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ABSTRACT

An analysis of the optimum statistical restoration of
quantized signals 1is presented. The restoration is based
upon minimizing the mean square error between the input to
a quantizer and its estimate. Since a quantizer is a
nonlinear device, the estimation equation which is derived
achieves an optimum nonlinear restoration. 1Its solution
requires complete statistical knowledge of the gquantizer
input. Available statistical information usually inciudes
the marginal distribution of each of the input variables
and the correlation between them. Hence a technique is
developed for generating correlated multidimensional
probability density functions based on this available
information. The technique 1is applied to gaussian,
laplacian, and Rayleigh density functions. These
multidimensional density functions characterize the outputs
of transform coders, DPCM coders, and PCM coders,
respectively. The quantized outputs of these coders are
then restored by utilizing the multidimensional densities
in the estimation eguation. Examples of images which have
been coded and restored by these technigues are preseﬁted.
The results reveal a mean square error reduction. To
achieve a visually subjective improvement also, a weighted
mean square error criterion 1is employed, where the
weighting corresponds to characteristics of the human

visual system.
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CHAPTER 1

INTRODUCTION

Quantization is a process inherent in all digital
systems. Basically, guantization occurs whenever
continuous physical properties are represented numerically.
When this representation takes place in a digital computer,
the guantization effect is called round-off, or truncation.
As a mathematical operation, quantization is the processing
of continuous functions to give a stepwise output, or the
processing of sampled functions to give a sampled output.
Even the value obtained in measuring a continuous guantity
is the consequence of quantization. But wherever the
occurrence, a fundamental aspect of guantization is that it
results in an indeterminacy and a 1lack of complete
information about the particular property under

consideration.

In this report quantization is assumed to be a
nonlinear operation which occurs within a quantizer--a
zero-memory device that assigns an input to one of a
countable number of possible output regions. This defines
a broad class of devices that includes coders, digital
transducers, and analog-to-digital converters. For many of
these quantizing devices the input is a continuous

variable; restricting a continuous input to a particular



region destroys some of the information about that input.
For discrete inputs, combining their input regions into
larger, and hence fewer allowable, output regions also
decreases the amount of information available. These are
both irreversible operations and the 1lost information
cannot be recovered. It is thus important to optimize the
quantizing process so that this lost information is held to

a minimum.

The lost information can be minimized by decreasing
the size of the output regions while simultaneously
increasing their number. Unfortunately, this is not always
possible or practical. It would also oppose one of the
benefits of gquantization: a smaller number of output
regions requires less processing and less storage. A
balance thus must be attained between accuracy and economy.
This balance can be determined by an analysis of the

quantization process.

Most analyses of gquantization to date have focused on
just one aspect of the problem, i.e., finding the best
guantizing device to minimize the information lost.
However, the eventual use of any gquantized output is to
accurately represent a continuous signal input. The output
regions are ultimately utilized to estimate and restore the
original gquantizer input. It is this guantization

restoration problem that has heretofore been neglected and



is the subject of this dissertation.

The simplest restoration procedure is to choose the
midpoint of each quantization interval as the estimated
value of the original input. However, this estimate can be
improved, since it is based only on the output regions of
the quantizer. The restoration to be described herein is
based also on a priori knowledge of the statistics of the
quantizer input. The input 1is assumed to consist of
samples from a continuous random process. (The sampling
presents few, if any, restrictions because digital systems
reaquire sampled and quantized signals, and the operations
of sampling and gquantizing are commutable.) The necessary
statistics are the amplitude probability density function
of the input samples. Where the complete statistics are
unknown, a functional form for them is developed from known
correlation functions and one-dimensional distributions.
This statistical information is then combined with
knowledge of the guantizer output to provide an optimum
restoration. The restoration is optimum with respect to a

desired error criterion.

A second problem requiring a similar solution occurs
when quantized signals are transmitted through a noisy
channel. Because of the errors that accrue during
transmission, what is received does not exactly correspond

to the gquantizer output regions. The channel output



instead equals the quantizer output only within a specified
probability. To achieve an optimum restoration the
following available information must be utilized:

1. the a priori distribution of the guantizer input

2. the structure of the guantizer

3. the transmitted quantizer output region (which may

be in error)

4. the channel error structure
The existence of the last constituent induces a
modification in the solution discussed previously. The

modification is also considered in this dissertation.

In this dissertation, solutions are presented for the
restoration of guantized samples based on a priori
knowledge of the multivariate probability density function
of the quantizer input. The two cases considered are:
(1), the guantizer output region is known exactly; and (2),
the guantizer output is transmitted over a noisy channel

and hence not known exactly.

These two situations arise in the coding and
transmission of images. Quantizers are an integral part of
all image coding systems. The goal of these systems is to
make a coded image as similar as possible to an original
image. Unfortunately cost, complexity, and hardware
constraints often force a suboptimal coding scheme which

results in a degraded image. The application of the

4
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quantization restoration technigques discussed above can
improve these degraded images. Experimental verification
of this improvement is obtained by restoring images which

have been coded and guantized.



CHAPTER 2

HISTORY OF QUANTIZATION AND SIGNAL RECONSTRUCTION

Developments in quantization have closely paralleled
advances in digital systems. Although research had been
conducted into areas such as uniform statistical grouping
(which may be considered quantization) as early as 1898
tl], it is only since 1947 that deliberate attempts have
been made to understand the process of quantization. By
1947 vacuum-tube technology had reached the stage for which
digital systems were both possible and practical. At that
time the concepts and the value of PCM (pulse code
modulation--the first major application of both
gunatization and digital hardware) were just being
discovered and made known [2,3,4]. Bennett [5] then
undertook an intensive investigation of the spectra of
quantized signals. Bennett analyzed uniform guantizers,
such as those wuitlized in PCM systems, and found the
characteristics of their output spectra for a white noise
input spectrum. Since Bennett’s initial work, developments
in quantization have proceeded along three basic lines:

1. analyzing the results and the process of

quantization

2. optimizing the quantization process with respect

to various criteria and goals

3. reconstructing guantized signals to minimize the
6



degradation incurred through guantization
Each of these categories will be considered separately in
the following paragraphs, and significant developments will

be discussed in roughly chronological order.

2.1 Analysis of Quantization

One of Bennett’s conclusions was that quantization
uncertainty or noise, for a guantizer with many levels, is
uniformly distributed throughout the signal band. This
result was supported by Widrow in 1956 [6] in studies of
the probability density functions of quantized signals and
quantization noise. wWidrow concluded that a guantizer
could be modelled as a source of uniform, independent
noise, In a later paper [7), Widrow attempted to define
the limits of the region over which his additive noise
conclusion would be valid, and then extended the
statistical results to two dimensions (i.e., the
quantization of two correlated samples). Myers [8)
extended Bennett’s analysis to the case of the uniform
gquantization of a signal corrupted by gaussian noise and
derived the resultant noise distribution, which is no
longer uniform. Velichkin [9], calculated the correlation
function and output spectrum of a guantizer. 1In addition,
Velichkin considered the more general cases of nonuniform
guantization levels and arbitrary input signal spectrums.

Velichkin’s results, for the gaussian case, were in the
7



form of an infinite summation of Hermite polynomials of
increasing order which, unfortunately, cannot be evaluated

without simplifying assumptions.

Robertson [10) surmounted this difficulty by
evaluating combinations of the terms of the summation such
that the combinations tend to =zero and hence obtained
output spectrums for nonlinear and nonsymmetrical
guantizers and for arbitrary input spectrum shapes. Chan
and Donaldson [11] obtained a further generalization by
finding the correlation function and spectrum of a
quantized gaussian signal transmitted over é discrete
memoryless channel. Their results reduce to those obtained
by Velichkin when the channel is noiseless. For very
coarse quantization, Curry and Vander Velde [12] suggested
modelling the gquantizer as a gain element, whose value is
equal to the random-input describing function, plus an
additive noise source. The inclusion of a gain element
causes the noise source to appear more nearly white. The

guantization process can then be analyzed more easily.

2.2 Optimum Quantizers

The analyses of quantization described above were all
based on the concept that guantization introduces a noise
or distortion. A number of researchers have attacked the

fundamental problem of minimizing a measure of this

8



distortion by varying the location of N guantizing levels,
given the <characteristics of the guantizer input. They
attempted to do this in an optimal fashion under different
assumptions and conditions, and according to various

criteria.

In 1951 Panter and Dite [13) tried to minimize the
mean-square quantization error by utilizing statistical
properties of the signal. They developed an optimum
nonuniform guantizer based on the following assumptions:

1. the quantizer is symmetrical about zero

2. the probability density function, p(x), is an even

function and 1is constant over each quantization
interval

3. the signal is limited to the range [-V,V]

4. a signal quantized to a particular interval is

restored to the midpoint of that interval
The resultant guantizer restoration levels, r,, can then be

calculated from

)
r, = (2.1)

k' ry -1/3
ﬂ[p(X)l ax

for k=1,2,...,n and where N=2n+l is the total number of

2kv/N -1/3
Vi [p(x)] dx

levels. The total distortion power for this choice of

9
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levels is

) v 1/3 3
=== { [p(x)]  dx} (2.2)
N J @

Panter and Dite also suggested that this nonuniform level
spacing could be realized by "companding"--compressing the
original signal by a nonlinear function such as a
logarithm, performing a' uniform quantization, and then
expanding the result by means of the inverse of the
nonlinear function. This type of system was later analyzed
by Smith [14] who provided a method for choosing the
parameters of the nonlinearity with respect to a

mean-square error criterion.

In a fundamental paper in 1968, Max [15] derived the
necessary equations for finding the parameters of a
guantizer having minimum distortion with respect to a
convex error criterion. For a fixed number of quantization
intervals, N, the decision levels, dk' and the restoration

levels, r,, are obtained by a recursive solution of

q =(r, +r, _,1/2 k=2,3,...,N (2.3a)

de(x-r. )
/i"'l __a__k__p(x)dx=g k=1,2,...,N (2.3b)
X

10



where p(x) is the distribution function of the quantizer
input and e(¢) 1is a convex error function. (Note that
these equations do not require p(x) to be constant over the
range of the gquantizer.) In this notation, a signal
gquantized to the interval (qc,qk+l) would be restored to
the point ;k. The set of simultaneous equations contained
in eq. 2.3, except for trivial cases, cannot be solved
explicitly and so must be evaluated numerically. Max also
derived the equation which provides the optimum gquantizer
pérameters for a uniform spacing of levels, and tabulated
both the optimum uniform and optimum nonuniform

quantization levels for a gaussian probability density

function and a mean-square error criterion.

The difficulty in solving eqg. 2.3 explicitly has led a
number of researchers to consider various approximations.
Garmash [16] simplified the integrals in eq. 2.3b by the
trapezoidal rule and reduced the number of equations by
choosing the size of the smallest interval. His results
are valid only for a finite signal range. Roe [17]
approximated the probability density function, p(x), by the
first two terms of its Taylor series expansion about the

midpoint of each guatization interval to obtain

dk 1/(t+1)
(p(x)] dx ~ 2ak+b (2.4)
)

11
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for k=1,2,...,N-1 where t is the order of the error
criterion (t=2 for a mean-sguare error) and a and b are
constants. This relation approximately provides the
decision 1levels (and restoration levels for k’‘=k+1/2) for
differentiable probability density functions, but the
resultant guantizer is identical to that obtained by Panter
and Dite [13). Algazi (18], in attempting to find some
simpler suboptimal algorithms, also rederived eqg. 2.2.
Williams [19] published a closed-form solution to eq. 2.3
for the special case of a laplacian distribution, but erred
in assuming the restoration point to be the median, rather
than the centroid, of the quantization interval. The
correct guantization levels for a laplacian (and also a

gamma) distribution were later calculated numerically (28]}.

No matter which method is utilized to calculate the
quantization parameters, however, it will fail if the
probability distribution is such that a unique minimum
distortion point does not exist. For a mean-square
distortion measure, Fleischer ([21] derived the sufficient
conditions wunder which a unigue optimum guantizer can be
found. To this end also, Bruce [22] used dynamic
programming to find optimum quantizers for a variety of
convex error criteria, and checked their wuniqueness by
locating and comparing all other extrema of the error

surfaces.
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Since quantizers usually operate on sampled signals,
Velichkin [23] and Goodman [24] considered the Jjoint
optimization of both sampling and quantizing. Velichkin
calculated the optimum parameters to achieve a minimum
mean-square error, and Goodman compared this result to a

lower bound obtained from rate distortion theory.

It has been found [25] that wuniform quantizers
approach this lower bound, 1i.e., uniform gquantizers
asymptotically have the lowest output entropy. Wood [26]
and O0°Neal [27] have taken advantage of this fact to derive
(approximately) minimum entropy dquantizers. Wood has shown
that for a fixed output entropy, uniform guantizers have
lower mean-square error than nonuniform (Max) quantizers.
However, to achieve this error reduction, the guantizer
output must be optimally coded (i.e., with a Huffman
variable-length code) and this causes buffering problems.
This difficulty may be partially overcome by permutation
encoding [28], but this coding technique has the limitation
of requiring very long block-lengths. For a non-buffered
coding scheme, a gquantizer having maximum output entropy
could be considered to be optimum. It has been shown that
the gquantizers with minimum average error (such as Max’s)
are the same as those with maximum entropy, within a

multiplicative constant [29].

Maximum entropy, or minimum error, guantizers must be

13



modified when their output 1is transmitted over a noisy
channel [30]. For a mean-square error criterion, the
decision and reconstruction 1levels for a noisy-channel

quantizer can be found from

N,
201 i By, i)
a, = K=2,3 000 ,N (2.5a)

N
2i§1fi (Prs "P-1,i)

ﬁ% d.

P. Xp(x)dx

i=] ik fd

k= k=1,2,...,N (2.5b)
N d

Z f 1p(x)ax

i=1 d

where Pri is an element of the channel matrix, P. For a
noiseless channel (P=I), egq. 2.5 reduces to eq. 2.3.
Minimum error quantizers also must be modified for
nonstationary inputs or for correlated input samples.
Golding and Schultheiss [31] and Stroh and Boorstyn ([32]
presented ad hoc adaptive gquantizers designed to handle
this situation. An optimum adaptive quantizer has not vyet

been successfully derived, nor has an optimum aquantizer for

correlated signals.
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2.3 Quantized Signal Reconstruction

An important area of research in recent years has been
the reconstruction of quantized signals. Some researchers
have attempted to restore the input signal samples which
were degraded by a guantizer, while others, realizing that
many quantizers operate on sampled versions of analog
signals, have tried to restore directly the analog
waveform. In this latter category are the techniques of
Ruchkin [33], Katzenelson [34), Steiglitz ([35], Goblick
[36]), Kellogg [37]), Hayes [38]}, and Chan and Donaldson
[39). Each of their approaches differed in the assumptions
they made about the effect of the quantizer. Ruchkin found
the best (with respect to mean-square error) linear filter
to restore a quantized and sampled gaussian signal, under
the assumption that a quantizer adds white gaussian noise.
Katzenelson also found the best linear filter, but assumed
the signal 1is a sample from a Markov process and the
wuantizer noise is colored. The same assumption about the
quantizer was made by Steiglitz who analyzed specific,
nonoptimum, reconstruction filters for special input power
spectra and compared the results to a rate distortion
bound. Steiglitz provided a trade-off between sampling
rate and number of uniform quantization levels for the case
of a minimum mean-square error and fixed capacity.
Goblick, on the other hand, considered entropy coding and

provided a trade-off between mean-square error and output
15
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entropy. A prefilter was derived by Kellogg for the same
case that Ruchkin considered, under the premise that a
designer can tailor input and output signals to a fixed
quantizer by means of prefilters and postfilters. Kellogg
used an optimum, nonuniform quantizer for his simulations,
and presented a numerical solution for the linear filters.
Hayes added a constraint on the signal-to-noise ratio for
his solutions, but otherwise numerically analyzed the same
case as Kellogg. An exact analytical method for jointly
optimizing the prefilter, postfilter, guantizer, and
sampling rate was presented by Chan and Donaldson. Their
optimum prefilter "whitens" the signal and removes the
redundancy from the resultant signal samples. After
quantization and transmission occur, a postfilter restores
the continuous signal and removes the distortion added by
both the quantizer and the channel. This method was
general in that it considered the correlation between the
signal and noise, included the effect of channel errors,
and placed no restrictions on either the signal and noise

spectra or the filter passbands <*>,

Curry [41) considered the problem of finding 1linear
estimates based on guantized samples. He showed that these

<*> It should be mentioned that an excellent general
treatment of quantizers, receivers, and noisy channels is
available in Fine [40].
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estimates can be computed in two steps: (1) £find the
conditional mean of the quantizer output, and (2) pass this
mean through the linear filter that would have been used
had the quantizer not existed. For a minimum mean-square
error criterion this linear filter was found to be the
Kalman or Wiener filter. The conditional mean for a

gaussian process was found to be approximately
£=(1-DC 1) (b+a)/2 (2.6)

where I is the identity matrix, C is the covariance matrix
of the quantizer input X, x is quantized to the interval
[a,b] by an arbitrary quantizer, and D 1is the diagonal

matrix having elements

\2.7)

Equation 2.6 provides a minimum mean-square error estimate
of a quantizer’s input, based only on its output, that is
valid whenever the quantization is very fine. Clements and
Haddad [42] derived a recursive techinque for finding this
same result that is also applicable to the problem of

nonlinear estimation using guantized data.
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CHAPTER 3

NONLINEAR ESTIMATION WITH QUANTIZED MEASUREMENTS

As the previous chapter has shown, most analyses of
quantization have focused on the guantizing process itself
and on the determination of an optimum quantizer for each
input sample. Unfortunately, 1little effort has been
expended towards undoing the effects of quantization and
recovering the original input. The core of the problem is
that qguantizers treat each signal individually and rneglect
the random process which models the signals. As the
analysis below shows, an optimum restoration of quantized
signals must wutilize the joint probability density of the

original input signals.

3.1 Vector Quantization

The input to a quantizer may be either a continuous
function or discrete samples. A quantizer processes a
continuous function to give a stepwise continuous output or
processes a sampled function to give a sampled output. Aall
digital systems require signals which are both sampled and
guantized. Sampling and gquantizing are mathematically
commutable operations, i.e., the result is the same whether
a signal is first quantized and the resultant stepfunction

is sampled, or if the signal is first sampled and then the
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samples are quantized. Hence in this analysis the input to

a quantizer is assumed to be a sampled random process.

A guantizer assigns each sample to a particular
interval according to its amplitude (guantization is
sometimes considered to be sampling in amplitude). For an
individual sample, the interval is a portion of the real
line (see fig. 3-la). However if two samples at a time are
considered, then a quantizer assigns pairs of samples to
regions in two-space, as shown in fig. 3-1b. Similarly, a
quantizer assigns vectors of N samples to regions in
N-space, RN. If the vector components are guantized
independently, the resultant region in RN is rectangular.
An estimate of the quantizer input based on its
corresponding output region would be one of the points
within that region. The goal in this chapter is to find
the estimation point which is most similar to the quantizer
input, with respect to a given error criterion. It should
be mentioned that no attempt is made to find optimum
quantization regions. Rather, a method is derived for
finding the optimum restoration point within an arbitrary,
given region. The restoration concepts can best be

understood in the context of the following simple example.

3.2 Vector Restoration Example

Consider a two level (one bit) guantization of a
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sampled signal 1limited in amplitude to a finite range.
Specifically, for a signal limited to the range [-1,1], let
the output of a quantizer be the information that the
signal is either in [0,1] or in [-1,0). Next assume that
two successive outputs at times t1 and t., are as shown in

2
figo 3-23.

x(tl) € [9,1]
thz) € [-1,0)

If nothing else is known about these signals, then the best

restoration, as fig. 3-2b shows, would be

y(t))=1/2
y(t,)=-1/2

However, if the signals are samples from a random process
with a known probability distribution, p(x), such as the
one in fig. 3-2c¢, then a better restoration would be the
mean values of each interval according to this distribution
(see fig. 3-24). (The restoration in fig. 3-2b would
correspond to a wuniform distribution.) Finally, if the
signals at tl and t2 are known to be correlated, then the
restoration can be further improved by utilizing this
correlation. Figures 3-2e and 3-2f show the restoration

points for positive correlation and negative correlation,
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respectively.

3.3 Nonlinear Estimator

To characterize the above concepts mathematically, an
expression for the quantization error must first be
derived. Let a vector of N samples of a random process be

denoted as X, where
X=(Xy 1Xgreeer¥Xy) (3.1)

and assume that this vector is statistically described by
its probability density function, p(x). If this vector is
guantized, according to the techniques of Sec. 3.1, then it
is assigned to one of M regions in RN, denoted as Ry, v for
m=1,2,...,M. Next assume that the guantizer’'s desired
output is its input signal. This is a reasonable
assumption, for in most communication systems the quantized
signal 1is intended to be an instantaneous replica of the
input signal. Thus, it can also be assumed that x € Rm,
i.e., that the input vector x is assigned to the region in
which it is contained. Note that these assumptions are
made for convenience only and place no restrictions

whatsoever on the subsequent solution.

The point within R, that is chosen as the restored

value of the guantizer input is denoted as Yo' where ¥ is
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a vector since it represents a point in N-space. The
instantaneous error caused by restoring a quantized signal
to the point Yn is then X=¥Yo- The restoration performance
is to be determined by evaluating a function of this error,
e(*). The goal is to minimize the mean value of this error
fuhction, for all possible quantizer inputs, by the proper
choice of restoration points, ¥, The expression for the

total error which must be minimized is then

M
€=Zl fe(gg-xm)p(g)dg (3.2)
m=

R
m

The error weighting function, e, is arbitrary, but it is

usually a nonnegative function because instantaneous errors

of opposite sign should not cancel each other.

Many researchers have proposed solutions which
minimize eq. 3.2 for different choices of the error
weighting function, but all of their results are predicated
on x being a one-dimensional or scalar input. Of these
results, the most significant ones have been obtained by
Bruce (1] who used dynamic programing techniques to find
the optimum regions, Rm' and restoration points, Yo for
arbitrary error weighting functions. His results
generalized those obtained earlier by Max [2] for a squared

error weighting.
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A mean-square error criterion is also wutilized here,

The functional form of this error weighting is
e (x-y, ) =Tr{ (x-y. ) (x-¥) "} (3.3)
L X=Yn) (XY :

where Tr{+} denotes the trace of a matrix. The error
function e(ﬁ-zm) is now a monotonic function. Then, under
a simple assumption on p(x) (that p(x) is not entirely
discrete), the error expression in eqg. 3.2 can be minimized
by the techniques of differential calculus. By making this
assumption about p(x), thebrelative extrema of the error

surface € can be found from

(3.4)

o v
4< ™
=

for m=1,2,...,M. Substituting equations 3.2 and 3.3 into
eq. 3.4 yields
d€
—= -2(x-y )p(x)dx = @ (3.5)
dY -
Lo
m
for m=1,2,...,M. This equation can be rearranged and the

restoration point, Xm' solved for to obtain
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xp(x)dx

%n
Y = (3.6)
p(x)dx
R
m
for m=1,2,...,M. Equation 3.6 is thus a minimum

mean-square error estimate of the input to a quantizer,
based on the quantizer output and the a priori statistics
of the input. Closer inspection of this equation reveals

that
=E{x | x € Rm} A (3.7)

for m=1,2,...,M. That |is, Xm is the conditional mean
estimate of x conditioned on the nonlinear information that
X has been quantized to the region Rm. Because of this
conditioning, Xm represents a nonlinear restoration of "the
quantized signal. The restoration is optimum only with
respect to a mean-square error criterion, but it is

completely independent of the specific form of the

Quantizer.

Note that eq. 3.6 regquires that a multidimensional
density function, p(x), be provided in order to solve for
the optimal restoration. Since a gaussian density is the
only known multidimensional density for correlated signals,

only quantized gaussian random processes might be optimally
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restored. If other multidimensional densities can be
derived, then systems which are based on these densities
might also be optimized. The subsequent chapter considers
this derivation possibility and presents a ‘technique for
generating correlated multidimensional densities. The
results are then utilized in succeeding chapters to analyze

several common communication systems.

3.4 Estimation Covariance

The performance of the estimator derived in the
previous section can be determined by computing the
estimation error covariance matrix. The covariance of the
estimator, based on the quantized measurement information,

can be found from
cov(x | x € 1’\“)=E{(§-xm)(§-zm)Tl X € R} (3.8)

By comparison with equations 3.6 and 3.7 this can be

expressed as

L (x-y,) (x-y )" P(x)dx

cov(x | x € R )=—=" (3.9)

m
/ p(x)dx
R

m

The numerator can then be expanded and the resulting

equation simplified to obtain the final £form for the
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estimation covariance

f&TP(ydz
ov(x | x € R )= n -y yT (3.10) -
covix | x m’ In¥n Mt
fp(gg)dg
R
m

Using this result, the average quantization error remaining
after the minimum mean-square error restoration of Sec. 3.3

is
M
€=mz=:l'1‘r{cov(§_ | x €R )}Pr(x € R ) (3.11)

where Pr (A) denotes the probability of occurrence of the

event A and

Pr(x € R )= fp(x)dx (3.12)
bl ™ R - =

Then using eq. 3.18, the error becomes

M
E=Tr fxpr(x)dx - Ter(x € R ) (3.13)
L, | Jtewen - e e,

which simplifies to

H
E=Tr{C -) y y Fr(x € R )} (3.14)
m=1
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where the matrix C 1is the covariance of the input vector
X. Alternatively, this same result could have been derived
by substituting equations 3.6 and 3.3 into eq. 3.2 and then
simplifying the result. The error expression in eg. 3.13
is used later to evaluate the performances of various
optimal restoration techniques that are based on guantized

measurements.,
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CHAPTER 4

MULTIVARIATE PROBABILITY DENSITY FUNCTIONS

4.1 Introduction

Multivariate distributions of dependent random
variables are often required in communications problems for
the analysis of stationary random processes. The
distributions arise whenever a continuous random process is
sampled--a fundamental characteristic of all digital
systems. The probability density function of N samples of

a random process X(t) is usually denoted as

p(xl,xz,...,xN)

This expression is very general and represents an infinite
number of possible density functions, only a few of which
have ever been found. In fact, for N>2 and correlated
variables, there is only the familiar multivariate gaussian
distribution. Fortunately the gaussian is the most useful
distribution (by virtue of the Central Limit Theorem making
it the limiting distribution for many additive processes).
There are, however, many processes which it does not model
well. For these, the lack of other known distributions
often means that a multivariate gaussian is used by
default, or that the dependence between the variables is

ignored and the density is written as the product of
38



independent marginal densities. In either case
inaccuracies result. Thus, this chapter addresses the
problem of finding the multivariate densities of
non-gaussian variables whose marginal densities and

correlation function are known.

4.2 Characteristics of Multivariate Distributions

The probability density function of a single random
variable is uniquely determined by specifying all M+l of

its moments, 1<M<» , denoted by [1]
E{x™}

for m=6,1,2,...,M. Unigueness holds under the following
easily satisfied conditions: when all of the moments are
finite and when a power series with the moments as its
coefficients converges. To uniquely specify the
multivariate density of N random variables requires (M+l)N
joint moments, similarly denoted as

m m
22 ...XNN }

m

E{xll p
for ml,mz,...,mn=0,l,...,m. For a given random process it
is usually possible to determine the distribution, p(x;),
of a single random variable (a marginal density function of
the multivariate density), and to measure its correlation
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with the other similarly distributed variables. If there
are N variables, then the N marginal densities provide
N(M+1) moments and the correlations provide Nz-N more. The
remaining mixed moments are undetermined. If these are
chosen arbitrarily, then there are an infinite number of
possible multivariate densities which have the same NM+N2
moments specified above. However, these - densities differ

from each other only in their higher moments, and thus are

very similar.

A valid probability density function must satisfy the

following six conditions [2]:

Property 1. p(xl,xz,...,xN)zﬁ (4.1)

Property 2. jr...jrp(xl,xz,...,xN)dxldxz...de=l (4.2)

Property 3. J[p(xl,xz,...,xN)dxi=p(xl,...,xi_Ixi+i...,xN)
(4.3)

for i=1,2,...,N,
Property 4. To accurately represent a given random process

with correlation matrix C, the density function must be
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able to generate the elements of C from the equation

Cij=—/-...-/‘x1‘.ij(XI'xz'ooo'xN)dxldX2.oode (404)

Property 5. When a stationary random process X(t) is
sampled, the samples, in general, are correlated with a
correlation matrix C. If the sample spacing becomes so
large, however, that the samples are uncorrelated and C is
a diagonal matrix (assuming X(t) has no strictly periodical
components), then the samples are also independent. Then
the density function should be factorable into a product of

independent density functions, as

p(xllle'O’lxN)=p(xl)p(x2)"‘p(xb]) (405)

Property 6. If two of the random variables are identical,

e.g. xi=xj, then the density must become

p(xl,xz,...,xN)=6(xi-xj)p(x1,...,xi_Ixi+I...,xN) (4.6)

4.3 Prior Multivariate Density Research

A few specialized multivariate densities have been
found in the past. In 1945 S. O. Rice [3] derived
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two-dimensional Rayleigh and sine-cosine densities.
Subsequent researchers, such as Gumbel [4] and Parzen (5],
found multivariate densities based on known marginals, but
their densities failed to satisfy Properties 4 and 6 and so
could not represent a given random process. The most
significant results to date were obtained by Beckmann (6]
who developed a general technique for constructing a
two-dimensional density from its marginals and correlation
coefficient. Beckmann’s method required each marginal
density to be the weighting function of a system of
orthogonal polynomials. Unfortunately this resulted in a
joint density containing an infinite series that often did
not have a closed form solution. Also, by the inherent
nature of orthogonal polynomials, the results were not

extendable to more than two dimensions.

4.4 Derivation of Multidimensional Densities

To derive densities in higher dimensions, consider
first an N-dimensional gaussian density. Assume, without
loss of generality, that its mean 1is zero and its

covariance is C. Then this density can be written
-N - -
px)=(2m VeI 2exp (21T L x) (4.7)
It is possible, by a suitable 1linear transformation, to

express this density in a new coordinate system in which
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the components are statistically independent. The

transformation is effected through

dx

By ()78 (8) | =

Let
y=E'x
where E is the solution to the eigenvalue equation

EA=CE

with A a diagonal matrix of eigenvalues. Since

density

(4.8)

(4.9)

(4.10)

[ is

symmetric and a covariance matrix, the eigenvalues are real

and nonnegative. Also the eigenvectors which comprise the

columns of E can be chosen to be orthonormal, i.e.

(4.11)

Now substituting eqg. 4.9 into equations 4.8 and 4.7 yields

P, (¥)=p, (Ey) IE"1 1=(2m N2 g17 117/ 2exp(-LyTETC L EY)

or
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/zlél—l/zexp(-%z'r&lz) (4.12)

-N

PY(X)=(2W)
Notice that if A in this last equation is an identity
matrix, then the original covariance matrix C must also be

an identity matrix, for

=1 (4.13)

The diagonal elements of A are just the variances of
the components in the new coordinate system. If the
components are scaled by the square root of these
variances, 1i.e. zi=yP/XII, then each new component has
unit variance. Hence rotating these scaled coordinates by

the inverse of the original transformation
w=Ez (4.14)

yields an uncorrelated unit variance probability density

function

p(w)=( 21r)'N/2exp(_%ETﬁl/ZA—lél/zg_l!)

-N/2 T

=(2m ™V 2exp(-2wTw) | (4.15)
Reversing the above procedure thus leads to a method for

generating a correlated multidimensional density function
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from an uncorrelated one.

Reiterating the steps above in proper order yields the

following general technique:

(1) Write an uncorrelated N-dimensional density as a

product of its known marginals

P(§)=p(x1)p(x2)---p(xN) (4.16)
(2) Define E such that E is orthonormal and

ETCE=A (4.17)

where A is diagonal and C is the desired covariance matrix.
The matrices E and A are respectively the matrix of

eigenvectors and the matrix of eigenvalues of C.

(3) Transform x by §°l, i.e., 1=§-1§=§T§, so that

Py (¥) =IElpy (EY) =Py (EY) (4.18)

(4) Scale the components of y by the square roots of the

eigenvalues; then
z=41/2y (4.19)
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and

oy (2 =17 2 (2 )= 187 20 (222 (420

(5) Inverse transform z by w=Ez to obtain

By (0 =1E1"p, (Ew=1a1"Y2p (6412 w)

or
By (W)=IAlR, (AW) (4.21)
where

a=gA 1/ 2T (4.22)

To illustrgte the effect of each step of the 'procedure,
fig. 4-1 shows contour plots of two-dimensional gaussian

and laplacian densities.

4.5 Proof of Density Properties

The function gﬁ(!) in eqg. 4.21 has correlation matrix
C and satisfies the conditions for a valid probability

density function as is next shown.
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GAUSSIAN DENSITY LAPLACIAN DENSITY

(AN .

Uncorrelated Density Contours

SR

Coordinate Rotation

A

Eigenvalue Scaling

G- &

Inverse Coordinate Rotatfion

Figure 4-1. Contour plots of the two-dimensional density
transformations used to generate correlated densities.
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Property 1. pw(g) is clearly nonnegative because px(g)ZG

for all X € RN and Aw € RN.

Property 2. J[ Py, (W) dw= jf |Alp, (Aw) dw
N RN

R
= jf px(i)di =1 (4.23)
g
Property 3. J{pw(!)dwifp(wl,...,wi_Iwi+I...,wN) (4.24)
R
-1 -1
Property 4. E{wiwj}=E{(§ X); (A i)j}
P | T,,-1
=A; "E{xx }éj
=(EAY 2ETEAY/ 2ET) .
=(Q)ij (4.25)

Property 5. C=1 implies that A=I; then

By (W) =1 Al Py (AW) =py (W) =P (w; ) P(Wy) - . .P(wy) (4.26)

Property 6. 1f xi=xj, then aii=-aij=ajj=-aji. Now
lim a,.=a..=oc0. Hence lim |A|l=00 and
ii 733 -
X.— X. X.— X,
i j i
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p, (00) 3 X, DX,
Xi b R |

N N
Py (A;W)=p, (D a; X )={p, (D a, %X );: X =x. (4.27)
Xi -i- Xi Ega ik"k Xi k=1 ik "k i 73
pxi(-oo) H xi<xj
Thus
0; xi>x
x}imx.pw(!)= R et
1 J 0; x <x
= 6(xi-xj) (4.28)

Unfortunately, Property 3 is not satisfied, i.e., the
correlated density function no 1longer has the desired
marginal distributions. In fact, its marginal
distributions are a function of the correlation matrix C.
However, as is shown in more detail later, the correlated
density function found above remains a good representation
for a given random process, and is a good approximation to

the exact (but unknown) probability density function.

4.6 Examples of Multidimensional Densities

To demonstrate the utility of the derivation

procedure, some examples are now presented.
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A. Gaussian probability density

-N/2 1 I X) (4.29)

px(§)=(2w) exp (-
qw(w)'IAl l/2(21r) N/Zexp( l Aw)

=1c"/2 (2m™ 2 exp (LT EA /2 EF B/ 2 E W)

=1c”2 (2m ™V 2 exp( 2w ¢ L (4.30)

B. Laplacian probability density

1 N
= — 2 . .
B, (X) 2N/2exp( i}=_“,1|xll) (4.31)
-1/2 ! V3 N
By (W) =1C1 5 gz exp (- Ziz;ll galk ) (4.32)
C. Rayleigh probability density
X 1,T
gx(i) ]J—x U(x ) exp(- X" X) (4.33)
N N N
i1~-1/2 1.7x1
Ry (W =ICl [E(glaik U0 2% ]exp( gy LW (4.34)
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D. Maxwell probability density
x)=2/mVATT x, 2u(x; ) | exp(-EeTx) 4.35)
px(-— B T ;l—l_?-'l i i P 2£ X (4.

2/myVqn w

N
Py (W) =—177 | (2 2u0(Y 1T
(w)= ( a,, w ) U( a.. w ) exp(__ c“].w) (4.36)

Figures 4-2 through 4-9 contain plots of two-dimensional
gaussian, laplacian, and Rayleigh densities for both

uncorrelated and correlated variables.

4.7 Marginal Densities and Random Process Simulations

As stated previously (see Section 4.5), the correlated
multidimensional density function in eqg. 4.21 and the
uncorrelated density in eq. 4.16 bhave different marginal
density functions. In generating the correlated density by
steps (1) through (5), the marginal density becomes a
function of the correlation matrix C. For example, a

two-dimensional correlated laplacian density can be written

! ! | b
p(x,y)=————=exp{- (|32 - 2%
Sy

Zsty 1-r \{2(1-r2) lsx

+|Q‘L _Q?S.l) (4.37)
Sy SX
where
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FIGURE 4-2.

p(X, Y)

TWO-DIMENSIONAIL GAUSSIAN DENSITY
Correlation = 0.0
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FIGURE 4-3,

piX, Y)

TWO-DIMENSIONAL GAUSSIAN DENSITY
Correlation = 0.8
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p(X, Y)

) )
“ ‘\ \ \\;\\\\\‘\ s
NNO‘O‘O‘Q‘\\\N\:&é\‘o‘~“e‘l¢ii~:li‘x

W

W

i

N

X Q‘Q‘.

. . OO S
. . ‘Q%t‘t‘tﬁt‘:{\\%\“ QOO
0.0.0 AN \o‘:‘

FIGURE 4-4, TWO-DIMENSIONAL GAUSSIAN DENSITY
Correlation = -0.8



p(X, Y)

TWO-DIMENSIONAL LAPLACIAN DENSITY

FIGURE 4-5.

Correlation = 0,0
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p(X, Y)

TWO-DIMENSIONAL LAPLACIAN DENSITY

FIGURE 4-6,

Correlation ~ 0,8
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p(X, Y)

TWO-DIMENSIONAL LAPLACIAN DENSITY

FIGURE 4-7,

Correlation = -0,8
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p(X, Y)

FIGURE 4-8, TWO-DIMENSIONAL RAYLEIGH DENSITY
Correlation = 0,0
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X

FIGURE 4-9. TWO-DIMENSIONAL RAYLEIGH DENSITY
Correla‘ion = 0.8
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s2=E{x?} (4.38)

2_ 2

sy—E{y } (4.39)
E{xy}

r=s S (4.40)
xSy

a=Vi+r +VvV1-r (4.41)

b=Vl+4r - Vl-r (4.42)

Its marginal distribution is

1
p(X) s [l al exp (-2¥2 |2 | ) | bl exp (-2 | X|)| (4.43)
23942(1-r2)[ Sx Ia ' sx | b

which is a function of the correlation, r. It becomes the
classical laplacian distribution only when the correlation

is zero, i.e.

1 VZ|x|
exp(-

p(x) = ) (4.44)

@ X

r

However, non-zero correlations in eg. 4.43 result in

marginal distributions that are very similar to the one
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described by eqg. 4.44. Fig. 4-18 shows these marginal
distributions for wvarious correlation coefficients--the
differences are minimal for even a large change in the
correlation. Thus either function could adequately model a
random process such as the one characterized by fig. 4-11.
This figure represents the measured distribution at the
output of a DPCM coder having a sampled image as an input.
This particular image has a measured average correlation of
0.4 between successive DPCM samples, resulting in the
experimental two-dimensional distribution shown in
fig. 4-12. Using r=#.4 in eqg. 4.37, this distribution can
be modeled as a two-dimensional laplacian density. This

density is plotted in fig. 4-13.

Similarly, fig. 4-14 shows the marginal distributions
of a two-dimensional Rayleigh density for several different

correlations. The curves are plotted from

2
2 X (g=-r)
p(x)=-l—exp - X 5 g-exp - ——55——-7— (1- l-rz)
2s 2s X 2s_ (1-r")
X X X
% xz(g—-r)2
+§-exp - 3 (1+{1-r™)
X st(l-r )
\F(xz 1) fert X(Ee) £ * (o) (x) (4.45)
+ref=—(—=- er -er U(x .45
2 s;‘: sx;h(l-rz) sx-JZ(l-rz)
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Figure 4-10. Marginal distributions of a correlated
two-dimensional laplacian density function for various
correlation coefficients (r).
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-32 -16 0 16 32

Figure 4-11, Histogr-m of the DPCM rignal for the "girl"
picture
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X

FIGURE 4-12.

TWO-DIMENSIONAL HISTOGRAM OF THE

DPCM CODED "GIRL" PICTURE
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FIGURE 4-13, TWO-DIMENSIONAL LAPLACIAN DENSITY
FUNCTION USED TO MODEL THE TWO-DIMENSIONAL DPCM
SIGNAL SHOWN IN FIG, 4-12; CORRELATION =0.4
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Figure 4-14. Marginal distributions of a correlated
two-dimensional Rayleigh density €unction with correlation
coefficient r.
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which is found by integrating the two-dimensional Rayleigh

density

1
ax by, ay _bx,,ax by,,ay_bx
3/2 (sx sy) (sy sx)U(sx sy) (SY Sx)

p(xIY)= 2
4sxsy(1-r )

2 2
exp |- —1 — &= - 2rxy Yo (4.46)
2(1-r7%) Sx sty sy

The parameters S.* sy, r, a, and b are the same as
previously defined in egquations 4.38 to 4.42. As expected,
when the correlation between x and y becomes zero, the

marginal density reduces to

2

p(x)| =Zsexp(- F—)U(x) (4.47)
s 2s,
X X

r=0

the familiar one-dimensional Rayleigh density. However the
figure shows that the shape of the marginal density
function is insensitive to changes in the correlation.
Hence a random variable approximately described by eq. 4.47
could be characterized equally well (though not as
concisely) by eg. 4.45. Similar results are obtained for
marginal distributions of the higher dimensional densities
described by eq. 4.34. This equation therefore provides an
effective model for a multidimensional correlated Rayleigh

random process.

67



Thus, the technique developed above generates, from a
given one-dimensional density, a multidimensional density
that possesses a desired correlation function. Because the
one-dimensional density function and correlation properties
of a random process are usually measurable and known, the
multidi&ensional density can be derived from this
information and utilized to model the random process. This
model can then be employed in the analysis and simulation
of digital systems which operate on the random process.

The potential applications for this modeling are widespread

and several are analyzed in subsequent chapters.
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CHAPTER 5

QUANTIZATION AND RESTORATION OF GAUSSIAN SAMPLES

In Chapter 3, an estimation equation was derived for
the minimum mean-square error restoration of guantized
samples from a random process. Solution of the estimation
equation is dependent upon knowledge of both the structure
of the guantizer and the multidimensional probability
density function of the sampled random process. For many
communication systems, the underlying random process can be
described by a gaussian probability density function. A
gaussian density arises naturally in many applications
because it is the limiting distribution for all additive
random processes, and the addition of random variables
occurs often in communication systems. A gaussian random
process is thus assumed to be the input to a gquantizer and
an optimal restoration is then derived based on this

assumption.

5.1 Estimation of Quantized Gaussian Samples

Repeating one of the major results of Chapter 3, the
restoration of a vector of samples x, which has been

quantized to one of M regions, Rm' can be found from

70



fxmgt_)dgc_
Rm

Y = (3.6)
f p(x)dx
B

for m=1,2,...,M, where p(x) 1is the probability density
function of the sampled random process. For a gaussian

random process, p(x) can be written

- -1/2 -
p(x)=(2m V211" 2exp( 31T tx) (5.1)
where C is the covariance matrix of x and the mean is
assumed to be zero. If the region R.m is rectangular, i.e.,
if each component of X is quantized individually, then the

region can be expressed as

.1, i=1,2,...,N} (5.2)

R ={x I xie [ami'bml

m

for m=1,2,...,M. For notational simplicity only a single
region is henceforth considered and the subscript m is

dropped, leaving

R={x | x € [a,b]} (5.3)

Substituting eq. 5.1 into ea. 3.6 yields
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1T

x(2m "V 21¢1 7 2exp (-LxTcIx) ax

J

a
¥ (5.4)
f‘(zw)‘“/"‘ugl‘l/zexp(-§§“’g'15)dg_
a

Unfortunately, no known analytical solution exists for
either of the integrals in this eguation. Curry [1l] has
obtained an approximate solution for finely gquantized

values of L i.e., for
b.-a, < s, | (5.5)

for i=1,2,...,N, where s; is the standard deviation of the
(i)th component of x. His approach'is to approximate the
gaussian density by the first three terms of 1its Taylor
series expansion about the midpoint of the region R. The

integrations can then be performed, with the result that
E{x | x € R}=(I-DC 1) (b+a)/2 (5.6)
where the diagonal matrix

(b,-a,)?>
p={—2—-2 5 . (5.7)
- 12 13

for i’j=1’2'...'N.
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An exact solution to eg. 5.4 can be obtained when the
components of x are uncorrelated. In this case the

covariance matrix of x can be expressed as
c={s;%s .} (5.8)

for i,j=1,2,...,N, so that the restoration equation can be

rewritten as

b N
= 1 2 /g2
/ gexp( 2i§=lxi/si) dx

N
L3 %22
f exp( 2 1=1Xi/si) d_)i

Each multidimensional integral can then be separated into a

i

]
]

(5.9)

o

[

product of one-dimensional integrals, so that common

factors can be cancelled, leaving
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—fbkl e_xi/zsf . i
ol

fblc_-xiﬂsidxl
3

(5.10)

<
"

b -2 /26
/ag(Ne"N SNd’S\I
N

3
/bne )&"/zsﬁde
%N

e

Considering the (i)th component of this vector, since all
of the components are identical in form, the integrals can

be evaluated, as <*>

<*> In accordance with the usual convention,
2

5 X -t
erf(x)== e dt
\/’7/0
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== - 5.11
1\ si b. a, (.11
erf(\}_l -erf 1
25i 2si
A similar computation without the =zero-mean assumption
shows that, if E{x}=u, then
(a,-u )2 (b, -u)?
s, {exp |-———F— |-exp |-——F—
1 [ 252 252
1 1
-u A, =u
erf(\bl 1 -erf 1 %)
V2s V2s
X I
Z=E+Jg . (5.12)

(a_-u_)?2 (b_-u_)2
< exp[___ﬂ__u__]_exp LN
N 2 2 282

N N
u

erfcﬁili?
V2s

S
a _=u
-erf _N_N
v‘z'sh

Gaussian variables which have been decorrelated by means of
a Karhunen-Loeve transformation [2]) and then quantized can

be restored,

according to a

minimum mean-square error

criterion, by utilizing these last two equations.
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An exact analytical solution to eq. 5.4 also exists
when an estimate of a single vector component, Xy is
desired based upon two types of information:

1. the other components, Xy eXgreoerXy g7 which are
known completely (quantized with an infinite
number of bits)

2. the quantizer output, which nonlinearly specifies
the interval containing -

To derive this solution, consider

y=E{x | xl=al,x2=a2,...,xN_1=aN_l;aN5xN<bN} (5.13)

The vector t is defined such that

jer
n

(5.14)

Then, using eqg. 5.4,
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f t exp(-stTc iy ax
R
y=
f exp(-1tTc ) ax
R
or
bN 1, T~-1
t exp(-5t"C “t)dx
a
N
Y= b
[Nexp(-%ETg_lj:_)de
aN
or

a
N-1

b
N 1. T7~1 d
fa xNexp( >t c -t X9

N

-

J.

N -

Nexp(-%ETg'lg)de

Denoting the elements of g‘l by

(5.15)
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IO'
|

(5.16)

INl1 ™™w2 ° - * Inn

the exponential term in the Nth component of eg. 5.15

becomes
G 1)
r a.+r
=1 1377 "1INTN
N-1
_lrzjaj+r2NxN
1, |77 >
expy -5t .
Nz-:l
r L +r X
NN'N
[3=1 NI 1)
1 N-1
=exp{-> Ja (JZ ISP T WP (Z r23a3+r2NxN)

N-1
+"'+aN-1(}§irN-l,jaj+rN—l N ¥y Z:rNJaJ+rNNqu I
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1 N-1 N-1 N=1

+exXp

1[0 & 2
-3 [xNjglaj (er+rNj )+ Xy ] (5.17)

The first exponential in eg. 5.17 is a constant and 1is
common to both the numerator and denominator of the Nth

component of X‘in eqg. 5.15. Hence this factor can be

cancelled, leaving

bN N-1
/aNxNexp -%[xNjaaj (25N +Ex3 )+rNNxN2] ax

YN= (5.18)
by 1 2
faNexp -z-[xNjglaj (erHNj )+ Xy ]de

Completing the square within the exponential, each

exponential becomes
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LaN XN %i% 1 N-1 2
exp + a, (r.,.+r .)+( a. (r. . +r .))
2 | *~ NN 11 J "IN Nj 2rNN =1 j JN "Nj
- a. (r...+r..)
2rNN 21 3" JN "Nj ) ]
r N-=1 2
cexp | NN 1
=exp > [xN+2rNN j2=:1aj (er+rNj )]
r N-1 2
NN| 1
seXp +—-—[——-— a, (r. +r .)] (5.19)
2 2rNN ;éa J JN Nj

Again, the last exponential is constant and is common to
both the numerator and denominator. Hence it can be

cancelled. Next, performing the substitutions

_ 1l
u=x o+

N-1
a.(r. +r._.) = +v 5.20a
NNJZ=:13(3N Ni) = X ( )

=d .
du xN (5.208b)

then
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By *+v NN ¢

(u=-v)exp(- 5 ) du

§N+v
N +v I, tf

% exp(—m;‘ ) du

aN+v

bN«l-v r u2
u exp(- Nt; ) du

aN+v

) bN+v rNNu2 -V

exp(——T-)du

. aN+v

r 2 r 2
- exp [——gb—‘(bN-i-v) ]-exp[—-‘zib-l(an+v) ]

T NN
= - v (5.21)
T erf iml-(b +v)|-erf £Iiu( +v)
2T oy 2 N 2 ‘%
Since the covariance matrix C is symmetric, then g_l is
also symmetric. Hence
(5.22)

TiNT N3

and therefore
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B a
)
y= -1 (5.23)
[ 2 2
exp __Eﬂ(b +w) |-exp -—uﬂ(a +w)
2 N
€V B -V
V NN F— [} -~
NN - NN
erf > (bN-i-w)] erf[‘ 2 (aN+w)]
. - —
where
N-1
w=—d— Y a r . (5.24)

NN j=1 J N)

If X9 is quantized to an infinite number of bits

(aN=bN), then

Y. =a (5.25)

as is expected. If Xy is quantized to zero bits, its
guantization interval is the real line (-aN=bN=a>), and

then its estimate, Yy ! is

a 5.26)
rNN gJNJ (
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This result is identical to one obtained by Pratt [3] in
estimating an unknown spectral value based on Kknown
spectral components. (The equivalence between these
results is shown in the next section.) However, eg. 5.23
is a more general result in that it can be wutilized to
estimate components that have been quantized to any number

of bits by an arbitrary guantization scheme.

By comparing the Nth component, YN' of the 2zero-mean
version of eg. 5.12 (the solution for uncorrelated
variables) with Yy, found from eq. 5.23 (the solution for
correlated variables), it can be seen that the correlation
effects are embodied in the variable, w. In fact, YN from
eq. 5.23 reduces to Yy from eq. 5.12 when w=0, which in
turn occurs when the correlation is zero. The variable w
is simply the negative of the éstimate of Xy based on both
the correlation between all of the variables and values of
the previous N-1 variables. In other words, -w is the
estimate of xN that is obtained when no direct knowledge of

xN is available.

5.2 Linear Spectrum Extrapolation

In some transform coding systems, transmission
bandwidth is saved by truncating certain spectral
components, notably the high frequency ones, to zero.

(This may be alternately expressed by saying that these
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components are transmitted with 2zero bits.) The 1low
frequency components are retained because they contain more
energy than the high frequency components. If the low and
high frequency components are correlated, then an estimate
of the high frequency components can he obtained by
utilizing this correlation. Since higher frequencies are
being estimated, the estimation technigue is equivalent to
a spectrum extrapolation. If the tfansform components are
also samples from a gaussian random process, they can be
estimated by a Wiener extrapolation technique developed by
Pratt (3] who has derived the following linear
extrapolation operator

w=cs’ (scsT) ™ (5.27)

based on a minimum mean-square error criterion, in which C
is the NxN covariance matrix of the samples and the

sampling matrix S has the form

1
1}

|
ok | % (5.28)
:

where In-x oy

represents Kk columns of zeros. The operator provides an

is the (N-k)x(N-k) identity matrix, and

estimate of k truncated samples based on N-k known samples.
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Equation 5.26, developed in the last section, provides
an estimate, Yy« of a single vector component based on the
known samples aj ra3,...,3y-1. Note that this also is a
linear estimation of a sample from a gaussian random
process. The estimate obtained by this method is identical

to that obtained from eqg. 5.27 for the special case k=l.

To demonstrate this equivalence, consider the

following partition of the symmetric covariance matrix

C={—--F--- (5.29)

Note that D and F are also symmetric matrices. For the
present case, let D be (N-1)x(N-1) so E is Nx1 and F is
1x1. Now the inverse of C can be found in terms of these

sub-matrices from [4]

ol [P O (5.30)
In the notation of the previous section, -
£ = (F-E'D 1E)"! (5.31)
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Next define the (N-1) vector A such that

T
A=(a; a; . . . ay_y) (5.32)

Equation 5.26 can now be rewritten as

JA=ED A (5.33)

Using eq. 5.28 with k=1, it can be seen that

p=scs’ (5.34)

Next let ﬂg be an (N-1) vector representing the Nth row of
W, which was previously defined in eq. 5.27. Then the

estimate, yy, using this vector is

= w,"a = (csh)(ses) A = E A (5.35)

which is identical to eg. 5.33. Therefore eq. 5.26 can
provide a linear, minimum mean-square error, spectrum

extrapolation.

5.3 Covariance of Gaussian Estimator

The conditional covariance of the estimate found in

eg. 5.23 can be used as a measure of the performance of the
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estimate. This covariance can be found by utilizing

eq. 3.18 (without the subscript m) as follows:

b a
[ NetTo(e)axy A

cov(x | x € R)= N - [a)vee By 1 ¥y ]
b,
a. ~ N Y
N N

b (5.36)

=
=2
L]
L]
.

Next, denoting the (N,N)th component of this matrix as eNN

and performing the integrations reveals

r | o
(b +w) exp[-—NN(bN+w)2 ~ (3 +w) exp[—-?(aNW)z]

F
-erf[ -%E(aN+wJ
1

NN N

e =-‘ 2
NN Y rgy
erf

2

r

NN

- +
> (bN W)

87



with rNN and w as defined 1in eqguations 5.16 and 5.24,
respectively. The quantity eNN represents the average
squared error that results when Xy is quantized to the
region [aN,bN] and an estimate of Xy is obtained based on:

l. the quantization region [aN'bN]

2. the correlation matrix, C, of the variables

3. the previous N-1 variables
The information from these last two factors is contained in
w, which 1is itself a random variable. To compare eNN to
the error that would have resulted had the correlation
information been unavailable, it is necessary to remove the
conditioning on w. This can be done by averaging eNN over
all values of w. Because w is a weighted sum of gaussian

random variables (a1=x to ), w has a gaussian

a =X
1 N-1 N-1
distribution. The parameters of this distribution are

determined next.
The mean value of w can be found from

N N

1

E{w} = E{— Y r_.a.} = =— > r_ .E{a,} =0 (5.38)
Iyn j=1 N33 Tyy 321 NI

The variance of w is then

2 1 1 T
E = E{ (= .a, = —=— E A 5.39
{we} {(rNN j=1rNJaJ) } - {(r73) } ( )

where
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(5.49)

fre
(]
o

and

A= | a (5.41)

Hence

e(vw?} = -LorTe(anTie = “5riqr (5.42)

2
TNN NN

where ENN is the submatrix of C formed by deleting the Nth

row and the Nth column of C. 1In the notation of Sec. 5.2,

however, ENN=2’ Also,

£=‘2-1§(£-§T2'1§)'1 (5.43)
and

c - (E-ETDIE) T (5.44)
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Then

T

E{w’}=E' D 1E (5.45)

m

so that

1

L e
Var (ETD TE)

exp{-3v* /(ETD"1E)} (5.46)

The average error that results from restoring to yﬁ a
sample that has been guantized to the interval [aN'th] is

thus

00
ey=f eNNp(w)dw (5.47)
-0

Unfortunately, a closed form solution for this integral
does not exist when the expression for &N has the form
given by eqg. 5.37. Equation 5.47 therefore must be

evaluated numerically.

The results from one such numerical evaluation are
shown in table 5-1. The integrations, needed to calculate
the errors listed in this table, have been performed by
means of a 1l6-point gaussian-Hermite gquadrature formula
[S5). The gquantization regions are the same as those

calculated by Max for a unit wvariance, gaussian
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TABLE 5-

1

NORMALIZED MEAN-SQUARE RESTORATION ERROR FOR
A MAX-QUANTIZED, GAUSSIAN-MARKOV PROCESS

CORRELATION

9.9

FILTERING CASE

Quantization
Interval

("w i+ © )

(0.000,+ o )

(0.000,0.982)
(0.982,+ 0 )

(0.000,0.501)
(0.501,1.050)
(1.050,1.748)
(1.748,+ o0 )

(0.000,90.258)
(0.258,0.522)
(6.522,0.800)
(0.800,1.099)
(1.099,1.437)
(1.437,1.844)
(1.844,2.401)
(2.401,+ o0 )

(0.000,0.132)
(0.132,0.265)
(6.265,0.399)
(P.399,0.536)
(0.536,0.676)
(0.676,0.821)
(0.821,0.972)
(0.972,1.130)
(1.130,1.299)
(1.299,1.481)
(1.481,1.682)
(1.682,1.908)
(1.908,2.173)
(2.173,2.504)
(2.504,2.976)

Probability
of
Occurrence

1.00000
0.50000

0.33685
0.16315

0.19165
f.16148
0.10662
0.04023

p.10188
#.09742
0.08871
p.87616
0.06047
0.04271
0.02445
p.00818

9.05251
9.05187
0.05067
p.04890
0.04653
0.04365
0.04026
0.03642
P.03222
0.02769
8.02295
p.01812
$.01332
p.00875
8.00467

(2.976,+ o© )

P.00146

Normaliz
Square Resto
Not Using
Correlation

e o s e - — — ———

1.000000
0.363344

#.076896
0.201243

0.020687
0.024683
0.038160
8.138557

0.005543
#.005799
0.006373
0.007434
0.009386
0.013391
.023947
6.0893356

f.001451
f.001466
0.001502
f.001558
0.001636
0.001746
0.001893
0.002091
0.002367
0.002754
0.803325
0.004225
0.005764
0.008842
.016968

9.071316

ed Mean-

ration Error
Using

Correlation

0.190000
0.085441

0.042723
0.034435

h.016412
0.017257
A.018193
9.614966

0.005140
0.005309
0.005667
8.006256
0.007122
f.0088260
0.809205
0.807747

9.001420
P.001434
#.001466
#.001515
9.001584
0.001678
#.001795
8.6061958
#.0082175
9.002460
fp.002841
p.0p03328
0.004036
0.004847
P.005638

0.004866
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distribution [6]. For a given number of regions, or,
equivalently, for a given number of bits, this choice of
regions results in the smallest mean-sguare guantization
error, This error, in fact, is the one that occurs when
the restoration corresponding to eg. 5.23 is performed and
the correlations are either zero or simply ignored.
However, when successive samples of the distribution are
correlated and this correlation is utilized, the
restoration can be improved and the mean-square error
decreased, as the last column of the table indicates. The
decrease in mean-square error is seen to be most
significant for coarse gquantization at a low number of
bits, but an improvement is evident for every quantizing

region.

The specific correlation in this example is assumed to
be due to a first-order Markov process with a correlation
coefficient of 0.9. The choice of a Markov process is a
convenient one because the restoration of a random sample
from this process depends only on the sample immediately
preceding <*>, The error results are thus independent of
the number of samples, N, used for the restoration, and
independent of the size of the correlation matrix, C. When
only prior samples are utilized in the restoration of a

<*> By the definition of a Markov process,

p(xN | Xy rXyreeer Xy 2 )=P(xg | %y q)
92



random sample, the method is denoted as "filtering."

Table 5-2 contains similar error results to table 5-1,
but for the technique of "smoothing." Smoothing utilizes
information about all past and all future samples to
restore a current sample. However, in the case of a Markov
random process, only the sample immediately preceding and
the sample immediately following the current sample are
needed <**>., The use of this added information from future
samples significantly reduces the resultant mean-square

restoration error for any choice of quantizing region.

The results of tables 5-1 and 5-2 are presented in a
different format 1in figures 5-1 and 5-2 to illustrate the
total mean-square guantization errors that occur at various
guantizing bit assignments. The errors are calculated by
using the information from the tables in the following

eguation

M
é’=m§leympr{xN € [a /b1 } (5.48)

where [a_,b is one of the M regions hi i
( N N]m e g to which X, 1is

guantized, and eym is the error, found from eq. 5.47, for

<**> PFor a Markov process it is also true that

PXg | XprewerXy g oXyqre-e)=PIxg | Xy g r¥yyy)
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TABLE 5-

2

NORMALIZED MEAN-SQUARE RESTORATION ERROR FOR
A MAX-QUANTIZED, GAUSSIAN-MARKOV PROCESS
CORRELATION = 0.9
SMOOTHING CASE

D D — - — - D — = T D G — - ——— - - T T W - - ———— - - ey ) ) W = W S — — — P G D S = W

Quantization
Interval

( -0 ,+00 )

(0.000,+ 00 )

(0.000,0.982)
(0.982,+00 )

(0.000,0.501)
(9.501,1.050)
(1.0560,1.748)
(1.748 ,+ 00 )

(0.000,0.258)
(9.258,0.522)
(0.522,0.800)
(0.800,1.099)
(1.099,1.437)
(1.437,1.844)
(1.844,2.401)
(2.4901,+ o0 )

(0.000,0.132)
(6.132,0.265)
(0.265,0.399)
(p.399,0.536)
{8.536,08.676)
(0.676,0.821)
(0.821,0.972)
(8.972,1.130)
(1.130,1.299)
(1.299,1.481)
(1.481,1.682)
(1.682,1.908)
(1.908,2.173)
(2.173,2.504)
(2.504,2.976)

(2.976,+ cO )

Probability
of

Occurrence

1.00000
0.50000

0.33685
0.16315

0.19165
p.16148
.10662
0.04023

p.10188
p.069742
0.08871
p.67616
0.06047
p.04271
0.062445
0.00818

0.05251
p.085187
0.05067
9.04890
0.84653
0.04365
P.04026
0.03642
p.03222
B.02769
0.02295
0.01812
0.01332
0.00875
0.00467

Normaliz
Sguare Resto
Not Using
Correlation

1.000000
P.363344

9.876896
0.201243

0.020687
0.024683
f.038160
0.130557

0.005543
0.8065799
0.006373
0.007434
0.009386
8.813391
8.023947
0.0893356

p.001451
0.901466
0.001502
0.0061558
f.001636
0.801746
9.001893
0.002091
0.002367
0.002754
f.0083325
0.004225
0.005764
0.008842
#.016968

0.00146

ed Mean-
ration Error

Using
Correlation

0.105000
0.049106

0.028041
#.818555

p.012428
0.012115
0.010920
0.007810

f.004501
0.004577
0.004720
0.00494@8
0.005144
fp.005160
0.005431
P.003924

0.001356
0.001299
0.801333
0.001383
0.001444
0.801523
P.001638
0.001436
0.001719
0.001983
0.002267
0.002996
.003345
0.003428
0.004066

P.071316

0.803735
24



FILTERING CASE
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Ficure 5-1. Mean-square restoration error for a ax guantized,
caussian-tarkov process with correlation factor r.
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SMOOTHING CASE
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Figure 5-2. Mean-square restoration error for a Max quantized,
gaussian-Markov process with correlation factor r.
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this gquantization region. The errors reveal the
significant error reductions that can be 'obtained by
utilizing available correlation information in an optimal
fashion. For example, when samples of a random process
have an average correlation of #.96 and are aquantized to
one bit, utilizing this correlation in an optimum
restoration yields a mean-square error eguivalent to that
from three bit Max guantization which does not utilize the
correlation. Figure 5-1 shows the filtering case and

fig. 5-2 the smoothing case.

5.4 Simulation Results for Gaussian Processes

In Sec. 5.1 a solution is described for achieving an
optimal nonlinear restoration of guantized gaussian data.
This solution has now been applied to the restoration of
quantized one-dimensional random signals and
two-dimensional transform domain zonal-guantized images.
The results reveal a decrease in mean-square error in all
cases. However, in spite of the error reduction, some
images exhibit a degradation in subjective quality after
being restored. Hence a nonlinear error criterion based on
the human visual system has been used in place of the
mean-square error function, Under this criterion a
subjective 1image improvement, as well as a numerical error

reduction, are obtained.
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5.4.1 One-dimensional Markov Random Process Simulation

To demonstrate the utility of the restoration
procedure, a randomly generated gaussian Markov signal has
been quantized and restored. A signal having unit variance
and a Markov correlation of 0.95 is first generated. A two
bit per sample Max quantization scheme is then employed to
obtain the guantized approximation to this original signal.
The quantized signal and the statistical knowledge about
the original signal are used as inputs to the nonlinear
estimator in eq. 5.23. The restoration 1is performed in
block-lengths of 16, 1i.e., N=16 in the notation of this
equation. However, the inputs to the equation are 16
quantization intervals rather than 15 known samples and one
quantization interval as the estimator requires. Hence, to
satisfy the conditions of the estimator, a point is chosen
within each of the 15 intervals as an initial gquess, and an
estimate of the sixteenth sample is obtained based on this
guess. This procedure is then repeated for each quantized
sample in turn, with the guesses successively replaced by
their calculated estimates. The method is thus recursive
in nature. To facilitate the convergence of these
estimates to their optimum values, the initial guesses are
chosen to be the Max restoration points (when the sample
correlation is ignored, these are the minimum mean-square
error restoration points). It has been experimentally

determined that one iteration of this procedure is
98



sufficient for convergence, and that more than one

iteration provides negligible improvement.

A typical portion of the results from the above
simulation is shown in fig. 5-3. The restoration decreases
the mean-square gquantization error by 33%, and is seen to
provide a better approximation to the original signal than
the gquantized signal. The average improvement in
mean-square error as a function of gquantizing bit
assignment for different correlation coefficients is shown
in fig. 5-4. It can be seen from this graph that, as the
amount of correlation in the Markov process approaches
zero, the restoration provides no error improvement. There
is no improvement as the number of quantizing bits becomeg
large and the differences between the original signal and
the guantized signal vanish. There is also no improvement
at zero bits when there is no information remaining in the
quantized signal upon which to base a restoration. Thus,
the above procedure represents a viable restoration
technique only when the number of quantizing bits are small

and the input samples to the guantizer are correlated.

5.4.2 Block Transform Zonal Image Coding

The conditions which were placed on the estimator
derived in Sec. 5.1, and which were modified experimentally

in the preceding paragraphs, are satisfied by the zonal
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transform coding technique for images. First, transform
samples typically have a gaussian distribution: each
transform sample 1is the sum of a large number of random
variables so that the central limit theorem can be invoked.
Next, for all transforms except the Karhunen-Loeve, the
transform samples are correlated. Finally, to achieve a
bandwidth compression or a bit-rate reduction, some of the
transform samples are quantized to a small number of bits.
Hence, because all of the necessary conditions for a
reconstruction are satisfied, it is possible and practical

to restore zonal transform coded images.

The image that is presented to a transform coder is
assumed to be in the form of a two-dimensional array of
light intensities. (Each point of this array is known as a
picture element or "pixel".) 1If the image is presented as
a continuous field of intensities, however, it must first
be sampled to obtain the image pixels. A two-dimensional
discrete mathematical transform is then taken of these
pixels. The transform is performed over the entire image
or over subsections of the image known as blocks. The
transform domain samples are next gquantized and coded,
either for storage or for transmission over a channel as
fig. 5-5 shows. At the receiver the samples are decoded,
restored to reduce the guantization effects, and inverse
transformed to reconstruct the original image. The

subsequent paragraphs discuss these operations in further
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detail.

5.4.2.1 Unitary Transformations

The transform operation is usually performed by one of
a class of 1linear unitary operators <*> which have been
recently applied to image coding [7]). A unitary transform
is the most useful because it preserves the "length" or the
energy of a vector component during the transformation, and
because it transforms every orthonormal basis into another
orthonormal basis. To interpret this concept for image
coding purposes reveals: each wunitary operator can be
represented by a matrix composed of orthonormal basis
functions (generalized spectral functions); each component
in the transform domain then corresponds to the amount of
energy of one of the basis (spectral) functions in the
original (or image) domain. Unitary operators transform
sums of squares into sums of squares, so that mean-square
error calculations are equivalent in either domain. This
also means that the total energy in the original and
transform domains is the same. The unitary transforms
which are most commonly used are

1. Karhunen-Loeve transform

2. Cosine transform

<*> A linear operator H such that HH*=H*H=I is called a
unitary operator, where * denotes the conjugate transpose
of the complex operator. 1In the real case, H is called
orthogonal. 104




3. Fourier transform

4. Slant transform

5. Hadamard transform

6. Haar transform
These are listed in order of efficiency, i.e., from the
most efficient transform to the least. They are, however,
listed in reverse order of simplicity and speed of

operation.

The Karhunen-Loeve (K-L) transform results in
uncorrelated transform domain components. It has been
found that guantizing these uncorrelated components
produces a minimum possible mean-square guantization error
[81. Since the components are uncorrelated, they can be
guantized and restored individually without 1loss of
performance, so that the restoration method of Sec. 5.1
provides no advantage over simple Max quantization and
restoration. Less efficient transforms result in greater
quantization error than the K-L transform at the same bit
rate, but they can be made to operate much faster. Their
transform domain components have some statistical
correlation remaining (if the components in the image
domain were originally correlated), so that the restoration
method of Sec. 5.1 can be applied. This restoration
reduces the mean-square guantization error. The remaining
error approaches the minimum that is obtainable by means of

the K-L transform. Thus, almost the same performance as a
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K-L transform can be
transform together
technique. This procedure

practice, when an image coder
design than the decoder. For

and reconstructions in this
Haar transforms are utilized.
implementable algorithms,

correlated transform domain

restored.

5.4.2.2 Zonal Coding

There 1is, 1in general,

information or

transforms, although preserving the same

energy

concentrate it in a few of the transform domain

[9] .

makes use of some of the correlation in the

coding, which

and rearrangement, entails the establishment

constant bit assignments

corresponding to zones of

obtained by

enerqgy throughout

approximately

utilizing a simpler

with a more complicated reconstruction

would be most useful, in

is required to have a simpler

the image coding simulations

chapter, the Hadamard and the

These have fast and easily

and also provide partially

samples which can then be

a uniform distribution of

an image. Unitary

total amount of

as in the original image, rearrange this energy and

components

This concentration is achieved because the transform

image. Zonal

takes advantage of the energy concentration

of =zones of

in the transform domain

constant energy.

The bit assignments are chosen according to the assumed
variances--which are a measure of the energy--of the
transform domain components., A solution for this
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assignment, first derived by Huang and Schultheiss [10], is

v, .
B. .=b+—L+—1n 1% . (5.49)
i 7 2 12 \Iv1¥/

where V is the matrix of transform domain variances with
components Vij' b is the desired average number of bits for
each component, and Bij is the resultant number of bits for
the (i,j)th component. This equation provides the bit
assignment needed to quantize gaussian variables based on a
minimum mean-square error criterion. By definition, the
number of bits assigned to each component must be a
nonnegative integer. Since eg. 5.49 can produce
non-integer and even negative values, the bit assignment it
produces must be adjusted by trial-and-error techniques to
obtain the final bit assignment for each component. A
typical bit assignment for a 16x16, Haar transformed, image
block that is zonal coded with an average of one bit is

shown in fig. 5-6.

5.4.2.3 Spatial and Transform Domain Correlation Matrices

To calculate an optimum bit assignment using eq. 5.49,
it 1is necessary to know the variance matrix of the
transform domain samples. This can be derived if the
correlation tensor of either the transform domain samples
or the image domain samples is known. The exact
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correlation information is usually unavailable, but the
image domain correlation can often be accurately modeled as
a Markov process. In fact, experimental evidence [11,12]
indicates that a reasonable autocorrelation function for a

large variety of pictorial data is given by
C(x,x",¥,y )=exp(=h [x-x"| -v |y-y"|) (5.58)

(For convenience it is assumed that the continuous image,
F(x,y), has zero mean.) This function can be used to model
images with different amounts of horizontal and vertical
correlation by choosing different values for h and v,
respectively. An image which has an autocorrelation
function that is invariant to translation is said to be
wide-sense stationary. The autocorrelation can then be

rewritten as
C(ax,Ay)=exp(-h [ax| -v [ay[) (5.51)

This autocorrelation function also possesses the property
of horizontal and vertical separability, i.e., the
correlation between any two points of the image is
separable into the product of horizontal and vertical

correlation functions.

Now, in discrete notation for an NxN sampled image F,

the correlation between any two pixels can be represented
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by a four-dimensional tensor as
C(i,j,k,1)=E{F(i,k)F(],1)} (5.52)
for 1<i,j,k,1<N. It is sometimes convenient to column-scan

an image array into a data vector, £, of resultant length

N2 [13]. 1In this case 1its correlation matrix,

g%, is
NngZ, and can be represented in partitioned form as
$5,1%,2° - S n
92,1 E-2,2 e EQ,N
-C-f= . . . (5.53)
91\1,1 91\1,2 e EN,N

14

where gi 3 is the correlation matrix of the (i)th and (j)th
columns of F. Under the assumption of wide-sense
stationarity, the correlation matrix has the block Toeplitz

form
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= - . : (5.54)

S K15

Finally, when the correlation is horizontally and
vertically separable, the correlation matrix can be written

in direct product <*> form as

Ch (5.55)

where Qv and Sh denote the NxN correlation matrices of the
rows and columns of F, respectively. If the image is now
considered to be a sample of a Markov process with a
correlation coefficient of v (8<v<l) between vertically
adjacent pixels and coefficient h between horizontally

adjacent pixels, then

<*> The symbol ® denotes the matrix direct product. The
definition employed here is the left direct product [15].
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and

2
where s
v

s 2 is
h

performing a separable unitary transformation H

image

matrices in the transform domain can be found by

so that

F,

is the variance of the pixels in each

the variance

hN--l

v v, .t
1 v R
VN-2 VN-3‘ [ ] [ ] l
h he .. .nHv1
1 h ...npv2
hN-Z hN-3. L1

of

the

the corresponding

pixels in each

row and

<*> For a separable transformation,

column

(5.56)

(5.57)

column and
row. After
<*> on the

correlation
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Cp=HCeH
=(H, B B)(C, 8G)(H B8H) "
“(8,5,8," ) 8 (B,GE")
=gy-®_g£ ({5.58)

The matrices EV and 95 can now be used to find the

transform domain variance matrix, as

*T

<
il
i<

(5.59)

<
%

%

where the vectors Yi and V consist of the diagonal
elements of Ei and SV' respectively.

5.4.2.4 Quantization Levels

Specification of the variance matrix permits the
determination of an optimum bit assignment. However, this
provides only the number of levels to which each component
is quantized and does not provide the locations of these
levels, For the analysis presented here, the placement of
these levels 1is arbitrary, but 1is chosen to be the Max
quantization levels to provide the minimum mean-sguare

guantization error.
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5.4.2.5 Zonal Coded Images

For the transform image coding simulations, the
correlations were chosen to be h=0.95 and v=0.93. These
values most closely modeled the correlations of the images
chosen for the simulations, and resulted in the smallest
guantization errors and reconstruction errors. Figure 5-7
shows the three "original" images which were used for the
simulations: each image is an array of 256x256 pixels,
with the intensity at each pixel gquantized to one of 256 (8
bits) grey levels. The images were Haar transformed in
blocks of 16x16 pixels, so that a 16x16 variance matrix was
required to compute the bit assignment. Figure 5-8a
displays the "girl" image after being zonal Haar transform
coded with an average of 1.8 bits according to the bit
assignment shown in fig. 5-6. (This image actually shows

the Max restoration 1levels after the image has been

quantized according to the Max decision levels.) Figure
5-8b shows the reconstructed version of this image after it
was restored according to the technigues of Sec. 5.1. The
restoration technigue was applied recursively to the
quantized samples since it is only capable of restoring one
sample at a time; the current best estimates of the other
samples were used to obtain the estimate of the sample
being restored. The initial estimates of the samples were

chosen to be the Max restoration levels. The procedure, in
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COUPLE MOON

Figure 5-7. Original images used for image coding
simulations. Each image consists of 256x256 pixels, with
each pixel quantized to 8 bits.
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a. Quantized image

b. Restored image

Figure 5-8. Minimum mean-square error restoration of
Haar transformed, one bit zonal quantized image.
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i

essence, begins with the Max restored image as an initial
guess and attempts to improve it by utilizing the known
correlation of the transform domain samples. One iteration
of this restoration procedure was utilized, because it was
experimentally determined that more iterations were of
negligible benefit. The mean-square error was reduced by

16% as a result of the restoration.

The "girl" image was next quantized to an average of
0.5 bits according to the zonal bit assignment shown in
fig. 5-9. Figure 5-10a shows the Max restored version of
this coded image and fig. 5-16b shows the version
reconstructed according to the technique discussed above.
In this example, the reconstructed version has 19% less
mean-square error. The "couple" and the "moon" pictures
were also guantized to 0.5 bits and restored. The results
are shown in fig. 5-10. The resultant mean-square errors
are summarized in table 5-3. The restoration technique of
Sec. 5.1 is seen to provide a significant decrease in

mean-square error in all cases.

5.4.2.6 Visual Coded Images

Subjectively, the reconstructed images of figures
5-8b, 5-18b, 5-18d4, and 5-10f appear to be much smoother
and less noisy than the corresponding Max restored images

of figures 5-8a, 5-10a, 5-18c, and 5-10e. However, they
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a. Quantized image b. Restored image

n ‘ TR
c. Quantized image d. Restored image

7 oy
€. Quantized image f. Restored image

Figure 5-10. Minimum mean-square error restoration of
Haar transformed, 0.5 bit zonal quantized image.
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TABLE 5-3

NORMALIZED MEAN-SQUARE ERROR
FOR ZONAL CODED IMAGES

( Error/Pixel [ Error/Pixel (
Picture after after Improvement
Quantization Restoration
_________________ et TS TS R
Girl
1.0 bit/pixel 1.024% 0.922% 9.9%
Girl
8.5 bit/pixel 1.866% 1.509% 19.2%
Couple
8.5 bit/pixel 1.793% 1.412% 21.2%
Moon
0.5 bit/pixel 1.523% 1.158% 24.0%
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sometimes appear more blurred, as is very evident in
comparing figures 5-18e and 5-10f. An improvement in
mean-square error apparently does not correspond to an
improvement in subjective guality in all cases. Hence an
error measure is required in which numerical results match

subjective results.

This has been provided by modeling the error measure
after the human visual system. Mannos and Sakrison [14]
have derived a nonlinear error criterion which achieves
this objective. They found that the human visual system is
sensitive to approximately the cube root of incident 1light
intensities. It is also most sensitive to middle spatial
frequencies, near eight cycles per degree of arc subtended
at the eye. Hence, to apply this error measure, an image
has been processed according to the block diagram in
fig. 5-11. The (i,j)th component of the filter function
shown there is chosen to be

1

Tij=(.ﬂ5+.18525r)exp{—(.07125r)1° } (5.60)

where

r=(i2+52)1/2 (5.61)

This filter was applied to the Hadamard domain sedquencies

of the image, rather than the Fourier domain frequencies,
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because of the close similarities between sequencies and
frequencies. Figures 5-12a and 5-12b show the results of
the procedure for a 0.5 bit zonal coded Hadamard
transformed "moon" image, with and without the
reconstruction operation, respectively. The bit
assignment, shown in fig. 5-13, was calculated by choosing
h=0.96 and v=0.944 as the spatial, cube-root domain,
correlations. The resultant Hadamard domain variance
matrix was then scalar filtered by a multiplication by the
square of the filter function T. The mean-square error is
reduced by 5.5% due to the reconstruction operation. There
is also a noticeable subjective improvement after the
restoration, Figures 5-12¢, 5-12d4, 5-12e, and 5-12f
display similar results for the "girl" and "“"couple"
pictures. Table 5-4 summarizes the errors for the

restorations of these pictures.

5.4.2.7 Zonal Coded Color Images

The restoration technique has also been applied in an
experiment in which a color image is encoded. 1In this
experiment, a color image is first transformed to the YIQ
color coordinate system and then quantized according to the
bit assignment indicated below for a typical block of four

pixels.
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b. Visual restored image

'I". a1
¢c. Visual quantized image d. Visual restored image

e. Visual quantized image f. Visual restored image

Figure 5-12. Restoration of 0.5 bit Hadamard transformed
zonal quantized images according to a visual error

criterion.
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TABLE 5-4

NORMALIZED MEAN-SQUARE ERROR
FOR VISUAL CODED IMAGES

Error/Pixel Error/Pixel
Picture after after Improvement
Quantization Restoration
Girl
9.5 bit/pixel 1.21% 1.11% 8.3%
Couple
8.5 bit/pixel 1.94% 1.79% 7.5%
Moon
#.5 bit/pixel 6.73% 0.69% 5.5%
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Each pixel is hence coded with an average of nine bits per
pixel, compared to an original coding assignment of 24 bits
per pixel. The restoration technique of Sec. 5.1 provides
a decrease of 42% in mean-square error in this case and an

improvement in subjective guality.

5.5 Summary

Gaussian data which are correlated and which have been
coarsely quantized are amenable to being restored by the
techniques outlined in this chapter. By choosing a
suitable error'criterion, zonal transform coded images can
be analytically and, in many cases, subjectively improved
so that they more faithfully reproduce the details of an
original image. The restoration technigues have been found
to be most successful when the transform is inefficient,
i.e., when some statistical correlation remains between the

transform domain samples, and when the quantization is
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coarse.
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CHAPTER 6

RESTORATION OF QUANTIZED LAPLACIAN SAMPLES

Laplacian density functions arise in the stochastic
modelling of certain kinds of communications systems.
Specifically, the output of a differential pulse code
modulation (DPCM) system can often be modelled as a
laplacian random process. When a laplacian random variable
is quantized, as in a DPCM system, some of the original
information about the variable is lost. If an estimate of
the continuous laplacian variable is then made, based only
upon the output of the guantizer, the estimate will usually
be poor. However, if the characteristics of the random
process are known and are utilized also, then the estimate
can be improved and a reconstruction of the original signal
will be attained. The estimation eguation derived in
Chapter 3 (eg. 3.6) provides a means for accomplishing this
restoration. Use of this equation requires knowledge of
both the quantizer structure and the multidimensional
probability density function of the input to the quantizer.
An approximation to a multidimensional laplacian density
function was derived in Chapter 4. This density function
can then be utilized in the estimation equation, together
with arbitrary quantization parameters, to obtain a
restoration of gquantized laplacian samples. The next

section presents in detail the solution to the estimation
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equation for this case. The results of that solution are

then applied to the restoration of DPCM coded images.

6.1 Laplacian Quantization Estimator

A multidimensional laplacian probability density

function, as derived in Chapter 4, can be approximated by

c|"1/2 N : ,
X)=————exp{-V2 6.1
p(x)=—g7r—exp{~ Z kZlglkg('} | (6.1)
where C is the NxN correlation matrix of x, 9 x represents
the (i,k)th element of G as given by
G=EA —1/2 T (6.2)

and E and A are the matrices of eigenvectors and
eigenvalues of C, respectively. This density function can
then be utilized in eg. 3.6 to obtain a minimum mean-square
error estimate of a gquantized N-vector of laplacian
samples, X. Now, it is assumed that x is guantized to a
region in N-space, R. It is also assumed that each
component of x is quantized individually, so that R is
rectangular (R can then be denoted [a,b]). Then the

estimate, y, of x, given that x € R, is
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}ax

N N
x exp{-V2 g:, X
./;‘ {=1 ééi k7K
y= . (6.3)
[EE
R i=1

N
Y g x
K=1 ik 7k

A general solution to these integrals exists, but is rather
complicated to state. Special cases of practical interest

are considered in the following paragraphs.

6.1.1 Scalar Case

When the components of x are uncorrelated, or when
they are restored individually, then eg. 6.3 can be
decomposed into a product of one-dimensional integrals
which can be solved separately. Considering one of the

components of x (for a unit variance),

a,
A

b,
l -
J[ x, exp{ V2| x; 1}ax;

Yi=
bi
exp{—v‘z_lxil}dxi

a
1

or

1 - - 1 -
(lbilfvﬁ)exp{ V7Ibil} (lai|+v§)exp{ v?lail}

Y.= (6.4)
1 b, a,.
I—bl—l-(exp{-x/z'lbin—l)- | 1I(exp{-s/2'|ai|}-1)
. a,
1 1
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If a, and bi are chosen to be Max decision levels, then vyj

is the corresponding Max restoration level.

6.1.2 Two-dimensional Case

In two dimensions, eg. 6.3 yields simultaneous
estimates of two quantized and correlated laplacian
variables. The solution is lengthy, however, so the
details are omitted and only the results are shown here.
To simplify the notation, let the exponential terms in the
two-dimensional version of eg. 6.3 be written as

exp{-lfxl-g I-ngl-fx I}

* 2
and let the guantization intervals be a5x1_<_b and c5_x2_<_d.
The constants f and g are based on the correlation between
xl and xz. Also 1let s(°*) denote the sign or signum
function. Then the numerator of Y, is

{b(s(gd-fb) f+s(fd-gb)gl-1l}exp{-|gd-fbl-1£fd-gbl}

y, (num)=
1 [s(gd-£b) £+s (£d-gb)g)? [s(gb-£d) £+s(£b-gd)q]

{b[{s(gc-fb) f+s(fc-gb)gl-1}exp{-Igc-fbl-|fc-gb|}
+

[s(gc-fb)f+s(fc-gb)g]2[s(fc-gb)f+S(gc-fb)9]

{a[s(gd-fa) f+s(fd-ga)g)-1l}exp{-|gd-fal-|£fd-gal}

+
(s (gd-fa) £+s(£d-ga)g]? [s(fd-ga) f+s(gd-fa)g]
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{als(gc-fa) f+s(fc-ga)gl-1l}exp{-Igc-fal-|fc-gal}

[s(gc-fa)f+s(fc-ga)g]2[s(fc-ga)f+s(gc-fa)g]

[s(gd-fb)-s(gd-fa) ) g£2 [1d(£2-g2)/f|+3}exp{-1d(£2-g2)/ £}

(f2-92)3

[s(gc-fa)-s(gc-£fb)1g£2 [1c(£2-g2) /£1+3]exp{-|c(£2-g2)/£|}

(f2~92)3

[s(£d-gb)-s (£d-ga) 1 £g° (1A (£2-g%) /g |+3]exp{-1d (£2-92)/q|}
(fz—gz)3

ls(fc-ga)—s(fc-gb)lf92[IC(fz-qz)/gl+3lexp{-lc(f2-92)/ql}

(£2-¢%)3

[s(gd-£b)-s(gc-£b) 1g° [1b(£2-g? ) /gl+1]exp{~Ib(E2-¢%)/g}

(£ -g%)3

[s(fd-gb)-s(fc-gb)lf3[Ib(f2-92)/fl+11exp{-lb(f2~92)/fl}
(£2-g2)3

[s(gd-fa)-s(gc-£fa)]g° [la(£ -g? ) /gl+1]exp{-la(-a%)/ql}
(£2-g2)3

[s(fd-ga)-s(fc-ga) ] £3 [la(2-g? ) /fl+1]exp{-la( -g2 )/£|]}
(£ -g%)3

(6.5)

The denominator is
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yl(denom)=

exp{-|fb-gd|-lgb-£fd|}

[s(gd-fb)f+s(fd—gb)g][s(gb-fd)f+s(fb-gd)g]

exp{-1£b-gcl-lgb-fc|}

[s(gc-fb) f+s(fc-gb)g) [s(gb-fc) f+s(fb-gc)g]

exp{-|fa-gd|-lga-£fd|}

[s(gd-fa) f+s(fd-ga)g] [s(ga-£fd)f+s(fa-gd)g]

exp{-|fa-gcl-iga-fcl}

[s(gc—-fa) f+s(fc—ga)qg] [s(ga-fc) f+s(fa-gc)g]

[s(£d-gb)-s(fc-gb) ] 2 exp{-|1b(£2 -g%)/£|}b/£

(£2-g2) |b(£2 -g%) /£l

[s(gc-£b)-s(gd-£b) g% exp{-Ib(£2-g%)/gl}b/g

(£2-92) 1b(£2-g%) /9|

[s(fd-ga)-s(fc-ga) | 2 exp{-la(£2-g2)/f|}a/f

(£2-g2)la(£f2-g2)/£|

[s(gc-fa)-s(gd-fa)]gZexp(-la(£2-g2)/ql}a/g

(£2-g2)la(f2-g2) /9|

[s(gd-fb)-s(gd-fa)) f2exp{-1d(f2-g2)/£|}d/f

(£2-g2)|d(£2-92)/£|

[s(gc-fb)-s(gc-fa) ] f2exp{-lc(£f2-g2)/£l}c/¢f

(£2-92) 1c(£2-g2)/£|
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[s (£d-gb)-s(£d-ga) 1 g° exp{-1d (2 -g° ) /g1}d/g
(£2-g2) 1d (£ -a% ) /g

[s(fc-gb)-s(fc—ga)lgzexp{-lc(fz-gz)/gl}c/g
* eI TR (6.6)
(£°-9°) lc(£f°~-g°) /gl

Hence,

y. (num)
gomdl (6.7)

1 yl(denom)

The other component, y2, can be found in a similar manner.
Expressing the constants f and g in terms of the

correlation between xl and x2 reveals

vVitr + V1-r

= (6.8)
d2(1-r2)

and
1+r - V1-r
g=— (6.9)
Vz(l-rZ)
where

=E .
r {xlxz} (6.190)

It can be seen that as the correlation, r, approaches zero,

g also approaches zero and the solution (equations 6.5 to
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6.7) becomes the same as that shown in eq. 6.4 for the
scalar case. For non-zero r, equations 6.5 to 6.7 provide
a minimum mean-square error restoration of two correlated
laplacian variables which have been quantized to the

arbitrary intervals agxlﬁb and csxzsd.

6.2 Covariance of the Laplacian Estimator

The performance of the estimator found in egquations
6.5 to 6.7 can be analyzed by computing its conditional
covariance matrix. Equation 3.18 contains a general
expression for finding this covariance matrix which, in
this case, must be solved for a two-dimensional 1laplacian
probability density function. A general solution for this
covariance matrix has been obtained, but is too complicated
to be shown here. Instead, the covariance matrix to be
derived is for the special case of one-bit quantization

only.

The two quantization intervals for the one-bit
quantizer are chosen to be [#,) and (-o0,8). This choice
is the optimum one for quantizing individual laplacian
samples according to a mean-square error criterion. There
are now four possible rectangular regions, R, for
m=1,2,3,4, into which 5=(x1,x2) can be guantized. Within

each region there is a restoration point which can be found

by means of eqguations 6.5 to 6.7. The restoration points
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are dependent on the correlation, r, between Xy and X, on
whether X; is gquantized to a positive or a negative
interval, denoted by s(xi)§0; and on the variance of X,

denoted as aiz. Then the restoration points are
1. for rs(xl)s(xz)zﬂ

oy (1+2]rl) s(x;)

¥, = (6.11a)
1 2+ ici-vi-ich

-02(1+2|r|)s(x2)

Y, = (6.11b)
2 (2IFIrivI=TE])

2. for rs(xl)s(x2)<ﬂ

1-1r|

Yi=“1 " S(xl) (6.12a)
1-1r|

Y2=°é 5 S(Xz) (6.12b)

These values for y can now be substituted into eq. 3.10 and
the two-dimensional integrals evaluated to obtain the

covariance matrix for each of the two cases (assuming

l. for rs(xl)s(xz)zﬂ
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2V1-ré-(1-111)2 lelvi-r2+2(1-1r))2
2V1-r2-(1-|r|) ar2V1-r2-(1-1c1)1

covix | x € R}=

el vVi-r2+2(1-1¢1)2 2V1-r?-(1-111)2
4[2V1-r-(1-11l)] 2V1-r2-(1-1r|)

(1+21r)s(x,) ] (1+21cl)s(x,) (1+21r1)s(x,)
V2 (2V1+ 1l -/1-1c D |MZ (/1411 =/1-1c]) VZ(2/1+|cl-/1-1¢])

1+2
(1+ Irl)s(xa)

:/2(2Ji+lrl-¢ﬁ-lrll

4(lr|-2) 1-r2-2r2+9 (4-5|r|)JE:_§—8r2-2|rl—4
2(5+3|r|-4V1-r2) 4(5+3|c|-4v1-r2)
= (6.13)
(4-51c1)V1-r2-8r2-2|r|-4 4(lc|-2)V1-r2-2r2+9
4(5+3|r|-4v1-r2) 2(5+3 1 |-4V1-r2)

2., for rs(x )s{(x )<@
( 1) ( 2)
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l1-r - —_— -—
2 2 2
covi{x | x € R}= -
l-r l-r 1-r
———— l_r - c—— ——
2 2 2
1-r
—_— 8
2
= (6.14)
l-r
g —
2

The probability of occurrence of each quantization region
is also dependent on the correlation. These probabilities
are found by integrating the two-dimensional probability

density function over each region. The results are

1. for r>0

1 l1]l1-r )
Pr{s(xl)s(xz)zﬂ}=- - | (6.15a)
2 4N1l+r
}1'-_r
Pr{s(x_ )s(x. )<0}==|— (6.15b)
1 2 ‘iv +r
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2., for <@

1 1+r
Pr{s(xl)s(x2)20}=- —_— (6.16a)
AN1-r

1 1 1+r
Pr{s(xl)s(x2)<ﬁ}=— - g |— (6.16b)
2 a¥1l-r

These probabilities, together with the covariance matrix,

C, for the original vector x,
C= (6.17)

and the expressions for the restoration points 1listed in
equations 6.11 and 6.12, can be used in eqg. 3.13 to obtain

an expression for the total mean-square error <*>:

4
- _ T
E=Tr{C mz:=1y Y, Pr(x € R)} (3.13)

which becomes

<*> The total mean-square error is the same whether r is
positive or negative, so only the results for r>@ are
shown.
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( 3r2+6r+(2-2r)\1-r2 5r2+2r+2-(2-2r)\1-r2

8+8r-4\1-r° 8+8r-4\1-r°
€=Tr%g -
51'2~l-2r+2-(2--2r)\i{]—.:_r.:-2 3r2+6r+(2-2r) l-r
\ 8+8r-4\1-r* 8+8r-4\1-r*
8+2r-3r2+ (6-2r)\1-r 3r246r-2+(2-2r)V1-r2
8+8r-4\h—r2 8+8r-4\h-r2
=Tr

3r246r-2+(2-2r)V1-r? 8+2r-3r2+ (6-2r)V1-r2

8+8r-4\1-r° 8+8r-4\1-r°

8+2r-3r°-(6-2r)\N1-r°

(6.18)
4+4r-2\1-r*

This error is plotted in fig. 6-1 as a function of the
correlation r. Also shown is the mean-square error that
results when the correlation between any two quantized
laplacian samples is not utilized in the reconstruction of
these samples. The use of the correiation information is
seen to substantially reduce the resultant mean-square
error. This holds true independent of the sign of the
correlation, but is only true when there is at least a
moderate amount of correlation. The next section shows
that deltamodulation image coders satisfy this reguirement,

so that a reconstruction of the coded image can then be
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obtained.

6.3 DPCM and Deltamodulation Image Coding

Differential pulse code modulation (DPCM) is a common
technique for achieving bandwidth compression in digital
systems. In this method differences between successive
signal samples, rather than the signals themselves, are
transmitted. Compression occurs because adjacent samples
are often very similar, and transmitting only signal
differences removes some of this redundancy. A block
diagram of a typical DPCM system is shown in fig. 6-2. An
essential component of this system is the quantizer,
because it permits a bandwidth compression. The coarser
the quantization, the greater the compression, but also the
greater the degradation of the reconstructed signal. To
minimize this degradation, a reconstruction must utilize
all of the knowledge that is available about the signal,
such as the quantization levels, the signal distribution,
and any correlation which remains after the differencing
operation. Section 6.1 presented a means for achieving an
optimal solution to this restoration problem. This section
applies tﬁat solution to the reconstruction of DPCM coded

images.

In the DPCM system of fig. 6-2, the difference signal

d(k) 1is formed by subtracting a prediction of the current
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signal from the current signal itself. The first-order
predictor shown in the figure can be characterized by
specifying the constants a, and a . These constants are
usually chosen to minimize the mean-square prediction

error. The prediction error can be written as
€=E{ [x(k)-(a x(k-1)+a;)] } (6.19)

This expression can be minimized by simultaneously solving

the two equations

§§§=2a0-2m+2a1m=0 (6.20a)
and

§;§=2a152-2r52+2a0m=ﬂ (6.20b)
where

m=E{x (k) } (6.21)

s2=E{ [x(k)1?} (6.22)
and
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E{x (k) x(k-1)}

r= (6.23)
s2
The results are
ms2 (1-r)
a s—0o— (6.24)
0 Sz_mz
and
rsz-m2
a, =Se—————r (6.25)
1 sz_mz

The reconstruction unit in the block diagram of the
receiver in fig. 6-2 is a device which attempts to reduce
the effects of the quantizer, The particular form of this
device is based on a priori knowledge of the quantizer and
the statistics of the guantizer input. This input is the

difference signal, which has been found to have a laplacian

distribution [1], described by

p(x)=—Lt— exp(-Ixi/20 ) (6.26)
V2e

The distribution of the difference signal for the "girl"

image (see fig. 6-6) is shown in fig. 6-3. It can be seen

that a laplacian could model this distribution quite well.

However, it has been found that the difference signals of

images are correlated, so that an accurate statistical
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Figure 6-3, Histogr>-m of the DPCM rignal for the "girl"
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representation of them must also account for this fact.
Figure 6-4 shows the actual two-dimensional distribution of
the DPCM coded ‘"girl". For this image, the average
correlation for adjacent difference samples has been
measured as 0.4. These samples can then be modeled by a

correlated two-dimensional laplacian density, written as

1 1

p(x,y)= exp{- —(|axRr | jar bx,y (6, 27)
20,5 \1-r N2(1-2%) 9% 9| oy ox
where
dx2=E{x2} (6.28)
ay2=E{y2} (6.29)
E{xy}
£m—— (6.30)
x%y
a=ql+r + 4/1-r (6.31)
b=\1+r - \1-r (6.32)

Figure 6-5 contains a plot of this density function for

r=0.4 and ¢ =0 ,
X Y

The two-dimensional laplacian distribution is seen to

provide an accurate model for the DPCM samples. These
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FIGURE 6-4. TWO-DIMENSIONAL HISTOGRAM OF THE
DPCM CODED "GIRL" PICTURE
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CORRELATION =0.4

6-4;

TWO-DIMENSIONAL LAPLACIAN DENSITY

FUNCTION USED TO MODEL THE TWO-DIMENSIONAL DPCM

SIGNAL SHOWN IN FIG.

FIGURE 6-5.
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samples are quantized before they are transmitted through
the channel. A minimum mean-square error restoration of
the quantization can be obtained by utilizing eguations 6.5
to 6.7. This solution 1is complicated, but can be
simplified for the case of deltamodulation (one bit
quantization). In this case x and y are each quantized to
the intervals ([#,©0) or (-0,8), or equivalently, as
positive or negative. The results are contained in

equations 6.11 and 6.12.

Applying this restoration to the quantized image in
fig. 6-6a results in a mean-square error reduction of 12%.
Subjectively, as the restored image in fiq. 6-6b shows,
there is less apparent noise and more discernible detail.
Equations 6.5 to 6.7 have also been wutilized directly to
restore samples quantized to general regions.
Specifically, the results were applied to the two and three
bit coded images shown 1in figures 6-6c and 6-6e,
respectively. The reconstructed images in fiqures 6-6d and
6-6f exhibit both a reduction in mean-sguare error and a
subjective improvement in quality. The subjective
improvement is 1less apparent in these pictures, however,
because the quantization itself is less noticeable. Table
6-1 shows the guantization intervals that were used to code
these images [2]. The intervals were chosen to minimize
the mean-square quantization error that occurs when an

individual laplacian sample is guantized.
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a. One bit encoded b. One bit restored

c. Two bits encoded d. Two bits restored

P i

Con _ s 3
e. Three bits encoded f. Three bits restored

Figure 6-6. Minimum mean-square error restoration of DPCM
encoded images using two adjacent pixels.
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TABLE 6-1
QUANTIZATION INTERVALS FOR SIGNALS WITH A LAPLACIAN

DISTRIBUTION CHOSEN ACCORDING TO A MINIMUM
MEAN-SQUARE ERROR CRITERION

Bits Quantization Interval Restoration Point
1 5.0 O 2.787
2 0.0 1.162 8.395

1.192 © 1.818
3 8.0 P.504 6.222
6.504 1.181 @.785
1.181 2.285 1.576
2.285 o0 2.994
4 0.0 8.266 9.126
6.266 @.566 0.487
3.566 0.919 8.726
6.910 1.317 1.095
1.317 1.821 1.5490
1.821 2.499 2.103
2.499 3.6685 2.895
3.605 00 4.316
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The image reconstructions shown in fig. 6-6 applied
the techniques summarized in equations 6.5 to 6.7 by using
the quantized information about a previous sample to
restore a current sample. By solving eq. 6.3 in three
dimensions rather than in just two, gquantized information
about two other samples can be used in the reconstruction
of a third quantized sample. The DPCM image samples are
thus modelled by a correlated three-dimensional laplacian
density function. A form of this three-dimensional
solution was then employed to obtain the reconstructed
image shown in fig. 6-7a. In this image, the sample
immediately preceding, and the one immediately following,
the sample being restored were used in the reconstruction.
The resultant image has 39% lower mean-square error than
the one-bit quantized image shown in fig. 6-6a. Figure
6-7b presents a similar result, except the samples
immediately above and below the current sample were
utilized in the reconstruction. In this case, the
mean-square error improvement is 18%. Both image
reconstructions also reveal a distinct subjective
improvement--there is a reduction in visual noise in
constant 1luminance areas of the image, together with a

decrease in slope overload <*> at edges within the image.

Thus the technique described above provides an
effective method for restoring DPCM coded images,

particularly when the quantization is coarse and the DPCM
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a. Restoration using three horizontal pixels

b. Restoration using three vertical pixels

Figure 6-7. Minimum mean -square error restorations of
one bit (deltamodulation) encoded image using three
adjacent pixels.
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samples are correlated.
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CHAPTER 7

QUANTIZATION AND RESTORATION OF RAYLEIGH SAMPLES

The last two chapters have shown that the nonlinear
quantization restoration equations of Chapter 3 can be
solved for both gaussian and laplacian quantizer inputs.
This chapter extends these results to quantizer inputs
which can be described by Rayleigh probability density
functions. It will be shown that a Rayleigh distribution
can accurately model the intensity distribution of an
image, so that quantized images can be reconstructed by the

techniques developed herein.

7.1 Rayleigh Densities in PCM Image Coding

In the PCM (pulse code modulation) coding of an image,
the image 1is first sampled at an array of points known as
pixels. The value assigned to each pixel is a measure of
the light intensity at that point. Each light intensity is
then quantized and coded, for either digital transmission
or storage. Because it is proportional to the square of
the magnitude of an electric field, light intensity is a
real and non-negative quantity. The distribution of light
intensities for an image can be characterized by a
histogram ranging from black (zero) to white. For most

natural images, there are many more dark pixels than bright

159



pixels, and the envelope of the histogram tends to fall off
exponentially at higher brightness levels [1]. Image
histograms measured by Kretzmer [2] and Stockham [3]
exhibit these properties. Figure 7-1 shows that the
histogram of the “girl" image, shown originally in

fig. 5-7, also possesses these characteristics.

In the past, image intensity distributions have been
well-modelled by Rayleigh, log-normal, and exponential
probability density functions [4]. In this chapter, a
variation of a Rayleigh distribution extended to many
dimensions is utilized to model image intensities. A need
for a multidimensional distribution arises because of the
usefulness of including pixel-to-pixel correlations in the
model. A correlated multidimensional Rayleigh
distribution, derived in Chapter 4 as eg. 4.34, can be

rewritten as

1

_1/2.N i}
p(x)=ICl l/zﬂl(g}’yu(gfg)exp{-%fg x} (7.1)

where C is the correlation matrix of X and the vectors hi

are a function of the eigenvalues, A v and eigenvectors,

gi, of C. If the eigenvectors are arranged column-wise

into a matrix E having elements e, .

5 then the components of

the vectors Ei can be found from
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Figure 7-1. Histogram of the light intensities of the ''girl" image
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h, =ZN331-1§9- (7.2)
ik j=1\[)§

The average correlation between adjacent pixels for an
image such as the "girl" has been measured to be 0.95. A
one-dimensional marginal probability distribution of
egq. 7.1 for N=2 and a correlation of #.95 is shown in
fig. 7-2 (an expression for this marginal distribution can
be found in eq. 4.45). This distribution is seen to
provide an accurate model for the intensity distribution of
fig. 7-1. A two-dimensional histogram of the "girl" image,
obtained by plotting pairs of adjacent pixel intensities,
is shown in fig. 7-3. This histogram can be closely
modelled by the correlated two-dimensional Rayleigh density
function shown in fig. 7-4. (Only the positive quadrants
of figures 7-3 and 7-4 are shown since both the histogram
and its Rayleigh model are identically zero elsewhere.)
This statistical model for image intensities can then be
used for the restoration of quantized and coded values of

these intensities.

7.2 Estimation of Quantized Rayleigh Samples

In order to obtain a restoration of gquantized Rayleigh
samples, such as those that result from the PCM coding of
an image, eg. 3.6 must be solved using eg. 7.1 as a

statistical model of the underlying Rayleigh random
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X

Figure 7-2. Marginal distribution of a two-dimensional
Rayleigh probability density function with correlation
factor = 0.95.
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TWO-DIMENSIONAL HISTOGRAM OF LIGHT

INTENSITIES FROM THE "GIRL" IMAGE

FIGURE 7-3.



TWO-DIMENSIONAL CORRELATED RAYLEIGH

PROBABILITY DENSITY FUNCTION USED TO MODEL THE

INTENSITY DISTRIBUTION OF THE "GIRL"' IMAGE

FIGURE 7-4,
CORRELATION =0. 95
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process. Unfortunately, an explicit solution to eqg. 3.6
does not exist for this choice of input distribution, p(x).
However, solutions can be found for several special cases
of quantization regions and correlation matrices. Also, an
approximate solution can be obtained, using a method
similar to Curry’s [5], which is wvalid for very fine

quantization.

The approximate solution can be found by means of a
power-series expansion of p(x). By retaining terms of the
expansion up to fourth-order, the approximation is accurate
enough to restore the outputs of a wide variety of
quantizers. A sufficient condition for the approximation
to hold is that the size of the quantization intervals must
be small compared to the variance of a component guantized
to one of these intervals. A multidimensional Taylor
series is used to expand p(x) about the midpoint, g, of a
rectangular gquantization region, R. Let the region be

defined as

R={x | x € [a,b]} (7.3)

where a, b, and X are N-vectors, so that its midpoint is

g=(atb)/2 (7.4)

The size of the quantization region can be expressed in
166



terms of a vector of half-widths as

d=(b-a) /2 (7.5)

The Taylor-series expansion of p(x) about g is then

T
3P (%) L. P
p(x)=p(g)+ (x-9) +5(x-9) (x-g)
x oxox
g g
N N N 3p(x)

1
+= (x,-9.)(x,-g.)(x =g )+ . . . (7.6)
Gigljé:lzaxaxbx R A B R

g

where p(x) is given by eq. 7.1. The terms of this

expansion are evaluated individually as follows:

dp(x) N 1 8 (hT x) -

= =p(x){ 3 h, y—i | oy (7.7)
dx i=172| nf'x  u(nlx)

X h'x hx

where &6(+) represents the Dirac delta function, defined as

the derivative of the unit step function U(¢), and

T
'lli—[hil hiz . . . h. ] (7.8)

This vector represents the (i)th row of the matrix H.

Next, define the vector w such that its components are

167



1 s(hig)
Wy = + —p— (7.9)

so that eg. 7.7 can be rewritten as

op(X)
ox

=p(g) (gTy-g'lg_) (7.10)

g

The second derivative can be computed in a similar manner

as
T
o | or(X)
—| = =p(g) [(HTw-C1g) (Hw-C )" -C1-HTwHl  (7.1D)
X X
g

where W is a diagonal matrix having components

1 (g s U(hg)
“&i= 7 - = + T 3 (7.12)
(h; 9) U(h; 9) (U(h;9)]

Now 1let 2z=x-g. Then the denominator of the
restoration equation (eg. 3.6), after retaining the first

three terms of the expansion, becomes
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b d -
/"p(i)d_{zfgp(g) {1+ (ETV_"Q IS)TE
a -

1T T - T - -
+52" [(8Tw-¢ La) (a1 w-c"1g)T-c 1 -nwH) 2} az

N d 2
=P(g)V(l+ 2; i‘§‘ (7.13)
where
B=[ (1 w-C ') (B w-C 'g)"-c" -n"wm (7.14)
and
N
V= (24d.) (7.15)
1 %8

The quantity VvV is the volume of the rectangular
quantization region R, and B is a matrix based on

parameters of this quantization region.

Next, the numerator of eq. 3.6 can be approximated by
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b d
/ “xp(x)dx= 4 (g+z)p(g+z)dz
a -—

b d
4 zg_[—p(i)d§+/ zp(g_){l+(H w-C lg)T5+!2'-zT§g}d5
-d

a

=

zp(g)V[l+ E %(QTE-Q_ g)D] (7.16)

(7.17)

Thus, the conditional mean estimate of a vector X,

quantized to the region R, is

(Hw-Clg)p
y=g + (7.18)
3 + 7r{BD)

This estimate is seen to consist of a correction term added
to the midpoint of the quantization region. Since the
estimate is a function of a particular quantization region,
the estimation process 1is a nonlinear operation. The

estimation results are valid for

24, <s, (7.19)
i1
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for i=1,2,...,N, where sﬁ is the wvariance of the (i)th
component of x. It has been experimentally determined that
an image must be coded with more than four bits per pixel

for the solution given by eq. 7.18 to be useful.

For very coarse guantization, the relation in eg. 7.19
is not satisfied, so another solution to eg. 3.6 must be
obtained which is valid for this situation. A solution can
be found by utilizing a method developed in Chapter 5. The
essence of this method is that the components of a
quantized vector are restored individually, based on--

1. the quantization interval of the component being

restored;

2. estimates of the remaining gquantized components

(not the quantization intervals of the remaining

components).
The initial estimates can be chosen to be the midpoints of
the quantization intervals. Alternately, they can be
chosen as the solution to the one-dimensional version of
eg. 3.6, which can be solved exactly. This latter choice
is the more accurate one, and is the choice that will be
made here. As new estimates of the components are found
using the method of Chapter 5, they are used to replace the

initial estimates. The technique is thus iterative.

Keeping these concepts in mind, consider a typical

component of eq. 3.6. This component can be solved
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approximately by

b,
i
jr xip(tl,tz,...,ti_l,xi,ti

+1 g oo 'tN)dxi

a
~—1 (7.20)
bi
i .
where
b
k
d
_[axkp(xk) "
t =—XK (7.21)
k b
kp(x )ydx
a k' k
k
for k#i. A straightforward integration of this last
eguation yields
b a, bk2 ak2
lrsk erf—K -erf -{b exp{-—5}-a exp{-—=5}
2 V2s V2s 2s 2s
= k k k
t = = (7.22)
k 2 2
2 by
exp}-——i - exp;-——ii
25k 25k
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where sﬁ is the variance of X . Unfortunately, eg. 7.20
cannot be integrated so easily. When the expression for
P(x), as defined by eg. 7.1, 1is substituted into this

equation, the estimate becomes

b. N
i . T T 1.7T-1
f xj | [ Bit0(hi b expl-zt C " tlax;

a
i
Vit (7.23)
. N _
/ T hitu(n;t) exp{-5t C Tt}ax;

a. k=

i
where
T

Proceeding as in equations 5.16 to 5.19, common factors can

be cancelled from both the numerator and denominator,

leaving
bi N -1 2
. xi]—r(hkixi+Hk)U(hkixi+Hk)exp{——-—(riixi+Ri) lax;
a. k=1 2r. .

y.= 1 11

1 b, N -1 2
ai k=1 Zrii
(7.25)

where riy is the (i,j)th element of g-l,
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%=Z  t. (7.26)

j:l J J
j#i
and
3 (7.27)
R. = r..t. .
i ;é& ij 5
j#i

(riixi+Ri) (7.28)

v N |h
ki - -z
jr Q'Zriiz—Ri) ) r.‘LJZriiz Ri)+Hk exp{-2°}dz

u k=
y.= 1l - (7.29)
* v N b 2
L. . J=k ;——(ﬂzriiz—Ri)+Hk exp{-2©}dz
ii
where
max 1 R. H r..
u= k (£, ,a;+R.), —= - k_jii (7.30a)
hki>g'\’2rii zrll ki 2
min 1 R, H r..
v= k (r, b +R.), i - Kk |ai (7.30b)
h <Bly2r Varg; b Vo2

The expressions which multiply the exponential terms in

eg. 7.29 are seen to be Nth-order polynomials. Writing
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them as such, reveals that

= (7.31)

N 2 ii
}: 2 exp{-2z“}dz

u 0

N
[ Z X exp{- 22 }dz
R.
i

The integrations can finally be performed to yield <*,**>

N+
ki‘ g (2k-1) 1}
2k-1
num.=\[2[\Jrerf(z) ) =
2|\ k=1 2K
k v
-exp{-z }z_gkk!!EZ — (7.32a)
k=0 j=0 23 (k-23)!!
u
Hﬂ 9, (2k-1) 11
élenom.—\’r:ii \]1:erf(z)kz=_‘g x
k-1 . v
—exp{-2%} 3 g, (k=1)11 3 — (7.32b)
k=1 j=n 23 (k-2j-1)!!
u

so that
<*> The notation [x] denotes the smallest integer £ x.
<**> The notation k!! denotes the product
{k'(k—Z)- .« +3e] for k odd
kil=

Ke(k=2)+ o «4-2 for k even 175



num. R,
y. = - =i (7.33)

1 denom. s

When C=1 or, equivalently, when Xy is being restored
independently of the other components of x, the estimate
becomes y;=t;,, as given by eg. 7.22. When C=I, the
estimate in eg. 7.33 is wused in the recursive manner

described previously.

7.3 Error Covariance of Rayleigh Estimator

The estimate given by eq. 7.33 provides a minimum
mean-square error reconstruction of a quantized Rayleigh
variable. The performance of this estimate can be
determined by a calculation of the estimation covariance.
A general expression for this covariance was derived as
eq. 3.10. This expression can be solved, for a Rayleigh
probability density function, by the same technique that
was used in equations 5.36 to 5.37 for a gaussian
distribution. Denoting the (i,i)th component of the
estimation <covariance (the only non-zero component because
of the recursive nature of the estimation procedure

described in Sec. 7.2) as e’ then
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= 1 - 2
€ii° bi Yy
p(t)dx,
a - i
i
or
e R.
& =g - (v; +57)°
denom ii
where
N+2
2 g (2k-1)!!
_ 2k-2
€ um™ Z'J;erf(z) & X

25 R
[2_] K-23+1

N
-exp{-zz}éZ%gk(k+1)!! 3

Eﬂ ng(Zk-l)!!

edenom= riilvgerf(z)égi 2k

=
[

L——J JK-23-1

{=8 23 (k-23+1) 11

2) v
-exp{-2z g, (k=1)1}
égi k

j=0 29 (k-2j-1)1!

(7.34)
(7.35)
\4
(7.36)
u
v
(7.37)
u

This error covariance for the (i)th component is related to

the estimates of the other components, t

of both Ri' as given by eq. 7.27, and Hk for

K for k#i, by means

kzl'Z'o..’N'
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as given by eqg. 7.26. The expression in eg. 7.35 hence

specifies the conditional covariance of Y o conditioned

the other estimates, ?k‘

Because the components, H{, are random variables,
conditioning can be removed by integrating eg. 7.35
respect to the distribution of the t . Equivalently,
dependence on the t, can be removed by integrating

respect to R.i and Hk, which are functions of the t .

on

the
with
the
with

The

first and second moments of Ri and Hk can be calculated as

N
E{Ri}=3=lrije{tj}{ JerlJ (7.38)
J#1 i#i
E{Ri}--rllizarlj 51 (7.39)
j#L
z f& k=1,2
E{H, } =4/~ . =1,2,«..,N .40
(H,) Vg_j=lhk3 (7.48)
j#£L
,, N
= o . k= ’ (2 .
E{Hk} nglhknézcnjhkj 1,2 N (7.41)
n#Fi JFL

It can be shown, by means of lengthy derivations, that

E{Ri} o E{Hk} (7.42)
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(1]

and

E{R, %) « E(B ) (7.43)

for k=1,2,...,N. Since both Ri and Hk consist of a sum of
many random variables, it can be argued that they have a
gaussian distribution. Then, under this assumption, the
two moments found in eguations 7.38 and 7.39 are sufficient
to characterize this distribution, now denoted as p(Ri).

Hence, the unconditioned error covariance can be found from

e = feiip(Ri)dRi (7.44)

However, due to the complicated form of the constituents of
this expression, the error covariance cannot be evaluated
for general cases. Rather, specific cases of the
estimation covariance must be considered on an individual

basis. An approximation can then be obtained numerically.

7.4 Simulation and Restoration of PCM Coded Images

To determine the utility and effectiveness of the
restoration technique developed in Sec. 7.2, the technique
was computer-simulated and then applied to images which had
been gquantized according to various bit assignments. The
images were quantized in intensity using Max decision and
restoration levels, These levels are shown in table 7-1.

They were calculated by means of eq. 2.3, using a
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TABLE 7-1

QUANTIZATION INTERVALS FOR SIGNALS WITH A RAYLEIGH
DISTRIBUTION CHOSEN ACCORDING TO A MINIMUM
MEAN-SQUARE ERROR CRITERION

Bits Quantization Interval Restoration Point
9.0 [ o] 1.253
1 0.0 1.375 8.829

1.375 o0 1.920
2 0.9 0.822 #.529
6.822 1.420 1.114
1.420 2.127 1.725
2.127 00 2.529
3 0.0 9.499 #.329
#.499 #.825 0.670
9.825 1.135 0.980
1.135 1.453 1.290
1.453 1.800 1.617
1.800 2.208 1.984
2.208 2.7680 2.433
2.7680 oo 3.086
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one-dimensional Rayleigh probability density function.
Each pixel was quantized individually, i.e., independently
of its neighboring pixels. The results of this quantizing
scheme, when applied to the "girl" image, are shown in
figures 7-5a and 7-5c for one bit per pixel and two bits

per pixel guantizers, respectively.

Figures 7-5a and 7-5c were a posteriori restored by
utilizing eg. 7.33 with N=5. Using this value for N means
that the restoration of one pixel is achieved by utilizing
the information that is available about four other pixels.
A five-dimensional correlated Rayleigh probability density
function is thus used to model the image for this
restoration procedure. The five pixels were chosen and
ordered as shown in fig. 7-6. These particular pixels
allow maximum use to be made of the correlation between
adjacent pixels, The 5x5 correlation matrix of these
pixels is also shown in fig. 7-6. This correlation matrix

is a necessary input to the restoration equation.

The restoration provides an improvement because it
permits many possible output intensity levels to occur,
even though, as in the one bit case, there are only two
input levels <*>, The restored images for one bit and for
two bits are shown in figures 7-5b and 7-54, respectively.
The restoration of the one bit guantized image results in a

decrease of 28.8% in mean-square error. The. restored two
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a. One bit/pixel PCM b. Restored one bit/pixel

c. Two bits/pixel PCM d. Restored two bits/pixel

Figure 7-5. Minimum mean-square error reconstructions of
PCM coded images.
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0 0o 0o 0o
3
o 0o o 0o
2 1 4
0o 0 o) o
5

a. Pixels chosen for the restoration of pixel no. 1

1.00 8.97 0.96 .97 0.96
0.97 1.00 .94 .93 .95
.96 0.94 1.00 .95 0.90
.97 8.93 0.95 1.00 0.94
.96 .95 6.90 9.94 1.00

b. Correlation matrix of the ordered pixels

Figure 7-6. Typical ordering of five PCM coded pixels for
restoration, and their corresponding correlation matrix.
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bit image has 28.6% lower mean-square error than its
quantized version. Each restored image exhibits a subtle,
but noticeable, visual improvement over its corresponding
quantized image. The restored versions appear subjectively
to be more "real" due to the extra intensity levels that
result from the restoration. It should be emphasized that
these improvements were obtained a posteriori, utilizing
only the correlation matrix of a typical sampled image,

together with the guantized image to be restored.

<f> For this one bit case, since each of five quantized
p1xe}s can be in one of two possible states, there are 32
possible output values for the restored pixel.
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CHAPTER 8

RESTORATION OF BINARY SYMMETRIC CHANNEL ERRORS

The previous chapters have presented and analyzed
techniques for restoring the output of a quantizer so that
the result more accurately matches the quantizer’s input.
The restorations are based essentially upon exact knowledge
of the quantizer output. A similar, but more difficult
problem results when the gquantizer output is not known
exactly. This could occur, for example, when the quantizer
output 1is transmitted over a noisy channel. The first
section in this chapter explores the effect of channel
errors on the restorations derived previously. The next
section examines a technique that statistically compensates

for the effect of channel errors.

8.1 Effects of Channel Errors on Quantized Signals

In this analysis, channel errors are assumed to arise
in the context of a binary symmetric channel (BSC) ([1].
The characteristics of this type of channel are shown in
fig. 8-1. The channel is discrete and memoryless and can
be specified by a transition probability assignment P(jlk),

for j,k=8,1, as
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P(jIK)

Figure 8-1. Transition probabilities for a binary
symmetric channel.
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P={P(jlk)}= (8.1)

Since the channel is memoryless, the probability of an
output sequence §=(zl,z2,...,zN), given an input sequence

=X 1 Xy reeesXy) is given by
N
P(§|§)=;|:|1P(zilxi) (8.2)

Based on this definition, a BSC was simulated by means
of a computer, with the channel error probability, p,
chosen to be 0.681. The simulated channel was then applied
to transform coded images. The three "original" images
shown in fig. 5-7 were 2zonal transform coded in 16x16
blocks, as described in Sec. 5.4. The quantized transform
domain components were encoded by assigning each a binary
code word. The resulting sequence of binary digits was
operated on by the simulated channel. The error-corrupted
bit stream was then either decoded directly, as shown in
figures 8-2a, 8-2c, and 8-2e, or restored by the techniqgues
of Chapter 5 to reduce the effects of the guantization
process (see fig. 8-3 for a schematic of this procedure).
The decoded images with the gquantization effects reduced

are shown in figures 8-2b, 8-24, and 8-2f.
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a. Max gquantized

¢c. Max quantized d. Restored

e. Max gquantized f. Restored

Figure 8-2. Minimum mean-square error restoration of Haar
transformed 0.5 bit zonal quantized images transmitted
through a BSC with an error probability = 0.01.
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Bit errors in transform coding that arise due to a
binary symmetric channel are seen to result in an emphasis
of the block structure and a subjective error that extends
over the entire block. This latter effect occurs because
inverse transforming a block containing an error
distributes this error over all the resultant image domain
components. However, what is important to note from
fig. 8-2 1is that channel errors affect quantized and
quantization-restored images identically. The
reconstruction techniques derived in Chapters 5, 6, and 7

are thus insensitive to channel errors. Since they provide

visual and mean-square error improvements in noise-free
cases, they can be utilized -equally well in noisy

environments.

8.2 Reconstruction of Quantized and Transmitted Signals

The previous section demonstrated that channel errors
do not adversely affect the performance of the restoration
techniques derived earlier. However, these techniques do
nothing to ameliorate the effects of the channel errors.
This is because the fundamental restoration eguation
presented in eq. 3.6 was derived without any consideration
of channel structure. By including the channel structure
in the derivation, the resultant restoration technique can
simultaneously reduce the effects of the gquantization

process and mitigate the effects of channel errors.
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The output of a data source (this output could consist
of DPCM samples, PCM samples, or transform domain samples)

is denoted by x=(x ,...,xN) and described by a

1'%
probability density function p(x). The reconstruction of
X, after x has been guantized to one of M regions and
channel-error orrupted is d = coe

err corrup ’ enoted by Ek (zl,zz, ,zN)k
for k=1,2,...,M (refer to fig. 8-3). The mean-square error

that results from this process is
¢33 eain [ :
= P(mlKk) (x-2 ) (x-2 ) p(x)dx (8.3)
k=1 m=1 Rm" A A -7

This error can be minimized by proper choice of the
restoration points, Z Setting the partial derivatives of

this error with respect to z equal to zero yields

n (8.4)

for k=1,2,...,M. This expression is the noisy channel
version of eq. 3.6 and provides a minimum mean-square error
estimate of the input to a quantizer based on the output of
a noisy channel, the characteristics of the quantizer, and

the a priori statistics of the input. This equation is
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also a multidimensional version of a result first derived
in [2). For a noiseless channel, the channel matrix P
becomes the identity matrix and eq. 8.4 reduces to eq. 3.6.
When the probability volume integrals in the denominator of
eg. 8.4 are all equal, which is approximately true for Max

quantization, the restoration equation simplifies to

xp(x)dx
M Rm
zk=§:INm|k) (8.5)
m=1
p(x)dx
R
m
or
z. =) P(mlk) (8.6)
-k m=l Xm

where Yo is given by eqg. 3.6. This result holds for
maximum output entropy quantizers and two-level symmetrical
quantizers, and is approximately correct for many other

types.

A signal that has been quantized and then transmitted
over a noisy channel can thus be optimally restored by
utilizing eg. 8.4. The restoration solutions found earlier
for gaussian, laplacian, and Rayleigh probability density
functions (see equations 5.23, 6.7, and 7.33, respectively)
can be substituted directly into eg. 8.4 once the

transition matrix for the channel has been determined. The
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resultant estimator can then be used to restore the outputs
of transform, DPCM, and PCM coders that have been degraded

by channel errors.
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CHAPTER 9

CONCLUSIONS, AND TOPICS FOR FUTURE RESEARCH

This dissertation has described a means for
reconstructing quantized signals according to a minimum
mean-square error criterion. The method, which is entirely
a posteriori, is based on a priori statistical information
about the original, unquantized signals. In a broad sense,
the reconstruction technique described is applicable to any
coding system for which the necessary a priori statistical
information 1is available, since any coding system can be
considered as a special case of a guantizer. In other
words, assigning one of a finite number of code words to a
random variable is equivalent to quantizing that variable
to one of a finite number of intervals. Further, block
encoding a string of random variables 1is the same as
quantizing a random vector to a generalized region in

space.

No attempt has been made in this work to optimize the
location or choice of these generalized gquantization
regions, but only to utilize arbitrary, given regions in an
optimal manner to obtain a signal reconstruction. Finding
an optimum set of regions to vector-quantize a string of
random variables remains an unexplored area, but oné in

which fruitful research can be conducted.
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The technigues described herein, in all cases,
achieved a reduction in mean-square guantization error when
compared to a Max restoration scheme. The reason for this
improvement over a method which purportedly provides the
"minimum mean-square error," is that Max’'s scheme is
memoryless while the festoration described herein requires
memory. The memory requirement arises in the form of
knowledge of the quantized samples that surround a sample
being restored. This added information, which must be
stored in memory, permits the improvement in mean-square
error. The restoration techniques derived in this
dissertation, therefore, represent a generalization of

Max ‘s restoration results to many variables.

From an information theory standpoint, this use of
memory allows a coding system to operate closer to the rate
distortion theory bound. Also utilizing memory to perform
source-encoding--equivalent to vector quantization, as
discussed previously--can provide an even closer approach
to this bound. However, in this work a memoryless encoding
scheme has been employed with its implicit assumption of

rectangular gquantization regions.

The reconstruction technique developed herein has
specifically been applied to three common types of image
coding systems--transform coders, DPCM coders, and PCM

coders. These coding - systems have been statistically
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characterized by gaussian, laplacian, and Rayleigh
probability density functions, respectively. However, to
completely characterize the coders requires correlated
multidimensional versions of these density functions.
Heretofore, multidimensional versions have not existed for
either laplacian or Rayleigh distributions. This
deficiency motivated the general technique derived in
Chapter 4 for generating correlated multidimensional
density functions from desired marginal distributions and
correlation functions. In essence, this allows the
correlation which exists between the variables in many
coding systems to be utilized in a statistical restoration

of their coded outputs.

A determination of the minimum mean-square error
restoration point for a guantized vector has often proven
difficult, because a multidimensional integration of a
complicated probability function is reguired. However,
this difficulty has been surmounted by a novel, recursive
approach. This approach permits a reduction to only a
single integration which can then be evaluated
analytically. The solutions which resulted from this
approach have been applied to quantized images, and only
one recursion of the technique has been found to be
necessary for an image restoration. The restoration

procedure can thus be readily implemented.
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A decrease in mean-sguare error was obtained in all
simulations of this restoration procedure. However, a
corresponding subjective improvement was not always
observed. This ancillary result substantiates an
observation made by many others: lower mean-square error
does not always correspond to a visual improvement.
Repeating the image restorations in the context of a
weighted error criterion, with the weighting chosen
according to characteristics of the human visual system,
resulted in both an analytical and a subjective
improvement. It is suggested that further image coding
reconstructions be performed with respect to a weighted

error criterion.

A fundamental 1limitation imposed on the images
restored in this dissertation was an assumption of
statistical stationarity. This restriction is very basic,
because the reconstruction techniques herein are completely
dependent on the choice of a statistical model for the
underlying random process. Since images have been found to
be inherently nonstationary, an assumption of stationarity
limits the reconstruction per formance. An adaptive
technique could remove the 1limitation and improve the
performance. This has not yet been investigated, but could

prove to be a productive area of research.

Another problem that was discussed only briefly in
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this work concerns the reconstruction of quantized signals
in the presence of channel noise. This is a much more
difficult problem than noise-free gquantization restoration

and warrants further study.
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