical. A suboptimal approach similar to
the reduced update Kalman filter is used here. The update
region of a point (m,n) is specified as those points

. within the point spread function of the blurring
;degradation. Instead of updating the whole state vector,
5 the reduced update Kalman filter updates only those
' points in the update region that make a direct
Econtribution to the observation g(m,n) in Eg. (6.1). The

égain vector k(m,n) is therefore constrained to be zero
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outside the update region of the "present" point (m,n).
The same principle is wused to update the filtered
covariance matrix Pg(m,n) . These modifications virtually
reduce the dimension of the state vector from (2p*N+2g+l)
to (2p+1l)*(2g+l1) and make the number of computations per

pixel independent of the image size N.

The computation for the prediction step of the
reduced update Kalman filter is streightforward. The
predicted state estimate gop(m,n) takes one matrix-vector
multiplication as in Eg. (6.18). Because the state

propagation matrix F is only a shift operator, we can use

' indirect addressing technigues and no real multiplication

is required. The predicted covariance matrix in
Eq. (6.19) can be similarly obtained by using the same
techniques. It is interesting to see that the NMNV image
model not only decouples the state equation but also
facilitates the prediction step of the recursive filter

with the indirect addressing techniques.

In the filtering step, we use the reduced update
constraint and the gain vector k(m,n) 1is set to zero
outside the update region of the current point (m,n).
This approximation reduces the computation dramatically
and we only need to calculate (2p+1)*(2g+l) elements of
the gain vector. The matrix inversion required in
Eq. (6.20) is only a scalar inverse. The filtered state
estimate is calculated according to Egq. (6.21), and only

(2p+1) * (2g+1l) elements of iof(m,n) are updated. The same
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reduced update principle applies to the filtered
covariance matrix Pf(m,n) and the filtered covariance
matrix only hes effective dimension (2p+l)*(2g+l). Thus
the total computation of the nonstationary 2-D recursive
filter is on the order of O(NZ) and the computation at

each point is proportional to [(2p+l)*{2q+l)]2.

Due to the raster scanned ordering of a 2-D image,
the observation equation (6.15) is not wvalid near the
boundary of the image and causes the boundary problems.
The prediction step of the reduced update Kalman filter
remains the same at the boundary since it only depends on
the state equation which is a wvalid description
everywhere in the image. The filtering step has to be
modified since the observation egquation is incorrect at
the boundary, and the filtering operation may contribute
error to the filtered estimate. To resolve the boundary
problem, we only wuse the ©prediction equations to
propagate the predicted estimates in the boundary region
and turn off the filtering equations until the filter
passes the boundary region and the observation equation

becomes valid agein.

The 1local mean of the degraded image 2z(m,n) is
readily calculated from the noisy image. However , the
nonstationary 2-D recursive filter requires the
nonstationary mean and nonstationary variance of the
input process w(m,n). One way to get the local mean of

w(m,n) is to use the inverse system of Egs. (6.12) and
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(6.13) on the local mean estimate of z(m,n). The quality
of this estimate depends on the stability of the inverse
system and problems of error accumulation may occur due
to the inexact knowledge of the blurring function and the
instability of the inverse system. Another local mean
estimate of w(m,n) can be obtained by using the blurring
function as the weighting function for calculating the
local mean of 2z(m,n) and using the inverse filter to
cealculate the local mean of w(m,n). It is easy to see
that the net effect is to set the local mean of w(m,n)
equal to z(m,n). Another method is to estimate E[w(m,n)]
from z(m,n) by local averaging, then convolve the local
mean estimate of w(m,n) with the blurring function to get
a consistent estimate of E[z(m,n)] satisfying Eq. (6.13).
Principles of calculating the local statistics discussed

in Chapter 5 also apply here.

6.3.3 Simulation Results

The original image in Fig. 6.2(A) is first blurred
with a 5*5 Gaussian shape point spread function and then
degraded by additive Gaussian noise with noise variance
equal to 16. The degraded image is shown in Fig. 6.2(B).
Figure 6.2(C) is the restored image obtained by using the
degraded imege as the local mean of the original image
and calculating the 1local variance by using the same

techniques as in Chapter 5. The restored image has sharp

| edges but seems noisy. Figure 6.2(D) 1is the restored

image obtained by using a blurred version of the degraded
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image as the local mean of the original image. The

restored image has sharp edges and the noise is smoothed.

i
|
i

From Fig. 6.2(C) and 6.2(D), we can see that the second |

method of calculating the 1local mean of the original

image is better than the first method. This difference is .

especially clear when the noise variance is large. The
simulation results for 03=100 are shown in Fig. 6.3.
Figure 6.3(B) is the blurred image and Fig. 6.3(C) has
both blur and additive noise. The restored image shown in
Fig. 6.3(D) uses a 5*5 low-pass filtered version 6f the

degraded image as the local mean of the original image.

6.4 Nonstationary 2-D Recursive Restoration of Images

with Multiplicative Noise

The Kalman filter is usually derived for the signal-
independent, additive, white noise case. In this
section, we extend our 2-D nonstationary recursive image
restoration filter to 1images degraded by blur and

multiplicative noise.

The degradation model for an image degraded by blur

and multiplicative noise can be written
i=m+p j=n+q

q(m,n)=u(m,n)[2 E H(i,3)Elm=1,n-3})) (6.23)
i=m-p j=n-q
where u(m,n) is a signal-independent multiplicative noise

with

E[u(m,n)] = u(m,n)

and
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Figure 6.2 Restoration results for images with
additive noise

(A) Original image
(B) Original blurred with 5*5 Gaussian
PSF and additive noise with 0;=16

(C) Recursive restoration using degraded
original as local mean

(D) Recursive restoration using smoothed
degraded original as local mean
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Figure 6.3 Restoration results for images with
blur and additive noise

(A) Original image

(B) Original blurred with 5*5 Gaussian
PSF

(C) Blurred image in (B) plus additive
noise with 03=100

(D) Recursive restoration result
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E[(u(m,n)-u(m,n)) (u(my,ny)=-u(my,nq))]
=Ru(m,n)6(m-ml,n-nl).

The augmented state space model of this degradation model

can be written as

x(m,n+l)= Fx(m,n)+ Gw(m,n) (6.24)

z(m,n)= u(m,n)HxX(m,n) (6.25)

where matrices F and G are the same as in Egs. (6.8) and
(6.9). Note that the state equation remains the same as
in Eg. (6.8) because we use the same image model, but the
observation equation has a nonlinear form due to the
multiplicative noise. The nonstationary mean of the
multiplicative noise model can be obtained by taking the

expectation of Egs. (6.24) and (6.25), and we have

X(m,n+l)=FX(m,n)+Gw(m,n) (6.26)

z(m,n)=u(m,n)HX (m,n) . (6.27)

Subtracting the nonstationary mean from the augmented

state space model, we have the zero-mean residual model

Xg(m,n+l)=Fxq4(m,n)+Gwy (m,n) (6.28)

zo(m,n)=u{m,n)H50(m,n)+u0(m,n)Hg(m,n) (6.29)

éwhere 50(m,n)=§(m,n)—g(m,n), and zo(m,n), uO{m,n),

wg(m,n) are similarly defined.

The prediction step of this model is the same as the
additive noise model because the state equations are the

same. Hence, we have

140



Xop (myn) =FZg¢(m,n-1)

Py (m,n)=FP¢ (m,n-1)FT + GQ(m,n-1)GT.
The innovation process can be written as

Zop(m,n)=zg(m,n)—ﬁop(m,n)
=zo(m,n)—E*[zo(m,n)lzo(l,l),...zg(m,n—l)]
=z0(m,n)—6(m,n)Hgopfm,n) l

=U(m,n)BXgy, (m,n)+ug(m,n)H(Xg(m,n)+X(m,n)) (6.30)

% . ' .
where E [.|.] represents the linear minimum mean square
error estimate of zo(m,n) based on the past observations,

and we use the fact that wu(m,n) 1is independent of

observations z(1,1), 2z(1,2), «.., 2(m,n-1). As in section

6.3, the filtered estimate is given by
Rog (myn) =g, (m,n) +k (m,n) Zgp, (m,n)

-1
where k(m,n)=P, = m,n)P m,n). The cross-
Jeim ) =Oy AR oy (]

covariance matrix can be calculated as
Pxozop(m,n) = E[xg(m,n)Zg,(m,n)]
=E{[309(m.n)+zgp(m.n)][G(m,nlﬂzgp{m,n)+
ug(m,n)H(xq(m,n)+X(m,n))] 7}
=E(m,n)Pp(m,n)HT
where we use the orthogonality principle and the

knowledge that wug(m,n) is independent of the original

image and the predicted estimate.
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The covariance matrix of the innovation process is given |

by

o T
p(m.n) = ElZgp (m,n) 25, (m,n) ]
=62(m,n)HPp(m,n)HT + Ru(m,n)Hg(m,n)iT(m,n)HT

+ Ry(m,n)HCg(m,n)HT

where Cg(m,n) is the covariance matrix of the original
image. For the NMNV image model, we have
7. 2
cf(m-p,n—q)
oﬁ(m—p,n-q+l}
Cf(m,n)= .
0 G
2
cf(m+p,n+q)

- -

The filtered covariance matrix is given by

Pe(m,n)=E{[xq(m,n)-%g¢(m,n) ] [Xg(m,n)-Rog(m,n)]7T)
=E{[Xgp (m,n) -k (m,n) Zqy, (m,n)] [Xgp (m,n) =k (m,n) Zpp, (m,n) ]

=(I-ﬁ(m,n)ﬁ(m,n)H)Pp(m,n).

In summary, we have the following Kalman filter

equations for multiplicative noise model:

Prediction step:

ﬁop(m,n)=F§0f(m,n-l) (6.31)
Py, (m,n) =FP¢ (m,n-1)FT + GQ(m,n-1)G" (6.32)
Filtering step:

k(m,n)= G(m,n)Pp(m,n)HT[ﬁz(m,n)HPp(m,n)HT

R, (m,n) H (X (m,n) XT (m,n) +C¢ (m,n) )BT ] 71 (6.33)

iH
ROl o e e




kOf(m n)—xgp(m ,n)+k (m, n)[zo{m n)-u(m, n)onp(m sny] (6.34)
[f(m n)=(I-u(m,n)k(m, n)H)P (m,n) (6.35)

16.4 1 Simulation Results
i

The original image in Fig. 6.4(A) is first blurred
&y a 5*5 Gaussian shape point spread function and is
%hown Fig. 6.4(B). Then it 1is degraded by a signal-
ﬁndependent Gaussian multiplicative noise with mean 1 and
ﬁariance 0.00083. The degraded image 1is shown in Fig.
%.4(C). The restored image is shown in Fig. 6.4 (D). Here
Fhe local mean of the original image is estimated by
Plurring the degraded image with a 5*5 window. The same
Eet of simulation results for 02—0 007 are shown in Fig.

6 D

5.5 Nonstationary 2-D Recursive Restoration of Images

with Poisson Noise

For images detected at 1low 1light levels, photon
noise is a fundamentzl limitation. The degradation model
for an image degraded by blur and photon noise can be

written

g(m,n)=Poissonh(§: E h(i,j)f(m=1i,n-3)) (6.36)
i

where Poissonh(.) is the Poisson random number generator

with proportionality factor A as defined in section 2.4,

The augmented state space model of Eg. (6.36) can be

expressed as
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Figure 6.4 Restoration results for images with
blur and multiplicative noise

(A) Original image
(B) Original blurred with 5*5 Gaussian
PSF

(C) Image (B) degraded by multiplicative

noise with 0°=0.00083
(D) Recursive re8toration result
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Figure 6.5 Restoration results for images with
blur and multiplicative noise

(A) Original image

(B) Original blurred with 5%*5 Gaussian
PSF

(C) Image (B) degraded by multiplicative
noise with Uu=0.007

(D) Recursive restoration result
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X(m,n+1l)=Fx(m,n)+Gw(m,n) (6.37)

z(m,n)=Poissonh(H§(m,n)}. (6.38)
The nonstationary mean of the augmented model can be
obtained by taking the expectation of Egs. (6.37) and
(6.38), and we have

X(m,n+1)=FX (m,n)+GW(m,n)

Z(m,n) =AHX (m,n) .

Subtracting the nonstationary mean from Egs. (6.37) and

(6.38); we have the zero-mean residual model
Xg(m,n+l)=Fx4(m,n)+Gwg (m,n) (6.39)
zo(m,n)=lH£0(m,n)+[Poissonk(H§(m,n))—hHE(m,n)]

= AHxy(m,n) + sy (m,n) (6.40)

where sk(m,n)=Poissonl(Hg(m,n))—AHi(m,n) is the Poisson

noise term. Note that
E[sx(m,n) !i(m!n)]=0‘

The prediction step is the same as in the additive noise

model. The innovation process is given by

20p(m,n)=zo(m,n)-20p(m,n)
=zo(m,n)-E*[zo(m,n)]zo(l,l),...zg(m,n-l)]
=zo(m,n)-AHgop(m,n)—E*[sh(m,n)Izo(l,l),...zo(m,n-l)]
=zo(m,n)-hﬂgop(m,n)

=7\H3_0p (m,n)+sl(m,n) (6.41)

* ¥ P
where E [.]|.] represents the linear minimum mean square
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Ierror estimate based on the observations
'zO(l,l),...,zO(m,n-l), and we use the fact that sh(m,n)

is zero mean. The filtered estimate is given by
Xog (m,n) =g, (m,n) +k (m,n) 2oy, (m,n)

=1 L
where k(m,n)=P, = m,n)P (m,n). The crosscovariance

matrix is given by

B (m,n) = E[xq(m,n)Zg,(m,n)]

E[(Rgp (M,n)+Zop(m,n)) (XX gy (m,n)+s; (m,n))"]

]

APp{m,n)HT

where we use the orthogonality principle and the fact

that
E[E(m,n)sh(m,n}] = 0.
The variance of the innovation process is given by

onpzop (m,n) = E [zﬂp (m,n) 2Op(m /n) ]

= A%HP, (m,n) BT +)HE (m,n) .
The filtered covariance matrix is given by

Pf(m,n)=E[gof(m.n}zgf(m.n)]

=E [ (Xp (m,n) =k (m,n) Zg, (m,n)) (Zgp (m,n) =k (m,0) Z gy, (m,m)) T ]

=E{[(I-Ak (m,n) H) Xy, (m,n) -k (m,n) s, (m,n) ]
[(I-AK(m,n)H) %oy (m,n) =k (m,n) sy (m,n)] "}

=(I-Ak(m,n)H)Py(m,n).

In summary, the Kalman filter equations for Poisson noise

are given by
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Prediction step:
| Rp(m,n)=FR,¢(m,n-1) (6.42)

Py (m,n)=FPg¢ (m,n-1)FT + GQ(m,n-1)G" (6.43)

Filtering step:

Rog (m,n) =Zgy (m,n) +k (m,n) [z (m,n) -AHR g, (m,n) ] (6.44)
k(m,n)= th(m,n)HT{AzHPp(m,n)HT+hH§{m,n))_1 (6.45)
Pp(m,n)=(?—AE(m,n)H)Pp(m,n) (6.46)

;6.5.1 Simulation Results

The original image is shown in Fig. 6.6(A). Figure
'6.6(B) 1is the blurred image with a 5%*5 Gaussian shape
ipoint spread function. Figure 6.6(C) has both blur and
‘Poisson noise with A=8. Note that Fig. 6.6(C) is
normalized to have the same intensity 1level as the
original image for display purposes. The restored image
is shown in Fig. 6.6(D). Again, the local mean of the
original image 1is estimated by blurring the degraded
Iimage with a 5*5 window. The same set of simulation

results for A=1 are shown in Fig. 6.7.

6.6 Conclusions

-

A nonstationary 2-D recursive restoration filter is
derived based on the NMNV image model and the 1local
minimum mean square error criterion. The filter has a
simple, space-invariant structure and the nonstationary

information of the image is described by a nonstationary
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Figure 6.6 Restoration results for images with
blur and Poisson noise

(A) Original image
(B) Original blurred with 5*5 Gaussian

PSF
(C) Image (B) degraded by Poisson noise
with A=8

(D) Recursive restoration result
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Figure 6.7 Restoration results for images with
blur and Poisson noise

(A) Original image

(B) Original blurred with 5*5 Gaussian

PSF

(C) Image (B) degraded by Poisson noise

with A=1
(D) Recursive restoration result
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E

input process rather than a space-variant filter

| structure. Therefore, it 1is not necessary to build a

. space-variant dynamic model for each nonstationary image,

and we only need to estimate the local mean and 1local

,variance of the nonstationary image. Similar to the

?adaptive noise smoothing filter, different local

statistics estimates result in different filters.

A reduced update technique is used to reduce the

computation efforts. With this approximation, the 2-D

- Kalman filter becomes practical for real-time

application. The extension of the nonstationary 2-D
recursive filter to signal-dependent noise is discussed
and the filter has similar properties as the adaptive
noise smoothing filter. The restoration filter produces

better results than the conventional Wiener filter.
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Chapter 7

SPECKLE REDUCTION TECHNIQUES FOR INTENSITY SPECKLE IMAGES

7.1 Introduction

Speckle occurs in all types of coherent imagery such
as synthetic aperture radar (SAR) imagery, acoustic
imagery and laser illuminated imagery. The origin of

speckle and its statistical properties are now well

understood and are discussed 1in Chapter 3. Unlike
;multiplicative noise or Poisson noise, speckle noise is
:not only signal-dependent but also correlated. The
;signal-to—noise ratio (SNR) of fully developed speckle is
equal to one, and the correlation function of speckle

noise depends on the coherent point spread function of

‘the imaging system and the original image intensity. The
presence of speckle in an image reduces the resolution of
the image and the detectability of the target. Various
speckle reduction techniques were devised using partially
coherent illumination in the imaging system rather than
coherent illumination [7-1]. Other methods used to
reduce speckle have included observing speckle through a
finite aperture, and moving an aperture while observing
the time-averaged image. Similar processes were known to

the radar community as the mixed integration techniques
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[[?-2,?—31. While these methods are effective for speckle

Ireduction, they require the modification of the imaging

Esystem and do not consider the image statistics.

]
]

In recent years, digital methods for processing SAR
rdata and digitally processed SAR images have become
‘available. Interests in applying digital image
;enhancement and restoration techniques to  speckle
:reduction are high [7-4,7-5,7-6]. However, these
E:approaches have assumed that speckle noise is
multiplicative and used multiplicative noise filtering

algorithms to suppress speckle noise. As shown in Chapter
3, the multiplicative model of speckle is based on the
first order statistics of speckle and is only a rough
approximation. In practice, the second order statistics
of speckle are of fundamental importance for speckle

reduction and the multiplicative noise filtering

algorithms are not optimal for this purpose.

In this chapter, we model the speckle according to
the exact physical process of coherent image formation.
Thus, the model includes signal-dependent effects and
accurately represents the higher order statistical
properties of speckle that are important to the
restoration procedure. Here, we only consider "fully
developed" speckle and assume that only the speckle
intensity is recorded and the phase information is 1lost
through the recording process. We first derive an

adaptive noise smoothing filter and a maximum a
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posteriori (MAP) filter for a limiting situation when the .

discrete speckle samples can be assumed independent of
each other. These filters are similar to the
multiplicative noise filtering techniques used by other
authors. A local 1linear minimum mean square error
(LLMMSE) filter based on the nonstationary mean,

nonstationary variance (NMNV) image model 1is derived.

This filter adapts to the signal-dependent speckle noise

and the nonstationary content of the image. More

| importantly, the correlation properties of speckle are
| taken into account. A 2-D recursive implementation of
the LLMMSE filter is also developed as a fast computation
algorithm. Simulation results on computer generated

speckle images are presented.

7.2 Previous Approaches to Speckle Reduction

An important property of fully developed speckle is
that the ensemble mean of the speckle image is eqgual to
the incoherent image of the original object. This
property serves as the Dbasis of frame averaging
technigues [7-7], where multiple frames of independent
speckle images of the same object are generated and
averaged on an intensity basis. This averaging process
increases the SNR from 1, as in a single frame case, to
M1/2 yhere M is the number of independent speckle images.
If M is very large, in theory, we can have a very good
estimate of the incoherent image by averaging multiple

frames of speckle images. However, cost and other system
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. limitations usually make it difficult to generate

multiple frames of independent speckle images.

In the wavefront reconstruction process of the SAR
system, it is possible to introduce frequency or angle
diversity such that multiple frames of independent
speckle images can be generated. The discrete fregquency

'plane mixed-integration processor [7-3] subdivides the
frequency plane into M cells, processes each cell
coherently and incoherently sums the outputs. The purpose

~is to produce multiple frames of independent speckle

'imaqes and the net effect is to increase SNR at the
expense of resolution. The scanning frequency plane
mixed-integration processor continuously scans the
frequency plane with a subaperture which is 1/M times the
size of the signal spectrum. The resulting image is
coherently processed and incoherently time-averaged over
the period of scanning. The processor is shown to be

~eguivalent to smoothing the speckle intensity image with
the incoherent point spread function of the scanning
subaperture. While these mixed-integration processors are
effective for speckle reduction, they do not consider the
image statistics and are essentially space-invariant low-
pass filters. The processors are implemented in the
;frequency domain because it is relatively easy to access
Ethe frequency spectrum when the SAR image is optically

|
processed.

1
I
|
|
|
i
1
|

In recent years, digitally processed SAR images are

| TR SEO 155



available, and there are tremendous amount of interest in
applying digital image enhancement and restoration
techniques to speckle reduction. Most authors applying
digital image processing techniques to speckle reduction
assumed the speckle noise is multiplicative. Arsenault

[7-8] used the logarithmic transform to make the

. multiplicative noise become additive and applied noise

smoothing filter in the transform domain. Lim et al.
[7-4] and Lee [7-5] applied their multiplicative noise
filtering algorithms to speckle images. Frost et al.

[7-6] used an adaptive Wiener filter for multiplicative

; noise to smooth the speckle noise. The multiplicative

E model of speckle is based on the first order statistics

- of speckle and is only a rough approximation. In

. practice, the second order statistics of speckle are of

fundamental importance for speckle reduction. Thus, these
multiplicative noise filtering algorithms ignored the
correlation properties of speckle and are not optimal for

speckle reduction.

- 7.3 Speckle Reduction Techniques - Independent Speckle

Samples

Unlike additive noise or Poisson noise, speckle
noise is not only signal-dependent but also correlated.
This can be observed from the coarseness, texture or the
"speckle size" of a speckle image. The "speckle size" or
the correlation region of a speckle image is

approximately the size of the incoherent point spread
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function of the system. If a speckle image has been
‘undersampled such that the sampling interval is greater
?than the correlation 1length of the speckle, the
covariance information of speckle is lost and the speckle
samples are independent. Under this condition, speckle

reduction becomes a noise smoothing problem.

In this section, we consider speckle reduction
techniques for independent speckle samples. The adaptive
noise smoothing filter for speckle reduction is shown to
be the same as the multiplicative noise case. A nonlinear
MAP filter which <considers the negative exponential
distribution of speckle intensity is then derived. The
MAP estimate is a real root of a cubic eguation and can
be easily calculated. The extension of these filters to
multiple frame case is developed and simulation results

" are presented.

7.3.1 Adaptive Noise Smoothing Filter

From Eqg. (3.30), the first order <conditional
probability density function of the speckle intensity at

;point (m,n) is given by

{(20‘2(m,n))_1exp(-g(m,n}/202(m,n)) for g(m,n)z0
0 otherwise (7:4:1)

where

I(m,n)=202(m,n)=22f(i,k)hz(m—i,n—k) (7.2)
ij
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is the incoherent image of f(m,n). Equation (7.1) can
' be represented by a multiplicative noise model and we

have
g(m,n) = u(m,n)I(m,n) {7T+3)

where u(m,n) is signal-independent and has a normalized

negative exponential distribution

P(u(m,n)) = {exp{—u(m,n)) for u(m,n)>0
0 otherwise.

Therefore, the adaptive noise smoothing filter for
speckle reduction is the same as the adaptive noise
smoothing filter for multiplicative noise with unit mean

and unit variance.

7.3.2 MAP Filter

The adaptive noise smoothing filter only uses the
local mean and local variance of speékle, and 1is the
optimal MMSE filter for Gaussian statistics. Since the
speckle intensity g(m,n) has a negative exponential
distribution that is very different from the Gaussian
distribution, it is useful to consider the nonlinear MAP

filter for better performance.

If we use the NMNV image model for the incoherent
image I(m,n), the joint conditional probability function
of g(m,n) for independent speckle samples can be written

as
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P(glIl) =
P(g(1,1)]1(1,1))P(9(1,2)11(1,2))...(g(N,N)|I(N,N)) (7.4)
iwhere g and I are the lexicographic representations of
!g(m,n) and I(m,n) respectively. The MAP estimate of I is

. obtained by maximizing the a posteriori probability

Edensity function

P(glI)P(I)
P(Ilg) = . (7:5)
P(g)

;with respect to I. Because the logarithm function is a
'monotonically increasing function, we <can take the
- logarithm on both sides of Eq. (7.5) and then

(differentiate it with respect to I. Thus, we have the MAP

eqguation
BlnP(c_;[;) d1nP (I)
et I e =9 (7.46)
91 oI A
I=Ivap

‘where we use the fact that P(g) is a constant with
respect to I. The first term in Eg. (7.6) is the maximum
likelihood (ML) term, and the second term is the a priori
term of the incbherent image. For the NMNV image model,

P(I) can be written as

P(I)=P(1(1,1))P(I(1,2))...P(I(m,n))...P(I(N,N)) (7.7)

and

1 (I(m,n)-T(m,n))?
P(I(m,n)) = exp[- ]

2
VZﬁoi(m,n) 20% (m,n)
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Here, o%(m,n) and I(m,n) are the nonstationary variance
and mean of I(m,n). From Egs. (7.4), (7.6) and (7.7),
the MAP equation can be expressed as a set of scalar
equations

31nP (g (m,n)| I(m,n)) : 91nP (I (m,n)) L & (7.8)

Map (M/1)

The first term of Eg. (7.8) can be written as

31nP (g (m,n) |I(m,n))

oI (m,n)

= -1/I(m,n) + g(m,n)/I%(m,n). (7.9)

!Settinq Eg. (7.9) to zero, we have the ML estimate
|

~1/1(m,n)+g (m,n) /12(m/0) |1 (m,n) =Ty (m,n) = O
or

EML(m,n)=g(m,n). (7.10)

It is interesting to see that the ML estimate of the
fincoherent image is the speckle image itself. The second
term of Eq. (7.8) can be written as

391nP (I (m,n))

9I (m,n)
= = (T(m,n)-T(m,n))/ 0% 1 1y~ | (7.11)

From Egs. (7.8), (7.9) and (7.11), we have the MAP

eguation
g(m,n) 1 (I(m,n)-I(m,n))
= - =0
Iz(m,n) I (m,n) oi(m,n) A
I(m,n}=IMAP(m,n)
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or
—I%AP(H‘I,H) [IMAP (m,n)-I(m,n)]+

62 (m,n) [g(m,n) ~Iyap(m,n)1=0. (7.12)

It is easy to see from Eg. (7.12) that EMAP(m,n) is the
real root of a cubic equation whose value is between
‘T(m,n) and g(m,n). Because the MAP estimate of the
independent speckle samples case depends only on the

speckle observation and statistics at one point, we will

Icall it a "one-point" MAP estimate.

*7.3.3 MAP Filter for Multiple Frame Speckle

In some applications, we may have several
independent speckle images of the same object. Frame
averaging technique can be applied to these images to
increase the signal-to-noise ratio. It is easy to see
that the average of M independent speckle images

1 :
g(® (m,n) =— %" g(&) (m,n) (7:13)

M
i

is the ML estimate of the incoherent image of the object
[7-4], where g(i}(m,n} is the ith speckle image frame.
This simple averaging technique does not consider the
image statistics. It is expected that further speckle
reduction could be achieved by using the speckle

reduction techniques developed for the single frame case.

The average of M independent negative exponential
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random variables has a gamma probability density function

and can be written as

P(g(@) (m,n)IT(m,n)) =

M-1
M (a) (a)
( . Y= (m,n) exp [-M g (m,n)] for I(m,n)>0
I(m,n) I (L) I(m,n)
0 otherwise

'where T (.) is the gamma function. The conditional mean

and variance of g(a)(m,n) are given by

Elg(® (m,n) IT(m,n)] = I(m,n)
and

var[g(@) (m,n) T(m,n)] = I2(m,n)/M.

Therefore, the adaptive noise smoothing filter for the
multiple frame averaged speckle image is the same as the
adaptive noise smoothing filter for multiplicative noise

with unit mean and variance equal to 1/M.

The MAP filter for multiple frames of independent
speckle images can be derived by following the standard
procedure of formulating the MAP equation as in the

single frame case. Our objective is to maximize

p(g(1),g(2)  .q(1)1)p (1)

P(g(l),g(z),...g(i)}

with respect to I. It is easy to see that we have the

following MAP equation

1
|
|
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"EMAP(mrn) [EMAP (mrn)-I(m!n)] 4

MU%(m,n)[g(a)(m,n)—fMAP(m,n)]=O (7.14)

where g(a)(m,n) is defined in Eg. (7.13). This equation

is similar to the one-point MAP equation except that the
:frame number M puts a weight on the difference between
fq(a)(m,n) and EMAP(m,n). When M=1, Eq. (7.14) is the same

as the MAP equation for the single frame case.

7.3.4 Simulation Results

In this section, we show some simulation results for
(different speckle reduction filters for the independent
speckle case. The discrete speckle image is generated
according to the multiplicative speckle model. The
original image of an aerial photograph is shown in Fig.
7.1(A). The speckle image is shown is Fig. 7.1(B). The
' signal-to-noise ratio of this image is equal to one and
- the speckle samples are independent. The 1local mean
' estimate of Fig. 7.1(B) is calculated by using a 7%*7
‘uniform weight moving average window and is shown in Fig.
g D ({2 In this picture, the noise is smoothed at the

expense of resolution and the results are similar to the

'results of using a low-pass filter. The one-point MAP
iestimate is obtained by solving the cubic MAP equation
where the coefficients of the equation are determined
from the local mean and local variance estimates, and the
result is shown in Fig. 7.1(D). The MAP estimate has
much better resolution and most regions are clearly

defined.
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-ﬁecause of the 1low signal-to-noise ratio of a
speckle image, we will not have a good estimate of the
local mean and 1local variance. This fact explains the
noisy appearance in Fig. 7.1(D). If we estimate the local
mean and local variance from the MAP estimate in Fig.
7.1(D) and use these values as the coefficients of a new
MAP equation, the solution is a new MAP estimate shown in
Fig. 7.2(D). Comparing this picture with the o0ld MAP
estimate as shown in Fig. 7.2(C), we can see that the
noise is further smoothed without much loss of image

resolution.

The same procedure 1is carried out by wusing the
adaptive noise smoothing filter. The original image is
shown in Fig. 7.3(A). Figure 7.3(B) is the same speckle
image as in Fig. 7.1(B). The first iteration adaptive
estimate is shown in Fig. 7.3(C). Comparing this picture

with Fig. 7.2(C), we note that the MAP estimate seems to

. put a lot of black dots on the sharp transition region of

i
|
|

the image while the adaptive noise smoothing estimate
puts white dots. This difference 1is because the MAP
filter considers the negative exponential distribution of
speckle intensity and tends to ‘"guess" on the 1low

intensity side if the local variance estimate is large.

The multiple frames case is shown in Fig. 7.4. The

average of 4 independent speckle images is shown in Fig.

{ 7.4(B). The signal-to-noise ratio of this picture

increases from 1 to 2 due to the averaging process and
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this should improve the local statistics estimates. The
adaptive noise smoothing estimate is shown in Fig. 7.4(C)
and the MAP estimate is shown in Fig. 7.4(D). The
improvement of wusing our speckle reduction techniques
after the 4 frames averaging process Jjustifies the
usefulness of considering the image statistics in the

filtering process.

7.4 Speckle Reduction Technigques - Correlated Speckle
Samples

The speckle reduction techniques discussed in the

jlast section @assume that the discrete samples of a

:speckle intensity image are statistically independent and

that only the first order statistics of speckle are used
for speckle reduction. The correlation properties of

speckle are ignored and we only have an estimate of the

. incoherent image rather than the original object

intensity.

In this section, we derive an optimal local minimum
mean square error (LLMMSE) estimate of the original image
which takes into account the second order statistics of
speckle. This approach is different from all the past
work on applying digital image processing techniques to
reduce speckle noise. The MAP filter for correlated
speckle samples should also be valuable for speckle
reduction. However, we are not able to obtain the

explicit form of the joint probability density function
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Figure 7.1 MAP speckle reduction filter for the
case of independent speckle samples

(A) Original image

(B) Speckle image - single frame,
independent speckle samples

(C) 7*7 local mean of (B)

(D) One-point MAP estimate
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Figure 7.2 MAP speckle reduction filter with
improved local statistics

(A) Original image

(B) Speckle image - single frame,
independent speckle samples

(C) One-point MAP estimate (first
iteration)

(D) One-point MAP estimate with
improved local statistics
(second iteration)
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Figure 7.3 Adaptive noise smoothing filter for
the case of independent speckle samples

(A) Original image

(B) Speckle image - single frame,
independent speckle samples

(C) Adaptive noise smoothing estimate
(first iteration)

(D) Adaptive noise smoothing estimate
with improved local statistics
(second iteration)
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Figure 7.4 Speckle reduction filter for multiple
frames, independent speckle samples

(A) Original image

(B) Speckle image - 4 frames average,
independent speckle samples

(C) Adaptive noise smoothing estimate

(D) One-point MAP estimate
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iof speckle intensities. The difficulties in deriving the

‘MAP filter even if we have the required information are

explained.

7.4.1 MAP Filter

If a speckle intensity image is adequately sampled
:such that the covariance structure of speckle 1is
;preserved, in principle, this information can be used to
' further reduce speckle noise. In order to derive the MAP
;restoration filter for the correlated speckle sample
écase, we should first have the joint probability density

. function for speckle intensity.

For "fully developed" speckle, the complex amplitude
speckle image b(m,n) is assumed to be complex circular
Gaussian, and the conditional probability density
function of b is given by

i
|

%where b is the 1lexicographic representation of the

2
P(bl£)=( 7N IRy (g 1) "Lexp (-0 Rg{g) b) (7.15)

icomplex amplitude speckle image b(m,n), Q* is the complex

iconjugate and transpose of b, Rb(f) is the conditional
autocorrelation matrix of b, |Rb{f)| is the determinant
 of matrix Rb(f)' and N is the size of the image. In
order to find the joint probability density function of
the speckle intensity g and phases 6, we make the

'following transformation of variables

{r) = 4q1/2 :
bJ g cosBJ
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bgi) = ql/zsinej ) (7.16)
for j=l,2,...,N2.

Applying standard technigues for transformation of random

variables, we have
P(g,01f) = P(blf)ITI (7.17)

where the Jacobian of the transformation |[|J| is easily
2
found to be 2°N7, Substituting this into Egq. (7.17), we

have

P(g,0lf)
2
=12mN" IRy gy 11 Lexp(- E:Zi:u ol 21105018

where Ui is the (i,]J)th element of matrix Ry(g)y+ TO find
the joint probability density function of g alone, we

integrate Eq. (7.18) over @ and obtain

P(gl_f_)=ff---ffP(g,_9_l_f_)dg. (7.19)

In general, there is no explicit analytic form for this
density function [7-9] . If we only consider two pixels

in the image, we have

P(91:92[_@=ffP(g]_r92r9]_r92|_f_) de,de,
2
=(uyjugp-uyp) expl-(gjuy3+9u2) ] Ig(2/9195uy5) (7.20)
where IO(.} is the zero order modified Bessel function of
the first kind. This is as far as we can go. The two-

point MAP filter is very complicated already, let alone

the optimal N2 points MAP filter.
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!7.4.2 LLMMSE Filter for Speckle Reduction
|

I :
| From Eg. (5.4), the LLMMSE filter for speckle

ireduction has the form

E P - e

'\ frimmse = EtCegCqym(9-9) - (7.21)
%Note that in this formulation, our objective is to
Eestimate the object intensity rather than the incoherent
}image of the object. From Eg. (3.19), the conditional
Eand unconditional means of g can be expressed as

E[glf1=H;f and E[g]=H;E (7.22)

where Hy 1is the incoherent point spread matrix of the
system. The cross-covariance matrix of f and g is given

by

Cegqg = EL(£-E) (g-3)T)

E[(£-F) (g-Bpf+H £-H ) T)

B[ (£-F) (g-H£) T1+E[ (£-F) (£-F) THT)

C¢HT ' (7423)
where Cg is the covariance matrix of f. The covariance
matrix of g is given by

Cq = E[(g-3) (g-3)T]

= E[(g-Hpf+H{£-HE) (g-HyE+H £-H )T

= E[(g-H{f) (g-H£) T1+HCeHE. (7.24)
The first part of Eq. (7.24) is the speckle noise term

and the second part is the signal term. The (i,j)th

element of the first term in Eq. (7.24) is equal to
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E[Cg(m,n;ml,nllf)], where (m,n) is the spatial coordinate
and i=(m-1)*N+n, Jj=(m;-1)*N+n;. From Egs. (3.34) and
(3.36), we have

E[Cq(m,n;my,ny|£)]
= B[}, 222 h(m-i,n-k)h(my-i,n;-k) £(i,k)h(m-r,n-s)

1 KTS
h(ml—r,nl—s)f(r,s)]

=Y ¥ Y h(m-i,n-k)h(my-i,n;-k) h(m-r,n-s)

ikrs
h(ml-r,nl—s)E[f(i,k]f(r,s)]. (7.25)

If we assume that the object intensity can be modeled by
its nonstationary mean and nonstationary variance, then

Eq. (7.25) can be expressed as

E[Cg(m,n:mlfnllf)]
=§:§E§:2:h(m-i,n—k)h(ml—i,nl-k]h(m—r,n-s)

i r s

h(my-r,nq=s) [E(i,k)E(r,s)+ o #(i,k) 6(i-1,k-5)]
=Q;2E§;§;h(m-i,n-k)h(ml-i,nl—k)h(m-r,n—s)
h(ml-r,nl—s)f(i,k)f(r,s)+
Z;%;hz{m-i,n—k)hz(ml—i,nl—k) o2 (i k)
= lz:{;h(m-i,n—k)h(ml-i,nl—k)f(i,k)|2 +

1

> > h%(n-i,n-k)h?(my-i,n-k) oZ(i, k). (7.26)
ik

From Egs. (7.25) and (7.26), Eg. (7.24) can be expressed

as

~ o= T, 2 T T

where the operator [A]2 takes the magnitude square of

:each element of matrix A, and F matrix is defined as
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f(N,N)

Substituting these statistics into Eg. (7.21), we have

the LLMMSE speckle reduction filter for the case of

|correlated speckle.

[
| . .
i The LLMMSE speckle reduction filter reguires the
|

‘inverse of Cg which is of dimension N2 by N2. For a

|
‘common image size N=256, this task will take tremendous
-amount of computation and memory space. Therefore, we
‘have to use sectioning methods to reduce the computation

load.

7.4.3 LLMMSE Filter for Multiple Frame Speckle

Assume that we have M independent speckle images of

the same object. Let

g(® (m,n) = L 3"g(H) (m,n) (7.28)
M i

where g(i)(m,n) is the ith frame speckle image. We also
assume that each speckle image has the same average
intensity 1level. The LLMMSE filter derived for the
single frame case can be easily modified to deal with
multiple frames of independent speckle images if the
statistics of g(a}(m,n) are available. The covariance

matrix of g(a) is given by
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cqla) = E[(g(@-5(@)) (g(@)-gla))T)
= E{_'"_[Z(S.(l)_ﬂ(l) Y5 [ Z(g_(])..._g_(:l) )]T}

lZZZE[ (9_(1)"3{1)) (9—(3)_3(])) ]
—-1cg+_jE:lL_H CeHY

ZI

=4 { [HE‘HT]N&+HICfHI}+H C¢HT (7.29)

K

where Cg is the covariance matrix of a single speckle

image as shown in Eq. (7.27), and we use the fact that
E[(g(i)-ﬁ(i)) {i(j)_i(j} YT
=E[(g V) -e1g (P 1 £14B1g () 1£1-5 (1))
(ﬂ(j) <F [ﬁ(j) | £] +E[g_(j) |£]_§-(j) )T

- T

- Note that in Eg. (7.29), the signal term is the same as

the single frame case, but the speckle noise correlation

‘term is reduced by a factor 1/M. Similarly, the cross-

covariance matrix is given by
Cgq (@) =C¢HT (7.30)
fg VL .

Substituting these statistics into Eg. (7.21), we have
the LLMMSE filter for multiple frame speckle.
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'7.4.4 Simulation Results

In this section, we show some simulation results
using the LLMMSE speckle reduction filter for correlated
speckle samples. The original image is shown in Fig.
'7.5(A). The discrete speckle image in Fig. 7.5(B) is
égenerated according to the multiple phase speckle model
‘as discussed in Chapter 3. The coherent point spread

function wused in the generation process is a 5%*5

separable triangular shape window. The borrelation
Eproperties of this speckle image can be shown by
jcomparing the speckle size in Fig. 7.5(B) and Fig.
'7.1(B). We wuse a 7%*7 uniform weight moving average
‘window to calculate the local mean of Fig. 7.5(B) and the
result is shown in Fig. 7.5(C). The LLMMSE filter is
'implemented by wusing a sectioning method to reduce
:computation and memory requirements. The restored image
is shown in Fig. 7.5(D). In this case, we separate the
‘image into sections of size 12*12, and adjacent sections
rare overlapped to avoid boundary effects. The image is of
;size 256*256 and it takes 4 hours CPU time on a DEC KL-10
~system. The restored image has better resolution than the

ilow~pass filter results.
|

The simulation results for multiple frame ?rocessing
are shown in Fig. 7.6. The average of 4 independent
frames of speckle images 1is shown in Fig. 7.6(B). The
local mean is estimated by using a 7*7 window and the

result is shown in Fig. 7.6(C). The restored image using
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Figure 7.5 LLMMSE speckle reduction filter for
the case of correlated speckle samples

(A) Original image

(B) Speckle image - single frame,
correlated speckle samples (5 by 5
coherent PSF)

(C) 7*7 local mean of (B)

(D) Restored image
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Figure 7.6 LLMMSE speckle reduction filter for

multiple frames, correlated speckle
samples

(A) Original image

(B) Speckle image - 4 frames average,
correlated speckle samples (5 by 5
coherent PSF)

(C) 7*7 local mean of (B)

(D) Restored image
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'the LLMMSE speckle reduction filter and sectioning

‘methods is shown in Fife T'6(DY .«

7.5 Nonstationary 2-D Recursive Filter for Speckle

Reduction

The LLMMSE filter for speckle reduction introduced
~in the last section is nonrecursive and computationally
demanding even if we use a sectioning method. It is
valuable to consider a recursive implementation of this

' filter both for fast computation and local processing.

The nonstationary 2-D recursive filter developed in
Chapter 6 is not applicable directly for speckle
reduction because speckle noise 1is correlated. The
correlation of speckle depends on the signal statistics

and is nonstationary. These factors make the development

;of a recursive speckle reduction filter difficult.

5?.5.1 Derivation

The dynamic model of a speckle image can be

, represented as

x(m,n+l) = Fx(m,n) + Gw(m,n) {7:+31)

z(m,n) = speckleH(E(m,n)). (7532

Equation (7.31) is the state equation of the NMNV image
model as in Eg. (6.14). The observation equation is

described by a speckle generator, speckleH(E(m,n)), which
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produces the speckle intensity at point (m,n) from x(m,n)
with a coherent point spread matrix H according to the
discrete speckle generation model discussed in Chapter 3.
The ensemble mean of speckle observation z(m,n) is given

by

z(m,n) = E[z(m,n)] = E[speckley(x(m,n))]

E{E[speckley(x(m,n))|x(m,n)]}

E{HIi(m,n)} = HIg(m,n) (7:33)

where Hy is the incoherent point spread matrix, and we
used the fact that the conditional mean of speckle
intensity is equal to the incoherent image of the object.

If we subtract the nonstationary mean from Egs. (7.31)

. and (7.32), we have the zero-mean residual model of

fspeckle

50(m,n+1) = Fio(m,n) + Gwo(m,n) (7.34)

zo(m,n) = Hlio(m,n)+[Speck1eH{§(m,n))—ng(m,n)].(7.35)

If we define the speckle noise term as

s(m,n) = speckleH(i(m,n))—HIﬁtm,n), (7.36)

then Eg. (7.35) can be written as
zo(m,n) = Hlio(m,n) + s(m,n) . (7.37)
It is easy to see that s(m,n) has a zero mean and the

covariance function of s(m,n) is the same as

E[Cg(m,n:ml,nllf)]. Therefore, from Eg. (7.26), we have
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E[ls(m,n)s(my,nq)]

E[E:%;E:Z:%Nnbi.n—k}h(ml-i,nl-k)h(m-p,n_q)
ikpdg
h(my-p,ny-q) £(i,k) £(p,q)]

13- 2 h(m-i,n-k)h(my-i,ny-k) E(i,k)[2% +

Ei khz(mwi,n—k)hz(ml—i,nl—k)c%(i,k). (7.38)
1

Note that the speckle noise s(m,n) is signal-dependent
éand correlated. The correlation of s(m,n) depends on the
élocal statistics of the original image and the coherent
;point spread function (PSF) of the system. The
;correlation region of s(m,n) is roughly 4 times the size
;of the coherent PSF. For example, if the PSF is of size
é(2p+1)*(2q+1), then the correlation region of speckle is
I(4p+l)*(4q+1}. The cross correlation of Xy(m,n) and

' s(m,n) is given by

E[go(m,n)sT(m,n)]
=E[§0(m,n)(speckleH(i{m,n)}~HI£(m,n))T]

=E (%, (m,n) (speckley(x(m,n)))T]1-E[x, (m,n)xT (m,n)HE]
=E [%, (m,n) X" (m,n) HT]~E [, (m,n) xT (m,n) H ]

=0. (7:39)
;Thus there is no correlation between the speckle noise
|and the residual state vector Xy(m,n), and as a result
there is no correlation between the speckle noise and the
input process wo(m,n). These properties reduce the

complexity of the recursive filter.
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The prediction step of the speckle model is the same
as that for the nonstationary 2-D recursive filter for
additive noise discussed in Chapter 6 because the state

equations are the same. Hence

gop(m,n) = F&, ¢(m,n-1) (7.40)

P,(m,n) = FPg(m,n-1)FT + GQ(m,n-1)G" (7.41)

where gop(m,n) and X ¢(m,n) are the predicted and
filtered estimates of x,, Pp and Pg are the predicted and
filtered covariance matrices, and Q is the variance of

input Wo. The innovation process is given by
iop(m,n) = zg5(m,n) - ﬁop(m,n)
*
= zD(m,n)—E [HIEO(IR,D)'i'S(mrn) |zo(lrl}rzo(112):-¢-

P fzo(m:n—l)]

~

1%X0p

Zo (m,n) -H (m,n)-ép(m,n)

= leop(m,n}+sp(m,n) (7.42)

* . . '
where E [.]|.] represents the linear minimum mean square
error estimator rather than the conditional expectation

operator, and

8p(m,n)=E” [s(m,n) 125(1,1) 125(1,2) s .. 2 (myn-1)]

Ep(m,n)=s(m,n)—§p(m,n). (7.43)

Note that due to the correlation property of speckle
noise, we need to estimate the noise term s(m,n) at each
point in order to estimate the signal Eotm,n). The
filtered estimate has the form
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i

EOf(m’n)=gop(m'n)+P§oiop(mrn)9%o

p{m,n)%op(m,n) (7.44)

where

Piozop(m,n) = Elx,(m,n) 2,5 (m,n)]

= Bl (Zop(m,n)+&, (m,n)) (HpZop (m,n)+8, (m,n)) 7]

= Pp(m,n)HY + E[%y,(m,n) 85 (m,n)] (7.45)
and

Py o (MM) = El[255(m,n) 2,4 (m,n)]

= E[ (HyZop(m,n)+8,(1,n)) (Hy%oo (m,n)+8, (m,n)) 7]

= HyPy (m,n) HT+P(S) (m,n) +2HE (%, (m,n) 8T (m,n) ] (7.46)

?and Pés)(m,n)=E{§p(m,n)§p(m,n)]. Define

PR (m,n) = E[%y,(m,n) 8, (m,n)],

fnow Eg. (7.44) can be expressed as

Xog(myn) = Ry, (m,n) + k(m,n)Z,,(m,n) (7.47)

Eand

= T
k(m,n) = (Py(m,n)H} + P5°(m,n))

(HPy (m,n) HT+PS (m,n) +2HPES (m,n)) 7. (7.48)

To find the estimate and prediction covariance functions

of s(m,n), we need to construct a propagation model for

s(m,n). Since s(m,n) has only a finite correlation region

'and the extent of the coherent point spread function is

'usually small, we define the model
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S(m,n+l) = F S(m,n) + Ggs(mt2p,n+2g+l) - (7.49)

where

S(m,n)=[s(m-2p,n-29) ,s (m-2p,n-2g+l),...s(m-2p,N);
s(m-2p+1,1) ,s(m-2p+1,2) yee.S(M=-2p+1,N) ;...

s(m+2p,1) ,...s(m+2p,n+2q)],

and
001 00 savsss 0 K
0010 ...... 0 0
Fs = : 6 GS=
) 1 0
[ ¥ TS 0_ g

Note that this model accounts only for the propagation of
s(m,n) with the state vector x,(m,n) and does not
describe the correlation structure of S(m,n). The
function of this model is to form a 2-D recursive
structure and stack all the speckle noise components

which are correlated with zg(m,n) . The relationship

' between x(m,n) and S(m,n) is illustrated in Fig. 7.7.

Let gf(m,n) be the filtered estimate of S(m,n).

. From Eg. (7.49), the prediction estimate of S(m,n) is

' given by
§p(m,n) = Fsgf{m,n—l) (7.50)
and
P5(m,n) = FgPZ(m,n-1)Fg+GQq(m,n-1)Gg (7.51)
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Figure 7.7 State space model of speckle noise reduction




98T

(95°2) "Ja(1-utw) 2a%a

I

[ ((T-u'w)?O%a- (u'w) %) ((u'w)F5%a- (u'w)s)]a
(w9 (u'w)%la = (u'w),da
Aq

USATh ST S pue X JO XTI3eW IDURTIRAODSSOID uoT3IOIpaid 3yg

(s5°L)* o ([(u'w) s (u'w) 4% alne+ (u'w) (farln(uiw) daln)
((ufw) Sa+ln (uiw) ySa) = (uw) ¥
SR EL

)do

(pS°L) (wuw) 90z (uw) § + (ww)9g = (ww)Is

aaey @M ‘(9y°L) pue (gGg°L) °sby woig

‘3103939YL *a1droutad A3rTRUObOyl IO BY3l pPSSN SM I3Ym

I

(€5°L) (U‘M)Sgd + iH(U'W)xgd
[(utw) s (urw) 95+ (u'w) 95) 13
)d

+1Lm (ufw) 9% ( (urw) 95+ (urw) 95) ] @

]

((urw)9s (ww) Sl a+ (I (uw) 9% (v w) Sl a

— do
[(u'w)¥z (u'w)Sla = (u‘w) 25

03 Tenb® ST XTI3eW 9JURTILAODSSOID IYL
do do B -
(25*L) »(uw) 90z 2a (urw) - FSqs (uw) 95= (uw) 35

se pessaidxe aq ued (u‘w)s Jo

93BWI3S® pPaiIa3[TIJF 9yl '[(T+bz+u‘dz+m)Zs]a:(u‘m)so 213yM




L8T

:suot3ienba PUTMOTTOJ 3yl Ul paztieuuwns a1e sdajis

put 193713 pue uor3zorpaid Iyl *uoT3jonpai aryoads 103

193 TTJ SATSIND91 (-7 AJIeuoTrielsSuou 3yl PpaATIap am ‘snyj

(65°L) s (uew) F (2a(uew) yar (uiw Sag - (uewy da -
(u'm)xga

pue
(85°L) (ww) GH LA (urw) yGar (uw) gGal - (ww)Ga =
(u'w)da

(LS L) s (urw) [ (ww) gGarln(uw da) - (wrw) dg

3yl MOUs ued am ‘ATIeTTIUWIS

(u'w)  Ja (urw) F- (urw) I (Ta (u w) §-1)

(u'w) g

uotaenbs ayjl aaey aM ‘(8y°L) °b3F

putA1dde pue swia3l pojeTol bHUTUTqWOD 1933J¢ °(u‘w)y pue

S2J0TI3jeW 2DURT IRAOD UO'[:].D'!IDGJd 2Tde3ins JO SsSwiI=s3 UT 13T

sso1dxa pue uorjenbs sTy3 .puedxa 03 piemiozjybreials ST 3II

ut

ydo% (I

{g Lurw) s (urw) - (ut H(u‘w)¥-1) ]

[(ufw) s (u’w)F- (u’uw)9°% (Tg(u‘w)J-1) ] }a@

(u’w) 99z (u’w)F- (u‘w)9°%)

)60"

((u’w) 9%z (usw)F- (u’w)94°%) 13

L}

[(u'w)3P% (uw)3°%)ag = (u’w)q

aAaey aM °suorijenbs 13371J ayjl 2327dwod 03 I3PIO |

S90TI3RW SOURTIRAOD PoI93T[IJ 2U3 o23e[NO[ed oM ‘MON




88T (L

junowe 3Yy3 ‘s10309A 23B3S BY3z JO UOTISULAWIP 3bi=T =Y3z 03
ang * (T+byp+Nyxdy) uoTSUSWTIP éeq pue 1031094 393e3S Ieuﬁ;si
?y3l ueyz isbieT ST (u‘w)s 1030994 23e3s aryoads ayrL 'az;sg
ebewr 8yl st N pue ‘A[9AT309dsS9@1 UOTIIDITP {equozgzoqé
pue TeoT3I9A 9Yy3 UT uor3duny peoids 3urtod 3JuLISYOD |
9l JO syapim a8yl oaiae T+bz pue T1+dz a19ym (T+bz+N¥dz}:

st (u‘w)®% 10309A 23€3S BY3 JO UOTSUBWIP oYL

s3oedsy Teuor3leinduwo)d z'g'tg

(ze o)+ (uiw) N a(uiw) ySa+ (urw) Sar - (wrw) da= (urw) Fa
(TL°0)  (whw) oFITH (uw) xGas (uw) gGa] - (uw) §a= (u'w) da
(0L°L) (uhw) H0(uw) gGarln(uim da) - (urw)da= (uw) 9q
(69°L) p_([(uw)% (u'w) 9% 1alnzs (u'w) Sasln(uim) daly)

((u'w) gGa+ln(u'w) 4Sa) = (uw) ¥

(89°L) - Cutw) gGatnz+ (urw) Sae In (uvw) dqTn)
((uiw) gSa+In(uimda) = (uiw)y |
(L9°L) (U‘w)d°Z(U{w)S§+(u‘M)d§=(U‘M)3§
(99°2) (u*w) 9O (usw) §+ (u'w) 99 = (uw) 3%
(59°L) (uw)9g- (urw) 4OFTg- (ufw) Oz= (u'w) 4%

tdejs butiaa3T1d

(¥9°L) 2a(t-u'w) ,3a%a= (u'w) ,Sa
(€9°L) To(1-u’w) So%0+5a (1-u'w) Za¥a= (u'w) Sa
(z9°L) (1-u’w) I5%a=(u‘w) 95
(19°L) (- w oot a(t-u'w) daa= (wwda
(09°L) (1-u‘w)3%Fa= (u'w)9%g

:de@3s uoT3lorpaid i



68T

abeuwt A3rsus3ur aTydoeds pa3RT31100 9YL *$9x%9 221s sey
(¢)g°L *brtd utr abewr jyue3z T[rIo Teurbrio ayg °g°*L °*bTd ur
umoys @21e sabewt A3Tsus3jurl S[Y02ds pPo3IRIL21100 I0J IIITTIJI

uorionpai 9[ydads 9SATISINO91 Duisn JO SITNSSI  IBYL

S3TNSSY UOTI3RTNWIS €°G°L

*z L(T+DB7) » (T+dp) 1+, [ (T+bZ) x (T+d2) ]
01 Teuorilaodoid ST jutod goes ae uor3jeilnduwod
3yl pue (ZN1O JO I9pi0 22Uyl U0 ST ISITIJ uUOTIdNpai1
9Tyoa2ds oaTrsinoa1 Aieuoriejsuou ay3z 103 uorzeinduod

12303 ay3 ‘snyr °(u‘m)x%d pue (u'm)ga ‘(u‘w)Fg ssorazeuw

®0URTIRA0D P2193TTF 9yl 03 sarTdde ordrourad e3epdn
peonpai1 swes 3YjJ -(u‘m)éﬁ Jo s3juswaTs (T1+Db¥) x (T+dp) pue?
(uw)y Jo s3juswata (T+bz)x(T+dz) o32TnoTed 03 pasu &Iuo;
SM pue AT[edIjrwWeIp uOoT3le3lNdWod 3yl saonpai uo;qemgxo:ddeé
STYL °*uorbaa a3epdn ayjz apISIN0 0I19Z 03 3IIS 1B (u‘m)sii
‘(u‘w)y s10309A uteb ay3z pue 3Jureizsuoo a3epdn paanpa:%
9yl osn om ‘do3ls DHUuTIS3ITIF SY3l UI °SSTOU I[YOads aqqg
pue obewt TeurbTIO SY3 JO SIDURTIRA [RDO] 343 @I 1I33T13F |
uotjonpai aTyoads aATsIND31 aYyj 03 sindul SYIL -sanbpuqoaqé
butssaippe 309aTpul osn oM JTI uoTjle[noIed Aue ax;nba:?
joU S90p pue piemiojjybreiis st 193713 o3epdn psonpal

ay3z 3o da3s uot3orpaiad 8yl 103 uorle3zndwod aAYJL

918y pesn ST 9 193deyd urt .
pessnosSTpP Quo 3yl 03 IeTIwWrs yodeoadde Teuwridogns aqepdn;
paonps1 ¥ *@AT30R133RUN ATTRuUOT3e3lndwod I93TTI URWIRY

Tewr3ido ay3 oew sjuswaitnbai Aiowsw pue uorjeindwod 3JO



06T

3TNSSI UOT3IRIOISII BATSIANDSY (A)
(d) 30 ueauw TeOOT LxL (D)

(dsd 3ueasyod g &q G)

soTdwes a1309ds po3RTaII0D
‘swexy 9T7burs - sbewr aToeds (dg)

((¥)T°L "bTa 3O uoT3xOd)
obewT juel TTO TRUTDTIO (V)

soTdues ST¥o2dsS pPeo3e[S2II0D I0F IDITTIJI
9T)oads ©9ATSINDOI (-7 AIRUOT3RISUON g8°/, o2Inbtg




16T

*sobewt A3Tsusjzur aryoads
Jo soweay oTdr3[nu ssa001d 03 AT3I0L2ITP PIPUI3IXS 2 ued
spoylsw 3s9YL °‘wyiztaiobre uorieindwod 3SeI B S PIATIIP ST
193TT1JF 2ATsIn0a1 9jepdn paonpai e ‘uorie3indwod SATSUIIXD
sa@1tnba1 193713 STIY3 dsnedad ‘paaoubt Arsnotasad
uaaq 92ARY YOTUM 2T3o02ds JO UOTILTS1I0D0 Y3 pue SOTISTIL]IS
abrwWT SU3l Y3zog 23IUNOdOR 03UT Saye3l 219y padora4a3p I93TTJ
ASWWTT 92Ul °<uoT3onpax a1yosds 103 sdueijzodwr Tejuswepuny

Jo @212 o1yo2ds JO SOT3ISTIRIS I9pPI0 pPuUOddS YL

*uoT3oNpai 3Tyoads 10J SATIODII®

2q 03 umoys ai1e aTy0ads JO SOTISTILIS I9pI0 3ISATI 23Ul
pue sOT3ST3IRIS obewr ay3z Yyioq osn eyl IS3TT13F bu?qqoomsg
asTou aarjdepe pue 193TIJ 4dVW 3uTod-auo ayjg 'uo;qnqqus;pi
Tetjuauodxe® UY3ITM aIstou o2ATIRdITdI3TRU B AQ pemapowi
2q ued aTyoads pue waTqoad buryjoows ISsTOU B samooaq?
uorTlonpai aTyoads ‘sarduwes 37¥0ads 2Juapusdapur IO aseo;
a2yl 104 °ssod0ad bPurpiodar dY3l UT 3ISOT ST uo;qem;o;u;%
aseyd 9y3z pue papiIod9I ST  A3Tsuajurl 9T1¥oads aqq%
ATuo @212ym sabewr aryoads AJTSUI3UT I0J SIII[TI uo;qonpa:{

91)oads Tei1243s poadoraaap oM  ‘1s3deyd STyl ul i

SUOTSNTOUOD 9°/

*(a)g°L °*brd urt umqui
ST I93TI3J uOoI3oNpPa1 3[¥do2ds SATISIND31 (-2 AJeuqueqsuou%
ay3 bursn Ag sbewr pa103sea1 3BYL °“MOpPUIM SbeIiaase Buxnomi
Jybrom wioFTun [y, e bBursn AQ (d)g°L °*bB1d woig paleIDDIEDE
93ewI3lse ueaw TeEOOT @yl ST (D)g°L @=2anbrtga *(d9)8°L '6;33

UT uMoys ST uor3jouny peaads 3Jurod 3JUSISBYOD E£xf © QQIM?




6T

*9sed aryoads A3Tsuajurl 2yl Y3Ttm paiedwod ATISed pPaATIap
°2q uedD I1I93TTJF dJdVW JIeaurruou Tewrido ay3z ‘asbewr o1yoads
apnitrdue xa7dwod 8yl UuT uorj2wWiojul aseyd 213x3 3Y3l Y3IIM
3ey3l Moys T[IM SM ‘219 °paioubr sem uorjewiojur aseyd
92Uyl pue uoTr3lonpaa oIY02ds 103 pasn sem obewr opniTTdue
xaTdwod 3yl JFo AjrsuL3jur ayy ATfuo ‘ATTRUOTI3TIPRIL
*paaissaid aiae abewr a7y02ds ayiz jJo aseyd pue aspniztrdue

2yl yjoq ‘ebeur ygys possedooad Afrezibip e ul

*jusweTdwr pue SATISP 03 3JTNOTIIITP ATT[eOT3ATR2UR
2Q 03 uMoys sem 3ased sTY3l ur satdwes oTy02ds pa3e[3110D
3yl 103 I93TT3J UOTIONP31 ITYdads J¥YW oYL “wWo3ISAS
Ted13do JuaIdYod © Y3Tm passadoad o1 eyl sabeuwr (¥ys)
Tepex ainjasde DOT3I9Y3uAs 103 S[QeITASUT ST UOTILWIOIUT
oseyd 3Jo ssOT aylL °ssadoid buipiooar ayl ybnoiyyz 3ISoT ST
uoTjewiojur aseyd 8Yyjz pue poapioda1 ST AJTSUL3UT aTyoads
9yl ATuo a1sym sabewr aT¥deds A3TsSua3uUT I0J SONDIUYDDI

uoT3onpa1 3[¥o2ds SNOTIeA PISSNOSTIP amM ‘; I193dey) ul

uoT3lonNpoIjuI 1°8

SHDVWI dATADEdS HANLITdWY
XdTdWOD ¥04 ¥3ILTIA NOILODNAIY dTIADIAS dAVW

g 193dey)



€6T

*uUOT309S [eUTJ 9yl ur pojussaid aie s3[NsSaI

UOT3RTNUTS *U0T3RI23T Yorad 3B 23eWIlISe® a8yl o2zturido o3 .

(uot3enba OTIQndO ® JO UOTINTOS) 3JUIRIISUOD JV¥RW 3Jurod-auo
e bursodwutr pue wyiztiobre uorieindwod 3Isey B S IIITIJ

9ATSINDO91 (-7 Aieuoriejsuou ' butsn Aq A[2ATI3RIST PSATOS |

ATises oaq ued uotrienbs dvW 2Y3l ‘snyg *Z*€°L UOT109S
UT possnosIp uorjenbs dyWw 3uTod-suo Syl Se wioJ Sues
2yl sey pue uorienba OIqnd © ST uor3lEnbe Jd¥W burjTnsaix
YL *9 193deyd UT paqridssp I93TTF HASWWIT 23Yy3z 3o
XTI3PW SDUBTIRAOD PaI33TTIJ PUR S32WIISS PaiI3a3[TF 9Yl Jo
swi23 uTr uorienba gyW 2y3 juasaidea am ‘A[30921Tp uorlenb?
dVW IR2UTITUOU @Yy3} SATOS 03 burtdAil Jo peajsur *I1937T1F IW
3yl ur se waTqoid uorjzejzndwod 2wWes Yyl sey I93TII dVW 93Ul
‘ueaw TI0Tid B 9yl pue D3RWIIS3 TW Syl US3MI3G dduBRTRq
B ST 93RWIJSD dVW oYL °po23ueienb 3ou s1T odouabiaauod
pue butpuewsp Arreuorieindwod ST ai1np3doiad YL “Sbeuwt

2yl JO 92zTIS 9yl ST N 2I12ym xtijeuw _N Aq N © 3I9AUT

[A
01 2ARY ©M ‘uorjeia23T yodea Uul *suyltTiobie 9ATIRISIT
Aq paaros aq ATuo ued pue Ieaurluou a1e suorlenba
TW 9YlL °sabewt o71yo0ads ospnitrdwe xa37dwod 103 A3JTSuld3juT
309[go 2yl 3Jo 93ewr3sd (TW) POOYTITINIT WNWIXRW 3Y3} SATISP
3SITI =M *poaiassaid o1e oseyd pue spnaytrdwe aYy3x yioq

219ym sabeur oTyo2ds apnitrdwe xaTdwoo 103 sanbruyosajy

uoT3lonpai ITyd22ds sSsnOsSIpPp 3M ‘193deyd sSTIY3z ul




76T

wioy ay3 sey pue (3)95 Zq pejousp sT J usAlb
g JO XTlijew 9DURTIRAOD TRUOIJTPUOD YL '(H';)E(x'I)Z/I;
Teubts ay3 JO - uoT3ejUdSaidax O2TydeabodTXa1 2y3

ST Z/%E pue xtijew peaids jurtod 3JuULI8Y0D dYl ST H 2I3Yym

- e— & —
(z°8) A+ o130 =4

2A2y am ‘uoriejuasaiadea orydeaboorxal ® bursn (1°8) °ba
putatamay *w23sAs  ¥V¥S e ut 21npaooiad burssaosoid
9Uy3 I0 I9AT9D031 9yl I93YlTrs WoIJ Swod Aew 33T pue T[apouw
3yl Uul papnIOoUT ST (u‘w)a ssad01d asTou apn3itrdwe x3Tdwod
9U3 38yl ©3O0N °*SOURTI2A JTUN pue ueaw 0132 Y3TM ssado0i1d
wopuel ueTsSsnes) IeTndiITd xaTdwod e ST (Y‘T)e ‘Tapou
a1yo2ds ,oseyd a1di3Tnu, 3yl 103 pue ‘((y'1)p1)dxa=(3‘T1)®
s 193dey) ut posSsSnosIp T2 pou 913 0ads .9seud
aTbutrs, 9ya 104 °*9oejins 13o0alqo s8Yy3z Jo ssauybnoa ayjz
Aq peonporjur sT (¥‘T)e 1o0seyd wopuel ayj ‘Topow STyl Ul

* %
(T°8)* (W'WE + (M DB T) ;3 G-u't-w)u { = (u'm)g

se
pessaidxa aq ued (u‘wm)q abewr aTyo2ds apnitrduwe xoTdwod
YL *T°8 BT UT UuMOYsS ST T[9powW UOTIIONPII/UOTIBWIOF
91yoads opn3trdwe xaT7dwod a3yl *suorjeAaiasqo aryoads
spn3tdwe xoTdwod uo pdseq Ajrsuszutr 3dalqo Teurbrio

3Yy3 JO 93PWI}ISd® TW © SATISpP SM ‘UOT3ID3S SIY3l Ul

sobewl aTyo2ds spnitrduy XSTdwWoD) I0J S3RWIISH TW Z°8




S61L1

£Y2(m,n)

h(m,n)

a(m,n)

uﬁA13¢ jv

b(m, n)

_Restoration
Filter

PB. n)

Figure 8.1 Complex amplitude speckle formation/restoration model
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. (m,n) : local mean
V¢ (m,n) : local variance
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Roneton \W One—Point
onstationary - MAP Filter |
blmn) |o_p ?:.zzm,.m?:_az " + for &zn_u:.:.:u#
Complex Recursive X Independent

Amplitude [Filter + Intensity

Speckle % Speckle

Image

Figure 8.2

_u“u.m (m,n): filtered variance
a

filter parameters — local variance of b(m,n)

(i)
ol

& (m,n)

Iterative algorithm for MAP speckle reduction filter
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