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ABSTRACT

The problem of restoring images degraded by blur and
corrupted by noise is considered in this dissertation.

The Fredholm integral equation of the first kind in a two-
dimensional form adequately describes the linear model. A dis-
cretization is performed by using quadrature methods. By trans-
forming the two-dimensional array into vector format a regression
model results. The overdetermined and underdetermined cases are
considered in detail, with the derivation of the estimators, their
covariance matrices, confidence intervals and hypothesis testing
involving parametric functions of pixel values. The problem of ill
conditioning is examined for atmospheric turbulence and diffraction
limited spread functions. The results of the restoration of simu-
lated pictures under separable spread functions are presented.

In order to solve the ill conditioning of the restoration
problem, a priori information in the form of deterministic con-
straints is proposed. A comparison with existing methods like
Wiener filter, smoothing and regularizing techniques is made.
Linear equality constraints reduce the variance of the estimators,

but some bias may be introduced if the constraints are not valid.
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A combination of estimation and hypothesis teéting is proposed to
decide if a reduction of the mean square error (taking into account
both bias and variance) occurs. Experimental results show that
more acceptable restored pictures are obtained in the restoration.
Linear inequality constraints are incorporated by means of
a quadratic programming formulation. The natural constraint of
nonnegativeness of pixel values is handled in a formal way, as well
as other types of restrictions that can be described by linear in-
equalities. Experimental results indicate a substantial improvement

in the restoration even for the ill conditioned situation.
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1. INTRODUCTION

The subject of image restoration, encompassing attempts to‘
remove different types of degradations in imaging systems, dates
back to the fifties [1-1]. However, it was the space program of the
sixties, with its need for high quality imagery, that provided the
necessary motivation for the development of the field. In particular,
the work developed at the Jet Propulsion Laboratory [1-2] demon-
strated the feasibility of using the digital computer to deal with the
large quantities of pictorial data involved. The success of the effort
opened the path for new applications that now range the large spec-
trum of biological [1-3] and geological sciences [1-4], high energy
physics [1-5], etc.

Image restoration or spatial filtering can be divided into two
main classes: optical and digital processing. The former has the
advantages of larger storage capacity and faster processing, but
does not achieve the precision and flexibility of the latter. This
dissertation will be concerned with digital methods for image
restoration, with emphasis on a firm theoretical basis in their deri-

vation.

The degradations that an imaging system imposes over a

picture can often be roughly described as composed by a smoothing



2

operation due to the finite resolution of the sensor and the addition
of disturbances, known only in a statistical sense. The earlier
methods of restoration, mostly optically oriented, attempted to undo
the first degradation by inverse filtering [ 1-6]. These techniques
used the Fourier transforming properties of lenses, by simply
multiplying the Fourier transform of the object by the inverse of the
Fourier transform of the blurring function. The presence of sta-
tistical noise corrupting the image was disregarded and this fact
often limited the effectiveness of these methods. A nonoptimal pro-
cedure [1-7] consisted of replacing the inverse Fourier transform of
the blur function by zero in the spatial frequencies where the noise is
larger than the signal.

Perhaps the first attempt to consider a formal way to deal
with the presence of noise in an image is due to Helstrom [1-8].
The image and noise were regarded as uncorrelated random pro-
cesses with a known blur function. Slepian [1-97 considered the
lack of knowledge of the blur function, and also modeled it as a
random process. Experiments [1-10 and 1-11] indicated that formal
approaches using the mean square error criterion gave better results
than ad hoc schemes.

Digital methods for image restoration l}ave had to face the
problems of storage and computational time in dealing with large

scale sampled images. Some of the methods developed have utilized

(a
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3
simple, ad hoc operations while others [ 1-12, 1-13 and 1-14] have
attempted more formal approaches based on mean square error. In
these cases the Bayesian approach has predominated, with the
modeling of the object as a two-dimensional random process.

In this dissertation a different direction is taken. In many
situations the experimenter faces the restoration task with very little
or even no a priori knowledge about the' object to be restored. In
such cases the use of the Bayesian approach does not seem to offer
the best alternative. When no a priori knowledge about the image is
assumed, a regression model adequately describes the blurring and
addition of noise processes. The original object is simply considered
as a set of parameters to be determined, given the knowledge of the
blurred and noisy image, the blurring function and the statistics of
the noise. The necessity of digital processing requires a discrete
modeling of both the object and the image.

The use of the least squares criterion leads to a very tract-
able and general mathematical structure, allowing the image restora-
tion process to be cast in a technique analogous to those used in the
field of econometrics, for example. However, the lack of use of any
a priori knowledge limits the effectiveness of the restoration process.
It will be shown that for certain amounts of blur the estimators have
very large variance, masking completely the real content of the

image.
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The model used is flexible enough to accommodate some a
priori information, including the Bayesian approach. Since this
path has been considerably explored in the past, a new approach was
pursued, namely, the use of deterministic constraints.

Linear equality constraints allow a reduction in variance, as
a result of a reduction in the dimensionality of the problem. The
detection of any bias imposed as the result of incorrectly formulated
constraints is also discussed.

The problem of taking into account some physical inequality
constraints that should be satisfied by estimators has been the ob-
ject of discussion by several authors. The most obvious restriction
to be satisfied in image restoration is nonnegativeness. It comes
from the basic physical laws governing the process of image for-
mation. Some results [1-15] concerning the properties of Fourier
transforms of nonnegative functions were used by Lukosz M -161
to give bounds on the transfer function of a I;hysical system.
Similarly, Cleveland and Schell [1-17] extrapolated the spectrum so
that it would become an autocorrelation function, imposing that its
Fourier transform pair be nonnegative. Phillip [1-18] considered
the problem of finding the maximum likelihood estimator of a con-
tinuous function assumed to be nonnegati(re and upper bounded,
under gaussian noise. A quadratic expression has to be minimized

under these constraints. Necessary and sufficient conditions for
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uniqueness of the solution were derived and the problem was ex-
plicitly solved in some special cases. Some estimation procedures
can give only nonnegative results as a result of an exponentiation,
for example. This is the case with the technique of homomorphic
filtering [1-19], that assumes the image to be the result of the pro-
duct of an illumination and a reflected component. The as sumption
that the image is described by an array of cells whose content is
given by the Maxwell Boltzmann distribution also leads to estimators
given by exponentials. This has been explored by Frieden [1-20]
and Hershel [1-21 and 1-22]. Ad hoc procedures have also been
tried, as the control of the relaxation factor in an iterative method
to solve a linear system of equations [1-23]. Further details on
these proposed methods are given in reference [1-24].

This dissertation will develop the inequality constrained
least squares approach to image restoration. The proposed method
follows a philosophy similar to the one described by Phillip [1-18]
for the case of the discrete model. The optimal solution is given by
a quadratic programming procedure. Any kind of linear inequality
constraint can easily be incorporated and, as a resuli:, requirements
like monotonicity and convexity of the solutions can be satisfied. The
statistical analysis of the estimators is c?msidera.bly more complex
than the previous cases, but some approximate confidence intervals

for functional values of the original image can be obtained. Besides
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improving the quality of the restoration by the use of additional a
priori information in the statisticai procedure, the use of linear in-
equality constraints in the form of lower (nonnegativeness) and upper
bounds facilitafes the display of the pictorial information.

A word about notation is necessary. An attempt has been
made to maintain coherence by expressing matrices by underlined
capital letters, vectors by underlined small letters and scalars by

small or capital nonunderlined letters.

it
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2. THE RESTORATION PROBLEM

This chapter presents the mathematical framework in which
the restoration problem can be cast. In section 2.1 the modeling of
the blurring and addition of noise processes is discussed. Section
2.2 contains a brief discussion of the properties of the Fredholm
integral equation of the first kind. Its discretization is examined
in section 2.3 and, finally, section 2.4 presents the several numeri-

cal methods that have been proposed to solve this equation.

2,1 The Model

Figure (2. 1-1) contains the block diagram of an incoherent
imaging system. The first source of degradation is represented by
the point spread function h(a, §, B, n). It is assumed that this blur-
ring operation is linear so that it can be represented by a linear fil-
tering operation. The second source of degradation represents the
addition of noise. Due to the randomness inherent in this Process, it
can only be characterized in statistical terms. Consequently, due to
the lack of complete knowledge of the degradation, the restoration
cannot be perfect in the sense of restoring the image to the original
value.

Assuming that all the processes involved are available con-
tinuously and unboundedly, the following equation characterizes this

-



x(€m)

.h(aa Ea B"n)
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two dimensional model

+ooto0

y(a, B) = I IX(§. n)h(a, § B, n)dEdn + n(a, g)

-=00

@< a,Bp< ® (2.1-1)

In many situations, the input image is available only over a finite

extent and the previous equation reduces to

bb
y(a, p) = iix(ﬁ. n)h{a, §; 8, NNd Edn+n(a, )

~e< g, < @ (2. 1-2)

(ta

In the particular situation where the blur function is isoplanatic, the
point spread is a function of only two variables and the previous

equation takes the form
bb

y(a, B) =IIX(§. nh(a-€; B-n)dEdn+n(a, B)
aa

~0< 0, <o (2.1-3)

This model is general enough to include many situations that occur
in optical systems. The hypothesis of linear and spatially invariant
blur is valid in situations like limitation due to diffraction, for
example. In this case, the blur function in a rectangular system

assumes the general form [2-1].
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h(a, B) = (m)z (f‘-‘%ﬁ)z (2. 1-4)

a

A nice feature of this rectangular system is the fact that the
degradation is éeparable. In other words, this function of two vari-
ables can be cast into the product of two functions of one variable
each. Another example is the blurring due to atmospheric turbulence
for long photographic exposure, in which the point spread function is

of the form [2-2].

2 5/6] (2. 1-5)

h(a, P =exp[-(cnz +87)

Several other examples could be mentioned. The defocussing [2.1-1]
that the optical system may impose over the image is one of them.
Other examples could include certain types of optical imperfections
and motion blur [2-3].

The assumption of space invariance of blur cannot be vali-
dated under certain circumstances. Examples of this are motion
blur where objects at different distances from the camera move by
different amounts [2-3] or certain optical aberrations like coma,
Pincushion and barrel distortion. Although most of the experimental
work in this dissertation will concentrate on the removing of spa-
tially invariant blur, the regression model will not be restricted to

this class of degradation.

At'
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The assumptions of additive noise are broad enough to en-
compass different situations in which the limitations of the optical
and/or electrical system impose perturbations known only in a
statistical sense. Stray illumination, circuit noise, or round off
due to digital processing could be mentioned.

Nevertheless, as it should be expected, there are restrictions
in the use of the present model. The assumption of linearity, for
example, is subject to criticism, since ultimately the image is re- -
corded on a photographic medium whose characteristic is severely
nonlinear [2-1]. Even though this nonlinear function is known, its
effect might be such that the addition of noise could occur before and
after the nonlinearity. Such would be the case with stray illumina-
tion in exposure, followed by the nonlinearity of the H-D curve, fol-
lowed by roundoff error in digital processing of the picture. In some
circumstances, however, the effect of the nonlinearity can be lumped
in one block after the addition of noise. Therefore, its effect can be
undone by an inverse operation prior to any other operation.

The assumption.of additive noise can also be ;:riticized. In
particular, the effect of graininess in photographic materials is far
from being additive. Huang [2-47] has shown that it could be modeled
by a multiplicative process.

Once the limitations of the model are specified, the next step
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is to clarify the use of a priori information in it. First, the model
assumes that the analyst has complete knowledge of the blur function.
This hypothesis presupposes that the experimenter has some way of
measuring the modulation transfer function. This could be done by
measuring the system itself, [2-5], by theoretical analysis [2-1] or
by measuring the response of a sharp point or edge in the picture
[2-6, 2-7, and 2-8].

. With respect to the function x(a, B), unless explicitly stated,
it will be assumed throughout this dissertation, that it is a fixed but
unknown function to be determined, given the values of the output
function y(§, n). This implies that, although the observed values
y(E, N) are random, the desired function x(&, g) is not a random pro-
cess. This approach of parameter identification is in contrast with
the Bayesian approach that assumes an a priori statistical distri-
bution on x(., B), characterizing it as a random process. The first
method leads itself to the use of other types of a priori information,
namely, linear relationships involving values of x(@, ) and bounds
on their values. These methods will be extensively explored in the
present work.

As far as the noise is concerned, all the methods used will
assume knowledge of the second order statistical properties. It will
not be necessarily white although this assumption will often be made.

If additional hypotheses are assumed, further inferences will be

(]
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drawn.

In order to perform some meaningful restoration, it is neces-
sary to define a goal to the estimation process. The purpose, of
course, is to estimate the unknown function x(n., B), given the ob-
served values y(€, n), for some criterion of goodness of the restored
image. Assuming that the picture is to be viewed by a human ob-
server, the criterion should take into account the psychophysical
pProperties of human vision. Much research is needed in this field
so that reasonable criteria, both from the point of view of realism
and mathematical tractability, could be obtained. In the lack of a
better one, a squared error criterion will be adopted, namely, mini-
mizing the covariance between the estimated values and true values.
Althbugh it is known that the human observer does not judge images
according to this criterion [2-97, it has been found (and our experi-
mental work tends to confirm this) that reasonable results can be
obtained by its use. Furthermore, and here is its main advantage,
the use of a squared error leads to a very tractable mathematical
structure, the regression model, that has been considerably explored

in mathematical statistics and econometrics.

2.2 The Fredholm Integral Equation of the First Kind
The problem of restoration, as stated in equations (2. 1-2) or

(2.1-3) consists in solving a two dimensional ver sion of the Fred-
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holm equation of the first kind. The same type of integral equation
occurs in different physical problems as radioastronomy [2-10 and
2-11], spectroscopy [2-12], applied optics [2-13], communication
theory [2-14] and nuclear engineering [2-15].

The ideal kernel would be
h((!ugiﬁs T])=6(0."€’B'T‘) (2.2-1)

since in this case, with no noise

bb
y(a, B) = fix(g,n)ﬁ(a--ﬁ, p-n)dEdn==x(a, p) (2.2-2)
a

When the kernel is not the 8 function, there is a loss of resolution
and the problem that is posed is the one of recovering values of
x(%, m) given the values of y( g, B).

In order to keep the equations in their simplest form, only
the one dimensional blur will be considered in the following para-
graphs. The extension to planar equations is straightforward.
Under this condition, under no noise, equation (2.1-2) assumes the

form

b
yla) = jX(«i)h(a. §)d§ (2.2-3)
a

where the function h(q, €) is the so-called kernel of the integral

equation. Associated with this kernel there is an eigenvalue -

s

»
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eigenfunction problem defined by the equation

b
J h(a, §) (5)d§ = X ¥(0) (2.2-4)

a

The so-called spectrum of the kernel, i.e., the distribution
of its eigenvalues, determines the most important properties of the
solution x(§) for a given observed value y(a). For example, the
existence of zero eigenvalues expressed by the equation

b
fh(u, g) §(E)dg = 0 (2.2-5)

a
implies that the solution to equation (2.2-3) will not be unique because
a linear combination of eigenfunctions corresponding to zero eigen-
values can always be added to the solution and the result will still be
a solution.

A real kernel h(o, §) is symmetric if h(a, €) = h(€, g). The
eigenvalues of a symmetric kernel are real and eigénfunctions cor-

responding to different eigenvalues are orthogonal, that is

b
Jﬂi(g) 3,(6)dg = 0 (2.2-6)
a

A F A,

i j

Furthermore, the eigenfunctions corresponding to the same eigen-
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value span a linear sub.space. In this subspace an orthogonal basis
can be selected (say, by using a Gram-Schmidt procedure) so that it
is always possible to have an orthonormal set (as a result of further
normalization) of eigenfunctions for a symmetric kernel.

The kernel is defined to be closed if it does not have any zero
eigenvalues. As a result, the solution to equation (2.2-3) will be
unique. The kernel is said to be separable if it can be expressed as

the sum

N
h(e, §) = 3 £_(o)g_(6) (2.2-7)
n=1

where N is finite and the functions fl(c.), fz(a), oo, fN(d.) are linearly
independent in [ a, b]. If the kernel is separable, equation (2.2-3)
will have a solution only if y(a) is a linear combination of £ 1(¢:L),
fz(c.), e fN(a.).

Let )\1, 7\2, eee, AN, ses,in order of decreasing absolute value,
be the eigenvalues of the real symmetric kernel and let il(a),
éz(q,), ves, @n(g,), +++ be the corresponding eigenfunctions that are
assumed to form an orthonormal set. I;: can be shown that this

kernel can be expressed as

h(a, §) = 3 A % ()8 (8) (2.2-8)
n=1

if the series converges uniformly.

"

L3
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Under the conditions that a kernel be symmetric and closed,
the set of orthonormal eigenfunctions forms a complete set, i.e.,
any function in the space can be expressed as a linear combination
of the elements of this set. Consequently, the observed value y(q)

can also be expressed in this way

R RRAT (2.2-9)

where the coefficients a are given by

b

o = J y(@e (o) da (2. 2-10)
a

In this case a necessary and sufficient condition for equation (2.2-3)

to have a solution is that the series

o, |
r — > (2.2-11)
n=l |1 |

converges. In case of convergence, the solution is given by

[»4
x(0) = )\—n ¢ (0) (2.2-12)
n=1 "n

2.3 The Discretization of the Integral Equation

When the Fredholm integral equation is to be solved in the

digital computer, a discretization has to be performed. This takes
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into consideration the fact that when images are processed digitally,
the information is necessarily finite and discrete. Therefore, sup-
pose that y(q, R), the observed function, is sampled at a finite set

of points

ylog,8)  1=1,2,000,1 (2.3-1)
j=1,2,004,7
This implies that
bb
Y(U-i' ﬁj) - {{x(g, n)h(q,i, E, Bj, n)d@d'n + n(('t.i, 5j) (2.3-2)

In order to reduce the problem to a complete discrete form, numeri-
cal quadrature expressions must be used, replacing the integral by a

weighted sum of the values of the integrand at points

X(gk» 'r]z) k = 1, 2, o.o,K
1’ 2,--0’ L

(2.3-3)

Under these conditions, one obtains the following expression

yla,, BJ.) = _g%_ W, hlo,, 3 Bj.'nz)X(ﬁk. n,) *+ nla,, ﬂj)
k=1 g=1
i =1,2,60e,1 (2.3-4)
j = 1,2,600,7
k =12,+..,K
1, 2, +e., L

W

3

[}

.
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Using a lexicographic notation [2-16], it is possible to reduce this
two dimensional problem into a one dimensional model. Define the
square data arrays of the original and observed images, by the

(Kx L) matrix X and by the (IxJ) matrix Y respectively.

X = [x(§, 52)1 (2. 3-5)

X = [ylo; ;)] (2. 3-6)

Also define a (L x 1) vector v, and a (K.LxK) matrix Ez as well as

A
a (Jx1) vector v., and a (I.JxI) matrix M,
—J =]

0 1 0 |1
v, = 0 v, = 0 j-1 (2.3-7)
2 1 | g - 1 |
0 4+1 0 j+1
1 L 1 |7
0 ] 1 C 0.7 1
: 5
-1 j=-1
9, | # 9 13
= . . = I 2.3-8
N, I, ¢ M, L ( )
+1 0. | j+1
| G
0 L 0, | J
—z‘ _ —j-
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where_Qz (gj) and_l[z Qj) represent, respectively, the (KxK) ((IxI)) ~
matrix with all zero elements and the (KxK) ((IxI)) identity matrix.
Using this notation, the vector representations of the matri-

ces X and Y are given by

L
x =Z N Xy, (2.3-9)
1=1
and
J
= T M. Yyv. (2.3-10)
x = B

where x and y are (K.Lx 1) and (I.Jx 1) vectors, respectively. The
purpose of the vector y_z is to extract the zth column from X. The
matrix _ljz has the role of placing this column into the zth segment of
the (K.Lx 1) vector x. As a result, x contains the elements of X
scanned column-wise. Analogous considerations can be made for the
vector y and the matrix Y.

At this point, it is also convenient to refer to the inverse
relation, that allows the transformation from the vector form back
into the two-dimensional format. This manipulation will be useful
in transforming blurred and restored images into two-dimensional

form for display purposes.

(2.3-11)

=
S
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J
Y=3 M yv (2. 3-12)
P

With this column scamning of the two dimensional data

arrays, the system of equations assumes the form

y=Hx+n (2. 3-13)

y =(I.Jx 1) vector
H = (I.JxK. L) matrix

1%

=(K.Lx1) vector

n = (I.Jx 1) vector

where
~ -1 = B [~ <
I 1,3 % ] *1, 1
_ %2 _| 2.3 <o 22 | T2
Y : ’ % : ) X : ’ £, :
Y Yy X
7 | 71L,j | | L] _XK,EJ

=1 nl,_]

| 22 172,
n-= . s n, =] «
B B

and the matrix H is given by
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where the submatrices Hj zhave the form

B , _ ]
Wlf,h(ul' gl, ij T‘j) LI Wth(a.lt gK’ pjr nz)

=5, £ . .

W h(e, §l;ﬁj, T',o,) oo Wighlag 8§03 pj. ury)
The problem of image restoration has now been reduced to a

regression framework, that can be stated as follows: given the ob-

served vector y, the blur matrix H and the second order statistics

of the noise vector n, estimate, according to some suitable criterion,

the vector of parameters x. In the next chapter, this regression

problem will be treated extensively, as well as the specific questions

arising in its solution in the context of image processing.
Furthermore, by the use of additional a priori information,

expressed by equality or inequality constraints on the restoration,

the problem of ill conditioning will be improved. This will be the

object of discussion in chapter 4 of this dissertation.

1]

[\l
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The problem of selecting the number and the location of the
nodes of the quadrature approximation, as well as the observed
values is a very complex one, since it involves several different
sources of error. The first error comes from the approximation of
the integral by the summation and it will be named quadrature error.
It tends to decrease as the number of nodes increases. The best
location of the nodes is not given, in general, by the equally spaced
distribution. In one dimension, if the nodes are located on the zeros
of the set of orthogonal polynomials on the interval [2,b], the so
called gaussian quadrature is obtained [2-17, pages 392-395]. It
provides the optimum precision in the sense of maximizing the de-
gree of the polynomial for which the quadrature is strictly correct.
In two dimensions, the technique of gaussian quadrature cannot be
easily generalized [ 2-17, page 419] since the zeros of the ortho-
gonal polynomials may be complex or lie outside the region of inte-
gration.

Another source of error may appear when the continuous
estimator i‘;(g, 1) is obtained from the discrete vector _:3 Assume that
the nonrandom function x(g, n) is band limited in the frequency plane
within, for example, the rectangular region given by the coordinates

-Bu, +Bu and -Bv, +Bv’ where u and v represent the coordinates of

1
2B ’
u

the frequency domain. If the sampling grid is coarser than
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-Z-%—- (Nyquist rate), then an aliasing error will occur when the con-
tinZous function is obtained from the i.nterpolafed values. For a
given interval, this requires that the number of samples be above a
certain threshold if an equally spaced distribution of quadrature nodes
is employed. The determination of the threshold will, of course, de-
pend on the a priori knowledge of the frequencies Bu and Bv'

The third source of error comes from the noise inherent in
the observations of the blurred picture. While the quadrature error
affects the process of passing from the continuous to the discrete
description and the aliasing error intervenes in the inverse process,
the effect of the noise is over the estimation of the discrete values.
It becomes worse as the number of nqdes in the quadrature formula
increases. It can be measured by the increased condition number
or, through a complementary point of view, by the increased vari-
ance of the estimators, as will be discussed in chapter 3 of this
dissertation. The type of quadrature, the location of the nodes and
of the observation values affect the blur matrix H and, by conse-
quence, the quality of the estimators.

If the quadrature error can be disregarded with respect to
the two other sources of error, a trade-off can be characterized
between aliasing and the effect of noise. A small number of nodes
implies small variances of the estimators but possibly an aliasing

error in the reconstruction. Increasing the number of nodes tends

[

[ ¢

[{]

}s
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to eliminate the aliasing at the price of increased variances of the
discrete estimators.

The number of observation values y(ai , Bj) should be kept at
least equal to the number of nodes in the quadrature if no other a
priori information ié to be incorporated. Otherwise this lack of in-
formation will be reflected in infinite variances of the discrete esti-
mators. In the case of use of a priori information, a trade off can
be characterized between this information and the one coming from
the sample.

This dissertation will be concerned mainly with the third
type of error, namely, the one due to noise. It will be implicity
assumed that the sampling is enough to avoid aliasing errors and

that quadrature errors are negligible compared to noise errors.

2.4 The Existing Methods of Solution

Except for a few cases, the solution of the Fredholm equation
of the first kind is far from trivial. Usually numerical techniques
are used for its solution. All methods of solution have to face the
obstacle of the ill conditioning of the problem. This means that
small perturbations on the observed values result in very large
changes in the solution. A large research effort has been underway
during the last two decades attempting to develop feasible compu-

tational methods to deal with this problem.
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In general, these methods try to circumvent the problem of e
ill conditioning by imposing side constraints on the solutions. An

example is the method by Phillips (2-18), who imposed the con-

10

straint that the solution be smooth by minimizing the criterion

b

Min S [x" (@)]%da

(2.4-1)
X

where x'" (a) denotes the second spatial derivative of x(0.). If a

discretization is performed, a linear system of equations is obtained

y=Hx+€ (2.4-2)

1

where H is a square matrix. In Phillips' method, an estimator ::::_

[0

is forced to satisfy a quadratic equality constraint related to the

noise level involved ( JLZ)

(y - E%>T(z -HX) = 12 (2.4-3)

and the solution is obtained by minimizing a quadratic form

measuring the smoothness constraint

Minx 1S x (2. 4-4)
5 =
The result of the equality constrained optimization problem is

given by
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2= [Ev@E ) s]y (2. 4-5)

where Y is a Lagrange Multiplier that specifies the amount of smo-
othing imposed by the constraints. It was also shown that an esti-
mator of the perturbation vector ¢ relates to the Lagrange Multiplier

Y and the optimal solution through the expression

E = -Y(H.'I)Téé (2. 4-6)

A trial and error method was used giving the largest value of the
smoothing coefficient Yy compatible with the constraint expreésed by
equation (2.4-3).

A generalization of the method of Phillips as well as a sim-
plification was performed by Twomey [2-19 and 2-20]. The solution

expressed by

T T

$=EH+vS) 'H y (2. 4-7)

involves only one matrix inversion instead of two in the method by
Phillips. In addition, the method allows solutions in the case where
the matrix H is not square. It should be observed at this point that
for S equal to the identity matrix, Twomey's method reduces to the
so-called method of ridge regression [2-21, 2-22, and 2-23] that
attempts to trade a small amount of bias in the statistical procedures

in order to achieve a major reduction in the variance of the estimator.
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Among the other methods that yield numerically stable solu- -

tions to equation (2.2-3) is the regularization method of the Russian

IO

mathematician A.N. Tichonov [2-24, 2-25, and 2-26]. Likewise,
the method imposes the constraint that the solution be a piecewise
smooth function. It is based on the minimization of a functional
which, after discretization, assumes the form

M [xy) = so@x-y) Hx-y)+ Y:_<.T('Al—'§ ta8R)x
s (2. 4-8)

where S and P are appropriate positive definite matrices that define

the smoothness constraint and Ao and A€ are discrete increments

()

on equation (2.2-3). The solution, for any vy > 0, was shown to be

given by

~

= = sa[aaH H+Y (;pS+aeR)['HY @49

and, again, a trial and error process is involved in the determination
of the optimal value of the coefficient Y. The method can also be
generalized so that the functional would involve higher order dif-
ferences on the solution vector.

In the context of image processing, the solution of the planar

integral equations involves additional difficulties due to the large

dimensionality required when a discretization of the equations is

made. Under the conditions of the separability of the matrix H as a

\ o
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Kronecker product, Ekstrom [2-27] restructured the calculations
using a singular value decomposition of the same matrix.

Other methods [2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34,
and 2-35] have also been suggested to solve the deconvolution prob-
lem. In general, these methods were proposed to solve one dimen-
sional, small dimensionality problems and, as pointed out by
Ekstrom [2-36], some sort of reformulation of the problem is often
needed in order to adapt these procedures to the large dimension-
alities that occur in two-dimensional problems.

A significant development is possible in the solution involving
large amounts of data, when the kernel h(a, g, B> n) is shift invariant,

that is,

h(a, €, 8> 7n) = h{a-B, §-n) (2. 4-10)

and the functional that expresses the smoothness constraint is given
by a convolution expression. In this case (ETE) and S are Toeplitz
matrices in the one dimensional case and block Toeplitz in the two
dimensional case. By extending the domain of the convolutions and
transforming them into circular operations, Hunt [2-37, 2-38,
2-39, and 2-40) used Fast Fourier Transform techniques to solve

Twomey's method.



3. REGRESSION TECHNIQUES

In the previous chapter a blurred digital picture corrupted by

noise was modeled by the expression

Yy=Hx+n (3-1)
where
y =(IxJ) x 1 vector
H = (IxJ)x(Kx L) matrix
x = (KxL)x 1 vector
n = (IxJ)x 1 vector
In this discrete form, the problem consists of performing an esti-
mation of the parameter vector X, given the observed vector y, the
knowledge of the matrix H and the statistical distribution of the noise
vector n.
In order to proceed with the derivation of the solution and its
properties, it is necessary to consider the possible dimensions in-

volved in the model. For the sake of simplification,

IxJ =M (3-2)

Kx L

1]

N ' (3-3)

Two cases are possible: M =2 Nand M < N. In the first case, which

would occur if, for example, I >K and J > L, the number of nodes in

30



31
the quadrature expression is less than or equal to the number of
samples of the observed image. In the second case the opposite
situation occurs. The latter model would tend to occur when the
experimenter increases the number of nodes in order to improve the
discrete approximation of the integral equation that represents the
blurring process. In the case for which M 2 N, depending on the
values of the H matrix, its rank may or may not be given by the
number of columns, while in the case for which M <N, the rank is
necessarily less than the number of columns of H. As a matter of
notation, the model of full column rank is called overdeter mined.
If the matrix H is not of full column rank, the model is said to be
underdetermined. ;I‘he overdetermined model leads to the use of
classical regression techniques for its solution, while the underde-
termined scheme will require the concept of pseudoinverse and ex-

tensions of the previous case.

3.1 The Overdetermined Model

Consider the overdetermined model, i.e., under the condi-
tions of rank of the matrix H being determined by the number of
columns. Suppose, furthermore, that the noise has zero mean and
covariance matrix V, assumed to be positive definite. The vector
x is fixed but unknown and the task is to obtain an estimator % of x

according to some criterion. The chosen estimator is the best

2.

&
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linear unbiased estimator (B.L.U.E.) of x. This means that one is

searching for an estimate

15>
]
Q

M

(3.1-1)
such that
EGy) =x (3.1-2)

Let Y,’; denote the covariance matrix of the optimal estimator vector

g , and YJ_{_ the covariance matrix of any other linear estimator that
satisfies (3.1-2). It is noted that (Y'E - Y_;) is a positive semi-

definite matrix. The optimal solution is given by the Gauss-Markov

Theorem [3-1, page 52]

T.,-1_.-1_T_-1

2= V B H V 'y (3.1-3)
and its covariance matrix is
-1 -1
v, =@ v (3. 1-4)

%>

Suppose now that, instead of trying to estimate the set of
pixel values X i=1,2... N, one is interested in estimating a
linear functional of the xi's. An example could be the estimation of
the integral of the original picture that would be observed by the
output of a photocell. The linear functional § can be represented by

the inner product
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5= cox (3. 1-5)

The task then is to obtain a B.L.U.E, estimator for §.

Using Lagrangean methods [ 3-2, page 33] it is possible to show that

-1
§=c (H' Y

m laTvly (3. 1-6)

This means that

i=c'% (3.1-7)

The optimal estimator of x could also be derived by considering

parametric functions
§i =e, x 1=1,2.¢¢,N (3.1-8)

where e is the i& column of the identity matrix. In this case % will
be formed by the set of B.L.U.E, estimators for each one of its
components.

The same result could have been obtained by another method,
namely, the one that minimizes the weighted sum of squares of the
residuals. This is the method of least squares, which was first
developed by Gauss. In this case one seeks for the vector % that
minimizes the quadratic expression

0@ = (y-HYT v (y - HR) (3. 1-9)

[
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Taking derivatives and equating to zero, one obtains

-1 -1
2H v y+omt v H

(3.1-10)

|%>
n
o

or

HT z-l H

=§_T \[11 (3.1-11)

%>

This is the set of normal equations of the least squares prob-
lem. Under the hypothesis of full column rank of the blur matrix H

and positive definiteness of the covariance matrix V, the matrix

(HT Y_-l H) is invertible and the set of normal equations has a unique

solution given by

= (_1-1T \flm‘IHT \L'lz (3.1-12)

%>

A comparison of equations (3.1-3) and (3.1-12) will confirm the
assertion that the B.L.U.E. and least squares estimators of x are
identical. |

When the noise is white, V becomes an identity matrix and

expression (3.1-12) reduces to

8= @D H y (3.1-13)
or
% = H'y (3.1-14)
Let
T, .-1_T

Hf= @' H H (3.1-15)
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The matrix E-I- is called the pseudoinverse or Moore-Penrose gen- .

eralized inverse of H [3-3]. A more complete discussion of its

"

properties will be given in connection with the discussion of the
underdetermined model.

Assume for the moment that the noise is white. Therefore,
the least squares problem reduces to the minimization of the square

of the norm of the residual vector

Ve Mz - B (3.1-16

In order to obtain greater understanding over the question of
existence and uniqueness of the restoration problem, some heuristic
arguments will be presented. Consider Figure (3.1-1) where the
decomposition of a finite dimensional linear space into the direct

sum of two linear subspaces is represented [3-3] , namely,

N
E = RyT + gﬂ (3.1-17)

and

+
Ry * Nyt

=
i

(3.1-18)

As x varies over EN, the vector y = Hx varies over R(H).

h

Therefore, the problem of minimizing x - Hx Il 2 over x can be

reduced to the one of minimizing x - Y, " 2 where ¥, is in RH.
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From geometrical considerations it is clear that this is solved for

¥, given by the projection of y onto RH. Since ¥, is in RH’ there
always exists a solution to the problem
Hx =y, (3.1-19)

which implies that a solution to the least squares problem always
exists. Now, the solution will be unique if and only if the null space

of H, NH is composed only of the zero vector. Indeed, assume the

solution is unique. Therefore, the null space of H has to contain

only the zero vector because otherwise a nonzero vector in NH could

always be added to x without affecting y. On the other hand, assume

that H comprises only the zero vector. If the solution is not unique,

say x' and x' being two distinct solutions, then x' - x'" would be in

NH, which is a contradiction.

In the overdetermined case the columns of the blur matrix H
are assumed to be linearly independent, which implies that the null
space of H contains only the zero vector, otherwise there would be a
nontrivial linear combination of these column vectors resulting in the
zero vector. This explains the unique solution that was obtained for
the normal equations. In the underdetermined case this will not hap-

Pen and there will be many solutions to the least squares problem.

w

fe

13}
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3.2 The Hypothesis of Normality and Interval Estimation

It will be assumed in this section that the noise is Gaussian.
Besides the fact that it occurs often in practice, this as sumption also
has the advantage that it will allow the derivation of further prop;
erties of the estimators.

Accordingly, let the components of the noise vector n, n,,
n2, ety My, be jointly distributed with a multivariate normal distri-

bution
n ~ N0, V) : (3.2-1)

denoting that the mean is the zero vector and the covariance matrix
is V. Therefore, given the parameter vector x, the probability
density function of the observed vector yis given by

1

ply|x) =
e Z v

exp {-1(y-Hx)" v (y -Hn)} (3.2-2)

Consider now the maximum likelihood estimator of the vector of the

original pixel values x. By definition [3-4, page 193] this est;imator
is obtained by maximizing over x the expression of p(ﬂx). One may
take log before maximizing since it is a monotonically nondecreasing
function. In doing this one observes that the maximum likelihood

estimator & minimizes the quadratic expression
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-Hx) v i-Hx (3.2-3)

Under these conditions, given the observed values of the
blurred and noisy picture, the maximum likelihood estimator of the
original pixel values is the least squares estimator (and the
B.L.U.E. estimator for the overdetermined model), if the hypothe-
sis of normality is assumed. Since the maximum likelihood estima-
tor has the desirable properties of consistency and asymptotic ef-
ficiency, the Gaussian hypothesis allows the extension of these
pProperties to the estimators derived under the two other criteria.

In the following discussion the assumption of white noise will
be made. The purpose will be to derive estimators for the variance
of the noise that corrupts the image. Under the white noise hypothe-

sis, (3.2-2) assumes the form

Prf) =~ ¢ exp(=l_ (y-Hx) (z-Hxm)) (3.2-4)
(2m) G 20_2

If the log likelihood function is maximized by setting the derivative

with respect to o equal to zero, one obtains

1

2 (x-Hx) (y-Hx) - Mz =0 (3.2-5)
20 20

The expression for the maximum likelihood estimator of the
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. coefficient vector x has already been derived. By substituting this
value, the maximum likelihood estimator for az, 82, is obtained

2

8% = = (y-HH (z-HR) (3.2-6)

1
M

Now, consider the quantity

$=y-3 = y-H&-=
T
= y-HH H) H y-=
T, ..-1_T
= [I-HE'H) H ]y
- = LI (3' 2-7)
. Since L is the difference of two symmetric matrices, it follows that

L is also a symmetric matrix. Also L is idempotent as it can be

shown by the following derivation

h Furthermore, the trace of L can be obtained as follows

-1 -
trL = trl - trHH H) ' H® = M-tr(H H) 'H'H = M-N (3.2-9)
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From the fact that the rank of an idempotent matrix is equal to its
trace, it follows that the rank of L. is (M-N). Also, observe that

LH = [I-HH'H) H'

JH=H-H=0 (3.2-10) -

Now, consider another possible estimator for the parameter

2
¢ , namely

2 1 A a
s = o X-HX) (y-HX)
(3. 2-1 1)
_ 1 AT.
"M-NI Y
The following relationship is valid
¥=Lv=LHx+n) =Ln (3.2-12)
where the fact that LH = 0 was used. Therefore,
iTi = E.TLTL& = BT- Ln= tr&EBT (3.2-13)

The second equality comes from the idempotency of L and the third

is based on the fact that y_1T Ln is a scalar and therefore equal to its

own trace.

o

By taking expectations one obtains )

e
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~T. T
E(¥ ¥) =E(trLnn") = tr EE(_QET) = 02 tr LI = gz(M—N) (3.2-14)

As a result of the last expression, s2 is an unbiased estimator for

T

the variance of the noise. Observe that, although I\—il ¥ ¥ is the maxi-

mum likelihood estimator of 02, it is not an unbiased estimator.

It could be also of interest to determine an estimator for the

) X 1
covariance matrix of the estimator X, namely, 02 (ETE) . Since

-1
s2 is an unbiased estimator for 02, it follows that sz(ﬁTIi) is an

unbiased estimator of 0_2 (HT

H)
It has already been observed that, under the normality
assumption, the vector of estimated pixel values, g, is distributed

according to a multivariate normal distribution. Observe, further-

T

more, that (M-N)s2 = XT Ly= Ln and that L is an idempotent

matrix of rank (M-N). This fact implies that the quadratic form

N2
.(M_z_l‘l)s_ has a X distribution with (M-N) degrees of freedom
(o}

[3-5, page 91].

T .-1_T
Now, observe that the matrix L and the matrix (H ' H) H™ of

2=EH " H'y satisty

T

(= H)-IET£ = ( T

e [ rEE T ety - @ e T

- .2-15
T IET=2 (3.2-15)

o
o

- (

B
=
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w

This implies [3-6, page 89] that X and s2 are independently dis-
tributed.

Let us reconsider now, still under the Gaussian hypothesis,
the problem of estimating a linear functional of the pixel values of a
picture, like the sum of the pixels or a single pixel value, for
example. Expression (3.1-6) gives the value of the B, LL,U.E. esti-

mator §. That expression can be put into the form

§=uy (3.2-16)
where
- -1 -1
a' = TE vy H'y (3.2-17) .
Since n is normally distributed with zero mean and covari- g

ance matrix V, it follows that y is also normally distributed with
mean Hx and covariance V. On the other hand, 3, being a linear
combination of Gaussian random variables, is also a Gaussian

random variable and its variance is expressed by

var(3) = ul Vu (3.2-18)

Since 3 is an unbiased estimator of §, the random variable

ﬁ =__§'—%_ (3.2-19 )
\/var(g) )

is zero mean, unit variance and Gaussian. As a consequence, the
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probability that f falls in the interval -K,K? is given by

K
- 1 2
Pr{-K < n = K} = ,f 7= o -5 )ax (3.2-20)
1l

K
or
-3
Pr{-K s < K} = (3.2-21)
e
where
K
) 2
o = J — exp<l’-‘— dx (3.2-22)
‘k Ver 2

It is our interest to derive the confidence interval at a given
level o for the parametric function § . In view of (3.2-21) this can
be given by

L(® = {3 - Kvar(dn¥, § +K(var(}} (3.2-23)

or

L@ = {o'y -k vwl, o’y + K@ V0] (3.2-24)

For each value of K, the corresponding confidence level is tabulated

below [3-2, page 38].
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K Q
1.0 0.6827
2.0 0.9545

0.9973
4.0 0.9999

It is possible to give a geometrical interpretation of the con-
fidence ellipsoid. This interpretation will provide considerable in-
sight into the properties of the estimators, and will open the path
toward the discussion of the influence of the perturbations in the
solution of the linear equations involved. Excellent discussions of
this interpretation are found in references [3-2, pages 40-58 and
3-7, pages 406-411].

Consider the expression given by equation (3.2-3). For a
given observed value y, that expression represents a quadratic

function in N-dimensional space of the x, variables. Under the over-

i
determined model the solution of the normal equations is unique.
Therefore, the minimum of the quadratic form is obtained at a
unique point X. For other values of x the residual surface assumes

the shape of a parabolloid. Let T denote the minimum value of the

quadratic expression. Consider the expression

(-Hx)' vV g-Hx) = r_+K (3.2-25)

Upon the substitution of the value of £ given by the solution of the
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normal equations, it is easy to verify that

(x-x)" H  V "H(x-%) = K (3.2-26)

This is the expression of an ellipsoid.with center at the point X in the
N-dimensional x - space. Follov&ing reference 3-271 this ellipsoid
will be called the K -ellipsoid. Figure (3.2-1), obtained from ref-
erence [3-2, page 42] shows the residual surface and the K - eilip-
soid for N = 2.

Consgider now a vector h in the N-dimensional space. For a
nondegenerate ellipsoid (this is the case with the overdetermined
model), there will be two (N-1) dimensional planes orthogonal to h
and tangent to the ellipsoid. These are planes such that the ellipsoid
lies entirely on one side of and has at least one point in common with
them. Following Scheffe [3-7] this planes will be called planes of
support of the K - ellipsoid.

On the other hand, equation (3.1-7) gives the value of the
estimator of the parametric function & as expressed by the inner
product of the vector c and the estimator 2 . If one considers the
planes of support of the K - ellipsoid perpendicular to ¢, their ana-

lytical expressions will be given by [ 3-2, page 41]

- - 1
c'x = 2 +RTE vim o) (3.2-27)
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1>

- Figure (3.2-1) The Residual Surface and
the K-Ellipsoid for N=2



48

Since

var(d) = w Vu = @ vingle (3.2-28)

it follows, comparing (3.1-7), (3.2-24) and (3.2-27), that the con-
fidence interval IK( %) can be given by the distance between the two
points where the planes of support touch the K - ellipsoid. Figure
(3.2-2), obtained from reference [3-2, page 43] illustrates the
Previous assertion. The same figure also shows that the width of
the confidence interval is proportional to the distance between the
two support planes.

Since the width of the confidence intervals of parametric
functions of pixel values is proportional to the distance between the
Planes of support, and since this distance will vary depending on the
direction of the vector ¢ with respect to the axes of the ellipsoid, it
is important to characterize the directions of these axes in terms of
measurable quantities.

Equation (3.2-26) gives the analytical expression of the K -
ellipsoid. If a translation of origin in the EN space is made through

the equation

(3.2-29)

14>

!:&-

equation (3.2-26) assumes the form
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Figure (3.2-2) The Determination of the Confidence
Interval for Parametric Functions
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-1
v HT v lHy = K2 (3.2-30)

In order to find the directions of the principal axes of the K -
ellipsoid, first observe that a radius vector from the origin to an.y
point on the surface of the ellipsoid will be colinear with one of the
pPrincipal axes if and only if it will be in the direction of the normal
to the surface at that point. On the other hand, the ellipsoid can be
considered as an equipotential surface [3-2, page 45] of the scalar

field

Blv) = Y_T ET X'le (3.2-31)

so that the normal to the surface can be obtained by the direction of

the gradient vector

v(B) = 2 viluy (3.2-32)

Consequently, the problem of finding the principal axes of the ellip-
soid reduces to the one of finding axes that are colinear with the
gradient vector. This is expressed by the following equation in p,

for some constant )

g v 1Hp = Ap (3.2-33)

The previous equation represents an eigenvector-eigenvalue
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problem and the fact that _I—_I_T !- 1 H is symmetric and positive defi-
nite (since V is positive definite and H has full column rank in the
overdetermined model) guarantees that its eigenvalues are all real
and positive. The eigenvectors can always be chosen to be mutually
orthogonal and these will be the directions of the principal axes.

Consider now the diagonal matrix gz containing the eigen-
values of ET Z-l H in decreasing order. Consider also the unitary
matrix P such that its columns are the normalized corresponding

eigenvectors. The matrix QZ is obtained by the following transfor-

mation

pru’v'lup = o (3.2-34)

In order to obtain the axes of the ellipsoid a rotation of coordinates

is performed

r =Py (3.2-35)

This will align the axes of the ellipsoid with the axes of the coordi-
nate system. By solving for v in the previous equation and substi-

tuting in (3.2-30), the following expression is obtained

-1
r PT T viupy =k? (3.2-36)

and, using (3.2-34), this reduces to

v
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T
2% r = x° (3.2-37)

Taking into consideration that ;(_)._2 is diagonal, with entries
W Wy eee, W in the diagonal, the previous expression can be re-

written as

2
N T

g 5 — =1 (3.2-38)
i=1 K /w2

i

This is the canonical form of the equation of an ellipsoid
when the axes are colinear with the coordinate axes. The lengths of

these axes are given by

1. = ., 1 = 1, Z’COO’N (3,2—39)

It also follows that the principal axes of the ellipsoid have lengths
inversely proportional to the square root of the corresponding eigen-
values.

Recall that the width of the confidence interval for parametric
functions of pixel values is proportional to the distance between the
Planes of support. Now, if the vector c that specifies the parametric
function is parallel to an eigenvector that corresponds to a small
eigenvalue, the distance between the planes of »suppo‘rt will be larger

than in the situation where c is parallel to an eigenvector corres-
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T -1
ponding to a large eigenvalue of H™ V  H.

So far the confidence interval for parametric functions of
pixel values has been derived under the assumption that the variance
of the noise is known to the experimenter. When this is not the case
the confidence interval can be determined as follows. First observe

that, under white noise conditions, ng-gT_:_:_ is normally distri-

buted with zero mean and variance ong(ETE)-lg. Therefore, the

ratio

(3.2-40)

should be a standardized Gaussian random variable. The parameter

0 is not known but it has already been derived that X and s2 =

1
M-N (x-ﬂj_:)T(l-L-I_j_:) are independently distributed. Therefore, the
2
ratio given by (3.2-40) and LMZ\QB—- are also independent. Since

o}

M-~
{M-N)s is Xz distributed with M-N degrees of freedom, it follows

T@-x . M-N
sl m e | <Tg-x

> - G S (3.2-41)
(M-N)s s /c (HH ¢
2
o

Iy
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is distributed according to a Student distribution with (M-N) degrees
of freedom. The determination of the confidence interval is then
easily done by using tables of this distribution. The determination
of the confidence interval for the unknown variance can be done by
observing th::),i:!-h%Lz has a chi-square distribution with (M-N)
degrees of freedoin.
3.3 Analytic Study of the Condition Number

This section considers the effects that perturbations on the
observed blurred pixels have on the estimated original pixel values,
from the complementary point of view of the numerical analyst.

Under this perspective,the estimation of pixel values would consist

in the problem of solving a system of linear equations
Hx = y (3.3-1)

such that the right hand side is subject to perturbations. These
errors represent the role of the noise in the system. Consider the
effect of the perturbation vector n on the solution of the system of

linear equations. Call

14>

= x+tAx (3.3-2)

the solution, x being the true vector. The set of normal equations
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(H vV H+s = H vy = B viEx+n (3.3-3)

gives the solution for the perturbed system. Reduction of the pre-

vious equation gives

] -1
B v ilam =H v Ia (3.3-4)

At this point, assuming the overdetermined model, one could simply
invert (_I:I_T Z-l H) in order to obtain the change Ax in the solution of
the linear system due to the perturbation n. A decomposition of the
matrices involved will be performed, however, giving more insight
into the problem [3-2, pages 47-58]. The assumption that Y_-l is
positive definite leads to the possibility of a decomposition of the

form

1o T (3.3-5)

so that equation (3.4-4) can be written as

m cTcmm = 5 cT cn (3.3-6)

A factorization of the matrix CH will now be performed. This
is the so-called singular value decomposition of a rectangular matrix

[3-3, page 387

CH = gﬁg (3.3-7)

1]

r
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where L is the (Nx N) diagonal matrix of the eigenvalues of

T T
(H” € CH), P is a unitary matrix whose columns are the eigen-

T .
vectors of (Q_H___H_T C") and Q is also a unitary matrix whose rows

T _.T
are the eigenvectors of (H C™~ CH). As a result, equation (3.3-6)

can be rewritten

Q" Lo = 2" 1Pp g - (3.3-8)
or
LQAx = _%I_DTQB (3.3-9)
Since (I_iTgT CH) is nonsingular, L is also nonsingular and one ob-

tains (by multiplying both sides of the equation by QT L™ 1)

-1
= oTL ZpT

4

Cn (3.3-10)

The previous equation can also be written

(3.3-11)

€
oA

where g, are the rows of Q (eigenvectors of ﬂT gT CH) and W

i=1,2,...Nare the square root of the eigenvalues of (_I_-I_Tg_TQ_l-I_).

The last quantities are called the singular values of the matrix CH.
Equation (3. 3-11) shows that the component of the error along

each of the eigenvectors of (I_;I_T '\_l'-lﬂ) is inversely proportional to
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the corresponding si.ngﬁlar value of CH. Assuming that the com-
ponents of (_ZET C n) do not vary much in magnitude, the components
of Ax will tend to be larger in the direction of eigenvectors cor-
responding to smaller singular values.

So far the analysis of perturbations has been restricted to
absolute changes in the least squares solution due to errors in the
observed values. The next step consists in analyzing relative
changes in the solution due to perturbations in the data as well as in
the matrix H.

Assume for the sake of simplicity, that the noise is white.

This implies that the solution to the normal equations is given by

I%>
0
'
=
o
<

(3.3-12)

As pointed out before, the previous expression can be put into the

form

XE=H y (3.3-13)
+,
where H is the pseudoinverse of H.
Call
Y =y+*n (3.3-14)

and let ¥, and El be the projections of y and y respectively, onto the

range of the transformation H,denoted R(H). Under these conditions,
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the following bound is valid for the relative changes in the solution

to the least squares problems 3-8, page 221]

ot _
la’y 550 < e . "11'11" (3.3-15)
+ —_
where c®) = lull. la*ll . (3. 3-16)

The quantity c(H) is called the condition number of the blur
matrix H. It plays an extremely important role in explaining the
effect of perturbations on the accuracy of the computations involved.

Equation (3. 3-15) can be obtained by the following reasoning.
Decompose y into ¥, a.nd_y_z where ) belongs to R(H) and Y, is in its
orthogonal complement, which is the null space of _IiT, de-noted by

N(_ET) . Therefore,

+ + + + T._ T +
Hy=Hy, +Hy, =Hy, +E BDH'y, =H'y, (3.3-17)

o

Analogously,

H'Y = H'y, (3.3-18)

where ¥ ; is the projection of y onto R(H). Hence

la'y -m'gl =l -gp 0 < gty -3 1 (3.3-19)
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On the other hand, it is easily shown [ 3-8, page 2207 that if -

_I-1+_y: is the solution to the least squares problem, then

HH'Y =y, (3.3-20)

and
Iy, I = laa’yll < lal . Na*yl (3.3-21)

or
eyl = ::—l:{l"1 (3.3-22)

By dividing (3.3-19) by (3.3-22) one obtains the desired result

Observe that it is only the component of the relative error in

1}

the observed vector of pixel values lying on the range of the blur
matrix that contributes to the relative error in the estimated pixel
values.

The condition number will determine the effect of the noise
in the restoration process. If its value is small a little relative
perturbation on the observed blurred picture will not produce large
relative changes in the restored picture. In this case, the normal
equations are said to be well conditioned. If, on the other hand, the
condition number has a large value, small relative changes in the
observed values may greatly affect the estimated pixel values and

the normal equations are said to be ill conditioned.
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The matrix norm used in the expression of the condition
number ”g” o I_;I_+ ” can be any one of the matrix norms that are
consistent with the vector norm used. In particular, one may select
the spectral norm, which is equal to the largest singular value of
the matrix.

In order to find the largest singular value of the pseudoinverse
_Ii+ , (or (_C_LI_)+ if a colored noise corrupts the image) the factori-
zation expressed by equation (3.3-7) will be used. By doing this and

also using the expression for the pseudoinverse one obtains

- 1 - 1
e’ =pew el em’ = [o'Lip pLio) o LEPT
(3.3-23)
But since
p'p=-goT -1 (3. 3-24)
and
@ Loy =0T o (3.3-25)
it follows that
-1
(Q_Ii)+ =QT£ fET (3.3-26)

+
The matrix (CH) is an NxM(M 2 N) matrix, so its singular

values are calculated by the positive square roots of the matrix
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el emh’ = oLl (3.3-27)

The eigenvalues of this matrix in factorized form are given by the

. -1 1 1 1
diagonal elements of L, *, namely, T T st T As a
W, W, W

+
consequence, the singular values of (CH) are the reciprocal of the

+ 1
singular values of CH. The largest singular of (CH) is - -
n
Therefore, the condition number is given by
w
+ 1
lemifiicy || = —— (3. 3-28)
n

that means that this number is the ratio of the largest to the smal-
lest singular value of the matrix (CH).

A further insight can be obtained by considering the re-
lationship between the condition number and the K-ellipsoid [ 3-2,
page 54]. Equation (3.2-39) expresses the relationship between the
length of an axis of the ellipsoid and the corresponding singular
value. Using that expression one may immediately conclude that
the ratio of the largest to the smallest singular value of (CH) is also
the ratio of the largest to the smallest axis of the ellipsoid. This
means that the more the ellipsoid departs from the shape of a sphere,
the more ill conditioned the restoration problem will be. Figure

(3.3-1) obtained from reference [3-2, page 54] shows the

\¢

“
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well conditioned
problem

poorly conditioned
problem

N

xy

Figure (3.3 -1) K-Ellipsoids for a Well
Conditioned and a Poorly Conditioned Problem

LY
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comparison between the K-ellipsoids for the well and ill conditioned
system, for the case where N = 2.

When the noise is Gaussian, the observed blurred and noisy
pixel values are also normally distributed, under the linear model.
In this case one can define ellipsoids centered at the mean value of
the observed pixel values (it may be assumed to be the origin for
convenience) and containing a given percentage of this multivariate
distribution.

Since the estimated pixel values are obtained by combining
linearly the observed values, it follows that the estimators are also
Gaussian distributed.

It is possible to show [ reference 3-2, pages 55-58] that if
the ellipsoid for the observed values in a regression model has the

expression

T -1 2
(y-Hx)" V "(y-Hx) < »op (3.3-29)
then the corresponding ellipsoids of the estimators are given by

(zi_-.%)T ET l’ﬂlﬂ(ﬁ-i) < pz (3.3-30)

This ellipsoid essentially gives the multidimensional confidence

interval for the pixel values under the normality assumption. The

-1
eigenvectors and eigenvalues (ET V ~ H) will determine the size

€
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and shape of the ellipsoid.

The attention will be devoted now to the problem of con-
sidering the effects of perturbations of the blur matrix H on the
restoration problem. This question is of extreme importance s?nce
the experimenter rarely knows with great precision the spread func-
tion. This is particularly true when that function is derived from
measurements that inevitably involve errors.

The analysis of the effect of the perturbation on the blur
matrix is quite involved. In order to do this a new terminology is
introduced by Stewart [3-97. Let E be a perturbation matrix on the
blur matrix H and S be a subspace of RM. Each column of E is an
M-vector that can be projected onto S. Call El(xl) and E_z(y?) the
pProjections of E(y) onto the range of the blur matrix, denoted by R(H)
and its orthogonal complement (N(ET)), respectively.

Assuming the overdetermined model and if

et Ve Il < 1 (3.3-31)

then the columns of (A + E) are linearly independent. Also, assuming

that

(3.3-32)

IX>
I

|

%

and
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Z-=@+D'y (3.3-33)
then
- E ¥
P DO L N LIy LY |
| IE IEN gl ll H||
(3.3-34)
where c(H) = HE“ . “I_{_+" (3.3-35)

is the condition number of H and the consistent Euclidean norm for
vector and Frobenius norm for matrices is used. The third term
in the bound depends on the square of “EZ " 2 and usually can be
disregarded when compared to the first two terms. The first term
is similar to the bound that can be derived for perturbations in non-
singular linear systems.

>The second term states that the relative perturbation in

Y
N(ET) is amplified by c(H) - |||l 2 :: . Since ¥, is the projection of
1

y onto R(H) and Y, is the projection on its orthogonal complement,
namely N(H ), it follows that the ratio H measures how nearly
y lies with respect to R(H). If y is close ti R(H) this ratio will be
small. I |E, || and || E, || are of the same order of magnitude then
the first term tends to dominate when Y, is small. If, on the other

hand, Y, is large, the second term is prevalent. Stewart states

loosely that "'if y very nearly lies in R(H), then c(H) is the condition



‘»

66
number for the least squares prpblem, otherwise cz(ﬂ) is the condi-
tion number., "

An important conclusion in the case of image restoration can
be drawn. If there is a small amount of noise present in the observed
pixel values (high signal to noise ratio), the y will tend to be near
R(H), which implies that c(H) will be the condition number. If, on the
contrary, the signal to noise ratio is low, the component of the noise
ﬁvill tend to place y farther away from R(H) and in this case cz(_I-_I_) will
be the condition number. Since c(H) is always greater or equal to
one, the latter case is certainly a worse situation. Incidentally, it
should be remarked that cz(ﬂ) is the condition number of the matri;;

®TH).

3.4 The Underdetermined Model

So far the study of the image restoration problem has been
essentially restricted to the overdetermined model. This means that
the (M x N) blur matrix H is assumed to have rank N. In other words,
the columns of this matrix are supposed to be linearly independent.

On the other hand, if, in the discretization method of the con-
tinuous planar equation that deécri‘bes the blurring process, a number
of nodes for the quadrature formula is selected exceeding the number
of observed values (i.e., M <N), this condition is violated and the

rank of the blur matrix H is necessarily less than N.
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Under the overdetermined model there was a unique solution -
for the restoration problem given by the set of normal equations.
Furthermore, estimators and finite confidence intervals were ob-
tained for every parametric function of the pixel values. Also, a
finite condition number was obtained by considering the ratio of the
largest and the smallest singular values of the matrix CH.

If H has not full column rank several important consequences
are immediately derived. First, the uniqueness of the set of normal
equations cannot be guaranteed any more, since the matrix (ﬂT_Y‘_._- l_H_)
is singular and therefore cannot be inverted. Second, the smallest

singular value of the matrix CH is zero, resulting in a condition num- ~

ber with an infinite value. As a consequence of this fact, many linear

«

combinations of pixel values have an infinite confidence interval,
which is equivalent to say that these functions are not estimable.

There is a concept that not only is necessary for the study of
underdetermined systems but also broadens the view over the over -
determined systems, unifying the whole study of the linear model in
regression analysis. It is the concept of the generalized inverse of a
matrix, which was mentioned briefly in connection with the treatment
of the overdetermined model and now is more fully treated.

Initially, a brief survey of generalized inverse concepts will
be presented. There are several ways of Presenting these concepts.

The presentation contained in reference [3-3] will be followed.
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+
Given an M x N matrix H, the matrix H obtained by the

following limiting operations

Ii+ - lim(_I-;{_T_I:I_+mZQ-IIiT
a-0

-1
= HmH @E +d’]
oa-+0 (3.4-1)

always exists. Also, for any (M x 1) vector y, the vector

=HE.

%>

(3.4-2)

is the vector of minimum norm among those that minimize

2
Iy -Bx|

(3.4-3)

It can be shown that x is the unique vector in R(I_-I_T) satisfying the

equation

Hx =§ (3. 4-4)

where ¥ is the projection of yon R(H). This vector X satisfies the

set of normal equations

H'Hx = H'y (3. 4-5)

+
The unique matrix H 1is called the generalized inverse or the pseu-

doinverse of the matrix H.

As a corollary of expressions (3.4-1) and (3.4-2), it follows
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that for any vector y, E_I:I_+1 is the projection of y on R(H), (_I_-EE-'-)I
is the projection of y on N(I_—I_T). Furthermore, for any vector x,
§+§_gc_ is the projection of x on R(I_-I_T) and (l_-ﬁh);_g is the projection
of x on N(H). It should be observed at this point that a projection

matrix P is idempotent, i.e., }_32 =P,

+ -
If H is square and nonsingular, H is the inverse of H, H 1.

If the columns of H are linearly independent, like in the overdeter -

mined model, the pseudoinverse is given by

gt = @ ) e’ (3.4-6)

If, on the other hand, the rows of H are linearly independent, the
pseudoinver se will be represented as

g - gl@e)! (3.4-7)

A better perspective over the pseudoinverse can be obtained by

considering some specific cases. Take, for example, the (1x 1)

matrix H, represented by the value h. In this case,

H' = h=0

(3.4-8)

if
ifh #0

o= o

If H is diagonal,

1L ]
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H = diag (b, h,, eee b ) (3.4-9)
then
+ _ + .+ +
H = diag (h1 ,hz, ...hM) v (3.4-10)
where
hi+=0 ifh, = 0 o
t (3.4-11)
1
= — ifh, # 0
hi i

If H is a symmetric (M x M) matrix, it is possible to repre-

sent it in the following form

H=IDT" (3.4-12)

where T is an orthogonal matrix and D is diagonal. Using (3.4-1),

+
H canbe expressed as

H' = umT@®+o’p 'DT”

a0

= T1im@%+?y 'p T

a-+0

= tp' 1! (3.4-13)

As a result, the pPseudoinverse of a symmetric matrix can be obtained
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by pseudoinverting the diagonal matrix that consists of its eigenvalues.

If H is nonsingular, all the eigenvalues are nonzero and 2+ = 2-1, so

that E+ = E-l.

This result on symmetric matrices leads to spectral repre-

sentations for the pseudoinverse matrix. If the columns of T are de-

noted by g_l, 32, vee, -t—M and the eigenvalues of H by )\1’ )\2, e, )\M
the matrix H can be represented as
M T
H —.? 7\1 "'t'l—t_] (3.4-15)
i=1
. +
and the pseudoinverse H by
M
H = s el (3.4-15)
f=] 17

where )\i+ has the same meaning as in (3.4-11),
Two results that will be useful in the analysis of the underde-
termined model of the restoration process are now stated. For any

matrix H, x belongs to the null space of H if and only if

x = (L-H Hy (3.4-16)

for some vector y. For any matrix H, z belongs to the range of H if

and only if

[



&
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(3.4-17)

3]

"
Jes]
e
=

for some vector u.
For any rectangular matrix H, the pseudoinverse can be ex-
Pressed in terms of pseudoinverses of symmetric square matrices as

follows

g = @ mE - graaht (3.4-18)

It can be shown that an entirely equivalent way of introducing
the pseudoinverse exists. This is the so called Penrose characteri-
zation [3-3, page 28]. A matrix §_+ is said to be the pseudoinverse

of a matrix H if and only if the four conditions are satisfied

+ +
HH and H H are symmetric

e

+
and HH

+
HHH =
+
H =H'
These results can now be applied to the restoration problem.

Consider first the no noise case

¥ =Hx (3.4-20)

where x represents the vector of pixel values, H is the blur matrix

and y is the vector of observed values. No restriction is placed on the
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dimension of the blur matrix, either the overdetermined or the un-
derdetermined models could be involved.

Consider first the problem of existence of solution. In order
for a solution to exist y must be on R(H). By (3.4-17) this occurs if
and only if y = §§+g for some u. On the other hand, since H§+ is a
projection on R(H), it follows that

+ + +
HH'y = MH)% = HH'w = y (3.4-21)

The condition expressed by the previous equation is the so called con-
sistency condition for the solution of a linear system.

At this point it is perhaps useful to point out that, under no
noise, for real situations, y will always be in R(H) since it was ob-
tained by blurring an existing picture. This is why the restoration
problem is then formulated as searching for the solution of the linear
system (3.4-20) instead of directly solving for the least squares
problem.

Turning now to the problem of uniqueness of the solution, the
homogeneous system Hx = 0 has to be investigated. Observe that,

for any vector v

x = Q_—E+ v (3.4-22)

is a solution to the homogeneous system since

w
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+ +
Hx = HI-H'Hy = (H-HEHy = 0 (3.4-23)

where in the last equality one of the conditions expressed by (3.4-19)
was used. Therefore, if E-'E # I, a nonzero vector can always be
added to the solution, without changing the left hand side of system

(3.4-20). A necessary and sufficient condition can be expressed by
+
HHE =1 (3.4-24)

this condition being equivalent to the statement that N(H) consists only
of the zero vector.
A general solution to the lihear system (3.4-20) can be ex-

pressed as

x = Hy + (-H'Hy (3.4-25)

where v is an arbitrary vector.
In the case of the overdetermined system, the blur matrix H
+
has linearly independent columns, H is expressed by (3.4-6) and the

condition (3.4-24) is satisfied so that the unique solution is given by

x = §+x (3.4-26)

For the underdetermined model, condition (3.4-24) is not satisfied

and there will not be a unique solution to the system of linear
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equations.
The vector E+.‘L is the minimum norm solution. This can be
verified by noticing that the set of vectors given by (l-ﬂ-l'ﬂ)y_ is ortho-

+
gonal to H y as shown below

. T .+ T, 4. T. +
[I-HHyv] -Hy = v -HH Hy (3.4-27)

= Y -HEEY = e uErhy - 0

where the second equality used the fact that (L—E+ﬁ) is a symmetric
matrix and the fourth equality was based on one of the relations in
(3.4-19). Figure (3.4-1) taken from reference [3-2, page 63], shows
the geometry of the solutions to the linear system in the underdeter -
mined case, when N = 2 and the dimension of N(H) is 1.

Now, suppose that noise is added to the system so that

In this case one would search for an estimator £ of x under some
meaningful statistical criterion. In the overdetermined case the best
linear unbiased estimator (B, L.U.E.) has already been obtained and

it was shown to be unique. Suppose, therefore, that one is looking

v

for a B.L.U.E. estimator in the underdetermined model, where rank -

(H) < N. Assume that a linear estimator of the form
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o |

T={x|x =H"y +(I-HH)y for
some v}
H'y
-
X,
S = {x|x=(I-H"H)vfor some v}

Figure (3.4-1) The Geometry of the Solutions
of the Underdetermined System
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x = Uy (3.4-29)

is used, where U is an (M x N) matrix.
By imposing the unbiasedness condition, the following ex-

pression has to be valid, for any value of x

UTE_E = x (3.4-30)

Thus, it follows that

U'H =L (3.4-31)

But if this is true, the rank of —IN’ N would be larger than the
rank of one of its factors (H, with rank < N) which contradicts the
Sylvester Inequality for the product of matrices. Therefore, there is
no unbiased linear estimator for the vector of pixel values x.

This fact greatly limits the usefulness of the underdetermined
model. This can be viewed from the perspective of being the price
paid for increasing the number of quadrature nodes above the number
of observed values. Because of lack of information an unbiased esti-
mator for the pixel values cannot be obtained.

However, restoration can be attempted according to another
criterion, namely, the minimization of the least squares quadratic

form
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0(x) = (x-Hx)V '(y-Hx) (3.4-32)

where V is the covariance matrix of the noise that corrupts the
picture.

The set of normal equations is represented by
H V HE =H vy (3.4-33)

By performing the factorization

vl - ng (3.4-34)

(3.4-33) can be expressed as

a’ctcn

%>
"
|

Cy (3.4-35)

In order to check whether the system is solvable, the consistency
condition of equation (3.4-21) would have to be checked. Instead of
doing this, a simpler way would be to observe that R((_Q_I-I_)T) =
R(CH)" CH). Since H' CT Cy is in the range of HT GT = cHT, it
must be in the range of ET Q_T CH = (g@ng. As a fesult, it must
be the image of some X under the transformation (_Q_I-L)T_C_L-I_. In other
words, the set of normal equations is always consistent.

Using (3.4-25) the general solution of this system of linear

equations is given by
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=@'cTem B c oy +[1-@ cTemtmTcTem iy (3.4-36)

14>

for an arbitrary vector v.
Taking into consideration (3.4-18), the previous expression

can be reduced to

£ = (ci)'cy +[1-(cH)' cHly (3.4-37)

The solution of the least squares problem is, therefore, not
unique and any vector in the set expressed by the previous equation
minimizes the quadratic form. The vector (Q_H)+gy_is now merely
the smallest norm solution that gives this minimum value.

In Figure (3.4-2), taken from reference [3-2, page 65], the
geometry of the least squares problem for the underdetermined
model is shown. The surface of the quadratic form (3.4-32) is in-
finitely long in the directions of the eigenvectors of ET_Y_- IE =
ETQTQIicorresponding to the zero singular values of (CH). The set
of solutions given by (3.4-37) is the projection on the x space of the
bottom of the infinitely long quadratic through. The K-ellipsoids are

degenerate, being infinitely long in the directions of the mentioned

eigenvectors. One of the principal axes of these ellipsoids is given

(]

by the solution set of the least squares problem. The number of

dimensions where the ellipsoid is infinite is the dimension of N(H),
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=(
K-ellipsoid

Figure (3.4-2) The Geomefry of the Underdetermined Model
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assuming that V is posi‘tive definite.
Suppose now that the experimenter is interested in estimating
pParametric functions of the pixel values, represented by the inner

product
$ = gT>_: (3.4-38)

A linear combination of the observed pixel values is used to perform

this estimation
$ =uy (3.4-39)

The requirement of unbiasedness implies that

Ee'y = ¢'x (3.4-40)
which in turn leads to
u'Hx = ¢'x (3.4-41)

for any value of x. Therefore, the following equality must be valid

ulH = ¢’ (3.4-42)

At this point the analogy between (3.4-31) and (3.4-42) is clear. The
previous equation can be also expressed by stating that there must

exist a vector u such that
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T
Hu-=¢ (3.4-43)

In other words, the vector c has to be a linear combination of the
columns of __I-_I_T, a condition that can also be expressed by saying

that c belongs to R(ET) or still that
+
HHc = ¢ (3.4-44)

+ T
since H H is a projection matrix onto R(H ). The term R(l—I_T) has
dimension, say K < N, which will determine the number of linearly
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