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ABSTRACT

The restoration of color errors in diqitally recorded
color images is considered in this dissertation. A vector
space model of a general digital color image recording
system 1is derived and the eguations reoresenting the model
and the equations of colorimetry are expressed _in matrix
form. Computer algorithms are derived which correct color
errors introduced by impertections in the color recording
system, The sources of color error which are considered
include sensor spectral responses which depart from ideal
color matching curves, crosstalk between color signal
channels, and system nonlinearities. The special case of a
color film-digital scanner system is examined in detail,
although the methods derived apply to a wider class of
color or multispectral sensing and recording systems. The
success of the correction algorithms is demonstrated using
a computer simulation of the film-scanner system. The
algorithms for correction of svectrally imperfect sensors
are also tested wusing a specially created six band

multispectral test image.

The generalized matrix inverse 1s used extensively in
this report. Least sauares, minimum norm, and Wiener
estimation algorithms, in the form of generalized inverses,

are applied to the correction of sensor imperfections. The
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utility of the generalized inverse in the spectral domain
is also demonstrated by applving it to some related color
problems. These include the estimation of the spectral
response of a sensor from sample readings, and computer

generation of spectral waveforms with desired colorimetric

properties.
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1. Introduction

This report concerns the application of sampled data
processing and estimation methods to the restoration of
digitally recorded color images. The restoration of color
values which have been degraded by sensor and storage
imperfections is an objective which has been pursued since
color image recording systems were invented. The methods
of color restoration which have been heretofore explored
have varied with each method of color image recording. The
first, and by far the most common, medium of color image
recording is color photographic £film. Most color film
images do not undergo any post-development restoration at
all. Those film images which are restored are usually
modified only by photographic masking, which attempts to
provide pleasingly saturated colors and a proper white
balance. Masking and other photographic restoration
methods are extremelf limited in their ability to correct
color errors. They are slow, inflexible and usually apply
the same correction to all points in the image. When color
values are converted to electrical signals, as in color
television and in color scanning devices, much more can be
done to <correct color errors, often in a real-time
interactive mode. Here again, the object is most commonly
the production of a pleasing saturated picture, not the
increase of color fidelity as measured by a guantitative

criterion.



With the comparatively recent development of digital
image recording, it becomes possible to extend further the
capabilities of color image restoration. All the power and
flexibility of the stored program digital computer, which
have been proved as successful in the restoration and
enhancement of digital monochrome imagery, can be applied
to color image restoration. The digital computer can be
utilized in the optimization and testing of restoration
algorithms as well as in the execution of these algorithms

to restore large guantities of digital color imagery.

This report will examine the computer application of
some standard mathematical tools and operations to the task
of restoring errors introduced by sensor and storage
imperfections in a general color image recording system.
The system imperfections which are considered include
non-ideal sensor spectral responses, crosstalk between
color signal channels, and errors introduced by system
nonlinearities. A color film-electronic scanner color
system 1is analyzed in some detail, but the methods
developed can be applied to a wider class of color
analyzing and recording systems. In addition, some of the
mathematical restoration tools utilizing generalized
inverses are applied to other color problems such as the
spectral «calibration of color scanners and the computer
generation of spectral waveforms with desired colorimetric

properties.



The dissertation consists of seven chapters. Chapter
2 presents a short tutorial on colorimetry, color
reproduction and restoration. Chapter 3 discusses the
advantages of digital color restoration and vector space
modelling of color systems. Tristimulus estimation using
linear estimation methods is treated in Chapter 4. Chapter
5 discusses methods of inverting the nonlinear film-scanner
equations in order to estimate film exposure values. Some
related applications of digital color methods are treated
in Chapter 6 and some conclusions and general remarks about

the dissertation are presented in Chapter 7.



2. Color Reproduction

The 1long established field of color science
historically has consisted of two branches: colorimetry,
which is the measurement of color, and color reproduction.
These two areas of study have been related only slightly
and, for two reasons, have not been put on a rigorous basis
until recent vyears. First, established color standards
came into use only after the formation of the Commission
Internationale d°Eclairage (CIE) in the early 1938°s.
Secondly, until the development of color television in the
1950°s, color reproduction was achieved by photographic
methods. Because of the complexity of subtractive color
photography, its capabilities were advanced primarily by
empirical means, and not through the use of colorimetry,
which is based on the simpler theory of additive primary
ceclors. In the last two decades, color reproduction
technology has adopted the terminology and methods of
colorimetry, and the two branches of color science have

become more unified.

In Chaptér 2 which follows, three topics will be
discussed. First, the basics of colorimetry will be given,
including a brief discussion of color error formulas.
Second, the principles of color reproduction and the
important sources of reproduction errors will be described.
Finally, some» of the standard technigues of color

4



restoration, both photographic and electronic, will be

discussed.

2.1 Colorimetry

Colorimetry, the science of color measurement, is
based on the experimental observation that, over some range
of colors and observing conditions, any color stimulus
(defined as radiant flux detected by an observer’'s visual
system and evoking a sensation of color [1]) can be matched
by an additive mixture of three fixed primary color

stimuli.

The experimental laws governing the relations between
the spectral intensity distribution of a color stimulus and
the amounts of each primary color stimulus required to

match it form the basis of colorimetry. The fundamental

color matching equations are

ﬁ(l) SR(A) dx = ./-CP(A) SR(X) dx

- 2-1
fcm SG(A) dx -fcp(x) sc(x) dx ( )

fC(A) SB(A) dx =.[CP()‘) SP()L) di

where C(y) is the spectral intensity distribution of the
color to be matched and q,(x) is the spectral intensity

distribution of the weighted sum of primary colors which



matches C(A). The characteristics of the standard average
observer with normal color vision are given by the spectral
sensitivity curves SR(x), SG(A), and SB(A) and the spectral
intensity of the matching primaries are PR(A), PG(A), and
PIJA). The primary colors are usually suitably chosen red,

green, and blue lights.

If the weights or amounts of each primary which
together match C() are given by AR(C), AC§C) and Ag(C),

then

C,(0) = A(C) P (N) + AG(C) Po(M) + AL(C) Pp() (2-2)

Then if Ig: Ige Ip are defined as below, a color match

requires
IR%JE(A)SR(k)dk=/iAR(C)PR(A)+AC(C)PG(1)+AB(C)PB(A)ISR(A)dA (2-3a)
IG%/E:(A)SG(x)dx-:ﬁAR(C)PR(AHAG(C)pG(A)+AB(c)PB(A)lsc(x)dx (2-3b)

IB%[C(A)SB(A)de[[AR(C)pR<A)+AG(C)pG(x)+AB(C)PB(x)]sB(A)dx (2-3c¢)

where A (C), A (C), A (C) are called the primary matching
values of the color C. When these primary matching values
are normalized by the primary matching values of a
reference white color W, the resulting normalized values

are called the tristimulus values of C



Tl(C) = W (2-4a)
AZ(C)

TZ(C) = AZ(W) (2-4b)
A,(C)

T3(C) = A—B(W (2-4c)

Equations (2-3) and (2-4) can be combined im matrix form to

give the following equation of color matching

- -
IR dll d12 dl3 Al(w) 0 0 Tl(C)
= (2-5)
IG d21 d22 d23 0 A2 wo Tz(c)
IB d31 d32 d33 0 0 A3(w) T3(C)
where
dij = Pj(x) si(x) dX (2-6)

and in the subscripts i,j R=1], G=2, B=3.

The color matching equations, expressed above in
different but equivalent equations (2-1), (2-3), and (2-5),
illustrate the main objective of colorimetry: to determine
whether or not two given stimuli, C(A) and CP(A), match in
color. The two colors match, colorimetrically, when their

tristimulus values are equal.

It is important to observe that colorimetry does not



attempt to characterize the sensation which an observer
perceives when he receives a color stimulus. To do this
would require a much more complex model involving spatial
and temporal parameters relating to state adaption, stimuli
surrounding the test stimuli and other parameters.
Colorimetry is not designed to provide a general color
perception model, only to answer the simpler but still

important question of whether two colors match or not.

The presence of a 1linear integration of spectral
intensity over wavelength in the color matching equations
is a reflection of the underlying assumptions of linearity
and additivity in color matching. Linearity and
additivity, which hold accurately over a wide range of

observing conditions [1], require:

(1) that the match between any two colors continues to
hold when the spectral distributions of the two colors are

each scaled up or down by the same constant factor; and,

(2) that if colors A and B match, and if colors C and
D match then the additive color mixtures (A+C) and (B+D)

also match.

Under these assumptions, it is easily seen that any
color C(A) may be thought of as a weighted sum of spectral,
i.e., monochromatic, colors. Because of linearity and
additivity, the tristimulus values of the spectral

8



distribution C(A) can be obtained by integrating the
tristimulus values of the spectral components of C(A) over

all wavelengths. Combining egs. (2-1), (2-3) and (2-5)

gives
Tl(C) = c(h) TI(A) dx
TZ(C) = C(A) TZO‘) dx (2-7)
T3(C) = C(A) TB(A) dx
where
1/ -1
Tl(l) Al(x) 0 0 SR(A)
- 1/
T, | = 0 AZ(W) / 0 dij SG(A)
1
T, () 0 0 A, (W) Sg(V) (2-8)

The functions TI(X), Tz(k), T3(x) are called the color
matching curves of the set of primaries PR}k), PCJA),
PB(A). These curves completely describe human visual color
response under the colorimetric model by determining
through eq.(2-7) the tristimulus values, or primary
weights, needed to match any color. It will subsequently
be shown that T, (A), Ty (A) T3(A) are the optimum spectral
sensitivities for a color sensor whose outputs directly
drive display primaries Prék), PG(A), PB(A). Figure (2-1)
contains a plot of the color matching curves corresponding
to egual radiance narrowband primaries at 700.8, S546.1, and

9
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435.8 nanometers, with a reference white whose power
spectral density is constant with wavelength (equal energy

white) .

The color matching curves of eq. (2-8) depend on the
matching primaries PRfA), PG(A), PB(A) only through the
matrix D= dij ] of egq. (2-6). Therefore, the three color
matching curves corresponding to a particular primary set
may be derived from those corresponding to another primary
set by a 3x3 matrix multiplication, so that each new curve
is a weighted sum of the three original color matching
curves. It follows from eq. (2-7) that the tristimulus
values of a color with respect to the new primaries are
equal to the o0ld tristimulus values multiplied by the same

3x3 matrix.

It is of interest to note that color matching curves
Tl(x), TZ(A), T3(A) are obtained directly by means of color
matching experiments with test subjects, rather than by

calculating them from the visual sensitivity curves S S

R' ¢
S gthrough eq. (2-8). The visual sensitivity curves are,
even today, known with less accuracy than are the color

matching curves, since it is difficult to measure them

directly. The responses SR’ SG’ and SB cannot be
determined from the color matching curves via eq. (2-8)
since SR! SG’ SB are contained in each element dij of D.

For this reason, color matching is nearly always done by

11



comparing the tristimulus values of two colors obtained
from equations of the form of eq. (2-7) rather than by
using the spectral sensitivities of the eye directly, as in

egs. (2-1).

The determination of tristimulus values of eas. (2-7)
requires that TI(X), TZ(A), T3(A) represent a particular
set of "standard observer" color matching curves such as
the CIE 1931 standard observer curves X(A), Y(A), Z(A)
shown in fiqure (2-2). In this case, the tristimulus

equations become

X = 1}/;:(1\) X(2) dx
Y = tyé(x) Y(A) da (2-9)
Z= 1}/;:0) zZ(2) da

where R may be chosen arbitrarily when only the relative
tristimulus values are of interest. When R is chosen to be
R=K ~6808 lumens/watt, the value of Y is then the 1luminous

flux, in lumens, of the color C(A).

When a color consists of radiant flux reflected (or
transmitted) by a nonradiating object, it is called an
object-color stimulus. A reflected object color is
specified by the spectral distribution P(A) I(A) where P(\)
is the spectral reflectivity and I(MA) is the spectral

intensity (power) distribution of the light source. The

12



tristimulus equations are then

X = EE/;(X) I() X)) di
¥ = RfPO) I0) YOO @ (2-18)
zZ = 5/;(1) I(A) Z()2) dx

where R 1is wusually chosen so that for a per fectly
reflecting and perfectly diffusing object (P(A)=1.0 at all
wavelengths), the luminance Y has a value of 1668. This may

be ensured by defining R as

R A 20 (2-11)
ﬁ(x) YQL) da

The spectral distribution of the illuminant, I(A), is

usually assumed to be one of the CIE standard illuminants:

CIE illuminant A represents a black-body emitter at
2856 K (approximates the spectral distribution of an
incandescent 1light bulb).

CIE illuminant C represents average daylight with a
correlated color temperature of approximately 6778 K.
CIE illuminant D65 represents a phase of daylight with
a correlated color temperature of approximately 6500 K
(uSing more recent measurements than those of
illuminant C).

CIE 1illuminant Dgg and D,y represent phases of
daylight with correlated color temperatures of 5500
and 7500 K, respectively.

The spectral distributions of these illuminants are shown

13
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in figure (2-3).

Although any color stimulus is uniquely specified
colorimetrically by giving its tristimulus values in any of
the standard observer coordinate systems, it is more
convenient for plotting purposes to reduce the
dimensionality of a color from three to two by normalizing
each tristimulus value by the sum of the three tristimulus
values. These normalized values are called chromaticity
values and are represented by the lower case symbol of the

corresponding tristimulus symbol. For example,

t, = (2-12)

for i=1,2,3 or

Y XFYFZ (2-13)

Since x+y+z=1, only two chromaticities, usually x and vy,
need be specified. When a third number is required to
complete the specification of the color, the luminance
value Y is often given also. The complete color

specification is then x,vy.,Y.

Two chromaticity values may be wused as rectangular

15



coordinates in a chromaticity diagram. The CIE 1931 (x,y)
chromaticity diagram is shown in figure (2-4) with the
locus of spectral (monochromatic) colors from X\ =380
nanometers to A=780 nanometers included. It may be shown
easily that the location on a chromaticity diagram of a
positively weighted sum of two color stimuli must 1lie on
the straight 1line connecting the chromaticity coordinates
of the two color stimuli. It follows that any realizable
color, 1i.e., a positively weighted sum of spectral colors,
must lie within the 1locus of spectral colors on a
chromaticity diagram. When tristimulus values are
normalized so that (1,1,1) corresponds to a reference
white, the reference white is then located at (1/3,1/3) on

the chromaticity diagram.

Color Difference Formulas

It was previously stated that colorimetry attempts to
answer the question of whether two colors appear to a human
observer to match or not. Two colors match
colorimetrically when their tristimulus values are equal.
The definition of colorimetry can be broadened to include
the measurements of the color difference when the
tristimulus values of two colors are not equal. A formula
is desired which operates on the tristimulus values of two
colors and produces a number which is proportional to the

perceived difference between the colors for an average
16



Figure (2-4) CIE x~y chromaticity diagram
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observer with normal color vision. Obtaining such a
formula is difficult since the subjective estimation of
color differences by an observer is far less accurate than
is strict color matching, and the influence of viewing

conditions is very strong [2].

Still, there are several useful color difference
formulas based on the 1931 CIE standard observer (XY2)
system. One system which attempts to provide a
chromaticity diagram in which equal distances correspond
approximately to equal visual differences is the 1968 CIE
uniform chromaticity scale (UCS) diagram. This system is
derived from a projective transformation of the 1931 CIE

chromaticity diagram [3). The transformation equations are

- 4X
X + 15Y + 32

u

(2-14)

i 6Y
T X + 15Y + 32

v

where u,v are UCS chromaticities and the UCS tristimulus
values are called U,V and W. The UCS chromaticity diagram
showing the locus of spectral colors is given in figure
(2-5). The 1968 CIE-UCS system has been extended to
include luminance differences in the U*,Vv*,W* system [4],

defined by

18
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1/3

Wk = 25Y - 17
U* = 13W(u - u) (2-15)
Ve = 13W(v - v )

for 1<Y¥<108,where u,,v, are the UCS chromaticities of the
reference white. The resulting color difference formula

for colors U *,V *,W * and U *,V *,W * is given by

2 2 2.1/2 _
AE = [(UT - ug) + (Vf - vg) + (w; - wg) ] (2-16)

Another widely used uniform color coordinate system is
the cube root system [5]. The formulas for the cube root

coordinates L, a, b are given by

/3

L = 25.2906%7° - 18.38

/3 _ 1/3

a = 106.0 (R1 G ')

b = 42,34 (01/3 - 31/3)

where R=1.62 X, G=Y, and B=06.847 2. The color distance

formula is then the Euclidean distance in L, a, b space

AE = [(AL)2 + (Aa)2 + (Ab)2]1/2 (2-17)

In each of the two systems described above, the U*V*W*
and the L a b systems, one coordinate (W* .or L) corresponds
to the perceived brightness of the color, while the other
two coordinates form a plane in which the origin

corresponds to an achromatic grey. In each system, color
20



saturation 1increases with distance from the origin, while
hue or dominant wavelength varies with angle about the
origin. In all such perceptually uniform systems, the
coordinates are nonlinear functions of the tristimulus
values, while the tristimulus values are always linear

functions of the color spectral distribution C(1).

2.2 Color Reproduction

In this section, additive and subtractive color
reproduction will be described using the methods and
expressions of colorimetry. Colorimetry possesses serious
limitations as a basis for the reproduction of color images
which are large, spatially complex, and possibly time
varying. Color matching curves, the basic functions of
colorimetry, are obtained by the matching of two small,
uniform patches of color which are of three to ten degrees
in angular size, seen against a black surround. It is well
known that perceived color sensations, and, to a lesser
extent, color matches, change when the surrounding area of
the test colors is changed visually [6]. Still,
colo;imetry has served as the foundation of color
television design, in the absence of a better visual model,

and the results have been gquite satisfactory [7].

Color reproduction methods which are based on the

rules of colorimetry attempt to satisfy the following two
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conditions:
(1) The spectral sensitivities of the color sensors
are a set of color matching curves.
(2) The sensor outputs drive display primaries which
are the primaries corresponding to the sensor color
matching curves (or the sensor outputs have been

transformed to correspond to the display primaries).

The two most important sources of color reproduction
errors occur when the two above conditions are not met.
Imperfect spectral sensitivities and deficiencies of the
primaries are present, to some extent, in all color
reproduction systems, whether photographic, television, or

lithographic.

Imper fect spectral sensitivities occur for two
reasons. First, real sensors such as photographic
emulsions and vidicon tubes do not have sensitivities which
are color matching curves, though appropriate optical
filtering may allow an arbitrarily close fit to color
matching curves, at the cost of some loss of system
sensitivity and signal-to-noise ratio. A second reason is
that spectral sensitivities may be intentionally degraded
in order to compensate partially for errors introduced in
other parts of the system. An example of this is the wide
spectral spacing of the peak sensitivities of the three
layers of some color films. The widely spaced
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sensitivities introduce an exaggerated saturation of colors
which helps to compensate for loss of saturation in the
developed transparency caused by undesired layer
absorptions. Undesired absorptions will be treated at

greater length later.

A guantitative figure of merit for color sensors is
the colorimetric quality factor q defined by Neugebauer
(8] . The quality factor of a spectral sensitivity curve is
unity when the curve 1is any color matching curve. The
guality factor diminishes as the sensitivity curve departs
more and more from its nearest (in the least squares sense)
color matching curve. The quality factor g is obtained by
forming a collection of functions from three color matching
curves and any complete orthonormal set, such as the usual
set of sine and cosine functions. This collection is
orthonormalized by the Gram-Schmitt process giving an

orthonormal function set

U ), Uy, Uy eenenennnny O ), oeenen

the first three of which are color matching curves. Such
an orthonormal set is shown in figure (2-6). Figure (2-6a)
shows the first three functions, all color matching curves.
The first (and only nonnegative) member of the set is the
luminous efficiency curve. The second three functions of
the set, derived using sine and cosine functions, are shown
in figqure (2-6b).

23



400 500 600 700
WAVELENGTH, nm

Figure (2-6a) Orthonormal color matching curves
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Figure (2-6b) Second three orthonormal functions
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The given filter or sensor function f£(A) 1s expanded

in this orthonormal set, so that
£ = Z £, U, (2-18)
where
£, = <f U> éff(” U; () da (2-19)

the quality factor a is then defined to be the ratio of the
energy of £ in the first three coefficients of (2-18) to

the total energy of f as given by

3 2
izl fi f12 + f22 + f32
= E £ 2 <f2>
i

A useful property of the representation of eq. (2-18) is
that the least-squares nearest color matching curve to f(A)
may be obtained by summing the first three components of

the expansion

£. U, (2-21)
i

The value of the quality factor q required for a color

sensor depends on the application of the sensor. The
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sensors in colorimeters usually have q factor values of
#.99 or higher, achieved by careful adjustment of filter
characteristics. In color television cameras, the q
factors of the three color sensors are also high, perhaps
8.90 or better. The sensor curves are usually chosen to be
close to the color matching curves corresponding to the
standard NTSC display primaries, where the negative lobes
of the ideal curves are neglected [9]. In color
photography, the film layer sensitivities may have g factor
values as small as 0.6, or even less, because colorimetric
accuracy may have been sacrificed in favor of other

properties, as mentioned earlier.

The second major source of errors in color
reproduction is the problem of cross-talk or undesired
absorptions. 1In color television, this might be caused by
imperfect signal decoding, so that the signal driving the
red display primary might be contaminated by the blue and
green display signals. Misalignment in a shadow mask
Picture tube, allowing the electron beam of one primary gun
to illuminate phosphors of the other two primaries, is
another example of crosstalk in color television. 1In color
photography and color lithography the equivalent problem is
called undesired absorption. A color film transparency has
a cyan (red-absorbing) layer which should control the red
transmission of the transparency, with the other two layers

(magenta and yellow) absorbing no red light at all. 1In
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reality, red light 1is absorbed to some extent by the
magenta and yellow layers. Figure (2-7) shows the
spectrophotometric absorption curves of a typical set of
vhotographic dyes. The <c¢yan and magenta layers absorb
strongly in the blue (480-468 nm) region, where ideally
their optical densities should be zero. The cyan dye also
exhibits unwanted absorption in the green portion of the
spectrum, In each case, one of the color signals, red,
green, or blue, is contaminated by one or both of the other
two color signals. An ideal set of color reproduction dyes
would be similar to those illustrated in fiqure (2-8). The
rectangular spectral passband maximizes energy
transmittance for a given dye saturation purity, while the
non-overlapping stopbands remove the undesired absorption.
Each dye affects one and only one spectral region and the
resulting ideal subtractive color system is equivalent to
an additive color system. Since unity spectral
transmittance or reflectance is not achieved by real dyes
at any wavelength, undesired absorption is always present

in any real subtractive color reproduction system.

The result of crosstalk or undesired absorption is
color error, usually a loss of saturation as a strong
signal in one color channel excites the other two channels
to some extent, tending to neutralize the saturation of the

color at the display.
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In addition to sensor imperfections and crosstalk,
there are several other sources of color errors which are
of lesser importance, but which cannot be neglected in a
general discuséion of color errors. One such source of
errors is the limiting of color signals by one or more
components in the color system. Examples include dynamic
range limitations in a color television camera tube or
display and the limited range of film densities in a color
photographic system. The effects of limiting may be seen
by examining the density versus 1log exposure curve
(sometimes called the Hurter and Driffield curve or H and D
curve) of a typical reversal color film, shown in figure
(2-9) . wWhen the exposure values of the three layérs all
lie to 1left of the upper bend in the H and D curve, the
densities limit at "black" and all color information is
lost (Case A). When all three exposure values lie to the
right of the right bend in the D log E curve, the densities
limit at "white" (Case B). wWhen at.least one exposure
value limits while one or two exposure values 1lie on the
linear portion of the D log E curve, the output color will
not be neutral and its hue and saturation will in general
exhibit large errors (Case (). Only when all three
exposure values at an image point lie on the linear portion
of their respective curves 1is it possible to maintain
accurate brightness, hue and saturation values relative to
other properly exposed points in the image (Case D).
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Another source of color error is gamut limitations in
the display. It was previously stated that the position on
a chromaticity diagram of a weighted sum of two primary
lights 1lies on the 1line connecting the position of the
primaries. It follows that the reproducible gamut of a
three primary display must lie within the triangle on the
chromaticity diagram defined by the positions of the three
primaries. In additive displays such as television
monitors, the color gamut is great enough to include all
but a few relatively infrequent highly saturated colors.
Subtractive photographic systems are further restricted in
gamut by the undesired dye absorptions with a resulting
inability to reproduce saturated colors at high 1lightness

levels [149].

2.3 Restoration of Color Errors

Restoration of color errors caused by system
imperfections of the types discussed in the previous
section 1is conventionally done in one of two ways,
depending on whether the color reproduction system is
additive or subtractive. Color television 1is the only
widely used additive color imaging system. In color
television, undesired spectral absorption cannot take
place, and 1its additive equivalent, crosstalk among the
three color signals, is negligible when the signal decoding
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and shadow mask alignment in the receiver are correct.
Imperfect spectral sensitivities of the camera tube are
always present, however, and some kind of signal matrixing
[11,12,13) 1is usually, but not always, provided to correct
the errors. The sensor errors arise because the color
matching curves corresponding to the picture tube phosphor
primaries always have negative values over some portion of
the wavelength spectrum, while real sensor characteristics
have only nonnegative values. In theory, ideal sensors
could be made by providing a real sensor of the correct
spectral shape for each negative lobe in the color matching
curves, and subtracting its output from that of the
appropriate positive lobe sensor of each curve.. This would
require eight or nine sensors and 1is never done in
practice. Instead, three sensors are used whose spectral
characteristic curves approximate the main positive lobes
of the color matching curves of the receiver primaries
{11}. In many cases, no further restoration is done, and
color errors are present owing to the absence of the
negative sensor lobes. These errors usually appear as a
loss of éolor saturation at the receiver. In some
television cameras, a linear matrix operation is applied to
the three color signals in order to better approximate
receiver tristimulus values. The matrix typically has
negative off-diagonal elements, which approximate the

action of the missing negative 1lobes by subtracting a
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fraction of each of the other signal values from each
signal. The exact values of the matrix elements are
typically chosen by minimizing the average color error, as
measured by one of the "uniform” color difference formulas,
over some ten or twenty test color samples [12]. Signal
matrixing can reduce television color errors due to
imperfect sensor characteristics to a very small average

level [11,12].

In the case of subtractive color imaging, i.e.
photography, the most common restoration method is
photographic masking. Masking can be described as the
modification of one image by the information cont&ined in
another [14,15]. Photographic masking is intended
primarily to correct for undesired absorption of dyes. A
negative image, or mask, is generated for each case of
significant cross-talk among the three-color images. When
these masks, up to six in number, are placed in exact
registration with the three superimposed original cyan,
magenta, and yellow images, the cross-talk components of
the original dye images are largely cancelled by the masks
[14]). Masking is therefore a similar operation to
matrixing in color television, even though the sources of
the errors are different in the two cases. In the
television case, a matrix with negative off-diagonal
elements operates on the three exposure signals in order to

correct for imperfect sensor characteristics. Photographic
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masking applies a matrix with negative off-diagonal
elements to the vector of film layer densities (which vary
as the log of the exposures) in order to correct for

undesired dye absorptions.

Because of the effort required in preparing and
registering the masks, masking is mainly used in cases
where many reproductions are required from a single
original. Masking is widely used in photo-mechanical color
repfoduction (for example, photo-lithography). In
photo-mechanical reproduction, masking is incorporated into
the process of preparing separation negatives for each of
the printing dyes[l6]. Since the separations are often
produced by a color scanner, the masking operation is
readily achieved by manipulation of the scanner electrical

signals [15,16].
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3. Digital Color Restoration

Color errors which are generated by an imperfect color
reproduction system can be corrected digitally. A sampled
color image is described by a 3-dimensional array of
numbers, wusually nxnx3, where there are n samples in each
of two spatial dimensions, with 3 color values stored at
each spatial image point. When a color image exists in
such a sampled form, or can be put into sampled form, the
great speed and flexibility of a digital computer can be
put to use in correcting the color errors introduced by
imperfections in the sensors and storage devices which
recorded the original image. In contrast, correction of
color errors by photographic means, for example by
photographic masking, is a slow and complex process. The
production of several masking transparencies and their
exact registration is required for each image which is to
be corrected. The correcting power of masking is limited
to altering the density of each transparency layer by a.
weighted sum of the two other layer densities at that
poin;, as was described in Chapter 2. In digital
restoration, however, the correcting algorithms may be
complex, nonlinear, spatially varying, and may have spatial
memory. The speed of a digital computer when used along
with a television display also allows a degree of
interactive processing which is not possible with

photographic restoration. The penalties incurred in
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digital image restoration include the requirement for the
necessary equipment and loss of accuracy associated with

sampled data processing.

3.1 Vector Space Formulation of Color Analysis

In order to perform color restoration in a digital
computer, the necessary functions and equations must be
converted to discrete, sampled-data form. In this form,
the common linear operations of color measurement and color
reproduction become matrix-vector operations instead of

integral operations. For example, an integral operation on

a spectral waveform C(1A) of the form

Ay
X, =f 5, (0) ) a4, (3-1)
AL
for i=1,2,3 can be discretized by replacing the continuous
variable A with a finite set of points Al,lz,...kn and
forming the approximate discrete equation

n
x; = jzl v, si(xj) c(xj) (3-2)

where wl,wz,...wn are the weighting coefficients of the
quadrature integration formula used [1]. By defining a
vector ¢ whose i th component is C(xi), and a matrix whose
ij th component is szi(xj), eq. (3-2) can be compactly

stated in matrix form by
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x=S5¢ (3-3)

where
. c(Al)
1
c(Az)
x =|x, c = . (3-4)
x .
3 c(kn)
and
v, Sl(ll) v, Sl(kz) cees W Sl(ln)
§= vy 320‘1) (3-5)
_wl S3(X1) R EELITRR PR, A S3(An)

Since many of the important equations of colorimetry and
color reproduction are of the form of eq. (3-1), matrix
operators and equations are very useful in the analysis of
sampled data models of color imaging systems and in
colorimetry [2]. The equations of colorimetry are strictly
sampled data eguations in any case, since color matching
curves are obtained by experiments with human observers at
a finite number of optical wavelengths [3]. The continuous
color matching curves which are sometimes published are

obtained by interpolation of the original sample values.

The utility of matrix notation can be demonstrated by
examining color matching and metamerism [4]. Two
spectrophotometric distributions of light are said to be

color matched if they cannot be distinguished from each
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other by a human observer. Two such colors are called a
metameric pair. The tristimulus values are the same for

each member of a metameric pair (or set) of colors [3].

In the vector space formulation, let

1l
L= tz (3-6)
€3
and
ul(Al) ul(Az) ..... ul(xn)
T =]u,(a)) uy(Ag) -eeel u, (1) (3-7)
u3(A1) u3(A2) cecee u3()\n)

where t is called the tristimulus vector, UI(X), Us(N), and
U3(A) are color mixture functions for a standard set of
observing conditions, and the set (AI,AZ,...,An) are a
uniformly spaced set of wavelengths covering (as a minimum)
the domain over which the color mixture functions are

significantly different from zero. The value of n usually

lies in the range of 15 to 88. Also let

EQ) 0 0
g- |0 E(A,) .... 0 (3-8)
0... 0 ... EQ)

where E(A) is the spectral energy distribution of the light

source and
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r = | RGP (3-9)

with R(A) representing the spectral reflectance of a
reflective sample. If the color 1is from a reflective

sample, then

c = Er (3-10)
The tristimulus values t for a reflective sample are given
by

t = TEr (3-11)

If £ and Ern represent the spectral reflectances of a

sample and a matching sample respectively, then

t=7TBc = TEr (3-12)
or
TE(L-L] = 8 (3-13)

Two reflectivities are thus said to be metameric with
respect to an illuminant E and a standard observer T when
their difference vector lies in the null space of the

matrix TE.
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3.2 Modelling Color Imaging Systems

In order to achieve accurate color restoration
digitally, an accurate vector model of the color imaging
system is necessary. A general model of an imaging system
which senses and stores color values is shown schematically
in figure (3-1). At each image point, a spectral power
distribution, represented in sample form by the vector ¢ of
dimension n, serves as the input to a set of sensitivity
functions represented by the matrix S, with outputs
consisting of the three components of the vector X. The
elements S, C, and x are defined and related by eqé.
(3-3), (3-4), and (3-5). As an example, the rows of S
might be samples of the three layer sensitivities of a
color photographic film. In general, the linear operation
modeled by the matrix S is followed by a nonlinear function
of x which results in another 3-vector W The nonlinear
operation F might represent limiting of signals in a color
television system, or the nonlinear relationship between
layer exposure and layer density in color photographic
film. The three components of w are stored and are at some
later time used as input signals to a process G, generally

nonlinear, which displays the signals as an output spectral

distribution ¢ , again represented by n samples.

The functional relationship between the input spectral
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distribution ¢ and the displayed distribution c, for this

model can be written as

c, = GFSc (3-15)

where G and F are general vector operations of appropriate
dimensionality and are nonlinear, in general. It is
clearly impossible for the modeled system to generate a C,
vector equal to the input vector c. The S operation has
reduced the dimensionality of ¢ from n (usually 30, 48, or
80) to 3, with an irreversible loss of information. It is
possible, in theory, to generate a €, which is metameric to
€, since each color is colorimetrically specified by three
tristimulus values. For a colorimetrically perfect color

reproduction system, the input and output tristimulus

vectors, t and t_  are equal at each image point, or

t, = Tc, = TGFSc = Tc = t (3-16)

This relation holds if the following two statements are
true:
1) The rows of S are color matching curves. If this
is true, then x=Sc is a tristimulus vector of ¢ and
may be easily converted to the tristimulus vector
corresponding to any other set of color matching
curves (for example the rows of T).

2) The operator G F is an inverse tristimulus
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operator; that is, it takes a tristimulus vector x and
generates a waveform ¢ which is a solution of the
linear equation x=Sc . This implies that G F is a

linear operator even though F is generally nonlinear.

When these two conditions are met, the color at each
pixel in the reproduced image will match colorimetrically
the corresponding point in the input image. As stated in
Chapter 2, real color reproduction systems do not meet
these conditions exactly. Sensor spectral characteristics
are usually only approximations to a set of color matching
curves, and the subsequent recording display sequence
operation G F is always nonlinear owing to the limiting of

signals and other nonlinearities in the storage medium or

the display (5, 6].

In order to perform digital restoration on a digitized
color image, the foregoing model must be extended to
include the color scanner which digitiied the displayed
image. In subsequent sections, the special case of
reversal color film as an image storage medium will be
examined. To per form digital processing on a
photographically recorded transparency, the transparency
must be scanned by a color analyzing system which outputs
three color signal values at each point of a chosen spatial
grid array. The completely general color analyzing system

model including a scanner is shown in figure (3-2), with

45



46

wa3sds 3urzyIT3Tp pue Buypaoosx afewr 1070) (Z-f) 2andyy

H3INNVYIS WY WS DIHdVY90L1bHd
> Y 7 \
S3AN¥ND
¥313N0LIS 3¥NSOdX3 S3IAL) M3INNVIS
NSIO -N3JOHDIN S3AQ S3ANVA 907  ~AILISN3S NIid NV WIS
HOLlINOW ¥0 3dvl H¥010D ¥3AvI ALlISN3Q ‘SA Y3AVY e DIHJIVHOOLOHd
AL J1L3INOVYW ONINNVIS QALVYNINNTT ¥3AV ALISN30 W4 -3SVD vIDAdS
39VHOLS 3IOVNHOILS S31LI¥Y3I ¥010)
AVdS10 V11910 ¥32111910 AVdSI0 901VNV ~-NITNON SYOSN3S 1NdNI
—] *— H |jo— 9 |jeo— *+— 4 le— S [e—
R A 03 m M X 3
¢ ¢ u ¢ ¢ ¢ U

ALITYNOISN3RNIQ
TUYNIIS



the film-scanner special case specified beneath the general
system component blocks. It should be noted that while all
of the component blocks shown are present in a digitized
film color system, they may not all be present in other
digital image color systems. A digital television system,
for example, might not display and/or store the images

before digitization.

For the digital color analyzing system of figure
(3-2), the relation between the input color vector ¢ and

the stored observable v is given by

v = HGFSc (3-17)
where H, the characteristic function of the scanner, is a
nonlinear function of ¢ , but may be linear to a good
approximation over a wide range of signal levels [7]. If
the signal v were used to drive a display television
monitor, a colorimetric match between the displayed color
and the input color ¢ will be obtained if v is’ the
tristimulus vector of ¢ in the system defined by the

television display primaries. If T is the matrix of color

matching curves in that system, then

v = Tc (3-18)

or
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HGFS = T (3-19)

for a colorimetrically ideal digital color system.

3.3 The Color Estimation Problem

The problem to be solved can be stated as follows: How
can the tristimulus values of an input color to the system
of figure (3-2) be most accurately determined when the two
conditions of the ideal colorimetric reproduction system do
not hold? By observing the digitized signal v(x,y) over
some discrete array of image points in the x and y spatial
dimensions, it 1is desired to estimate t(x,y)., the
tristimulus vector at each image point, where ¢t is
derivable from the input spectral distribution ¢ by the

relation t=Tc.

The estimation problem may be broken into two parts,
each corresponding to one of the conditions of ideal
reproduction which are violated by real color reproduction
systems. Correspondingly, eg. (3-17), which describes the
whole system sequence, may be broken into two serial

operations

(3-20)

k]
]
(/7]
Q

and
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HGFx (3-21)

1<
I

The estimation process proceeds in two steps. First, an
estimate of x is determined from the observable v by
inverting eq. (3-21). Second the estimated x is wused to
estimate ¢ by inverting eq. (3-20). It will be shown
later that the desired tristimulus estimate E is best
estimated by taking the estimated é and letting g=_§. The
two requirements of ideal colorimetric reproduction may be
related to the above equations as follows:

1) The matrix § in eq. (3-20) must have rows

consisting of color matching curves.

2) The operation HGF in eg. (3-21) must be linear and

invertible.

In an idealized case where condition (2) is true, x is

obtained from eq. (3-16) by simple matrix inversion

x = (HGE)' v (3-22)°

If condition (1) is also true, then x is a tristimulus

vector of ¢ and there exists a 3x3 matrix A such that

T = AS (3-23)

and, therefore
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L =Tc = ASc = Ax (3-24)
For a real, non-ideal system, no matrix A satisfying eq.
(3-23) exists and HGF is usually invertible only over some

range of signal values.

In summary, it is desired to invert the set of

eguations

1%
]
12}
a

(3-25)

I<
]

HGFx (3-26)

in order to obtain an estimate of the tristimulus vector t
which is optimal in some as yet undefined sense. Equation
(3-26) is non-linear, deterministic (if observation noise
can be neglected) and is exactly determined (x and v each
are three dimensional). Equation (3-25) is linear,
stochastic (because of observation noise on X and possibly
because of statistical assumptions which may be made about
€) and 1is underdetermined (c is of higher dimension than
X). The two step estimation method is diagrammed in figure

(3-3).

Chapter 4 will examine methods of solution of eq.
(3-25). Chapter S5 will examine solution methods for eq.

(3-26), with emphasis on the film-scanner color analysis
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system.
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4, Tristimulus Estimation

The final step in the color restoration process is the
estimation of the tristimulus values at each image point in
the original scene. This estimate must use as its input
guantities signals which are outputs of imperfect spectral
sensors, and which are usually themselves indirectly
obtained from other observable quantities. This chapter is
concerned with the estimation of tristimulus values from
spectral sensor outputs which are assumed to be directly

observable.
In vector notation, the egquations to be solved are

X = S5c+e (4-1)

and

t=Tc (4-2)

where

3xn array of sensor spectral sensitivities

177)

3xn array of color matching curves

s
o

nxl spectral distribution vector of input color

0

3x1l vector of sensor outputs

1%
.

3xl vector of observation errors

"

: 3xl vector of tristimulus values of ¢

ler

The problem is to estimate t when S and T are known, ¢ and
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e are unknown, and x is observed.

4.1 Linear Estimation Methods

Since ea. (4-1) is a linear eguation and since the
techniques of linear estimation are weil developed (1,2,3],
it is natural to attempt to estimate t from x using linear
estimation methods. In order to optimize any estimator,
however, it is necessary to choose a fidelity criterion, an
expression which quantifies the color difference between
any two sets of tristimulus values, t , and t,. Such a
fidelity <criterion should ideally satisfy two conflicting
conditions:

1) The fidelity criterion should be perceptually

uniform, i.e., the error value given by the fidelity

criterion should be proportional to the perceived
color error over the entire tristimulus space.

2) Maximization of the fidelity criterion should lead

to estimator equations which are solvable in closed

form and with a high degree of generality.

There are several existing color distance formulas
which are perceptually uniform to a good approximation
(7.8). These color distance formulas (see Section 2.1) are
complicated functions of the tristimulus wvalues of the
colors, and, when used as color fidelity criteria, do not

satisfy the solvability condition stated above. In order
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to obtain solvable equations, it is necessary to use a
quadratic error criterion, a type of error criterion whose
use 1is almost wuniversal 1in linear estimation theory.
Hence, let the . error «criteria in the tristimulus and

spectral distribution spaces be the quadratic forms

e = [(_t_l - gz)T ﬂ(gl - g?_)]l/2 (4-3)
and
e. = [(g - EQ)T N, - 52)]1/2 (4-4)

where M and N are 3x3 and nxn positive definite matrices,
respectively. Then the many techniques of linear
estimation which have been developed over the years may be
directly applied to the tristimulus estimation problem.
These error criteria, or color distance formulas, are not
perceptually uniform, but they do satisfy two important
conditions which a useful color distance formula should
obey:
1) Reducing the color distance between two colors as
determined by either of these two formulas will, in
general, provide an improved color match between the
two colors.
2) wWhen the color distance e, or e, is equal to zero,
the two colors are perceptually eaquivalent under a
colorimetric model. The converse is true for e but

t

not for e .
c
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In the remainder of this chapter, several widely used
linear estimation methods will be applied to the
tristimulus estimation problem. The problem will first be
approached under a 1linear regression model. Under this
model, the spectral distribution ¢ 1is assumed to be
nonrandom but unknown. No statistical information on ¢ is
assumed available, but a priori knowledge in the form of a
smoothness constraint is utilized to improve the estimate.
Least squares estimation and minimum norm methods are among
the techniques employed to solve eags. (4-1) and (4-2)
under the regression model. The tristimulus estimation
problem will also be approached using a stochastic color
model. Under this model, ¢ is assumed to be a random
vector whose first two moments either are known or can be

approximated. The problem can then be solved using well

known Wiener estimation methods.
4.2 Estimation Under a Linear Regression Model

In Chapter 3 it was shown that if sensor spectral
sensitivities can be expressed as linear weiqhted sums of
color matching curves, then tristimulus wvalues can be
directly obtained from the sensor outputs when there is no
observation noise. For cases in which this condition dJdoes
not hold, a matrix B can be found which approximates the

color matching matrix T by BS in the least squares sense.
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Then a tristimulus estimator can be obtained by letting

_g = BSe = Bx (4-7)

In order to find the least squares approximation or
fit of T by S it 1is necessary to find the best least
squares fit of each row of T by a weighted sum of the rows

of S. Let

ur (4-8)

]
=

and

T
b, (4-9)

T
by

]
|

Then it is desired to find the vectors b, for i=1,2,3 which
minimize ||u -Stb,“ where the n-dimensional Euclidean vector
- -1

norm is defined by
lxll = oMo'? (4-10)

Using the well known least squares estimation theorem (4],

the desired vectors are

b= (sshlsy  1=1,2,3 (4-11)
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Taking the transpose of each side and observing that SS is
symmetric,

T T .T T,-1
b=y S (88" (4-12)

Using (4-12), (4-8), and (4-9),

B=r1sT(ssH™? (4-13)

Substituting this expression for B into eq. (4-7) gives

the least squares tristimulus estimator

TssHy™ x (4-14)

E-r

“n

The matrix product §T(§_S_T) -1 is defined as the

+

pseudo-inverse matrix S” of the 3xn matrix S, when S has
linearly independent rows (2). The least sguares

estimator, eq. (4-14) is therefore of the form

E=ré-1s"x (4-17)

A +
where c=5 x is an estimator of the unknown color vector c,
obtained by solving the (underdetermined) equation x=Sc for
. + .
¢ using S , the pseudo-inverse of S. Any vector ¢ of the

form

c = S+3<_+ (1 - §+_) v (4-18)

where v is any n vector, is also a solution of x=5cC. This

may be seen by multiplying each side of (4-18) by S,
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sc =sst x+ (s-55) v=x (4-19)

since SS*=I. Of all the solutions given by eaq. (4-18),
the vector c=§+§, obtained by setting v=0 in (4-18) is the
solution of minimum Euclidean norm. This becomes evident
by observing that the particular solution S+§ is orthogonal

to the homogeneous solution (1-§+§)g. For any v

(@-s*'s) viTsx=v(-s's)ysx=0 (4-20)

Since the length (norm) of the sum of a fixed vector S x
+
and a vector orthogonal to S x is minimized when the

. + . ..
orthogonal vector is of zero length, ¢=S x is the minimum

(Euclidean) norm solution of x=Sc.

The particular estimate of ¢ given by g=§+§ is only
one of the many solutions to the underdetermined equation
x=Sc. Minimum norm estimation provides other solutions
which may be better in the sense of minimizing a quadratic

norm given by
Helly = U (4-21)

The nxn matrix N must be positive definite and symmetric
and is chosen so that Hgihqis a measure of a property of ¢
which is to be minimized. Particular choices of N, such as
those leading to minimal energy or maximal smoothness of c,
will be discussed after deriving the general minimum norm

estimator.
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The task is to choose a ¢ which minimizes gTﬁg while
satisfying Sc=x. This can be accomplished using Laqgrange

multipliers. Let

3@ e’ Ne +2T(se - x) (4-22)

where A is a 3-vector of LaGrange multioliers. The scalar

term J(c) is minimized when its first derivative is zero

which yields
1
c=-53N" S (4-23)
Solving eq.(4-23) and x=Sc for X as a function of x gives

sese--tarlsh

or

A= - 2(snt sH? (4-24)
Substituting (4-24) into (4-23) gives the solution

d=ntsTent sHt i (4-25)
Again forming the tristimulus estimate §=z§,

£ - m—l _S_T(ﬁ-l §1')-1 x (4-26)

This is the minimum N norm estimate of t. By letting n=1I,

the identity matrix, the least squares estimator of eaq.
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(4-14) is obtained. The relationship between the least
squares and minimum norm solutions for general N is given

in the following theorem [5], which is given without proof:

Theorem - Let N be positive definite and S be

+
1.
rea Let A o

inverse of A. Then,

be the M-least sguares minimum N-norm

(sHzapT = sty (4-27)

The theorem states that the minimum N norm estimator |is
equivalent to the g'lleast squares estimator. This means
that if the least squares estimator eqg.(4-14) used (_Tg'lg)

. . T )
as its n-space norm instead of (cc¢c) , it would be

identical to the expression of eqg.(4-26).

The choice of the nxn matrix N in the N-normis
determined ov the particular solution which is to be chosen
from the many solutions of x=Sc. If N=I, the identity

matrix, the norm becomes

which is equivalent to the energy of c. Another approach
in restricting the estimate of ¢ is to try to choose N so
as to incorporate a priori knowledge of ¢ into the
estimate. One such piece of a priori knowledge is that the
spectral intensity curve which ¢ represents is "smooth" in
some sense, A useful smoothness criterion is thét of the

average squared second difference of ¢ [6]. If this
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smoothness criterion 1is wused, the solution to x=Sc which

minimizes the guantity glbg is sought, where

E? Ne = z [(°1+1 - ci) - (ci - Ci—l)] = Z (°1+1 = 2c, + ci-l)

yl 1 -2 1 0 0 s e 0 Cl
¥y 0 1 -2 1 0 ... O ¢,

y = - g - = D_C (4‘28)
: 0 0 1 -2 s 0 0 :

then XTQ is the desired average squared second difference.
Thus,
"Ne= ] y?-yy=cne

1 _2 1 0 0 ecesocse

(4-29)

|2
n
-
[~
(]

css0 e O -
p—t
1
o
=)}
|
e
[
[=]
.

The matrix N thus derived cannot be directly substituted
into eqg.(4-26), the minimum norm estimator, since it is
singular (each row and column sum to zero). This obstacle
can be removed by replacing N by N + €l where € is a

positive constant, small compared to unity.
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The least squares and minimum norm solutions treated
thus far are deterministic solutions to egs. (4-1) and
(4-2). The observation noise e in ea. (4-1) was assumed
to be negligible. Tristimulus estimation under a
reqression model will now be extended to include additive
observation noise whose first two moments are assumed

known. The regression model 1is given by the set of

eaquations

x=8S +e (4-30a)

E(e) = 0 (4-30b)

E(eel) = R (4-30¢)
— —ee

where E denotes the ensemble expectation operator, and gee

is therefore the 3x3 symmetric, positive definite

covariance matrix of the observation error e. Equations

(4-38) are a special case of the general linear regression

problem. What is found is a set of three 3-vectors li for
T

i=1,2,3 such that 1.x is an estimator of t., the i th

element of t. Thus,

where u_ is the i th row of the tristimulus matrix T.
Clearly it would be desirable that
E(®) =t
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If ﬁ satisfies this relationship for all true values of ¢,

the estimator is said to be unbiased. For an unbiased t#

T ,_ T
E(2, x) =y, ¢

Now,

T _.T _
E(2, x) = & E(x) = 2, Sc

So, for an unbiased estimator

T T

L Sc=u ¢
for all ¢, or

T
s £1=’21 (4-31)

If this condition holds, then ti=23k is said to be

unbiasedly estimable.

Unfortunately, the quantity ti is not unbiasedly
estimable in the case of tristimulus estimation. The
condition of eg. (4-31) does not hold in general, since it
requires that the color-matching curve u; be expressible as
a weiqhted sum of the three rows of S (which are the three
sensor spectral sensitivities). Note that this condition
is equivalent to the condition of ea. (3-23). Since the
dimensionality n of the rows of S is far greater than
three, eq.(4-31) cannot hold for general S. An equivalent
description 1is that unbiased estimation is not possible

when the regression model is underdetermined.
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Although an unbiased estimator is not obtainable, it

is possible to seek a minimum bias estimator. A linear

T

. T . .. .. . .
function 1 x is said to be a minimum bias estimator of u'c
ﬂ’ -—i—

if
T
JEQUEFAIRE L s 2 - u,ll

Minimum bias estimators are not unique, in general. It is
desired, then, to find an estimator which has least
variance in the class of linear minimum bias estimators.
This estimator is called the best linear minimum bias
estimator (BLMBE). The variance of a scalar random
variable a is defined to ne

v(a) = Ea - E(a))?

T T
Let lii be an estimator of u.c. Then,

E(_R._{i-u'r )=(2T§_-uT

u e) = (g S-ude (4-32)

is the bias and the variance 1is

T ,_,T _
v(g; x) = &; R &, (4-33)

T
The problem is to minimize lige&i in the class of 1 for
which HSTE.-U.“ is a minimum. The norm in the three
= "1 "1
dimensional space is defined to be the Euclidean norm

H&” - (£T3'_)1/2

. T 1/2 .
Let the norm in R be defined by lIx {l= ( x "Mx) where M is

positive definite. The answer is given by the minimum
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I-norm M-least sguares solution of the inconsistent

equation §T1=g

_ T.+
-&i & )MI —i
. T .
The estimator of uig is
a 'l‘ T.+ T T +
L, =2x [(S N =u; Sry-1 X (4-34)

using the duality result of eqg.(4-27). The variance of the

estimator, assuming uncorrelated observation error, is

2,7, 2T

T _ _
V(e'x) = R £ =a" 22 = l(s MI[(s ] u, (4-35)
where
_ 2
Re—aI

An explicit expression for the BLMBE for wuncorrelated

observation noise is given by

£ =l
1 —

T usT (susT)~!

The best linear minimum bias tristimulus vector estimator

is then
g = s’ (susH ™ x (4-36)

where
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to
the

eqg.

the

Let

(al}
Il
(n24

>

It can be seen that, if M=I, the BLMBE is eaguivalent
. -1
the least squares estimator of eg. (4-14). If M=N,

BLMBE is eouivalent to the minimum norm estimator of

(4-26) .

In the event that the observation noise is correlated,

regression model can be extended to account for it.

E(e) = 0 (4-37a)

E(ee’) = o W (4-37b)

where W is non-singqular and positive definite and a is

unknown. Since W is non-singular and positive definite, H

exists such that

Let

wt=nh -t (4-38)
z = Hx
e, = He
§1 - .“_S.
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Then
z=5cte (4-39a)
Bey =0 (4-39b)
and
Ee, e, = a’ I (4-40)

The model defined by eas.(4-39) and (4-40) has uncorrelated
noise, and can be solved as before. The estimator of t is
given again by eg. (4-36) where S is replaced by S;, and x
is replaced by z. Thus,

~ T T-].
E"Eﬂil(§1!1§1) z

or

jer>
i

2

=
”~~
=
N
<3
wn

(4-41)

~
]

The resulting estimator of eqg.(4-41) is identical to the
uncorrelated noise estimator of ea.(4-36). The estimator’s
independence of the noise correlation is a result of the
fact that the equation being solved is underdetermined. It
is of interest to look at the overdetermined and exactly
determined cases. If M=I, the general solution to the’

correlated noise problem eq. (4-37) and (4-38) is given by
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&= 9" nx (4-42)

. + . .
where, again, (HS) 1is the Moore-Penrose pseudo-inverse of
HS [3]. For the overdetermined case, the pseudo-inverse is

defined by
{(4-43)

where A is mxn with m>n and rank (A)=n. In the

underdetermined case, the pseudo-inveqse is defined by

at = aT(aaD™ (4-44)

where A is mxn with m<n and rank (A)=m. In the exactly
determined case, m=n and A =A"). Substituting these
expressions into eq.(4-42) in turn gives for the

overdetermined case

G RO (4-45)
In the underdetermined case

d=stssH™ x (4-46).
In the exactly determined case

a=stx (4-47)

The best linear estimator is independent of the correlation
properties of the noise when the system to be solved is

underdetermined or exactly determined.
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In the tristimulus estimation problem, which is
underdetermined, the 1linear estimators which have been
discussed thus far (least squares, minimum norm, and BLMBE)

are all of the general form
E=1=15 x (4-48)

where S is a generalized inverse of S, When the vector
3 n

norms in R and R are taken to be Euclidean norms (i.e.,

M=N=I), the different generalized inverses all become the

pseudo-inverse, and all three estimators are identical

t=12=18" x = 15T(ssH) ™} x (4-49)

4.3 Stochastic Color Estimation

The regression model of the previous section included
additive observation noise whose first two statistical
moments were assumed known. The spectral distribution
vector ¢ of the input color was assumed to be unknown but
nonrandom; no statistical assumptions on ¢ were included in
the estimation model. In the following discussion, the
model is altered to include a random ¢ vector. The random

color model is given by

(4-50)

|
i}
g
+
11

and

(4-51)

jrr
(]

-3
Ie)
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o

RS o
"--\k‘-" .

where, again, S and T are known 3xn matrices, x 1is the
observable 3-vector and t is the tristimulus 3-vector which
is to be estimated. The statistical properties of the

unknown n-vector ¢ and 3-vector e are given by

Ec = m, {(4-52a)
T
E[(g-gc) (g_-gc) ]=_§cc (4-52b)
Ee = 0 (4-53a)
T
E(ee’) = R, | (4-53b)
1'-:(ei cj) =0 (4-53c¢)

for i=1,2,3 and j=1,2,....,n. A linear estimator of ¢ of

the form

|0

=a+Ax (4-54)

will now be sought for which a is a real vector and A is a

real matrix chosen so that
-~ ~ T
Q A E{(c ~¢c) (c - ¢)7] (4-55)

is minimized. The minimization of gc is defined to mean

that for any other linear estimator ¢’ and its

corresponding Q°, the matrix Cl;oc is positive
2. M

semi-definite. when Q is minimized, the expected sauared
7



errors of the components of é (the diagonal elements of Q )
are each minimized. This insures that
2 -~ T ~

e AE[(c~-2) (c~2)] (4-57)
the sum of the squared component errors of c, is also
minimized. Most importantly, the minimization of gc also
results in the minimization of the matrix of tristimulus
errors gt when a tristimulus estimator i is derived from é

by letting £=_§. Let
Q A BB (D] = ENe-D DT 71 = BE  (4-59)

If Q;:' Q. is positive semi-definite, then

is also positive semi-definite since the rows of T are
linearly independent, and Qt is therefore minimized when gc
is minimized. The spectral distribution estimator which is
sought has the form of eq. (4-54) and minimizes eq.
(4-55). The solution is the well known discrete Wiener

estimator (see reference (3] for a derivation), given by

a=m - Am (4-59)
and

A=R RY (4-569)

—  —cx =X
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where

ch = E[(c - gc)(g_— EX)T] (4-61a)

Ry~ E[(x -m)(x - gx)T] (4-61D)
and

m =_§_1_qc (4-61c)

Substituting eqs. (4-59) and (4-68) into eq. (4-54) gives

m +R RS (x-m) (4-62)

-~
2:

By manipulating eas.(4-50) and (4-61) ,the necessary

correlation matrices are found to be

R, = Elle - ) (x - m)"] =R 8
and
Rx = E[(x - m )(x-m)T] =§_Rcc§T+gee

Substituting these last two relations into (4-62) gives
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sT+R )Y (x-m)
- —ee =
The corresponding Wiener tristimulus estimator, §=_§, is

given by

t = T( ) (4-63)

m
= -

The color covariance matrix R, might reasonably be

approximated by a first order Markov covariance matrix of

the form
2 3 n~-1
1 o] P 0 caeae P
0 s T ceoe .
2 1
R _=|% ° ° (4-64)
~—CC .
pn-l e 00 0000000000000 l

where p, the correlation coefficient, is a positive

constant less than unity.
4.4 Tristimulus Estimation Results

The tristimulus estimators which have been discussed
in the foregoing sections have béen tested by means of a
computer simulation which uses ten test colors and also by
using a computer simulation which incorporates real
multispectral images. The set of ten test colors consisted
of measured reflectivities (reference 4-9) of natural and
man-made objects which are typical of those which might
occur in a séene to be reproduced. The ten spectral

reflectivities are shown in figure (4-1). They correspond
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Figure (4~1) First five test spectral reflectivities
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Figure (4-2) Second five test spectral reflectivities
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to the following objects:

1) flesh

2) grass

3) sky blue

4) red brick

5) purple flower

6) blue dye

7) green dye

8) yellow dye

9) red dye

10) flat neutral gray
These reflectivities were multiplied at each wavelength by
a daylight illuminant function (CIE Illuminant C) to
generate the ten input test colors. Each reflectivity
curve represents a measured reflectivity, except (3) and
(4). Number (3) is a curve which, when multiplied by
Illuminant C, gives a typical spectral energy curve of
light from the sky. Number (4) is a hypothetical neutral
reflector whose reflectivity is 6.5 at all wavelengths.
The spectral energy curve of CIE Illuminant C is shown in

figure (2;3).

The spectral sensitivity characteristics which were
incorporated into the model were of several kinds. An
important set, representing a typical reversal color film
and lens combination, 1is shown in figure (4-3). These
curves are the spectral products of the film layer taking

76



W[FJ Pue SUIT ‘SITIFATITSUSS TeaIdadg (g-v) 2andfa

Wu ‘HIONITIAYM
004 009 006

(0]0)74

ALIATLISN3S

77



sensitivities, figure (4-4a) and the lens optics
transmissivity, fiqure (4-4b). The 80 samples of each of
the 3 curves of fiqure (4-3) become the elements of the
3x80 sensitivity matrix S. The colorimetric quality
factors Q for the red, green, and blue sensor curves of S
are, respectively, 0.414, 0.822, and 0.983. The green and
especially, the blue sensors of this sensor set are very
good approximations to color matching curves. The red
sensor, by contrast, is not close to any color matching
curve primarily because it peaks at about 650 nanometers, a
wavelength which is about 56 nm. longer than the peak
wavelength of any ideal color matching red sensor. The
difference can be seen by comparing the sensor
characteristics S, figure (4-3), with the set of color
matching curves which are nearest to S in the least squares
sense, shown in figure (4-5). The green sensor of S is
also shifted slightly toward the longer wavelengths
relative to its ideal colorimetric position, but not so
much as the red sensor. The reason for the exaggerated
spread of peak sensitivities in the color film is, as
described in Chapter 2, to increase color saturation for a

more pleasing (but less accurate) color rendition.

The linear estimators of the input waveform c can be
graphically compared using the film sensor S. The

estimators are of the form
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Figure (4-4a) Color film layer spectral sensitivities
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Figure (4-4b) Lens absorption characteristic
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10>

c +S x
g, 72 X
where S is a generalized inverse of S and ¢, is the zero
vector except in the Wiener case. The generalized inverses

are one of the following:

1) pseudo~inverse:

2) constrained inverse:

s~ = N1 sTesnt sTyL
—c — p—— —— —
3) Wiener inverse:
- _ T T.-1
-S-t = MS (SMS™)

where N is the smoothing matrix defined in ea. (4-29), and
M is the Markov covariance matrix given by ea. (4-64).
Since S is a 3x88 matrix, each S is an 80x3 matrix whose
columns may be graphed as the rows of S were graphed in
figure (4-3). The columns of §+, the pseudo-inverse of S,
are shown in figure (4-6). The columns of §; and g; are
shown in figures (4-7) and (4-8). Figure (4-8a) shows the
wien;r inverse using a correlation coefficient p=8.5 and
figure (4-8b) shows the Wiener inverse with »=0.9. The
estimate c of the input spectral waveform are weighted sums

of the columns of the appropriate §— (summed with a mean

vector in the Wiener case).
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Figure (4-6) Columns of pseudo-inverse operator
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Figure (4-7) Columns of smoothing inverse operator
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Figure (4-8a) Columns of Wiener inverse operator, p = 0.5

RELATIVE VALUES

| | 1 1 1 L 1

400 ’ SQ0 ' 600 700
WAVELENGTH, am

Figure (4-8b) Columns of Wiener inverse operator, p = 0.9
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Examples of the waveforms generated by the estimators
are shown in figures (4-9), (4-10), and (4-11). The solid
curve of figure (4-9) shows a test <color (sky blue)
obtained as the product of the illuminant of fiqure (4-2)
and a "reflectivity"” given by curve number 3 of figure
(4-1a). The dotted line in the figure is the

pseudo-inverse estimator of ¢ given by S=5+£ where, as

usual, x=Sc. Figure (4-1@0) shows the constrained smoothing
estimate g=§:5 compared with the same input test color.
Figure (4-11) shows the corresponding estimate of ¢ for the

case of the Wiener estimate (p=0.9). The estimator is
a T T.-1
S=m +MS(SMS) ~ (x - Sm))

where the mean vector m was taken to be 2.3 I(A). The
function 1I(A) is the illuminant, fiqure (2-3), and 6.3
corresponds to a somewhat arbitrary average reflectivity.
Of these three solutions, the one which imposes the most
smoothing on the solution, the Wiener estimate with p =06.9,

is clearly closest to the original waveform.

The performance of the tristimulus estimators is shown
in Table (4-1) for each of the ten test colors. These
results are summarized in Table (4-2) by averaging the data
over the ten test colors. Color errors are described three
ways: luminance error (where luminance = 1.0 corresponds to
the illuminant against unit reflectivity), chrominance

error (Euclidean distance in UCS chromaticity space), and
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Table (4-1)
Tristimulus Estimator Performance Against Ten Test Colors

Film Sensitivity Characteristics

Color Number 1 2 3 4 5 6 7 8 9 10
True Luminance .33 .12 .47 .14 .18 .09 .23 .44 .11 .50
Chromaticity u .24 .19 .18 .28 .25 .15 .14 .21 .38 .20
Chromaticity v .32 .33 .29 .34 .27 .23 .35 .36 .32 .31

Pseudo-inverse
Luminance Error -.05-.02-.07-.02-.62-.ﬂl-.ﬂ4-.07—,02-.07
Chrominance Error .61 .01 .02 .01 .02 .04 .03 .01 .04 .01
Cube Root Error 4.7 3.3 7.4 3.0 3.7 9.2 5.7 5.0 4.8 5.8
Smoothed Pseudo-inverse
Luminance Error -.02-.01-.03-.00-.00-.01-.01-.02-.01-.02
Chrominance Error .01 .61 .01 .00 .62 .03 .63 .02 .03 .01
Cube Root Error 2.1 1.3 3.3 0.6 2.2 5.4 3.8 2.6 2.7 2.3
Wiener, p =0.9,c¢=0.3I
Luminance Error -.01-.01-.006-.00-.01-.00-.00-.01-.01-.00
Chrominance Error .01 .66 .06 .61 .01 .01 .62 .01 .G3 .00

Cube Root Error 1.0 6.3 6.4 6.6 1.7 0.9 2.1 1.8 2.7 6.2
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Table (4-2)

Tristimulus Estimator Performance Averaged Over Ten Test
Colors, Film Sensitivity Characteristics

Estimator RMS Error RMS Error RMS Error
Type Luminance Chrominance Cube Root
Space
Pseudo-inverse 0.044 0.622 5.29
Smoothed 0.014 9.019 2.78

Pseudo-inverse

Wiener #.005 8.011 1.35

Table (4-3)

Tristimulus Estimator Performance Averaged Over Ten Test
Colors, Narrowband Sensitivity Characteristics

Estimator RMS Error RMS Error RMS Error
Type Luminance Chrominance Cube Root
Space
Pseudo-inverse 0.272 6.856 39.82
Smoothed 0.211 8.0854 28.37

Pseudo-inverse

Wiener 8.837 0.0490 10.67
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cube root wuniform perceived error (Euclidean distance in

L a b cube root coordinate space).

From Table (4-2), it is apparent that smoothing of [
reduces the color estimation errors, esvecially the
luminance errors. The minimum norm property of the
pseudo-inverse generates a waveform possessing the least
energy (sum of the squared waveform samples) of all
solutions to x=Sc. Therefore, positive weighted summations
over the estimated waveform tend to be smaller than
equivalent summations over the "true” input waveform. For
this reason, pseudo-inverse estimates of tristimulus values
tend to be on the 1low side. Note in Table (4-1) that
luminance errors using the pseudo-inverse estimator are
uniformly negative for all ten test colors. Imposing
smoothing on § by using Wiener estimation qeneratés
waveforms whose luminance errors are still more negative
than positive (Table 4-1), but whose RMS average luminance
error is reduced over the pseudo-inverse RMS luminance
error by a factor of nine (Table 4-2) and whose RMS
chrominances error is also improved by a factor of two.

The net error improvement in the perceptually uniform cube

root space is by a factor of about four.

The tristimulus estimators were also tested using the
same test color set, but using sets of sensor

characteristics which are poorer approximations to color
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matching curves than are the film sensitivities just
discussed. A set of narrowband sensitivities of  unit
amplitude peaking at wavelengths of 458, 550 and 656
nanometers were tested. The colorimetric quality factors
of these sensors are 0.114, 0.079 and 0.008. These
arbitrarily chosen sensors are not the best narrowband
sensors colorimetrically. Figure (4-12) shows a graph of
the colorimetric quality q for a narrow band filter as a
function of its center wavelength, The optimal narrowband
wavelengths are approximately 445, 540 and 605 nanometers.
The average color errors resulting from application of the
tristimulus estimators using the narrowband sensors at 454,
558 and 658 nanometers are summarized in Table (4-3).
Again, the Wiener estimator provides the best tristimulus
estimation accuracy, although the errors are larger for
each estimator type than they were using the film
sensitivities. The improvement provided by smoothing when
narrowband sensors are used is apparent when the
pseudo-inverse and Wiener estimates of color number three
are compared. Figure (4-13) shows the pseudo-inverse
reconstruction of color three using the narrowband filters.
It consists of samples of the input waveform at the
narrowband wavelengths. Figure (4~14) shows the
corresponding Wiener estimate (p=0.9). The waveform values
at the filter wavelengths are again correct (as they have

to be if x=Sc and the (filters are narrowband) but the
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values at other wavelengths are much more accurate because
of = smoothing. Although tristimulus errors are much
improved because of smoothing (see luminance error in Table
(4-3)), chrominance errors are improved by a smaller
factor. This 1is because chromaticities are ratios of
tristimulus values, and the negative tristimulus errors

tend to cancel.

The tristimulus estimators were tested using a real
six band multispectral image. The six samples at each
image point constituted the elements of ¢, the "true" input
spectral waveform. The elements of the 3 x 6 array S could
then be selected to simulate any arbitrary set of thrée
taking sensitivities. The x vector generated at each image
point by x=Sc served as an input vector to one of the
estimator algorithms, generating an estimated image to be

displayed.

The input multispectral image was generated by
photographing a table top still life of colored objects
through six narrowband interference filters. The filter
center wavelengths were 440, 480, 520, S66, 600 and 640
nanometers and their half power bandwidths were about 10
nanometers. Each filter was an element of a sixteen filter
set made by Oriel corporation. The spectral passbands of
the set are shown in figure (6-2). The exvosures were made

using Kodak Tri~-X film in a 35mm camera with incandescent
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illumination. Exposure times were of the order of ten
seconds 1in length, established by trial and error. Care
was taken that the field of view of interest was less than
twenty degrees in order that the interference filters were
not detuned significantly by off-axis rays at the edge of
the field. The six negatives were digitized wusing a
flatbed microdensitometer and digitally conver ted to
positive images. Photographs of the six digital images,
displayed on a cathode ray tube, are shown in figure

(4-15) .

After scaling to correspond to the spectral weighting
of the illumination, the six images were weiqhéed and
summed according to the color matching curves of a set of
television display primaries. A photoqraph of the
resulting "true color” image is shown in fiqgure (4-16) (see
color plate). The six images were also weighted by factors
simulating sets of sensors far removed from ideal <color
matching curves. One such set consisted of narrowband
sensors at 440, 520, and 600 nanometers, weighted by 0.25,
1.8, and 0.5, respectively. The resulting green biased
image is shown in figure (4-17). Operating on this image
with the pseudo-inverse tristimulus estimator gives the
image shown in figure (4-18). The green bias 1is removed,
but the 1image 1is dark owing to the tendencvy of the
pseudo-inverse estimator to generate low tristimulus values
when the sensors are narrowband. The result of smoothing
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Figure (4-15) Six multispectral images
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is shown in the Wiener estimated image of fiqure (4-19).
The 1image 1is bright and color balanced. The main color
error with respect to the true color image is a
desaturation of the bright reds, possiby because of the
absence of the deep red 646 nm. component in the input

image.

The Wiener estimator performs well with sensors which
may not be color balanced and which may be either
narrowband or broadband, as long as the three sensors are
near the ideal values of 445, 540 and 645 nm. A more
severe test takes place when large portions of the visible
region are not covered. Figure (4-20) shows the result
when the blue, green and red display primariesz_are driven
by equal amplitude narrowband sensors at three long
wavelengths, 5608, 680 and 640 nm. Since only the green to
red components are present at the input, the color
distortion is great. Reds map into orange, greens become
blue, blues become black, and yellows are white. With this
as an input, the wiener estimated image is as shown in
figure (4-21). The primary improvement is in the rendition
of the reds. Blues also are now no longer black, because
of the smoothing induced blue content in the estimated
spectra. On the debit side, oranges and yellows are still
rendered as white, and there is a slight overall pink bias
to the image. The overall color improvement achieved by

using the wWiener estimator can be judged by examining the
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color wheel on the book cover of each of fiqures (4-19),

(4-208), and (4-21).
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S. Digital Correction of Color Nonlinearities

In Chapter 3 it was stated that an ideal colorimetric
reproduction system should have sensor characteristics
which are color matching functions, thereby generating
signals at each image point which are tristimulus values.
It was further stated that the ideal color system should be
linear between the sensor outputs and the inout to the
final display primaries, and should convert the sensor
outputs to tristimulus values in the c¢olor coordinate
system defined by the display primaries. When these
conditions fail, as they always do to some extent in real
color systems, color errors will be seen in the displayed
image. This chapter will examine methods of correcting
color errors introduced by the presence of system
nonlinearities which cause the second condition stated

above to fail.

5.1 Color Imaging System Nonlinearities

Nonlinearities in imaging systems, whether the system
is photoqtaphic or electronic, can be olaced in one of two

major categories: invertible or non-invertible.

1) Invertible nonlinearities - In imaging systems,
these are usually operations which alter signal values in a
smooth, mathematically simple way. An example 1is the

power-law or "gamma" nonlinearity characteristic of some
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television camera tubes and cathode ray tubes [1]. If
input and output signals are called v; and v,

respectively, the functional relationshio is aiven by
where the constant ¥ typically has a value between 9.5 and
2,0. when the value of ¥ is known, and other operations
have not also taken place, the gamma nonlinearity can be
corrected by raising v, to the power 1/y. This may be
easily accomplished when signals are digitally stored in a
computer. Another important invertible nonlinearity is the
density vs. exposure relationship in photographic film.
Over some range of exposure (radiant energy per unit area
at the film plane, spectrally weighted by the film
sensitivity characteristic), the relation between film
layer density and exposure is very nearly logarithmic. As
will be shown in a later section of this chapter, the
relations among exposure x, density 4, and transmissivity r
for a layer of reversal color transparency film can be

expressed in approximate form as

d =b-v log x (5-1)

and

=109 (5-2)

where b and ¥ are constants. Substituting (5-2) into (5-1)
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gives

v =107y log x) _ y0mb v (5-3)

From this result, it is clear that when v differs from
unity, there is a power law nonlinearity between the input

exposure x and the output transmissivity,

2) Non-invertible nonlinearities - Nonlinearities in
imaging systems which cannot be inverted are usually caused
by signal limiting. Signals whose values are too large or
too small for the dynamic range of the system are mapped
into the upper or lower cliopving levels of one of the
system components. Examples of non-invertible
nonlinearities include the clipping action of the
density-vs~-log exposure curve which takes place in
photographic film and the limiting of signals in electronic
devices. The film density-vs-log exposure of figure (2-8)
is a typical example of the limiting functions present in

all image transmission and storage systems.

In Chapter 3, a general digital color analyzing system
model was described. The operation of the model on an

input color c was described by ea. (3-17), repeated below

v = HGFc

where the model components are defined and related on the

block diagram of figure (3-2). The special case of a film
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and scanner color system is also indicated in figure (3-2).
The film-scanner color analyzing system will be examined in
the remainder of this section, in order to give a concrete
and important example of a real system containing
nonlinearities, The concepts developed are applicable to a
much wider class of color imaging systems. In the section
which follows the film-scanner discussion, some methods of

correcting invertible nonlinearities will be discussed.

The type of color photographic film which will be
examined is reversal color film (2], which produces a three
layer positive transparency. In a reversal color film,
three light-sensitive layers absorb incident light at a
point in the film plane. The spectral irradiance at the
object point being imaged is c(A). The spectral
sensitivity curves of the layers of a typical reversal
color film are shown in figure (5-1). The sensitivities

SR}A), Scﬁk)' SB(A) of the three layers are defined by
S, () = —— (5-4)
i E; ()
for i=R,G,B where E (M) is the energy per unit area at the
film plane at wavelength which is necessary to generate

some fixed density value after development. The integrated

exposure values of the film layers are given by
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A
U
XR(C) = de c(x) SR(A) To(l) di (5-5a)

xL
AU

XG(C) =d. c(x) s,(1) TO(A) dx (5-5b)
AL
AU

Xg(C) = dg c(x) s, T, (A) dA (5-5¢)
A
L .

where 7, is the spectral transmissivity of the camera
optics and dR,dG,qB are proportionality constants which
contain the physical parameters which govern the
relationship between the spectral power at a point.in the
scene being photographed and the spectral energy at the
film plane. These parameters'include the F number of the
camera lens and the duration of the exposure. This allows
the exposure values to be defined in terms of the spectral
irradiance c(\) at points in the scene rather than in terms
of the spectral radiant energy at the film plane. 1In
practice, the values of dR'dG'dB are usually adjusted so
that the exposure values xR'foxB are equal when the input
color is a chosen reference white. Converting eas. (5-5)

to a matrix equation, (see Chapter 2) yields

X=SC (5-6)

where the 3xn matrix S contains dR,dG,dBand 7,(}) as well
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as SRfA), Scﬁk), and SB(A). The vector x is then the
exposure vector corresponding to the color vector ¢ and the

sensitivity matrix S.

In the development of the film, the 1layer exposures
are converted to dye densities c¢, m, or y according to
relationships such as those shown in fiqure (5-2). These
density vs. log exposure curves are approximate in that
the density of a developed layer is dependent not only on
its own layer exposure as shown by figure (5-2), but, to a
much lesser extent, on the exposures of the other two
layers. This phenomenon 1is called the interimage effect
(3). The densities ¢, m, y are the dye concentrations of
the three dye 1layers of the developed transparency. The
spectral densities DC(A), Dnéx), Dy(k) (sometimes called
spectral analytical densities) of unit concentration of
each layer dye of a typical reversal film are shown in
figure (2-7). The dye layers are cyan, magenta, and yellow
in color and are intended to control the transmission of
red, green, and blue 1light, respectively. The spectral
analytical densities of the three superimposed layers is
ch(A) + monsk) + yDy(x). The spectral transmittance r(})
of the transparency is

—cnc(x) - mDm(A) - yDy(A)

1. =10

T (5-7)

When dye concentrations of c¢=m=y=1 are present, the

transparency spectral analytical density is the upper curve
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of figure (5-3) and the resulting transparency appears to
be a neutral gray under illumination by a reference white

light.

Equation (5-7) can be converted to vector form using

the following definitions:

Tp(3))
TT(AZ)
rs= .
TT()‘n)
c
v=qn
y
T
p.(0)) D () DA d;
e R (5-8)
T
Dc(kn) Dm(An) Dy(ln) 4
Equation (5-7) can then be written as
-4
t, = 10 (5-9)
i
or, with slightly irregular matrix notation,
- 107 (5-10)

In order to digitize the transparency, a scanner

samples its transmissivity at each point of some two
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dimensional array. Three sensors are used to measure the

red, green and blue regions. If the scanner spectral
sensitivities are HR(A), HG(A), and HG(A), and va VG' and
V g are scanner output siqgnals at each image point, then
AU
Vg = H (A) T, (3) dA (5-11a)
AL
AU
Vo = H (1) 1, (1) da (5-11b)
AL
AU
Vg = HB(A) TT(X) da (5-11c)
XL

The H characteristics are obtained by multiplying the
spectral characteristics of the scanner light source, the
photosensor, the scanner optics and the red, green, or blue
filter used for color separation. Substituting from ea.

(5-7) gives the scanner signals

‘v - [eD_(A) + mD_(A) + yD_(A)]
Ve = | . H(A) 10 ¢ y da (5-12a)
)‘L
*y - [eD_(A) + mD_(A) + yD_(1)]
vV, = H_(3) 10 ¢ y da (5-12b)
G B
>‘L

106



A

U - [eD_(A) +mwD _(A) + yD (A)]

vy =/ Hy(A) 10 ¢ m y dx (5-12c¢)
AL

as a function of the dye weights ¢, m, and y.

It is desired, then, to solve ea. (5-12) for ¢, m,
and vy after observing VR' V(? and VB’ where Dc, Dni and DY
are known. The solution is difficult because of
nonlinearities and undesired absorptions, two of the
possible sources of color error which were described in
Chapter 2. The nonlinear relationships among ¢, m, y and
v, VG, and VB are apparent from eq. (5-12). The

R
undesired absorptions occur because the Dc, Dn{ and D

b4
functions are nonzero over the whole spectral region, not
just over the appropriate third of the region. 1If DnéX)
and Dy(x) were zero value over the red spectral reqion,
where HRfA) is nonzero, then eag. (5-12a) could be solved
for ¢ independently of the other two egquations., In
general, each dye absorbs to some extent over the whole
spectral region, and the three eguations must be solved

simultaneously. Equation (5-12) can be converted to vector

form

v = Ht (5-13)
where
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and

HR(Al) ceees HR(AN)
H=|H () ..... HG(AN)

HB(AI) cevee HB(AN)

Summarizing, the complete input color-to-scanner output

chain in vector notation can be stated as

v = Ht = HG(w) = HGF(x) = HGFSc (5-14)

where H and S are linear operations which can be described

by matrices and G and F are nonlinear vector operators.

5.2 Exposure Estimation Methods

The equations relating the layer exvosures of a color
photographic film to the corresponding output signals of a
film scanner can be solved exactly, in principle. If the
film dye characteristics D.» D DY and the scanner
spectral responses HR? Hcf H}Sare known, then the three
film layer densities c, m, y can be obtained by inverting
eq. (5-12). These are three simultaneous nonlinear
equations in three unknowns ¢, m, and y. If the three
D log E curves of the film are known, then they, in turn,

can be wused to obtain the layer exposures XR! XG' xfsfrom

¢, m, and vy.

108



In practice, there are two reasons why an exact
solution cannot be obtained. First, the film and scanner
characteristics described above are not known exactly; they
are derived from experiments which are subject to some
degree of measurement error. Secondly, inversion of a set
of nonlinear eguations such as eq. (5-12) generally
requires 1iterative solution. Solution algorithms may
converge rapidly to the solution of the equations, but
there will generally be some residual error remaining after
any finite number of iterations. About the first source of
error, little can be done except to obtain the best
information available on the film and scanner
characteristics. The second type of error, computational
error in the solution algorithm, can be made almost
arbitrarily small at the cost of complexity of the
algorithm. However, since the inversion algorithm must be
executed at each point of an image array which may contain
tens or hundreds of thousands of points, the computer time
required for its execution is of great importance.
Choosing the optimal inversion algorithm requires a

tradeoff between signal error and computation time.

In the following material, a typical set of film dye
transmissivity and density vs. log exposure curves and a
set of color scanner response curves are substituted into
ea. (5-12), and several solution methods of various kinds

are employed in order to compare their relative accuracies
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and degrees of complexity.

The solution methods which have been investigated can

be assigned to one of three general types:

1) An "exact" solution ~ Equation (5-12) can be solved
with arbitrarily small error by employing a Newton-Raphson
iteration algorithm which converges to a solution of any

desired accuracy in a finite number of steps.

2) Solution by approximation of the original equations
- Equation (5-12) can be simplified by making
approximations which convert the three nonlinear integral
equations to three algebraic equations which may be linear

or quadratic, and which may be solved analytically.

3) Solution by table look-up or interpolation - The
equations may be solved by substituting values of film
density or exposure over some range of possible values into
the film-scanner equations, and tabulating the resulting
scanner voltages. To keep the number of entries in the
three dimensional table within reasonable bounds, coarse
quantization of the tabulated values can be combined with
linear interpolation between the tabulated values.
Alternatively, the whole table can be curve fitted by
simple interpolating functions such as polynomials. The
exposure values are then obtained, within certain error

limits, by inserting the scanner signal values into the
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interpolating functions and calculating the result.

The Newton-Raphson algorithm used to give an
arbitrarily exact solution of eg. (5-12) is a standard
iterative algorithm for solving nonlinear eaquations [4].
In this algorithm, an approximate solution for ¢, m, vy is
substituted into eg. (5-12) to obtain a corresponding set
of approximate scanner signals va v "VEV The differences
between the observed va YG' VB and the approximate signals

are then used to generate correction terms Ac, Am, Ay to

the initial approximate values of ¢, m, y. Thus,

-
—Acw BVR v 8VR F& i
¢ om ay R R
v Vv oV
I G G _
bm} =1 %5c m 3y Ve = V¢ (5-15)
\ avB BVB BVB v _ ¢
y ac om dy | B B
T i i i

The process can be iterated until the desired solution
accuracy is achieved. The initial approximate solution can
be obtained using any of the algorithms to be described in

the following material on approximate solutions of egq.

(5-12).

Single pass solutions of ea. (5-12) can be obtained
in several ways by imposing conditions on the oroperties of

the scanner or photographic film which render eq. (5-12)
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directly solvable. One such approximate solution is
obtained by assuming that the spectral response curves of
the scanner are narrowband and that the density-log
exposure curves of the film are linear over all density

values of interest. The last condition implies

c=a + log Xy (5-16a)
m=a + 7, log XG ({5-16b)
y =, + 7 log Xy (5-16¢c)

Substituting=these approximations into egs. (5-12) relates

the exposures to the scanner signals VR' V(r Vh

v.(N) ) v (N
Ve = ky X)\" KO B, () X ¢ Xg m Xg Y daa (5-17a)
L
Ay YA CYRNE X OOV M ¢Y
Vg = kG/ KO\ Hy(A) Xy Xg Xy Y da (5-17b)
A
L
My LGOI ACS I )
Vg = ky x K(A) Hz (M) X Xq Xy da (5-17c)
L

where

wc(x) =7, DC(A)

Qh(k) = Ym Dm(k)
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?y(k) Y Dy(x)

y

- [uC DC(A) +a Dm(A) + ey Dy(l)]

K(}) = 10

The narrowband assumption implies that the scanner

characteristic H_, are nonzero over spectral regions

R HG' HB
which are so narrow that the other functions of A are
approximately constant. This assumption is very good for
laser scanners but 1less good for broadbanded scanner
characteristics. Under the narrowband assumption, eaq,

(5-17) becomes

Y (h) Y () v (A)
_ ¢ R m R y R -
Vg = A X Xq Xg (5-18a)

1,00 Y00 ¥ O

VG = AG XR XG XB ({5-18b)
¥ (x.) ¥ (2.) ¥ (2)
_ c B m B y B -
Vs = 4 XK X Xp (5-18¢)
wheré

AU

AR = kR K(AR)J/P HR(A) dA
A

L

>
i

Ay
c = ¥ K(Ac)f Hy(2) da
AL
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Ay
Ay = kg K(AB)J/r Hg (1) dA
J‘L

and are the centroid wavelengths of the scanner

R'AG 'AB
functions Hpe Hge Hg, respectively. Taking the logarithm

of each side of eq. (5-18) gives the matrix eguation

NELAA vc(xR) v () ‘Py(AR) tn X, tn A
tn Vo | =¥ ) v () wy(xc) Ln kc + |20 A, (5-19)
fn Vg ‘PC(AB) 'i'm(AB) \ry(AB) 2n RB tn Ay

Inverting this equation and exponentiating gives the
-~ A -~

estimated exposures fo xG’ xB.

Another approximation can be made in eags. (5-12)
which renders the equations solvable in closed form. The
necessary approximation is that the film dyes are ideal
block dyes; that is, the three layer absorption curves are
spectrally nonoverlapping and are constant with wavelength
over their absorption regions as shown in fiqure (2-8).
Under this assumption, ea. (5-12) reduce to the following

equations

+b,,10 ™4+p_10 Y (5-206a)
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+b..10 ™+p..10 7 (5-20b)

+b..10 ®+b..10 7 (5-28¢)

<3
1]
c
—t
o

where Dc, Dn{ DY are the constant ideal dye absorptions

over their absorption regions and where
A
=f U
by '/; H (A) d)
Lj
for i=R,G,B;j=c,m,y and where A\, and A, define the lower
and upper spectral 1limits of the cyan dye absorption

region, with similar definition for the magenta and vellow

absorption region. 1In matrix form, ea. (5-28) becomes

-cD
v 10 €
R -mD
v.| =138 li0c ™ (5-21)
G ¥,
vy 10

Inverting this matrix eauation, taking the base 10
logarithm of the components of the resulting vector, and
dividing by the appropriate constants —Dc, -D . or -DY
gives the approximate values of ¢, m, and y under the ideal

dye approximation. The accuracy of the answer is

determined by the closeness of the actual dye absorption
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curves to the nearest set of ideal dye curves. As was
stated in Chapter 2, real dyes have some deqree of
absorption in undesired spectral reqgions, and do not have

constant absorption over the desired absorption region.

Inversion of the system of eauations defined by the
density-log exposure curves and eq. (5-12) can be
accomplished in other approximate ways by first
substituting a range of exoosure values x into the
equations and tabulating the resulting scannetr signals v.
Determination of x from v can then be accomplished by any
of the following:

1) choosing the tabulated V¥ nearest to the observed v

and looking up the corresponding X in the table.

2) curve fitting the x values to the v values using a

set of algebraic interpolating functions, thus

obtaining estimated values of x from observed values
of v by inserting the observed v into the
interpolating function and calculating thg

corresponding value of x.

3) using a combination of the above.

For example, a coarsely quantized table of X vs. v
might be used along with a simple, perhavs linear,
interpolation algorithm for obtaining values when v is nol
equal to one of the relatively small number of v’'s in the

coarse lookup table.
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The curve fitting and interpolation algorithms can be
simplified by using the logarithms of the variables rather
than the variables themselves, since the logqarithms of the
components of X and v are very nearly linearly related,.
This may be inferred by observing that under the narrowband

scanner assumption, eags. (5-12) simplify to eqs. (5-19)

which are exactly linear in the logarithms of x and v.
5.3 Exposure Estimation Results

In this section, the exposure estimation algorithms
which have been described are compared by testing them with
exposure and scanner signal values obtained using a
computer simulation of a typical film-scanner color
analyzing system. The film properties are those of a
tyoical reversal color film (Kodak Ektachrome-X). The
density vs. 1log expvosure and layer dye spectral densities
of the film are shown 1in fiqures (5-2) and (2-7). The
scanner simulation represented a flying spot scanning
system consisting of a cathode ray tube light source, a
photomultiplier tube sensor with an S20 sensitivity
characteristic, and color filters which are Kodak Wratten
filters number 25 (red), 58 (qgreen) and 478 (blue). In
addition, the spectral absorption of a typical set of
lenses was incorporated. The overall spectral responses of
the simulated scanner in its red, green, and blue channels

are shown in figure (5-3).
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The algorithms which were tested as exposure
estimators were the following:

1) Newton-Raphson

2) Narrowband

3) Ideal Dye

4) Quadratic Curve Fit

5) Table Look-up with Iterative Correction

The parameters of the algorithms were adjusted to the
particular film-scanner system being considered in the

following ways:

1) Newton-Raphson - The Newton-Raphson solution method
was carried out for each input color until the change in
estimated exposure values for iteration was sufficiently
small. The iterations were stopped when the RMS fractional
change in the estimated exposures averaged over the three
exposure values, was less than 0.01. This was achieved, on

the average, after about six iterations.

2) Narrowband - The narrowband spectral sensitivities
were placed at the centroids of the three scanner response
curves, which are at wavelengths of 616, 535, and 4446
nanometers for the red, green and blue scanner channels,

respectively.

3) Ideal Dye - The dye spectral density functions

which were assumed under the ideal dye model were of the
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ideal rectangular shape as shown in fiqure (2-8) where the
wavelenqths separating the three dye absorption curves were
chosen to be the intersection wavelengths of the actual
dyes, and the constant densities of the ideal dyes were
selected so that their densities integrated over all
wavelengths equalled the integrated densities of the actual

dyes.

4) OQuadratic Curve Fit - A guadratic ovolynomial
exposure estimator was derived by obtaining a least squares
curve fit between a set of expoéute vectors x and the
corresponding scanner signal vectors v, obtained by
substituting the x vectors into the equations which model

the film and scanner properties
v = HGF(x)

The polynomial expression which approximates the components
of x from the components of v was selected to be a
quadratic expression in the logarithms of the components
(log Xi) = g: a5 log Vj + j[z( bijk log vy log Ve + 4

where i,j,k = R,G or B. This was done since it was known
that the relationship between the 1log V and log X
auantities is exactly linear in the narrowband scanner case
(equation 5-19), and it was hoped that many of the
quadratic coefficients could be neglected in the general

scanner approximation. This indeed turned out to be the
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case, and it was found that the quadratic coefficients
which were the largest were those corresponding to the
channel being approximated. That is, in approximating 1log
Xpr the coefficient of the (log yk)z term was much larger
than that of the (log v_log Vb) term or the (log ch term.

R
This allows the approximation to take the simple form

i

o\ 2
(log Xi) = } aij log Vj + bi (log Vi) + c

Expressed in matrix form, this becomes

log VR
log X; a5y a3y 33 by 0 01, v, [C]
log X, = |3y 3, 3 0 b2 0] log VB c,
2 (5-22)
(log V)
-log XBd aq) 339 234 0 0 qu (Log VR)Z —C%
- G
2
(log VB)

The a, b, and c¢ coefficients were determined by least
squares curve fitting over 125 points, 5 in each dimension

of x. The five values each of log X log X and log XB

R’ G
were chosen to cover in equal increments most of the linear

tregion of the density-log exposure curves of the film.

5) Linear Correction Scheme using Table Look-up for

Initialization - An efficient iterative method for solving
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for the layer dye weights ¢, m, v was derived from a method
of Eugene Allen (5] for solving a related problem, that of
determining the dye weights which give a colorimetric match
to a given sample. 'Details of the method can be found in
reference ([5]}]. The only change required for the
film-scanner problem is the substitution of the scanner
characteristics for the color matching curves used by
Allen. The method essentially 1linearizes the relations
between c,m,y and the scanner signals about the initial
values of c¢,m,y and generates a linear corrective term

which is added to the initial values.

The method was tested using as initial estimates
values obtained from a coarse three-dimensional (5x5x5)
look-up table,followed by one step of linear correction
using the Allen method. The table was obtained by
inputting a range of 125 density vectors w, spaced
uniformly, into the film-scanner simulation and forming a
three-dimensional table of the output vectors v and the
input g's. Given an observed v , the nearest smaller v
components in the table were selected, and the

corresponding w was used as an initial point.

The results of a computer simulation testing of the
various exposure estimation algorithm are summarized in
Table (5-1), along with the results of using no correction

for film and scanner nonlinearities. The simulation

122



Table (5-1)

Exposure Estimator Error Performance

Exposure Normalized
Estimation Exposure
Algorithm Error
Narrowband 9.8392
Approximation

Ideal Dye 0.0662
Approximation

Quadratic n.06110
Curve Fit

Table Lookup 9.0213
Wwith Linear

Correction

Newton-Raphson 0.6061

Iterative Method

No Correction #.10845
(Scanner Signals

Treated as

Exposures)

123



modelled the whole photograohic film and color scanner
system whose characteristics are given by the curves of
figures (2-7),(5-1), (5-2) and (5-3). The input colors
were the ten reflectivities of figure (4-1) illuminated by

CIE Illuminant C.

The results indicate, as expected, that the more
complex methods were more accurate. Of the two simplest
methods, the narrowband approximation was more accurate
than the ideal dye approximation, although both were much
better than no correction at all. The slightly more
complex quadratic curve fit was better than either of the
simpler methods, by a factor of four or more, and was also
more accurate than the more complex tgblg lookup with
linear correction. The table lookup with one step of
correction was far surpassed by the Newton-Raohson method,

which executed six iterative steps per solution.
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6. Related Applications of Digital Color Methods

The vector space description of color analysis which
was described in Chapter 3 and the generalized inverse
methods which were used for tristimulus estimation in
Chapter 4 can be applied to a wide variety of color
problems. In this chapter, two problems will be discussed.
The first, spectral calibration of an optical sensor using
readings from test samples, is a practical problem which
arises when direct spectrophotometric measurement of the
sensor spectral characteristic is impossible. The second
problem, that of computer generation of spectral waveforms
with desired properties, arises in the simulation of color

or multi-spectral sensing and recording systems.
6.1 Estimation of Color Scanner Spectral Characteristics

The spectral response of an optical sensing system,
such as a color image scanner or a densitometer, is often
difficult to measure directly. The spectral response is
typically the product of a series of spectral
characteristics of the system’s component parts, such as
the emission characteristic of the 1light source, the
transmissivity of the system optics and the response
characteristic of the sensor. The spectral response of the
system as a whole can be measured directly only by placing
a wavelength variable narrowband device, such as a

calibrated monochromator, in the system light path. This
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may be impossible because of physical size limitations,
accuracy requirements, or other reasons. An alternative
approach is to take readings with the scanner using a
series of test color samples whose spectral characteristics
are known, and to reconstruct the scanner spectral response
from these readings. The vector equation relating the
scanner characteristic h, the i th color sample
transmissivity Ei and the corresponding scanner output X,

is given by
x, =¢; h+n (6-1)

where Ei and h are 0Ox1 vectors of quadrature samples of the
test color sample transmissivity curve and the scanner
response curQe: respectively. The observation noise error
on the i th observation is given by n; . By combining the P

observations X (i=1,...,P) into a Pxl vector x, eq. (6-1)

becomes the matrix equation

x=Ch+n (6-2)

where g? is the i th row of the PxQ matrix C. Since the
number of guadrature mesh points Q is usually much larger
than the number of test samples P, eq. (6-2) is
underdetermined, and the tools which were used to solve the
same eguation (eg.4-1) in Chapter 4 can be again applied.
The mathematical solution for h in eq. (6-2) is equivalent

to solving for ¢ in eq. (4-1) because of the symmetry
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between ¢ and h in eq. (6-1). 1In the tristimulus problem
the sensor response was known and the input color was being
estimated. Now, the input color is known and the sensor

characteristic is being estimated.

The three types of solutions developed in Chapter 4
are the pseudo-inverse solution, the generalized inverse
with a smoothness constraint, and the Wiener solution. All
three are applicable to the scanner spectral characteristic
problem. The smoothness constraints imposed on the
estimated characteristic by the constrained generalized
inverse solution and the Wiener solution are desirable
since the spectral response of a broad banded color sensor
can be assumed a priori to be a smooth function. The three
solutions to eq. (6-2) are

(1) pseudo-inverse solution

=cfcchtx (6-3)

|=>

(2) generalized inverse solution with smoothness

constraint

A 1T -1 T,-1
Es—_l‘l cC (CN"C) " x

(6-4)

where N is a suitably chosen smoothing matrix such as
that of equation (4-29), which minimizes the average

squared difference over all solutions to x=Ch.

(3) Wiener solution
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_ T T -1
A =m +MC (CMC +K7 (x -

x-Cm) (6-5)

where m, is the mean vector and M is the covariance
matrix of the vector random process from which h is
assumed to be a sample, and K is the covariance of

the observation noise.

The three solutions were used in the spectral
calibration of an Optronics Model S2066 flat bed scanning
microdensitometer. The test samples were two sets of
spectrally selective filters, each set covering the
spectral region of interest, roughly 4060 to 70¢ nanometers
in wavelength. The first set consisted of nine absorption
filters, four gelatin (Kodak Wratten) filters and five
glass absorption filters. Their transmissivities are shown
in figure (6-1). These were obtained by sampling the
continuous transmissivities at 80 points at 5 nm.
intervals; The resulting C matrix was therefore 9x80. The
second set of filters consisted of 16 Oriel narrowband
interference filters, shown in figure (6-2). These are
spectrally spaced from 406 to 780 nanometers in increments
of 20 nanometers and have half power bandwidths of 10
nanometers. The transmissivities were sampled at 166
points in steps of 2.5 nm. (380 to 777.5 nm.), giving a

16x160 C matrix.

TheAg matrix used in the constrained generalized
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Figure (6-1) Absorption filter characteristics

|
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Figure (6-2) Interference filter characteristics
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inverse solution was the smoothing matrix of equation
(4-29) and the Wiener solution assumed a zero mean vector,
a first order Markov covariance matrix, and negligible

observation noise.

Figure (6-3) shows the estimated response for the
three types of estimator using the measurements taken with
the absorption filters. Figure (6-3a) shows the
pseudo-inverse estimate, figure (6-3b) shows the
constrained generalized inverse estimate and figure (6-3c)
shows the Wiener solution with three different values of
assumed interelement correlation. Figure (6-4) gives the
estimates obtained using the same types of estimators but
with data obtained using the narrowband interference
filters. The Wiener estimates with the highest correlation
values (6.9 or 08.95) give the smoothest curves obtained
with both the absorption and interference filter data, and
may be presumed to be the best estimates of the true
response. The interference filter estimate might be
expected to be more accurate than the absorption filter
estimates, since there were more of the interference
filters and since their passbands do not overlap
significantly, making eq. (6-2) extremely well
conditioned. The “true" spectral response curve is not
available, however, but since the Wiener estimates with the
two filter sets are in fairly good agreement, it may be

concluded that both estimated responses are a good
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Figure (6-3a) Estimated scanner response, pseudo-inverse,
absorption filters
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Figure (6-3b) Estimated scanner response, smoothing inverse,
abgorption filters
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Figure (6-4a) Estimated scanner response, pseudo-inverse
interference filters
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Figure (6-4b) Estimated scanner response, smoothing inverse,
interference filters
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approximation to the actual spectral rasponse.
6.2 Computer Generation of Spectral Waveforms

The computer simulation of color and multispectral
sensing and recording systems often requires the generation
of spectral waveforms which simulate the spectral power
distributions existing at points in the sensor field of
view. It may be desired that the n-vector which represents
the sampled spectral waveform possess certain properties
expressible as linear equality constraints. For example,
it might be desired to generate a spectral waveform, or
color, whose tristimulus values are specified. In
addition, the generated waveform should exhibit properties
which are characteristic of spectral waveforms existing in
nature, such as smoothness and non-negativity. These
requirements are nearly identical to those of the waveforms
generated in the tristimulus estimation methods of Chapter
4. The difference is that the matrix S in the constraining
equation x=Sc need not represent a set of real sensor
characteristics, but instead may represent any linear
operation on the waveform ¢, such as a tristimulus

constraint of the form t=Tc.

The generation of spectral waveforms metameric to a
given color is a special case of waveform generation which
has been the subject of some study. This is equivalent to

generating waveforms with desired tristimulus values. The

136



methods which have been derived usually construct the
waveform as weighted sums of three or four simple functions
such as narrowband functions (see reference (1],
P. 344-357) for a summary of methods to 1967). A recent
method developed by Takahama and Nayatani [2] is derived
using calculus of variations, and constructs the function [
as a weighted sum of color matching curves. The Takahama
algorithm expressed in sampled data form is equivalent to
the pseudo-inverse solution of the constraining equation,
3=T+t. To generate many metameric waveforms satisfying the

constraint, ¢_ is varied and the solution g;go+g*(£-Tco) is

(o]
the solution of t=Tc which is nearest in the least squares

sense to o

The Wiener and smoothing inverses described in Chapter
4 can be applied to the generation of metameric waveforms
with some advantages. The imposition of smoothing can, for
example, generate waveforms which are very broad and smooth
while still, satisfying t=Tc. The general waveform

expression is given by

eme +MI(DID T (£ -Te) (6-6)

where t is the desired tristimulus vector, T is the matrix
whose rows are color matching curves, go is an arbitrary
waveform, and M is a smoothing matrix. Waveforms generated
by this algorithm are shown in Figure (6-5). A test color

is shown as a dotted line, with waveforms metameric to the
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test color (with respect to illuminant C) shown as solid
lines. The metameric waveforms were generated using
eg.(6-6) with g°=0 and the Markov matrix of eqg.(4-64)

replacing M. The values of p were 0.6, 0.8, and 0.95.
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7. Conclusions and Topics for Further Study

This dissertation has presented a variety of
techniques for digitally restoring digital color images.
The methods which were treated included ways of correcting
for colorimetrically imperfect sensors and correcting
errors introduced by color system nonlinearities and
undesired film absorption. In addition, methods for
estimating the spectral response of a broadband sensor from
sample readings and for computer generation of waveforms

with desired colormetric properties were treated.

The correction for sensor spectral imperfections, or
tristimulus estimation, was best accomplished using a
wiener estimation algorithm which imposed a large smoothing
effect on the spectral waveforms generated as intermediate
steps in the estimation of tristimulus wvalues. The RMS
error in UCS chromaticity space was 8.0811 averaged over ten
test colors using color film taking sensitivities, The
me thod has the advantages of simplicity, linearity,
optimality (under a mean squared tristimulus error
criterion) and generality. The property of generality
assures that the estimator can easily be re-optimized when
the taking sensitivities or the assumed statistical
properties of the input colors are changed. Although the
method was restricted in this report to the estimation of

three tristimulus values from three outputs of imperfect
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spectral sensors, it 1is easily generalized to other
dimensionalities. The outputs of m sensors of arbitrary
spectral response could be used to estimate the outputs of
n other arbitrary sensors, where m is greater than, equal
to, or 1less than n. Applications of the method might
include the filling of spectral gaps in multi-spectral
sensor data, or the generation of "true color" imagery from
multi-spectral data. All that is required 1is that the
spectral correlation properties of the incoming radiation
are known with some degree of accuracy, and that there is
significant correlation between the observed spectral

regions and those being estimated.

The material dealing with correction of color system
noniinearities and undesired absorption showed that the
resulting color errors can be greatly reduced, for a
typical film-scanner system, by using relatively simple
computer algorithms. Simple linear and quadratic
approximations to an exact solution proved capable of
reducing errors in estimated film exposures by a factor of

about ten, for the system which was simulated.

The chapter on applications related to digital color
restoration used as its primary mathematical tool the
generalized matrix inverse, used previously in the chapter
on tristimulus estimation. In fact, the most important

single result of this report may be the demonstration of
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the great utility of the generalized inverse as applied to
color systems. The applications treated in this
dissertation included tristimulus estmation, estimation of
sensor spectral respénses, and computer generation of
spectral waveforms. The generalized matrix inverse is
applicable to a great many other problems connected with
color and multi-spectral analyzing and imaging systems.
Any problem requiring the solution or inversion of a set of
linear vector equations, subject to the minimization of a
vector gquadratic form, is a candidate for generalized
inverse methods. This is true whether the equations are
deterministic or stochastic, overdetermined,
underdetermined or exactly determined. Typical probleﬁs
might include the estimation of the spectral properties of
sample reflectivities, sensors, illuminants, atmospheric
transmissivity, lens or filter absorption characteristics,

etc.

A fruitful area for further study is in determining
the best quadratic forms for use as error criteria with
linear estimation techniques. A quadratic form which best
measures the departure of a spectral waveform from the
smoothness or correlation properties of natural object
colors would be useful. The optimal gquadratic forms for
converting the vector of tristimulus errors or the vector
of spectral distribution errors to a number measuring the

total perceived color error would also be of some benefit
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in color estimation problems.

In conclusion, it is hoped that the contents of this
dissertation are of some value in advancing the science and
art of digital color image processing. The field of
digital color image processing is in its infancy, and will
doubtless evolve far beyond its current state. The uneasy
marriage of colorimetry and linear system theory,
characteristic of the methods described here, will someday
be supplanted as newer, more c¢omplex and more accurate
mathematical models of the human visual systems are
created. Still, in spite of the obvious limitations of
linear estimation, guadratic error «criteria, and present
day colorimetry, methods such as those described here are
effective. With the increasing power of digital
computation the digital processing of color imagery will

become even more effective and more widespread.
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