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1. INTRODUCTION

Geologic and gedmorphic studies have greatly benefited in many
areas from the computer-aided analysis of LANDSAT (formerly Earth
Resources Technology Satellite) images. For example, spectral inform-
ation from ERTS-1 has been shown to be compatible with ground spectral
reflectance measurements [l] , and a close correlation hs been dis-
covered between the surface cover of vegetation and the geomorphologic
characteristics of the area [2] . One reason for the attractiveness of
computer processing is that subtle ground features present in the multi-
spectral images can be enhanced by digital image processing in o;der to
facilitate the task of manual interpretation of satellite and other imagery
by qualified geomorphologists. Furthermore, concepts borrowed from
the field of patternv recognition are now being applied increasingly to
help the human interpretative task. This has led in certain cases to a
completely automatic classification of certain terrain regions [3]. The
potential benefits of computer image processing for oil exploration are
thus very clear.

The present study has been made to explore and identify digital
image processing techniques which are best suited for this particular
application. The principal goal was the extraction and enhancement of
terrain features of interest in this context and the suppression of

artifacts resulting from imperfect satellite sensor characteristics,

transmission errors, variable illumination, etc. Significant advances
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have been made in this domain, as described in the next sections of this
report. For example, economical image enhancement algorithms have
been developed, in which properties of the human visual system were
integrated into the numerical manipulations to produce significantly

better visual results. This approach has given images that convey

more information to the observer in charge of geomorphological studies.
Other results include the successful inhibition of parasitic '"band"
structure caused by imperfectly matched satellite sensors, the imple-
mentation of new ways to extract spectral ground reflection factors by

use of logaritiimic band ratios, principal components, etc. Line terrain
defaults have been enhanced by spatial filtering, crispening, homomorphic
and Wiener filter, Color has been used to display the information contained
in several spectral bands in a more dramatic fashion in order to reveal
possibly hidden geomorphic evidence.

In addition to these direct results, new avenues for further research
have emerged from the interaction between the fields of image processing
and geology. For example, new uses of pseudo-color have produced
images with a number of previously invisible patterns, The correlation
of such patterns with ground truth information will reveal which technique
is most appropriate for the application considered. On the other hand,
classification studies made with the General Electric Image-100 system
have shown that spectral classifications often correlate with underlying

-

edge structures. Such structures are amenable to image analysis and
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it is envisioned that a combination of '"intelligent'' automatic structure

search and spectral classification will provide a significant step towards

the automated geomorphic classification of ERTS imagery.
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2, SUMMARY OF ACCOMPLISHMENTS

This summary is structured according to the statement of work of
the research proposal submitted to Chevron Oil Field Research, It is
a brief review of the achievements obtained under this contract and
serves as an abstract for the more detailed descriptions which follow,
It is pointed out that several promising projects were pursued in addition
to the statement of work., A great deal of effort was also spent on the
formatting of appropriate data bases for all subsequent processing.
Two subsections of ERTS frames from different overflights wer;

selected which both cover the Bell Creek area in south Montana, Ad hoc

programs were written to compensate for the aspect ratio and earth
rotation distortions of ERTS images, the reduction and enlargement

of images and the correction of photographic display distortions.
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It was anticipated that the four bands of ERTS data would be converted

to true surface radiance measures by compensating for sensor/system

nonlinearities. It now appears that this task is severely limited by the

Er
vy

i absel;ce of appropriate satellite calibration data. In addition, itis

i generally recognized that such corrections may be of questionable

: value considering the effect of varying atmospheric absorptions,

g - A related type of distortion has been combatted successfully however,

" A correction technique has been implemented, which inhibits the artificial



image banding structure produced by a mismatch of the six satellite
sensors in each spectral band. This banding suppressio.n algorithm has
been used systematically after it was developed.

The correction of display distortions has also been advanced sub-
stantially and is described in the Appendix,
2) Histogram manipulation was expected to produce images of each
spectral bands with substantially better contrast., The power of this
essentially known technique has been signiﬁcantiy increased by use of
a visual model to match the processing operation with human visual'_
factors. This new technique, called histogram hyperbolization, has
been used systematically thereafter,
3) The finite aperture and noise inherent to ERTS sensors limit the
amount of information which can be extracted from each spectral image,
. Spa.tia‘.l high-pass filtering, homomorphic filtering and edge crispening
has been implemented to increase the visibility of fine detail and structures.
Wiener filtering has also been implemented in order to compensate for
the aperture and noise limitations of the satellite.
4) The extraction of relevant terrain features for human and further
machine classification was followed under two different approaches; the
Karhunen-Loéve expansion or principle component analysis and the band
ratios respectively, Both techniques have produced highly differentiated
pictures suitable for further analysis, a;nd the ratio approach has been

refined by use of logarithmic ratios,
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been explored, giving a number of possible color combinations with
far more information than classical color composites, It is expected
that a geomorphic correlation study with ground truth information will
indicate which color combination is most appropriate for the present
purpose,

5) The estimation of natural terrain color is possible despite the absence
of a blue sensor aboard the ERTS satellite. Such estimates rely on
certain assumptions on the spectral energy distribution of the terrain
which will ha;re to be further justified,

6) It is believed that the ""principle component",'ratio" and "edge"
images provide a wealth of information which can be combined for a
more automatic classification approach. In this context, it will be
essential to draw on ground t;ruth information to define appropriate
training sets for this particular application. For example, it appears

that important lineaments can be detected by a combined search of

spectral signatures and terrain structures outlined by edges.




3. PROCESSING AND ENHANCEMENT TECHNIQUES

This section is devoted to a d_eta.iled description of the image processing
principles and theory developed for this project. Each subsection describes
one particular operation and the results obtained. In some cases, several
distinct operations have been cascaded for more effective results, All .
the respective software is documented in section four.

3.1 Aspect Ratio and Earth Rotation Compensation

The rectangular scanning aperture of the ERTS sa.t‘ellite and the
earth rotation while scanning cause a combined geometric distortion
as depicted in Fig, 3.1-1, To compensate for these distortions, a
linear pixel interpolation algorithm was used to map arrays of 752 x 512
pixels into 512 x 512 pictures which correspond to a square terrain area
of approximately 41 x 41 kilometers (Fig. 3.1-2). (See program ERTSIS,
Section 4.) Using this algorithm, to 512 x 512 images were created from
the raw ERTS tapes to serve as a data base for further processing., Both
images cover the Bell Creek area in south Montana whicﬁ contains known
oil reserves and actual exploitation sites,

3.2 Image Reduction and Enlargement

Some processing operations such as Wiener filtering and homomorphic

filtering are performed more economically on smaller size images. There-

' fore, averaging and interpolation programs have been designed to reduce

and enlarge pictures before and after such sophisticated processing

techniques,
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Image size reduction is accomplished by averaging intensities of

four nearest pixels on two scan lines as shown in Fig. 3,2-1, where

L, — L, l, —1,

' . l ’ ., l s = 3 H,H )

1, — 1 1, —1 = 1

5 6 7 8 8, = 313+l +1 . +1g)
etc.

ly — 1, ,— 1,

I S3 I ' 4

3 — 1, s —1

F{gure 3.2-1, Image Size Reduction.

l.i and 8. are the intensity values of the large and resulting small pictures,
respectively, '

Figure 3,2-2 shows the result of size reduction from 512 x 512 pixels
to 256 x 256 pixels on Band 4 (Green).

Ima;ge enlargement is accomplished by linear interpolation in two
dimensions, For computational simplicity two dimensional interpolation
is implemented as two consecutive one-dimensional interpolations, i.,e.
first, every scan line is interpolated such that the number of samples
i8 twice or four times the original, This one dimensional interpolation

is shown in Fig. 3,2-3 in the case of enlargement by two. Result of

s, +3

1 72
11 B 2
s.+s
814—11 —>5, +— 12 —>5, 12 - 273, et
2 *

Figure 3,2-3, One-Dimensional Linear Interpolation,

enlargement of reduced picture is shown in Fig. 3.2-2c.
: 10



| TN

.h ‘,

F

&

T,

i

<

T
es, T

~ (a) 512 X 512 (b) Result of reducing
els the image in (a)
n
tc. (c) Result of enlarging the
image in (b)
Figure 3.2-2, Effect of size reduction and enlargement
on Band 4 (Green) of ERTS data.
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3.3 Histogram Stretching, Equalization and Hyperbolization

ERTS images have typically poor contrast as is revealed by amplitude
histograms. (Figs. 3.3-1, 2, 3 and 4.) Various contrast enhancement
techniques are available, s‘uch as stretching, Histogram equalization, etc.
They make use of a linear or nonlinear transfer function which may be
stored in a look-up table for fast processing. If a transfer function y =
f(x) is used, the histogram of the proces::ied picture is modified as
follows (Fig. 3.3-5)

x(y)
J

ply) = %( p(x)dx) Y

-

0
Where p(x), p(};) are ‘the amplitude probability functions of the original
and processed images respectively, and x(y) the inverse of thc; transfer _
function y(x). A successful technique' is histogram equalization, which
tends to make all amplitude levels of the processed picture equi-probable.

Let
X
yx) = [ pixdax = Fex) @
0 .

e.g.the cumulative amplitude distribution of x, then the histogram of

the processed picture becomes

x=F " (y)
- -1
ply) = d—i'. (IO p(x)dx) = a%' [F(F (y))] = constant

(3)
The implementation of this schem; is done as follows:
a) Estimate the amplitude distribution p(x) of the original image
(count the number of pixels of amplitude x (0 <x £255) and

divide by the total number of samples.

12
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b —————

b) Accumulate the histogram to create the transfer function

y = F(x)
n

yix ) = p(x.)
n =3 1

c¢) Normalize y(x) such that y(255) = 255,

d) Store the normalized values of y(x) and use as a look-up table.
Because the data is discrete rather than continum.JS, perfect histogram
equalization cannot be accomplished. What happens is that the levels
of the original picture are redistributed over the whole range (0, ..255)
available, The histograms of processed pictures are therefore not -
perfectly uniforrr; but have levels with zero occurrence (Fig. 3.3-6),

One possible drawback of this operation is contouring, a phenomenon
known in the context of coarse imége qﬁantization. This problem has
however not been noticeable at all in every single picture processed
here. |

Besides these classical techniques, an improved histogram manipu-
lation scheme has been designed for images that have to be analyzed by
a human observer. Noting that the human visual sensitivity is pr;portional
to the logarithm of image intensities, a histogram modification algorithm

has been developed which matches the image amplitude distribution with

the visual sensitivity function (Fig. 3.3-7). It is shown that this is

accomplished by the creation of a hyperbolic amplitude distribution,
Consider the logarithmic-like response of the visual photo-receptors

which can be approximated by:

18
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gx,y) = ¢ log(I(x, y) + c,) (4)

and assume for convenience that I is normalized to (0 <1 <1); a
monotonically increasing function J(I) is sought such that the probability

p(g) is constant, e.g.

1
p(g) = (5)
Bmax Emin

with g. =c log(1+c2) and gmin =< log(cz). The cumulative distribution.

F(g) is
-4 g8-8_ .
Fg) = | plgHg = — 22— - 1(6)
- gmin gmal.x gmin :

and the unknown distribution F'(J) is

J , g(J)
F@) = [ pong = [ pleie (1)
0 g .
min
Therefore
J + Cz
log{ ———
g(J)-grm‘.n CZ
F(J) = - = —T3 ¢ (8)
€max Smin 1 ( Z)
og C
2
and the desired density function p(J) is
d 1
pP(J) = g F(J) = 1+C (9)
2
(J+Cz)log( Cz )

Equation (9) represents a hyperbolic amplitude density function, The
unknown parameter c reflects the neural activity g(0) evoked by the
minimum displayed intensity and depends upon ambient lighting in the

case of a television display,

21
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A more convenient parameterization of p(J) may be obtained by -

considering the slope s of p(J) (0 <J <1) at the origin J = 0

-1

d
§ = gy P = 1+C
J=0 C2 lo ——2
2 OB\ T

2

(10)

Figure 3.3-8 demonstrates the effect of histogram hyperbolizai:ion.

Figure 3,3-9a is the original 512 x 512 section of the original ERTS

image (band IV), after the geometric corrections, Figure 3.3-9b has
been histogram equalized according to the classical procedure and

Figure 3-3,9c¢ anc_l 3.3-9d show the effect of histogram hyperbolization,
with 8 = -0,5 and s = -1,0, respectively, Computationally, histogram
manipulation algorithms typically make use of a look-up table. Histogram
hyperbolization is therefore as fasi: as equalization, a very economical

scalar enhancement technique, Figure 3,3-10 shows the other three

" bands of the same data base processed in this fashion, Because this

technique appears to produce the best visual display of the present type
imagery, histogram hyperbolization has been used as a display pre-
processing step in most operations described thereafter.

3.4 Banding Elimination

One unique featux;e of the ERTS satellites is the scanning arrangement,
which consists of four banks of six sensors each. An oscillating mirror
images a strip of land on each bank of sensors, such that six lines of
data are effectively scanned simultaneously during each sweep of the
mirror. The rotation axis of the mirror is parallel to the line of flight

so that the next sweep provides the next six lines of each spectral image

22
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(Fig. 3.4-1), etc. Unfortunately, the sensors and amplifiers are not
perfectly matched, so that an artiﬁciali "band' structure is apparent in
typical ERTS images, especially after image enhancement. For example,
suppose that the sensor #2 has a smaller gain than the other sensors; as

a consequence, the lines #2, 8, 14, etc, will appear darker throughout
the picture and thus a '"banding' structure is formed. One approach to
cope with this artifact has been to take the Fourier transform of the

image in a direction perpendicular to the scanning path (e.g. columnwise).
Since the banding is strictly periodic, its energy is concentrated at
harmonics of 6 lines, Spectrum interpolation can then be used to
suppress excess cnergy at those frequencies, An alternative solution

has been developed to combat the banding artifact, which is comi:utationa.lly
much faster, It is based upon the zero-order amplitude distribution of

the image data corresponding to each individual sensor. Let p(x) be

26



the probability that the ground radiance has a value x and yi(x) (i=1,00.,6)
the transfer function of each sensor and amplifiers, The probability of

an amplitude y in the data is then

x. (y)
ply) = % (Iol P(x)dx)

where xi(y) is the inverse of yi(x). Note that we have to identify each
line of data with the appropriate sensor, That is easily done by letting

the index i be equal to the line index, modulo 6

- i = (line 1ndex)mo d6

Let us call the sets of lines counted modulo six '"subimages'' (e.g. the
lines 1,7,13, etc, would form the subimageno.l, lines 2,8, 14, etc.
subimageno.2, etc.). The differences between sensor non-linearities,
amplifier gains, offsets, etc. can now be theoretically eliminated by
transforming each subimage separately such that the resulting histograms

are all identical. For example one can equalize or hyperbolize the

histograms of all subimages (see previous section), Figure 3.8-1

is an example of this banding suppression technique. Note that the
corre_ctio-n cannot be absolutely perfect, because the data is discrete.
Histogram manipulation does not give perfectly smooth distributions
as discussed in the previous section, and therefore the sensor

inequalities cannot be completely eliminated.
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3,5 Spatial Filtering and Homomorphic Filtering

Spatial high-pass filtering is an appropriate tool to enhance fine
image detail at the expense of smooth, large area variations such as
shading due to illumination variations, Because the energy of such
features is mainly concentrated in the higher spatial frequencies,
spatial high-pass filtering tends to emphasize relevant image information.
In addition, power spectrum estimates of images reveal that most of the
energy is typically concentrated at the lower end of the spectrum, A
much more efficient use of the dynamic range of the display can thus
be obtained if low spatial frequencies are de-emphasized. -

gonsiderix;g that image intensities are a product of illumination
and reflectance, homomorphic filtering [l] can be used to separate the ‘
typical low-frequency illumination coinponénts from the high-frequency
reflectance c;.amponents (Fig. 3.5-1). The cascade of lﬁgarithmic
receptors and linear inhibitions in the visual system actually perform
a very similar operation [2], Fig. 3.5-2.

The advantages of high-pass homomorphic filtering can be
summarized as follows:

1) Enhancement of relevant object reflectance features.

2) De-emphasis of less important illumination components.

3) Better utilization of the display dynamic range.

Examination of the histograms of high-passed images 'reveals, however,
a Gaussian shaped distribution of amplitude levels, A modification of
homomorphic filtering is therefore proposed, in which the filtered

image is subjected to histogram hyperbolization before it is displayed.

28
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(2) Original, histogram (b) After homomorphic
hyperbolized filtering

(c) S =-0.5

(c) After homomorphic filtering and histogram hyperbolization.

Figure 3.5-4., Spatial filtering
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This innovation is depicted in Fig. 3.5-3. This procedure combines

the advantages of homomorphic filtering and histogram hyperbolization

as discussed in section 3,3, Figure 3,5-4bis a homorﬁorphic highpass
version of band 7, shown histogram enhanced in _Figure 3.5-4a, Figure
3.5-4c was processed according to the diagram of Fig. 3-5-2b, with

8 = -0.5. Note that no extra computations are required since the hyperbolic

transformation replaces the exponentiation of the homomorphic filter.

Computationally, all circular filtering operations are relatively
expensive however. It involves taking the two-dimensional Fourier
transform of the image and its inverse as depicted in Fig. 3,5-5,
Typical execution times for a transform are approximately 1.5 a.nd.‘

5 minutes for 256 x 256, respectively 512 x 512 pixel images on the
DEC-PDP K110 of the image processing institute. Faster edge enhance-
ment is achieved by crispening and finite size convolutions described in
the next section.
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3.6 Crispening

Crispening is a term borrowed from the field of television, In
brief, this technique is used in cameras and flying spot scanners to give
television pictures a sharper appearance. This is done by enhancing

abrupt variations of the video signal, and hence edges of the picture.
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One implementation of crispening is depicted in Fig. 3.6-1, where the second
derivative of the video signalis addedtothe signalitself, accentuating edges. This :
operation can be approximated with a great deal of flexibility by digital image ;
processing. The numerical implementation of crispening is done by

finite convolution, schematized in Fig. 3.6-2a. In one dimension, the

output picture I'(xi) is related to the input picture I(xi) by

+J
IMx,) = a.I(x, . 1
() = 3~ alx ) (1) g
j=-
Figure 3. 6-2b shows a typical one-dimensional weighting function; The %

terms aj determine the amount of edge crispening which can be measured

: ’
by the percentage ""overshoot' for a step function (Fig. 3.6-2¢c). This
operation can be easily generalized to two dimensions in the digital case

and equation (1) becomes

+K 4L
J - E .
==K 1=-1,

The two-dimensional finite aperture aij used here is depicted in Fig.

3.6-3, witha % "overshoot' defined as in Fig. 3-6-2c., Figure 3,6-4

j
3
21,2 20,2 21,2
32,1 %.1,1 29,1 21,1 22,1
32,0 21,0 20,0 21,0 22,0 b
a

a.2,-1 2.1,.1 %0,-1 21,21 22,21

31,2 %002 21,2

Figure 3.6-3
35
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shows two examples of two-dimensional crispening or finite convolution
applied to ERTS images. In the first case an "overshoot'' factor of 20%
was used and in the second case 80%. Note that this latter example
tends to suppress large area contrast in favor of edges., This technique
can be modified somewhat to provide an edge extraction algorithm by
introducing appropriate threshold decisions,

3.7 Band Ratios and Log Band Ratios

3.7.1 Introduction

Ratioing of ERTS pictures is a useful preprocessing techniqu’e for
multispectral recognition and classification. Signatures obtained from
a training sample under one set of conditions may not have a good
discrimination capability for a given classification scheme if the same
area is observed under a different set of conditions., If the changes
result from gimple multiplicative factors such as the brightness level,
then the ratio of the bands would be invariant.

Taking various ratios of the green, red and the two infrared bands
(bands 4,5, 6 and 7, respectively) of the ERTS data results in eliminatim
of brightness variations due to topographic relief. Such ratio images
have been shown to be more useful for determining boundaries between
lithologic units and vegetation groups [1].

Ratios may be taken to emphasize variations due to color also.
Figure 3,7-1 and 3.7-2 show the ratios red and the far infrared bands

to the average of all four bands. Such ratioing process produces a color

40



s u:% f«}&v)mﬁ et %#:
* 4..

4l ’
- M\vt ..) "

% ;

K
N

-’

¥ “
A me 0 S
: - S
o J eI Y , m K]
A : - S ) - .
< LI /i - n
-~ L A1 §
2 _; weoTe \*:cﬂx‘. - vy m
. -_.\1.. D Tal L& 1IN ww.\. o "
» A : ? . \,....\ p .m [
Y e n &S
Can ,° . o
..3.4& \ W‘ <L ... o m
% “ QA . , - .m E
. ¢ &
% B S : < -
1 ~ : ~ 7-
“
= H
f; &
& &
n
|
m
C)
_ _




Figure

(c) Ratio of Band 7/Average

3.7-2. Example of Band Ratios
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display whose color variations are more indicative of material variations

than the simple pseudocolor displays.

3,7.2 Direct Ratios and Logarithmic Ratios

The ratios shown in Figures 3,7-1 and 3,7-2 are direct ratios,
obtained by forming a scaled ratio of two bands. Figures 3.7-3 shows
direct ratios of ERTS bands 4,5,6 and 7, This figure shows the effect
of banding present in ERTS images reflects in ratio images.

Figures 3,7-4 and 3,7-5 show the direct and logarithmic ratios of
a different ERTS picture after banding correction. The advantage of
logarithmic ratios becomes apparent if we consider that the origi;lal
spectral images and the computed ratio image are quantized, to eight
bits in the present case, Let a and b be the pixel values of bands A
and B, ranging from 1 to 256 (to avoid division by zero) and the value
of the ratio pixels, The maximum quantization error of a and b is
40.5. Taking extreme values, the quantization error of the bands A
and B is reflected in the output as:

_ 256 % .5
max = 1.5

_ 1+,5
T min ‘- 256 .5

lArmax' = max(rmax) - rmn(rmax) = 342,67

. _ -3
lArrhinl = max(rmin) - mm(rmin) = 3,92 x 19

The quantization error of a and b therefore affects the ratio image

greatly if r is large and to a negligible extent if r is small, Taking
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the logarithm of the ratio and rescaling the log ratio image to the
range 0...255 provides a uniform distribution of quantization error
throughout the range of r. Itis indeed easy to verify that Armax =
AT in if r is defined as r = log a/b.

In the cases studied, it has appeared that logarithmic ratio images
contain more visual information than direct ratio images. It is felt
that experiments with more images are necessary to confirm the above
conclusion,

3.7.3 Principal Components of Ratios

”

Thg covariance matrix of various ratios could give some insight
in choosing a set of ratios for a classification scheme: Ratios that are
uncorrelated are likely to produce better results than those that are
highly correlated, This idea suggests the use of the principal components
of the ratios instead of ratios themselves. Figures 3.7-7 and 3.7-6 show
the principal components obtained obtained from logarithmic ratios and
direct ratios, respectively.

In the case of direct ratios (scale factor 50,), the normalized

covariance matrix has been computed as

Ratios—> 4:5 4:6 4:7 5:6 5:7 6:7
4:5 | 1.0  -0.294 -0.378 -0.758 -0.714 -0.404]
4:6 | -0.294 1,0 0.905 0,824 0,786 0.475
4:7 | -0.378 0,905 1.0 0.819 0.901  0.789
5:6 | -0,758 0,824 0.819 1,0 0.949  0.549
5:7 -0.714 0.786 0.901 0.949 1,0 0. 770
6:7 | -0,404 0.475 0,789 0.549 0.770 1,0
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Principal Components of Direct Ratios

Figure 3,7-6.
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The eigenvalues and the percentage of energy they represent is given

£
r
~ g below:
; 6
. X (xi/ > xk)-loO(%)
i a k=1
1 94.509 82.0
2 14,069 12.0
3 5.904 5.1
4 0.515 0.45
5 0.143 0.12
6 0.077 0.07 ’

The above percentages show that the first two or three principal
components contain most of the relevant information in ratio images.
~ B This can also be verified by studying the principal components shown in
Figure 3.7-6.
In the case of logarithmic ratios, the normalized covariance matrix

has been computed as:

Ratios — 4:5 4:6 4:7 5:6 5:7 6:7

45 | 1o  -0.297 -0.390 -0.746 -0.714 -0.399]
4:6 |-0.297 1,0  0.910 0.837 0.812 0.486
47 |-0.390 o0.910 1.0  0.840 0,912 0,771
5:6 |-0.746 0.837 0.840 1.0  0.955 0,554
5:7 |-0.714 0.812 0.912 0.955 1.0 0,751
67 |-0.399 0.486 0.771 0.554 0.751 1.0




The eigenvalues and the percentage of energy they represent is

as follows:

6
\ (xi/ ) xk) *100(%)

i 4 k=t
1 35,495 87.0
2 3.270 8.0
3 1.592 3.9
4 0.084 0.2
5 0.082 0.2 .
6 0.080 0.2

The resulting principal components are shown in Figure 3.7-7.
References
[l] Goetz, A. F. H, et al, "Application of ERTS Images and Image

Processing to Regional Geologic Problems and Geologic Mapping
in Northern Arizona,' JPL Technical Report 32-1597, May 15, 1975,

3.8 Principal Components Analysis

3.8.1 The Motivation for Principal Components Analysis

The ERTS multispectral scanner (MSS) consists of 24 detectors,
six in each of four spectral bands: green, red, infrared-1 and infrared-2,
These bands are designated by the numbers 4,5, 6 and 7 and span the
approximate spectral ranges of 0,5 to 0.6, 0,6 to 0,7, 0,7 to 0.8
and 0,8 to 1,1 um,

The four bands of the ERTS data provide correlated images. Standard

color composites are usually made by selecting the most relevant three
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bands from the available bands, and displaying each in a different primary
color: red, green and blue. Typically Band 4 (green) is displayed in
blue, Band 5 (red) in green, and Band 6 (nearest infrared) in red, This
ordinarily does not result in a very satisfactory color display for typical
ERTS pictures, because in general bands 4 and 5 and 6 and 7 are highly
correlated,

Principal components analysis of ERTS bands is motivated by the
desire to extract the most significant three spectral components from
the available four, This dimensionality reduction also results in preserving
most of the ERTS information in a smaller number of components.,

3,.8.2 Mathematical Formulation

The principal component analysis of ERTS data involves finding a
unitary transformation matrix v&hich,' when applied to the four bands,
results in a new set of bands (principal components) having several
desirable characteristics: the principal components are uncorrelated
and each component has variance less than the previous component,

The principal component transformation is also known as the
Karhunen-Loeve transformation, eigenvector transformation or the
Hotelling transformation.

The principal components are obtained from the original four

spectral bands by the matrix multiplication
Y = AX

where X is the vector of spectral intensities on four ERTS bands, Y is

the vector of principal components and A is the 4 x4 Karhunen-Loeve
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transformation matrix. This matrix is derived by diagonalizing the

spectral covariance matrix CX of the spectral bands. The rows of A

are the normalized eigenvectors of C... The covariance matrix of the

X

principal components is then

where ll, XZ' )\3 and )\4 (the variances of the principal components) are

-

the elgenvaluesi of CX ordered such that )‘1 >)‘2 >)\3 >14 .

It should be noted that, since A is a unitary transformation, the

total data variance is invariant:

7 4
2
z g, = z A,
i i
i=4 i=1

2
where the LA i=4,5,6,7 are the variances of the original ERTS bands,

3.8.3 Computational Results and Examples

In this section two examples of principal components analysis will
be éiven.
Example 1. Principal components of the ERTS bands in Figure 8,3-1
are shown in Figure 8, 3-2,

The spectral covariance matrix Cx of the four ERTS bands are

obtained by computing the spectral covariance matrix on 64 x 64 blocks

- of ERTS pictures, (each 512 x 512 Pixels) and then averaging over all

the blocks, For the example shown in Figure 8,3-1, the spectral
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covariance matrix is

Bax:ids —_> 4 5 6 7
4 [3988.8 3566.6 2314.6 976.6
5 3566.6 3841,3 2185,7 897.2

6 2314,6 2185.7 4845.9 3937.7

7 |__975.6 897.2 3937.7 4408.6

The normalized covariance matrix is

Bands —> 4 5 6 7
4 [T1.000 0.113 0,065 0,029 | ’
5 0.113 1,000 0.063 0,027
6 0.065 0.063 1,000 0.106
2 | 0.029 0.027 0.106 1,000

Diagonalization of the spectral covariance matrix results in the

following Karhunen-Loéve transform matrix:

T0.46909  0.45254 0.59965 0.46432

-0.51456 -0.51757 0.32918 0.59916

b
[[]

-0.01706 -0.27163 0.71608 -0,64276

-0.71756  0.67344 0.13892 -0.11083]

The eigenvectors are the rows of the above matrix. It should be
observed that eigenvectors are similar to the first four Haar functions,
except the sign change. Thus the above Karhunen-Loeve transform

matrix can be approximated by a2 4 x4 Haar transform for computational

purposes.
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The eigenvalues are:

. |
6‘1/151 xk)-looc%) :

i A
1 11355,2 66.5
2 4953,3 29,0
3 426.8 2,5
4 344,2 2,0
Above percentage values show that the first two principal components i
represent 95,.5% of the total energy, The principal components -are %

obtained in block format. The block size is 64 x 64. The resulting
principal components are normalized to have intensities ranging
between 0 and 255, It should be noted that the same transform is
used for each 64 x 64 block, i.e. instead of computing a different
Karhunen-Loeéve transform for each block one transform is used for
each block. The result is checked by computing the normalized

covariance matrix of the principal component:

Principal Components —>

1 2 3 4
1 _1. 00000 -0, 00003 0.00005 0. 0001 0—
2 -0.00003 1.00000 -0.00013 -0. 00004
3 0.00005 -0.00013 1,00000 0, 00020
4 {_0.000l0 -0, 00004 0.00020 1,00000_

The near-zero off-diagonal elements in the above matrix show

that the principal components are indeed uncorrelated.
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different area,

Bands — 4 5

4 [(57.16 75,80
5 | 75.80 113,69
6 39.23 53,76
7 18.46  24.50

Bands — 4 5

[1.000 0,117
0.117 1,000

0.078 0.075

| 0,033 0.031

[ 0.44465 0. 63040
-0. 32653 -0. 49866
0.32957 -0.45586

| 0.76619  -0,38227

6
39.23
53,76
68.97

54.78

6
0.078
0.075
1,000

0.105

0.49520  0.39958 |
0.34168  0.72662
0.67249 -0.48097

-0.43103 0.28469 |

Example 2. Principal components analysis has been applied to a
In addition, ERTS bands have been corrected, as
explained in section 3.2, prior to the principal components analysis.

For this example, the spectral covariance matrix is

.
18,46 |
24.50

64,78

85,43 .

The normalized spectral covariance matrix is

7
0,033 |
0.031

0.105

1,000

The Karhunen-Loeve transform matrix is

The resulting principal components are given in Figure 8.3-3.
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Principal Components (Example 1)

Figure 3,8-2,
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The eigenvalues and the percentage of energy they represent are

given below:

. 4
™ N l_z Qil k§1 xk) *100(%)
1 224,92 69,14
2 90,78 27,91
3 5.42 1,66
4 4,13 1.27
Thus the first two principal components represent 97% to the total energy.
3.9 Wiener Filtering .
Wiener filtering is a classical technique of signal estimation that
has been applied, primarily, to one-dimensional, continuox—ls signals,
with analysis and implementation based upon continuous Fourier signal
Y | theory [1].

The classical Wiener filtering technique has been extended to the

processing of one- and two-dimensional discrete data by digital operations

with emphasis on reduction of computational requirements [2] . This

generalized Wiener filtering technique utilizes the transform properties

of imaging systems and improves the computational efficiency in

enhancing the images cofrupted by noise, However, computational
requirements are still high and it is necessary to perform the filtering
operation in small blocks of the image. Since a filter of this kind is
computationally unattractive, a fast Wiener filter has been introduced

for noisy image restoration [3]. This filter is obtained by imposing

/J”\ ~ certain modifications on the observed image. It is shown that the




observed image can be operated upon to modify its statistical char-
acteristics, 'I‘hus, certain operations are introduced which, when
applied on pictorial data, allow the modified data to be characterized
statistically by a circulant covariance matrix. These operations are
further approximated to gain more computational speed at the cost of
a slight increase in the mean-square error. Unlike the classical
Wiener filter, it has been shown that the fast filter is capable of
operating upon large images without the need to break down the
observation into small blocks [3]. )
Figure 3,9-1 shows the result of Wiener filtering on the green
band of the ERTS picture of size 512 x 512, The 256 x 256 size center
of the picture has been filtered by two-dimensional fast Wiener filtering

algorithm. Figure 3,9-1 also shows the result of Wiener filtering on the

full picture,

Filtering on 256 x 256 center Filtering of the full picture

Figure 3.9-1. Wiener Filtering Example on Band 4,
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3,10 Color as an Aide for Human Terrain Classification

It is well known that color images present more information for the
human observer than black and white pictures. This is because color
effectively adds two perceptual dimensions, namely hue and saturation
to an ordinary brightness image. This' property has been exploited to
enhance pictures in the variety of field's such as medical imagery [1],
air reconaissance and ERTS images to name a few. Color or pseudo-
color mappings can be obtained photographically or optically from
black and white components or they can be synthesized by computer,

For example, one widely used technique is to combine three bands of

an ERTS image by projection with red, green and blue filters respectively,
Other photographic techniques have been extensively studied elsewhere [2].
The advantage of computer generated color composites is that the color
maps can be designed easily in the most arbitrary fashion. However,

the almost infinite number of possible combinations makes it difficult

_ to determine the optimum scheme. It appears from previous studies

f1,2,3,4] that such an optimum depends very much upon each particular
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application. One approach has been explored here, in which the color
mapping is obtained from pPre-processed components which contain
more information each than the original spectral band images. Several
color mappings have been created from differently pre-processed
components. It seems significant that certain ground features have
been made apparent in that way, which were previously not visible,
It is believed that a closer examination of the present pictures will
indicate which approach is most Promising in this context, so that the
number of alternatives for further studies is reduced to a smaller,
more specific set,

The particular approach used here is now discussed in more detail,
It was assumed that color composites would carry more information
for the human observer if:

a) The components used synthesize the color image are

uncorrelated or have little correlation,
b) The histogram of each component is hyperbolized (see
section 3, 3),

These two conditions ensure that the range of colors available for
display is fully used and that information contained in the dissimilarity
between the components is displayed as hue and saturation differences,
The pre-processed components used here were the Principal component
images (see section 3. 8) and the logarithmic ratio pictures of section 3,7.
" Table 3,10-1 shows the combinations used for the pictures of Figures

3.10-1,2,3,4 and 6, It is pointed out that the technique described does
63
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Table 3.10-1,

Components Used for the Color Enhanced Images of
Figures 3.10-1 through 6.

Components Mapping Figure
Principal Component #1 Red 3.10-1
Principal Component #2 Green 3.10-1
Principal Component #3 Blue
Principal Component #2 Red
Principal Component #1 Green 3,10-2
Principal Component #3 Blue
Logarithmic Ratio 4/5 Red ,
Logarithmic Ratio 4/6 Green 3,10-3
Logarithmic Ratio 4/7 Blue .
Logarithmic Ratio 4/6 Red
Logarithmic Ratio 4/5 Green 3.10-4
Logarithmic Ratio 5/7 Blue
Principal Component #1 Red
Principal Component #2 Green 3.10-5
Logarithmic Ratio 4/5 Blue
Principal Component #1 Red
Principal Component #2 Green 3.10-6
Logarithmic Ratio 4/6 Blue

Note: The color images of figures 3.10-1 thru 3.10-6

have not been included in the printed version of this

report, for economic reasons.
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Note: The color images of figures 3.10-1 thru 3, 10-6
have not been included in the printed version of this
report, for economic reasons.
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not require highly sophisticated digital color display devices, High
resolution black and white transparencies of the components used can
be generated on a flying-spot scanner and combined optically with the
contractor's color compositor,

One avenue for further studies is the use of a visual model for
color perception [3, 5, 6,7] in order to map tixe components first into
variables that are direct correlates of the human color perception.
Inverting the model, red, green and blue components can then be
generated for display either with a color television device or a

-

Projection color compositor. This approach is schematized in Figure
3.10-70
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4. SOFTWARE EFFORT

In the context of this project, almost all programs' have been
written specifically for study and development, With the exception
of the fast two-dimensional image Fourier transform packages, all
programs are written in Fortran, The complete software is therefore
easily transportable and can be readily modified if necessary. Most
programs execute in less than a minute on the PDP-KI10 of the image
Processing institute. It is felt that optimization and machine lé,nguage
pfogramming would only be warranted in the case of large volumg
processing. Section 4.1 contains a brief description of most programs

developed for this porject and the source listings are contained in

section 4.2,

4,1 Software Documentation

‘The major programs developed for the present project are listed
below, accompanied by a brief description, They are ordered as
follows:

a) Data base formatting software,

b) Histogram manipulation programs including "anti-banding"

algorithms,
c) Spatial filtering and crispening.

d) Band ratioing.

e) Principal components analysis.
- f) Wiener ﬁl;:ering.

g) Display pre-distortion programs,
- 73




Use has also been made of IPL software whenever possible; for
example, the FFT packages "part 1" an ""part 2" were used extensively
in connection with spatial filtering, Besides I/0 statements, however,
the only machine specific subroutine is DSKIO by which one line of
image data is moved from disk to core and vice versa,

4.2 Data Base Formatting Programs

Program ER TSIS Compensates for aspect ratio and earth
ratio and earth rotation based upon linear
interpolation. Input picture is 752 x 512
lines, output is 512 x 512,
Program REDUCE Reduction of image size from N x N to
) N/2 x N/2 (typically from 512 x 512 to
256 x 256) by averaging four nearest pixels,

Program ENLARG Enlargement of image size from N2 x N2
to N x N by linear interpolation,

4,.2b Histogram Manipulation Programs

Program STRECH Linear amplitude strech and shift, based
upon amplitude histogram inputs are input
mean and stretch factor; program dips values
0 < and >255,

Program LOGC Converts input amplitudes to scaled log
amplitudes (0 < 255), Input picture may
be real because a fast log routine is used
(FLOG) instead of a look-up table,

Subroutine FLOG Fast log routine with limited precision (er s
8-10~4),
. Program HISHYP "~ Histogram equalization and hyperbolization

program. Options are: a) the slope SL (must

be negative or zero) of the histogram at the
origin. 8l = 0 means histogram equalization.

b) modulo activates the banding suppression
algorithm when set equal to 6; modulo = 1 is
regular histogram equalization or hyperbolization.
¢) corr = 1 activates the gamma correction for
TV viewing (otherwise zero); corr = 2 activates
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the pre-distortion for photographic recording.
d) check = 1 gives print-out of computed
histograms, (otherwise Zero),

Subroutines:

HISTO
ACCU
HYPER
CST
GAMMA
LOKUP
CHECK

Subroutine HISTO Computes the histogram of the picture,
If the modulo MB is larger than 1, the
subroutine returns M histograms corresponding
to the M sensor subimages for banding suppression,

Subroutine ACCU Accumulates histogram(s) for histogram
equalization, Returns the appropriate look-up
table(s).

Subroutine HYPER Modifies the above look-up tables for histogram
hyperbolization.

Subroutine CST Solves the transcendental equation

-1
2 1 c+l
c «log <

for c given S; ¢ is used in the subroutine hyper,

S =

Subroutine GAMMA Look-up table based gamma correction for
TV viewing,

Subroutine LOOKUP Look-up table image transformation program,
Tables are supplied by the subroutines ACCU
or HYPER, depending upon the input value of
the slop SL.

Subroutine CHECK dumps the '"before and "after processing histograms,

4,2c Spatial Filtering and Crispening Programs

Program FILTER Two-dimensional circular filter program. User
specifies filter function with an external function.
Input has to be the 2-D Fourier transform of the
picture, formatted according to the IPL FFT
programs ''‘part 1'" and ''part 2",

75




Program SHARP

Subroutine DSO

Subroutine DS

Subroutine CV ~

Moving window finite 2-D convolution program.
Window is 21 pixels, Masking factor determines
amount of DC rejected (for example, DC = 0
means that constant values are rejected
completely,

Subroutines:

DSO
DS
cv

Handles the edge lines of the picture (no
processing,

Reads a line in compact form and expands it
to integer representation. .

Performs the actual finite size convolution,
The inputs are six lines of image data and

-one line of the processed picture is output

to disk on each call.

4,24 Band Ratio Programs

RATIO

LRATIO

Linear ratio program. Ratio of two bands
is ‘computed, and the output is multiplied by
a scale factor which is an input parameter
to the program,

Logarithmic ratio program. The input is
integer and table look-up is used for the
log. Output is scaled to 0 + 255,

4.2e Principal Components Analysis

KL

KLl

This program consists of three separate
programs: KL1, KL2 and PC, The input

to KL is four spectral bands of ERTS, each
512 x 512 pixels. The output is four principal
components,

Computes the spectral covariance matrix of ERTS
bands on 64 x 64 blocks and averaging over the
entire 512 x 512 images. It then diagonalizes

the spectral covariance matrix to obtain the
Karhunen-Loéve transform matrix.
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KL2

PC

4,2f Wiener Filtering_

WIENER

Applies to the Karhunen-Loeve transform
matrix to the four spectral bands of ERTS
data and writes the resulting principal
components on four temproary data sets.

Finds the range of amplitudes on the temporary
data sets obtained in KL2 and then normalizes
each temporary data set such that the resulting
Principal components will have amplitudes that
lie between 0 and 255, It then writes out the
pPrincipal components as four 512 x 512 packed

data sets.

Performs one or two dimensional Wiener
filtering on an N x N packed or real image.-

The inputs to the program are the image to

be filtered, the blur, the correlation coefficient
and the size of the imnpulse response of the blur,
The output is an N x N packed or real filtered

image.

4,2g Display Pre-Distortion Programs

Program GAMMA

Program PHOTO

Subroutine DENS

Subroutine GAMMA _

Look-up table based program to pre-distort
the data for the digital TV display, Its effect
is to compensate for the CRT non-linearity.

Pre-distortion program for the IER flying
sopt scanner. Corrections include: a) empirical
H-D correction for the Kodak Royal-X film,
b) Optical vignetting correction, ¢) Gamma
correction of the CRT tube. The program
also superimposes a calibrating grey scale
onto the bottom of the picture.

Subroutines:

DENS, GAMMA, SCAL, VIGN

Sets up a look-up table based upon empirically
determined photographic density reproduction
characteristics of the flying spot scanner.

Generates a look-up table for the gamma
correction of the TV display,
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Subroutine SCAIL

Subroutine VIGN

Superimposes a gray code onto the bottom
of the picture for photographic calibration
and checking purposes,

Pre-distorts the image data to compensate

for the vignetting of the photographic gear
attached to the flying spot scanner.
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5. CONCLUSIONS AND OUTLOOK

Conclusions on this project can be drawn on several levels, for
example, image processing, geomorphic studies and the potentials
for further developments, Regarding digital image processing, several
powerful techniques have been developed which are appropriate for large
scale use. Some of the more exotic algorithms may be more appropriate
for selected areas only. By and large however, it seems that the potential
present in the available ERTS imagery is greatly enhanced by computer
image processing. It is somewhat more difficult to assess the impacts
of the present developments on oil exploration, It is believed thata
careful examination of the present pictures in a correlation study with
ground truth information is necessary to reach such conclusions.

. Regarding further developments, several new avenues have emerged
in the past contract period. One of them is the exploitation of the
periodic coverage provi&ed by the ERTS satellites. It is suspected
that variations due to climatic or seasonal changes may give useful
added knowledge on the underlying geologic formations. Such variations
can be detected by registration of two images of the same area from
different overflights, After the images are perfectly registered,
difference or ratio images can be generated and enhanced, which
reveal such temporal changes.

Another suggested topic for further research is the "intelligent"
machine search for feature boundaries such as lineaments, outcrops,

etc, The use of concepts borrowed from the field of artificial intelligence
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may provide the tools for the specification of suc;h features, as is
suggested, for example, by syntactic image descriptors, It appears
that a classification scheme would be much more powerful if its inputs
include such feature information in addition to ground spectral reflectances,
Finally, it is believed that an interactive approach is necessary to
accelerate the design of higher level automatic classifiers, Dedicated
hardware and software is being presently developed at the Image
Processing Institute to allow highly interactive image processing tasks,
As this new resource becomes available, it will be possible to train
algorithms inter;.ctively without sacrifice of the power and flexibility
of the PDP KI10 machine. Since the display to be used in this
configuration is a digital color TV, veryy sophisticated interactive

processing tasks will become possible,
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6. APPENDIX

The restitution of processed pictures is generally a costly, time-
consuming, and yet essential step of digital image processing.

Errors and non-iinearities introduced by display equipment or the
pPhotographic process can add a surprising amount of unwanted and un-
controlled "image processing''. These parasitic effects are by no means
always rread.ily visible in the finished product, but they may well invali-
date the results of computer image manipulations. A careful control of
the electro-optical machinery, the photographic process, as well as an
understanding gf human visual factors is therefore essential to in;ure
the success and credibility of digital irr'xa.ge; processing.

1} Visual Factors

Optimum reflection prints, transparencies and television images

! ‘practically never replicate the brightness distribution of original scenes,
/

i - just like perfect color images do not reproduce the spectral energy

i distribution of colored lights. Although comprehensive fidelity criteria

3

§ for images are yet to be discovered, a few simple rules have been found

‘ ugeful in the optimization of image acquisition and reproduction techniques.

Studies of the reproduction characteristics of optimal images [3]

indicate indeed that although absolute brightness influences perceived
quality, the quality criterion within the physical limitations of any
given reproduction situation is greatly dependent upon its ability to

~ reproduce relative brightness ratios. This fact is intuitively satisfying

A | . if we note that pixel brightness ratios are a property of the scene

reflectances that is invariant to the absolute intensity of a uniform

illumination.
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The implications of the above visual phenomenon are that the
digital representation of light intensitie-s'sensed by a scanning device
should ideally be a measure of image brightness ratios rather than
arbitrary absolute intensity values, This is easily implemented in
practice by recording the logarithm of the measured image intensities,
On the reproduction side, care has then to be taken to preserve the
recorded brightness ratios, a process that is facilitated by the inherent
characteristics of the photographic process to be discussed below,

6.2 The Photographic Process g

Exposure of a black and white emulsion to light and subsequent
development produces a light absorbing layer characterized by its

optical density D which is defined as follows:
D = log1 0 (transmitted light/incident light)

With all other parameters fixed, the optical density is ideally related

to the intensity of the exposing light I by the function (2]
D = yxlog(Ixt)

where t is the duration of the exposure, This function, well known in
photography, is called Hurter-Diffield (HD) or D-log E curve. Actual
photographic materials depart from this idealized law at both ends of
their useful dynamic range. The factor Y describes the "contrast"

of the emulsion and is positive for an ordinary negative material and
-negative for a reversal process., Because the unexposed emulsion and
its substrate are not perfectly transparent, an additional '""fog" level

D0 is incorporated into the above equation
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D = D, +Y log,, (Ixt) (1)

The light reflected from a print or transmitted through-a slide is

related to the incident light I by 2]

D

I =1, %10 (2)

The reproduced light intensity I' is given by substitution of eq, (1)

into (2)

I o= IO*IO-DO*(I*t) (3)

Note that if y= -1, the conditions for an optimum reproduction as
discussed in the previous section are met.

It is not straightforward to meet the relationship of eq. (3) with
actual image processing equipment, The film is typically exposed by
a CRT, LED or laser as .a series of discrete dots which partly overlap;
the .exposure may not be uniform over the area of the image, etc. Itis
possible though to correct for such defects with a numerical pre-distortion
of the digital image data. A simple model, appropriate for the correction
a CRT scanner, is discussed in the next section,

6.3 The Calibration of I/O Devices

Actual image acquisition and reproduction devices have a number
of inherent imperfections which distort the final product. First, the
measured or reproduced light intensities are generally not an exponential,
resp. a logarithmic function of the associated electrical quantities; the
light sensitive or light emitting 'surfaces of an electron beam device
are not perfectly homogeneous; optical systems may introduce significant
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It is of medium complexity, but c¢omputationally

very fast and has given excellent results with an IER CRT scanner, The
major sources of distortions in this case are schematized

in Figure 6-1,
From left to right, we have:

a) The CRT light emission I a8 a function of the drive and bias

voltages U and Uy resp. [57, which can be approximated by:

I = (U+Uy+u))YeRT




4

each source of distortion mentioned above is corrected for the appro-

-1
priate order. The YerT and D-log E corrections of Figure 6-4 are
straightforward look-up tables based upon measured data. Perhaps

the most interesting pre-distortion step is the vignetting correction.
Assuming circular symmetry, a second order polynomial of the form

I' = I(A+ B(x2+y2))

has been used to boost the light intensities towards the image corners,

x and y are the image coordinates referred to the center of the CRT

2
screen, The values A/2+Bx are stored in a one-dimensional array

and the correction is made by looking up this array twice given the
pixel line and column indices x, and A

L :

I' = L,(Cx,) + Cly,))

The results from this fast correction technique are shown in Figure 6-5.
The variations in density across a uniform surface are less than 0,1
density units, whereas the uncorrelated image had corners darkened
by as much as 0,35 d-units,
In conclusion, it is the author's experience that certain distortions
are often overlooked in practice; artifacts thus introduced have sometimes
produced more '"image processing'’ than intricate numérical algorithms,

Numerical correction techniques have been implemented to combat

4 such distortions and artifacts. The consistency of the results obtained

allow a very good evaluation of the processing techniques studied here.

3
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Figure 6.2, Illustration of the vignetting effect.
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Figure 6.5, Vignetting correction by numerical predistortion.
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Figure 6.3. The effect of vignetting on photomosaics.
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ulx,y)
1(x,y)
Data' —>— D/A —>——CRT . Film
Bias

[(x,y) = aperture (x,y) . (U(x,y) + U, + Bias)’

‘ pre distortion:
! .
U xy) =/U(xy) -VUpay
Tigure 5-4, CZispla correction
7,
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DIMENSION A(4S12).8(752)
NFSEV=34./511.,
ASPR=1,402

131 T=8

00 10 LIN=1,512

CALL DSKIO{Us752¢LINelel+Ii3IT)
CALL EXPAND(B47S2,1)

LINL=LIN-1

DO 20 lA=1,512

INDEX IN B-ARRAY

AIN=LIN] ¢0OFSET+IAXASPR
LLO=AIN

tuP=1LU+1

NCIGHTS FOR LIMN INTCPPULATION
WLO=IUP-AIN

WHI=1le=WLD
A(LAI=SWLO*B(ILO ) +WHI*BL [UP)
CALL PRESG(ASIZ.1)

TYPEZ 100LLLIN

FORYMAT (* LINE & OUNE - "4 14)
CALL DSKIOD(AS12LINsD.2,1IBILT)
CONTINUE

CALL FINI

ENO
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<PQBINSON>REDUCE.FOR;3 WED 27-AJG-75 12:40PM
STEEEES———

200

20

10

REDUCTIUN OF IMAGE SIZE FROM N X N TO
N/72 X N/72 BY AVERAGING' FOUR NZAREST PIXEL VALUES,

DIMENSTION X(1024)9Y(1024,02(512)

TYPE 200 '

FORMAT( * ENTER THE SIZE OF THE PICTURE TO HE WIEDUZLD
ACCEPTYT #,N

NHALF=N/2

DO 10 J = 2,N,2

I = 0 -1

CALL OSKIO(XeNsI,1,1) .
CALL EXPAND(X sN,l1 )

CALL DSKIO(YeNsJeloel)

CALL EXPAND(Y No1)

DO 20 L = 2,N,2

LH = /2

ZILH) = (X(L) + X{(L~-1) + Y(L) ¢ Y(_=1))/4.
K = Jg/2

CALL PRESS(ZNHALF 1)

CALL DSKIO(Z JNHALFsKo0,2) -

CONTINUE

CALL FINI

STOP

END
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200

60S
500

50S
604

607
606

609

608
600

<ROBINSON>ENL ARG.FUOR: 3 WED 27-AJ0G-75 1:19PM
AT

- ENLARGEMENT OF IMAGE S1ZE FRUM N2 X N2

TO N X N BY LINEAR INTERPOLATION.

DIMENSION X(S512),U(2:512)+A(44512)
TYPE 200

FORMAT (* ENTFER N2 AND N°*)

ACCEPT & 4N2 N

NA=N/N2

NZ2P=N2 +1

NLR=0

NLW=0

DO 600 1I=1,N2

DO 604 [=1,2

NLR=1I-1+I1

IF (NLR.EQ.N2FP) GO T2 S00

CALL DSKIOD(XeN2sNLRs11)

CALL EXPANDI(XsN2s1)

DO 604 J=] N2

JA=NA%(J-1)

S=x(J) . .
SS=X(J+1)

IF(J+EQeN2) §S=2.%X{(J)=-X{(J-1)

00O 605 LL=1,N4

UCT o JAFLL Y S(NG-LL*+1 )*S/NS +(LL-1)5S5S/N4
GO TO 604

PO S05 JJ=1,N

U(2,34)=U(1,4J)

CONT INUE

DO 606 J=1+N

S=U(l..J)

SS=U(2.,J)

00 607 L=1+NA

A(L o J)=(NG~L+1)1%S/Na+{(L-1)%SS/Na

CONT INUE
DO 608 1=
NLW=N4%(]
DO 609 J=
X(J)=A(1l,
CALL PRES
CALL DSKI1
CON YINUE
CALL FINI
sToprP

END

N4

1
N
XsNel)
X

| B
l-
1,
J)
S¢(
O(X sNeNLWsCs2)
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25 C <FRIEIDSIRPECHGFNR; 4 ThU 27-iMAR-75 4:21PM PAGE
~, L]

Ee DIFENSION A(258)

g TYPE 100

B 100 FUIMAT (¢ INPUT PACKED GR UNPAKED? TYPE 3 OR 369 )
K ACCEPT #,10u1T

i DO 10 LIN=1,2506

8 CALL DSKIO(A+29500LINs1+1,4 13IT)

S IF (IB1T.EQ.36) GuTn 5

g CALL EXPAND(A 24 5,1)

= S DO 20 IP=1,256

ALLIP)I=(ALIR)I=77eD)5 el ¢1 22,
IF{A( “",OLTQOO) ACIP)=0.
IFCA(IP)eGYV.265,) A(LP) =250,

20 CONY INUF .
CALL PRFSS{As256he))
3 10 CALL DSKIO(A+250:L1N¢0+:264)
. CALLL FINLI
:‘ END -




C

100

SERLEIDLUGCFUIR: % THU 27-1AR=75 12:25PM
CE—

DIMENSION A(512)
TYPE 100
FORMAT (Y taveR tiC
ACCL:PT e ISHZyltsIY
0O 10 LIN=1 IS5/
CAL L l)SKll”AnlSlloLl‘lolololl)lT’
IF (IBIT.EQe30) GOt 5

CALL EXPANDCALLSGIZe1)

V) 20 (P=1,1517

ALIPY=A(IP)+1 ,

IF(ALIP) elL1els) sSTYOp

SIZEs INPUT UL TSIZES®)

FLUG IS FAST LOG SUBRGUT 11
ACIP)=21.92FLOG (AL 1))

CALL. DSKIOCA, 151Z2.L1N204:2,36)
CALL FINI

LND
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C <FREIDIFASTLGSF R GL FElL 14-MAR=-7T5 3246FM

T11) LG ()

* ETURNS LOGE «ITH MAXLAUM FERRUR =
* # OF TTERATIONS IS DELINELEN 2 AND 8
L

Y=X

N=0
10 IF(YelLTele) GUTD 20

N=N+1

Y=Y/2e

GaTn 10
t
20 FLAOG=FLOAT(N)/1 44420695041

Y=Y=1,.

AN=1.

0=0.
30 AN==AN®BY .
: D=D¢l.

TLRM=AN/D

FLOG=FLUG—TERM
IF(TERM«GT 40001 ) GUTO 30
RE TURN

END

H¥10-4
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C CFIREIDHI SHY P FGIS 4 IF'R]I 16—=AAY=73 92:43AM

% SUBROUT INEY FILLS

* HISTD Hl

* ACCU 12

» HYPrFR 2 ]

* CsST H4

* GAMMA HS

* LOKUP Ho

* PIIOTN "7

£ CHIEECK HEs
EXTERNAL Cu T
COMMON TAB(O 1255 0) sMAX(G e MINLO ) o JMP
ACCEPT *, U
IF (IU.EQeb) TYRE 100

100 FURMATI(?®* PIC SIZE o SLUPL ¢ A0UL.0sCORRICHECK?)
ACCEPT %, [STIZ 51 0J142,4 LCORS ICK

*x

WRITE ([U,200) 41517 ¢35LsJMPLICUR ’
200 FORMAT (* SIZE=¢,18:HXe?SLUPIS®,F44265X,
FOMUODULI=® ¢ 125X *CORR CilDE=4,12)

*
CALL. HISTU(IS12)

IF(ICKeEOs]) CAL

CALL ACCU

IH(ICK.EQe1) CAL
IF(SLeLT 0} CAL

{rCICK oEuel ) CAL

L

L
L
(.

CHiEleKIv) -

CHECK ( I13)

HYPER(S31L..CS5T)

CHECK{ TU)

IECICORGEQel ) CALL GAMMA
IF(ICOR«EQ.2) CALL 21070
IF(ICKeFQ.1) CALL CHFCKTIU)

CALL LuUKUR(ISIEZ)
CALL. FINI
END

PAGE 1
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30

20

SEFRLI>ML oFil 3 4 FRT lo-MAY-74 Y3 45AM

N TABH
DIMENSION }

DO In y=1,ump
DO 10 120,255
TAB(T,J0)=0,

JMPL =JMP+ )
L (UMPeEWe 1) ynpi=2

J=1

oL 20 LINS1,IS81Z,9Mp]

CALL DSK(O(Il-lSll.LIN.l.lod)
CALL IXPAND(1141512,.1)

DO 39 KOoL.=1,1S812
LND=IT(KOL)
TAtHINI)oJ):TAB(lND.J)l-lo
J=J+1

1F(JeGTouMp) =)

RETURN

END
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<FrEIDH2.FNRG 3 FRE 1o=MAY=7 9IS51AM

SUHRDUTINE ACCU
i e D0 ) s MAX(OH )t MINI(O) s IMP

DO 10 J=1 . JMP

ACCUMULATE HISTUGRAN

DO 20 1=14+255
TAB(1eJ)=TAIN(I-1ed)+TABCT,S)

AMAX=TAH(25%,J)

MAX(J) =0

MIN(I)=0

PO 30 [=2295:0,~

IF(MAX{(J)etiEO) (,mu i $)
IFCTABCL e J oL ToAMAX) MAX({J)=TH1
IF(MIN{(J).NL.O) GOTL 40
IF{TAHLL yU)CQa) MIN(JII=T¢]

AMIN=TAYIMINCI)» J) -
SC=2LH5e /(AMAX—=AMIN)

DO S0 1=1,2585
IF(TABC I s J)eitt e0e) TAB(ILI «JI=(TABC(1 +J)—-AMIN)=*SC

MIN(J)=0

DD L0 I=255s0,~1
IF(MEINGD ) e NE O GUTDY 10
IF(TAB(T s J)eEQ0404) NIN(II=T+]
CONTINUE

KETURN

END
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C SFREIDHSFUR ;2 I"Hll 1H=-MAvV- 75 1) S20A PAGE }

M TABIO 2257560 MAX 6)sMIN(6) , UMP
* MODIFY LK -up TABLE(S) Fule HYPERBOLIC HISTOGR AM
C=CST(SL)

DO 10 y=1,
X=idAX({ J)~-M
Cl=ALOG((C+
LL=MINC(J)
DO 20 I=0LL,25%

ARG=T - L.

Y=C*(ﬁXP(ARG*C])-I.)

IF(IQLE-MAX(J)) TAU(!.J’GTAB(loJ’OY ‘
CONT INUE

RETURN

END

JMp
InNCJ)
1)/C)r/ X

=
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C

30

40

SFRFIDHGFOR 2 My 1o-1AY-70 35:36PM

*UNCTION CSY
Sl e . [3]54
COMPUTE PARAME IR CLT
CST=0.5
D=0.5
CST=CST +D .
SLO=—I-/(L57**2*ALOG((CSTFI;)/CST"
ERR=SL-5SLO0
IF (ABS(FRI) LY .0,0001) GATY 40
'F(DcLToO.) D=-D
IF(ERR«GTa0e) GUTY 40
==N/2
GOTg 30
RETURN
END
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10

SFREI>HS o FUR G

=1,
DO 10 =M
TAB(IL.J)=C
RETURN

THrs 15-MAY=75 §1:22%AM

L S ]
-
-
2
- p

X(J)
(TALGL »J))

PAGE |
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20

10

SFRELDHL «FORTI  THU 15-MAV-75 12:03PM

bUliRUUTl NE° - LORKUR ISIZ’

e IDO ‘O)O“IN(G,.JMP
DIMLNSIUN T1(s12)
J=1

VU 10 LIN=1,1S812
CALL DSKIU(IT4ISIZoLTivelol, 8)
CALL IXPANDCIT IS1Z.

DO 20 KOL=1,1S512
TIIROL) =TAl (T 1K
J=Jd +]

1F(JeGTouMP) J=)

CALL ll’RLbh(llolSlZ 1)

CALL DSKINCIT oIS IZot.INs002,8)
RE TURN

END

PAGE 1
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SEFRUIDHBFOR 3 B FRI 16-MAY=75 1:S53AM

SULIRDIUY | NE. ChHECK( IUNILT)
N 2D 00) e MAXTO) s MIND ) o JMP

NO 10 JU=1,J4Mp

WRITE (lUNIT.XOO).(J.MIN(J).MAX(J))

NRI TE ([UNIT.ZOU)o(TAU(loJ)ol‘OnZSS)

PAGE 3

FURMAT ("~ , ¢ =13 (o MIN INDEX=9,14,¢ MaX INDEX=*,14)

FORMAT(* = s (1 O(2XFBo0)))
RETURN
END
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LA XA E X RN XXX

100

200

20

10

SFREIDEILTERFUORS6 TUE 28~JAN-7S 10:08AM

FILTER PRUGRAM FUR PHASE DATA

FOk PICTURES ISIZaI31Z2 (1256 OR 512)

SUBROUTINES 2 DSKIO (3OSLIR) ., FILFUN(F.F2)

FILFUN IS A ULSER SPECIFLED SXTERNAL FUNCTION
ARGUMENTS F=SPATIAL FREQUENCY FROM 0. TO 1SIZ/2.
F2=F%%2 (USEFULL FUP SUME FILTER FUNCT LONS )

THE PROGRAM TAKES AUVANTAGE OF THE SYMMETRY IN
THE TRANSFURM O0M4All DUE TU REAL IMAGE DATA

DIMENSIUON A(1024)

VTYPE 100

FORMAT (* PICTUKE SIZEE? (ENTER 256 OR 3512)¢)
ACCEPY =x,1S1/ ’
TYPE 200

FORMAT (* ENTER GAIN W FILTER ¢)

ACCEPT %x,CST

Kil=1S1Z/72+1

KI2=[SIZ%2

Kl3=K]2+2

KI4=KI3+2

LINE LOUP 10

DG 10 LIN=1,KI11
CALL USKIDCAWXKIZLINs1 1 v J0)
LIN2=(LIN=-1)%%x2

DU 20 [=1,KI1
{I=1e2

IR=11-1

1IS=Kl4~-11
IRS=K13~-1IR

FSQ=L IN2+([-1 )®%x2
F=SQRT(FSQ}
H=FILFUN(F ¢FSQ+CST)
A(lI)=A(1l)*
A(IRI=A(LIR)*H
IF(I.EQ.1) GOIO 20
ACTIIS)=A(T11IS )*H
A(IRS)=A(INRS) xH
CUNTINUE

LINE#® LIN FILTERED
CALL DSKIO(AKIZ2LINIGOs2e 30)
CONT INUE

CALL FINI

END

PAGE 1
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100

200
*

10
20

<HRE IDSHARPR JFOR S TUFE 10-JUN=7S5 3:50PM

INTEGER A(Y
CUMMON IS12Z

TYPF 100
FORMAT (* s
ACCEPT *,]15
(ASSUME C2=2
C3=1.
C2=(NC-C3) /14,

ci=Cc2rs2.

TYPE 2004+C1 +C2,C3

FORMAT(* Cl1,C24C3=,3F1044)

i).g(blab.D(Slzt'EKSIZD
.

ASKIMG FACTI)Y (Oeeel=NlU MSK) ?27)
s Cl=1 ) eee 12C1¢8C2+C3=DC

DC=(1.~-DC)*%128,

CALLL DSO(1)
CALL DOS0D(2)

CALL DS{A,
CALL DOS(u,
CALL DS(C,
CALL OS(D,

DO 10 L0=5,13512+5
L1=LO+1
L2=L0+2
L3=LO+3
L4=L0 ¢4

IF(LOLTLISIZ) GOTH 20
CALL DS(E.L0)
CALL CVIA i3 4C oDt 41.0)

IF(L1 oGT LIS 12Z) GUTL 20
CALL DS(A.L1)
CALL CV{B+CoUl:sA,LL1)

IF(L2:.GTe1S512) GUTIY 20
CALL DUS(B+l1.2)
CALL CV(CosDeCsAstt ot 2)

IF(L3.GTIS12) GJTU 20
CALL DS(C,L3)
CALL. CVIDEsA s o Cori )

IF(L4«GT1S512) GOTO 20
CALL NS(DsL&)
CALL CVIE A UsC DL 49)

IR=1S1Z-1
CALL DSOC(LrR)
CALL DSO(LI512)

PAGE )
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CALL FINI
END

SURROQUTINE Dsolt IM)

DIMENSINON LTI(%12) )
CALL OSKID(1T141812Z¢l.INs101e8)
CALL ODSKIO(IL»ISTIZ.LINsOs2:8)
RE TURN

END

SUBRQUT INE DS (Aei L1d)
Hiok AlS
CUMMON [S1Z
CALL DSKIU(
CALL IXPAND
RETURN

EHD

A llol INos1 ol ,8)
(A

‘oUBRﬂUT [INE CV( ‘\

$ol
lNTl’.GER A(Sl?).li(bl.!) 2C(S512)4D(512)+,E(512),0(512)

IR ¥ aYel

O=TCO
At“h‘
s ] e o

A+ ) e -
- fyem 3t I

g o o T, ove
bL.."\)“'Clr

|
gt P e g
* e PrOLy

it

IF (ST oL
ot l2)=31

CALL TPRESS (), 1512,1)
L=l.IN=-2

CALL DORKIULU s IS5T1 24100020638
RETURN

[ZND

PAGE 131




(p]

e X2Te1a]s!

<ROBINSON>RATIO.FOR; 4 WED 11-JUN-75 4:17PM

SCALED RATIO OF PIXEL AMP_ I TUDES

INPUT ON UNITS 1| € 2, QUTFUT UN UNIT 3

495

S0

100

DIMENSION V(SIZ)OW(le)ORﬁTIU(SIZ)
TYPEF 495

FORMAT(IX.'ENTER St 26 AND SCALE FACTOR® )
ACCEPT *,N,SCALE

DO 100 I = 1,N

CALL DSKIO(VeNeIslel)

CALL EXPAND(V.Nol)

CALL OSKIQ(WwNesIel,2)

CALL EXPAND(W,No1)
DO SO0 J = 1,N
IF(W(J)eEQ.0e) W(U
RATIO(J)=A8S(V(J)=%
IF(RATIO(J) JLE. 2
RATIO(J) = 255.
CONTINUE

CALL PRESS(RATIOWN.1)
CALL DSKIU(RATIO.N.[QO.3)
CONT [ NUE

CALL FINI

sSTOP

END

PAGE
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100

25

20

DIMENS 1 ON A(ﬁld).u(al’)oC(Sl°)
REAL LGT(2506)
INTEGER alZoBlTloHle

TYPE 100

FORMAT(® ENTER $21CbLIZE, BITSIZ IN, QUT?)

ACCEPT #,SIZ,UITLlHITO

SET UP LUG LUOKUI TAULE
CST=128./ALNG(2%0 )

DO 10 I=1,42%6

ARG=1]
LOT(I)=ALUG(ARG)=CST

OO 20 LIN=1,S51Z

CALL DSKIUOGAGSTIZiLINGL o19dITI)
CALL DSKIOINoSIZ oLINs1 2:081IT1)
IF(BITI«EQa36) GUTD 25

CALL EXPAND(ASIZW1)

CALL EXPAND(R.51Z,1)

2=0(1 .
(1)=128.4LGT(I1)=16T(12)
FCCUI)eLTe0e) C(1)=0,
FICI1)aGT.255) Cl1)=255

IF(BITO.EQ.30) GUTD 20

CALL PRIELGS(CeHIZy1) .
CALL DSKIUO(CsS1ZeLIie03,31ITO)
CALL FIut

ENO

PAGE 1
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SROBINSON>KL «F(32; 1 TUE 26-AUG-735 2:59PM PAGE )
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PRINCIPAL COMPONENY ANALYSIS OF ERTS PICTURES.

PROGRAM DEVELUPED HY GJNER ROBINSON , JUNE 1975 ,

COMBINES THE PROGRAMS KL1e KL2 AND PC T0O FO&M ONE PROGRAN,
DSKIN UNITS 1-4 ARE FOR THE INPUT FOUR S12%512 3ANDS,
PRINCIPAL CCMPONENTS ARPEAR ON UNITS 5-8,

UNITS 11-14 ARE USED FNR TZMPORARY STORAGE OF UNNORMAL I ZED
PRINCIPAL CCMPONENTS .

FORTRAN UNIT 35 [S QJTPUT DATA SET FOR LISTING INFORMAT ION,

PROGRAM KL 1

DIMENSION DATA(bQ.DQ.Q)oC(‘o“)oV(blZ)oEVAL(Q)QVAR(C)
DIMENS ION A(lua).R(IO).CI'(A.QD.PC(M;.&«.A)
DATA IBSlZE/OQ/oNUMrld/o JUMPLZ/ZE/, JUMP2/0/¢ IUNIT 735/

NBLKS=512/18S1ZE
BLKS=FLOAT (NBLKS)
FRAMES=FLUAT ( NUNF)
BSTIZE=FLDAT(IBSIZF)

64 X 64 BLOCK SIZE

JUMPE = 0 GIVES INTERNELIATE PRINTOUTS

JUMPL = 1  ELIMINATES INTZRMEDIATF PRINTOUTS
JUMP2 = 0 DOES NOT GENERATE OUT2UT [IMAGE FILES
JUMP2 = WRITES QUTPUT IMAGE FILES

. DO 203 I1=1,NuMF
00 203 [2=1,NUMI
203 CT(I(l.,12)=0

DO 1000 K
IROWLO =
IROWNHT = BSIZE - 1
REDUCTINN OF THE NUMBER OF L INES

WRITF (IUNIT,S5), IRIWL D6 IRVWHI
SS FUORMAT (//77777410K4%  INES® olSoSX.‘THRDUGH‘ol503Xo *PROCESSED®y/4)
DO 999 U = | ,NULKS
IcoLLo (J=1)*IRSIZ2E + )
IcoLt IcoLLn + 1Tus1ZE - 1

REDUCTION OF THE NUMBER OF CULUMNS

WRITE (TUMIT,S55), 1COL.0, ICU_HI
56 FORMAT (///777 120X *CULIMNS® 4 I5,3X, *THROUGH® ¢ IS, 3X, *PROCESSED®y//)

READ ORIGINAL [IMAGE FILES
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s
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C
C
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) c
C
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<RUOB INSONDKL o FOR G 1

S0

863

100

865

na 100 1
INDEXR =
DO %0 L =
INDFXR =

INDEXC =
DD SO M =
INDEXC =
DATA( INDE
IF (JunpPl

0

TUE 26-AUG-75 2:59PM

1 o NUMK®

IROWLOy I ROWMI
INDEXR + 1}
CALL DSKION(VeS12sLs1,41)
CALL EX2ANDI(V512,1)

0
ICOLLOC. JCOLHT
INDEXC ¢+ 1
XRoINOEXC,o ) = V(1)
et Qe 1) GO TO 100

WRITE (IUNIT,863),1

FORMATY (777 430X 42 INBUT ARRAY® 43X, %] =90,13,/)

WRITE (LUNITE6065)((DATA(LLIMM,1),y LL =

CONT INUE

FORMAT(1X,16F841)

COMPUTE SPFCTIRAL MEAN AND VARIANCES

140
125

806

807
149

00 120 I=1,.NUMF

Qv e v T 0 e

W

VAR {
*(DATA
VAR(IT)
IF{IJUMPL,
WRITE(IUN

n- UTCemuNTron

’
V
£
I

FORMAT(/27/7

WRITE( TUN

I

chC>—>--><-‘

WRITE(IUNIT,
FURM\T(///'3OX
WRITE(TUNIT 85060 (VAR(LL)LL=1,4)

CONTINUE

e (e ¢ TwNememZ{ > mam
umomnalnmoc—d'mc
O!ﬂXO"'-m"'U’U’I—"(ﬂU’

e NOe >

NN
~+mm
aC

S o L0iND AN Ne

e
—
N

(i ATA(L.M.I) -EVAL(L))«
(¢

UQIZF*BSIZE)

TO 1412

PECTRAL MEAM ARRAY® ,//)
{(EVAL(LL)sLL=1,4)

S e miT

e W

SPECTRAL VARIANCE ARRAY®*//)

COMPUTE SPECTRAL CUVARIANZE ARKAY

150

NUMF 1 =NUMF =1
DO 150 11=14,NUMF
CUIt«l1)=VAR(IY)
DO 200 11=1,NUMII

DO 20S 12=11 +1 ¢ NUMF

SUM=0.
DO 210 L
DO 210 M

« IUSIZE
e IS I ZE

1el6)e MM

PAGE 1:1
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210 SUM = SUM + (DATA(L Mol )—FEVALIIL)IR(DATA(L M,I2)-EVAL(I2))
SUM=3UM/ (RSIZF=AS1Z2F)

205 C(I1,12)=5UM

200 CONTINUE
DO 2S00 I1=1,NUMF
DO 230 12=11+],NUMFF

c 250 C(I12+.11)=C(11.12)

C STORE FOR COMPUTING TYPICAL COVARIANCE MATRIX
PO 260 [1=1.NUMF
DY 260 [2=1 4 NUMY

260 CTV(T1412)=CT(I1s12)eC{LL12)}

IF(JUMPLl «EQ.1) GO TO Y929 .
WRITE (IUNIT,808)

808 FORMAT(/7/74+ 30X, *SPECTRAL COVARIANCS ARRAY® ,//)

85S¢ FORMAT (11X 44F2045)

WARITE (TUNITo850) s ((CILL-MM) s LL = 1e4)¢ MM = 1+4)
CALL MSTR(CsReNUME 0,41

CALL ElGEN(RoA.NUMF.O'

WRITE(IUNIT,.811)

811 FCRMAT(//7/7,30X,* THE KL MATRRIX®e//)
WRITE(CIUNIT :850) s ({A(LLsMM),s LL=14)¢ MM=1,4)
ARITE(IUNIT,,812)

812 FORMATI(//7 +30X,¢ [JHE EIGENVA.ULS®,/)

o0 2SS [1=1,NUMH
DO 2855 [2=1].NUMF

255 C(I1t,12)=0,

. CALL MSTRIR +ColNUMF 41,00
WARITE(IUNIT ¢85S0 ) o (C(LLJLLIsLL=1,4)

999 CUNTINUE

1000 CONTINUL

C
C COMPUTE TYPICAL CUVARIANCYE MATKRIX
C

1260

814
at9

DC 1260 11 =1,NUMF

DO 1260 [ 2=1 NUMFF

CY(I1o12)I=CT(I1,12)/7(3_KS*3LKS)
CCI112)=CT(IL,I2)/S0PT(CT(EL,11))/5QRY(CT(I2,12))

WRITE (JUNIT.818)

FORMAT L/ /7 + 30X 4 *AVERAGED SPECTRAL COVAR]I ANCE MATRIX® ,//7)
FGRMAT(//77¢30X* NGRNALI ZED SRPECTRAL COVARIANCE MATRIX®*,/7/7)
WRITF (TUNIT«856) s ({CTILL oMM}y LL = 1eNUMF), MM = 1, NUMF)
WRITE(IUNIT 4319)

WRITE (ITUNIT  850) o {C(LLsMM) s LL = 1 sNUMF) s MM = 1 ,NUMF)
CALL MSTRICT4RyMUMF 041 )

CALL LlGl'N(P'A'NUM“..O’

WRITIZ(IUNIT,S11)

WRITE(IUNIT 4856 ) ¢ (LA(LL.oMM)y LL=1942)s MM=1,4)
WRITE(IUNIT,B81.2)

DO 1253 [1=1,NUMIF

DN 12685 12=1,NUiat
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4
1255 CT(11.,12)=0,
CALL MSTR{R.CToNUMF,140)
WRITE(IUNIT 4850 s (CT(LLsLL)LL=1,4)
C
o} WHRITE OUT THE KL MATRIX
C
Cc DO 1257 11=1,NUMF
Cc DO 1258 12=1,NUN¥F
C 1258 RUI2)=A(11,12)
C 1257 CALL DSKIQ(R it o 1109200 30)
CALL KL2( IBSIZUC o HJMF +» A 5, JTUNITY )
CALL PCPROG( NUKMI o TJTUNIT )
CALL FINI
sSTOP
F£NOD -
C
SUBROUT INE KL2{ IBSI1IZE ¢ NUMF o A o JTUNIT )
DIMENSION DATA(6GA 0608) 0C{a:4)sVIS12),EVALIG)VAR(4)
DIMENSICN A(494)sR(4)sCT(444)+2C(6446444)
. DATA JUMPY 7 1 /7 o+ JJHP2 /7 1 /
NBLKS=512/1B8SIZE
BLKS=FLOAT (NBLKS)
FRAMES=FLOAT {NUMF) .
BSIZE=FLJAT(IBSIZE)
~ <
C 646 X 64 BLOCK SI1ZE
c .
C JUMP]1 = O GIVES INTERMEDIATE ARINTOUTS
C JUMPL = 1 ELIMINATES INTERMEOIATE PRINTOUTS
C JUMP2 = 0 DOES NOT GEMNERATE OUTPUTY IMAGE FILES
g JUMPZ2 = 1 WRITES WTPUT IMAGE FILES
59 FORMAT (/777777 10X *LINES® ¢15+3Xe® THROUGH® 215 :3X+?* PROCESSED® +//)
SE FORMAY (/7777 420X, 'CI. U““b‘olsoJXo'THRDUbH'ol303Xo'pQOCESSED'o//)
865 FORMAT(1X,16F8.1)
c 856 FURMAT (1X,4F20.5)
C READ IN THE KL MATRIX
o
C DI 1257 11=1.NUMF
C CALL NSKIO(R«NUME 311 416204 35)
C DN 1258 12=1,NuUMl-
C 1258 A(I2,I1)=R(12)
C 1257 CONTINUE

WRITE(IUNIT
811 FAORMATI(///

» 3

»3C <L MATRIX®*e/77)
WRITE(IUNIT,B
IN(
{
(
(

E
AlLLeMNM) s LL=1eNUMF) ¢ MM=1 ¢ NUMF )
"

Tt

oL
caLtL 0OOPLE » 100000 o °*PC1.DAT;;~13T7° )
CALL DOUPEN » 1000000 » *PL2.DATS~-1,T" )
CALL DIOPEN o 1000009 o *PC3.DATI-13T7* )
CALL DOPIN ¢ 1000000 4 °*PC4G.DAT;=1;T° )
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127213}

CONSTRUCT PRINCIPAL. COMPONENTS
DO 2000 k = 1 +NBLKS
IRUWLD = (K—l)*IHSlZE
IROWHT = IROWLO + 1p5

RECONS TRUCT ROWS

¢t 1
IZE - )

NOn

WRITE (TUNIT,55), TROW_ D, IRUWAT
IFIRST = ¢

NQ 1999 4 = 1oNBLKS

ICOLLO = (J=-1)%1BSIvE + 1
Icounr = ICoLLO + I8s1zeg -

RECONSTRUCT COLunNs

_ WRITE(IUNIToSb) o 1COLILO, IChLMI
READ ORIGINAL IMAGE FilLes

DO 1100 1 = 1 NUMF
INDEXR =

00 1050 L = IROWL 0y IRIWHI
INDEXR = INDEXR ¢+ |

CALL DSK!U(V-SIZ.L.!;I)

N0 Nnn

DU 10%0 M = ICULI-UQ!COLHI
INDEXC = INDEXC & 1
10s0 DArA(lNDEXRolND[;KCol) = viny
IF(aumMp ] oFQs 1) G0 T0 1100
WR!TE('UN[T.BOJ)-[
863 FURMAT(///. 30X, IuPUT ARRAY® .3 x
WR[TE(!UVIroﬁﬁs,n((l)ArA(LLoMMol
1100 CONT I NUE
C

ol

4
),

=0,13,7)
LL = 116), MM

C PRINCIPAL COMPONEMTS
C

nn so8 L=, 1881 7¢
DO 508 M=, 195126
D0 509 1= o NUMF
PC(Ls+MeI)=0,
N0 509 yI=1 « NUME
509 BCLeM, | )=|"C(L.M.I’*A(Jl .l)*(’ArA(L.M..Jl’
508 CONT INUE
DO 1515 I=1.NUMF
DO ts10 L=1,1d512E
C DO 1510 M=t,Iustzr
C PC(L.M.I)=Af1$(PC(LpMol,’

1+16)

PAGE 24
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C1510 IF(PCILiM T )oY o28%,4) PLILsM,1)=255,

864
1530

1546

(2¥aYs)

1547

1535

1536
1515

1969
2c00

96
99

50
60

IFCIUMPL oEQel ) GU TO 1530
WRITE(IUNI T 86401

FOPMAT(//77+s30X, *PRINCIPAL CUOMPIOMNENT?® 4SX4%1 =9,13,/)
WRITEAIUNIT s865) o ((PCULLLeMMs [)oLLL=1e16)eMM=1,410)

IF{JUMP2 T us 0) GO TO 1518
INDEXR = 0

DO 1536 L. = IROWL 1), IROAHT
IHDEXR = THhDEXR + 1
N = 1 4+ NUMI-

N = 10 + 1
IF(IFIRST Eue.
CALL DSKIN(V 51
CALL EXPAND{VeH
GO TO 1547
CALL DSKIO(V+512sLslsNe 361}
CONTINUE
INDEXC = 0
DO 1535 M = ICOLL.OLICOLNIIE
INDEXC = INDEXC + |}

V(M) = PCIINDEXR, INDEXCo 1)
CUNTINUF. )
CALL USKIJ(V+SI2:L+0sNy 36)
CONT INUE

CUONTINUE

IFIRST = |

CONTI NUE

CONTINUE

RETURN

CND

T) 1546
1}

1) GO
Paloe
12,1)

PROGRAM P C

SUNRNDUTINE PCPRUG( NUMF o TUNIT )
Dlglf:’;:i(l)'ﬂ PCLI(S12)PC2(512)ePT3(S12).PCA(S12)
N=S1
Fl=0.

FNHl=0.
FL3=100,
FHLO=255.
WRITE(IUNET,,98)

FURMAT(//7 +8Xe* MIN AND MAX HBEFURFE NORMAL [ZATION®,,//)
FORMAT(//7+5Xe* MIN AND MAX AFTER MORMALIZATION® ¢//)

DO 100 I = 1.N

CALL D3KIOIPCI1sNelslell 4306)

CALL DOSKIN(PC2oWNelelol2, 3€)

CALL. DSKIO(PC3sNsIsls134306)

CALL OSKIN(PC4eNel s1e14,36)

DC S0 J = teN

FUHI=AMAXTIPRPCI(J) I’C2(J)ePCI(U)PCalI)Fiil)
FLOSAMINIIPCLLJ) «PC2(J) oPC3(:J)ePC4G4(J) FLO)
ARITL(IUNIT 480 ) el oeFLU,FHI

FUORMAT(SX s PLINE=? 41 4 o5 o " MIN=® sF 3el o5Xs*MAX=* 4FB841)

PAGE 1:S
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100 CONTINUE
WRITECIUNIT 99)

00 200 I = 1,N

CALL DSKIO(PCloeNslol,e11,36)

CALL DSKIU(pC2oN0101012036’

CALL DSKIO(PC3eNslsloel3, 36)

CALL. OSKln(pC43N0101014036)

DO 250 U = 1N

PC1(y)= pCI(J)-FLO)*ES&./(FN[-FLU’

PCZ(J'=(PC2(J)‘FLO)*ZGS-/(FHI-FLO)

PC3(J)=(DC3(J)-FLO)*?550/(Fﬂl-FL0)

PCQ(J)=(PC4(J,-FLU)*Zsao/(FHI—FLO)

lNHI=AMAXI(PCI(J'.PCZ(J'OPCJ(J)OPCQ(J’OFNHI’
250 FNLO=AMIN|(9CX(J’opCZ(J)oPCJ(J’QPCQ(J)OFNLO, -

WRITECIUNIT 450 )41 ,FNLU. FNHE .

CALL PRFSS(PCIeNs1)

CALL PRESSUIC2,N,1)

CALL PRESS(IPC3sN,1)

CALL PRESS(PC44.iNs1)

CALL DSKIV(PCL 4N,y 1,0,05)

CALL DSKIND(PC2sNs140,05)

CALL DSKIO{PCI3osttel +0,07)

caLL DSKIU(PC4 4Ny [,0,08)
200 CONTINUE

RE.TURN

END
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1000

1500

2000
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l
DIMENSIION INV(25
h

SRCBINSOCNIPWIENERSFCRS) THU 4=-LsP=75 11216A14 PAGE 1

WIENGR FILTERING

THIS PROGRAM FIRST GETS VARIOUS INFCGRMATIONs THEN IT

CRIECATES A MATRIX WHICH wllLL 83E USELD LATER IN THE FILTERING
PRUCESSe THEN IT GIZTS A LINE AND TAKES THE LARGEST POSSIBLE
SEGHMENT FRCM IT (MUSY UE A POWER OF 2 PLUS SOME SMALL INTEGER
{SAY 14)) PUT IT CANT HE Ttie wWHULL LINE (BECAUSE THAT MUST Bt
ALSC A PUVER CF 2, BELSE *RINER® BLOWS UPR) SO ONLY ApOUT A
QUARTER GF THE PICTURE (S CHANGED.

ThEeN HAVING CUNE THt. LINES, IF THE PICTURE 195 SQUARE AND THE
USER HAS APFROVEDs THE COLUMIN GET THE SAME TREATMENT.

EXTERNAL RTN
REAL ARRA(1GC24
INTEGER 0OBYTIE TNes VESTNVMX2
IRL(1024) o441 3)
ARR(1+:5))
024) sRSN

EQUIVALENCE (

COMPLEX 1Tt
EQUIVALENCE (C
INTEGER WIDJLE

7—~C¢ 0\

INDS = 3 o .
QUTDS = 4

DAYA M/050,50/

TYRPE 1000

FGRMAT(® ENTER InRUT FILE NAME-?)

CALL DUPFN(3,"160C03000000,0)

TYPE 1500 ]

FURMAT (* IS IT REALGL) e CR PACKED(2)20)
ACCEPT ®, INTYPR

IRNYTSZ = 64 - 240 ¢ INTYF

TYPE 2000

FCRMATYT (* ENTER UUTPUT FILE NAME-*)

CALL DOPEN{4:°460C03000000,0)

TYPe 1500

ACCEPT & ,OUTIYF

VEYTSZ = 64 - 28 « OUTITYS

NYN¥ = QUTTYE ¢ =3 + 7

TYPE 1

FCRMAT(® EMTER THE JLUKRe Al Tk CORRELATICN COEFFICIENT )
ACCEPT *,F,p

IF (P oLTe 160 osaliNe P «GTe 0) GU TO 15

TYPE 20

FCRMAT (* THE (0NUle CUOLFF . AAUST BE LESS TiHAN 160: REF.NTER?Y)
ACCEIT X,

GU Ta 23

TYPIZ 26

FOIMAT (¢ NCW LHTLR THE STGNALZNDISE RATIO®)
ACCEPT #,5N
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C BE SURE AND CHFCR 10 S Tie PANGE. HERE .
TYPF 3, " ol2 3N

3 FCRMAT (*» THE ELUR, THf CuRn,. CILEFoe THL SIGNAL TO

» RATII)'/ZFIOo?ol?ll?o.!,

TYPE 3c0)

3000 FURMAT (' EMNTLw LENGTH AND «IDTH GF PICTURE-")
ACCEPT xoLEN,wID
N = 41D

C  HERL IS wuHiz- U OML LECIDES IF wanT ToO USF WHULE THING
CALL PUWERIN,M(1))

TUKN = | :

IF (WID oNFe LEN) GO Ti) 3500

TYPE 14450 .
3a50 FORINAT (' DU YUU %AaNT ONL UK THU OTMIENS TUNAL DEBLUR?Y)

ACCEPT 4, TURN
C CENLERATE ThL IMPLL SE RESPONSE OF THE ULUR
3500 TYPE 350
350 FCRMAT (* DO YOUL WANT THt CAANGED FCRTILN Ti) WE /¢
A (1) AT THE RIGHT, (.2) IN THE MIDULE UR (3) UN THE LEFT?%)
ACCEPT # ,HPSTN :
LE (TURIY «£0Ge 1) GO TOU 3850
VYPRE 2535 : )
. 235 FURMATY (2 DC Yuu wANT IT (1) AT THE Tor, (2) IN THE CLENTER'/¢
A Ul (3) AT THE DOITOIK OF THE PICTUR?2)
ACCEDPT x4 VPSTA
35%0 TYPFE 4000
4009 FCLRMAT (8 ENTER 9 [MFUL SE RESPUNSE % MATRIX SIZE*)
ACCEPT #,1L.

IF (1. +GTe 21) G TO 3500

ML = N/ZC + )
NK = NL + |-}
FL=(L~1, Y/ 2.
LF = FL + .5

IF {HUPSTN EGe 2) MX2 = N/3 - 1

IF (HPSTN +tCe 1) MX2 = LE+]

IF (HPSTN JCCe 3) MX2 = wWID ~LF-ML

MX = MX2 - LF

IF (VPSTN JLCe 2) vMx2 = LEW/Z2 - Nz4g =)
IF (VPSTN ofQe 1) VMX2 = Li'+}

IF (VPSTN «rflUe 3) VAX2 = Li'N =LF~NL
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S
4
59
40

3

4 C GENLRATFE THE CORAGL/

-t p
Wiy =

Halsl

0

W

D N(n
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NOWY HAVE CUOYTEN LNOUGH (N0 TO STAHT. SO JdEGIN CALCULATICNS

Du 42 I=14N
H{L) = 0.0

HILF + 1) = 1.0
T1=0
.ll. O0e) G5 TY 40

f

1o ) )R&2/(D2F%F)
e{d46e4186))Gu TU S
~-A

t 1 = 2x(LF-FL).

wild=h(1)

NC 30 I=2.LL

b d=wli—1)44(

CALL HANNM(Hobd o NV, 5, 1, IFERRY -
ATICh MATRIX )

G

)
N
1
0CC0N0N0.0) GO TO 138

1
i
T
IF (SN +GF. ICC
KF{1) = 1.0

NC 8 [=24AL
ARR(L)=PLRI(L-1)
I=NL-2

D6 I=1,N2
KR(NL+I)=KiR(NL—-1)

CALL HARN (KR o ¥ s IMNV 4524 [FILIRI)
DU 13 I=1,N
HY = CONJG( (1))
PEN=1e0/7 (KL DI®ESH
GClL)sHT/Z(H(L )T+
GC TU 139

4)
+K.Sl1)

THE FILTLR HAS BELN SET UP FUR USE. NUW REAL IN
TAE PICTURE AMD LED [T,

CALL DOPEN(S+%€¢10¢01GUOCN0D, SOKENTAD® )
CALL DUPERN(0+ 610001060000, *6CKSDeTAD® )
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222 CCNT INUE

DO 16 I=1.LEN

CALL ECSKIO(GIKL +41D,141eINNS, IHYTSZ)
IF CINTYPWFCe2) CALI. EXFAND(GIRL +WIC,
IF (I oLYe VMXZ2 J0Ofte | oGle VMX2+NL)
DO 333 J=LebK-LIL.

1) .
GO TO (67,92) WTTYR i

333 H{J)=GIRL{J¢+VMX)
DC 96 J=NKX,N
96 H{J)=0

DO 25 J=2,LL

HEII=GIRL (JeMX)~w L ~-J)ACIRL(1+MX)
2% H{NKFEL=J)=2CIRLINK ¢] =-J#NX)=d(L-J)*GIRKLI(NK#MX) .

HOL1)=w(l)*+GIQL{L1+NMX)

HIANK)I=W (1 )*GIKRL (MR +1MX)

CALL HARM{HoNMoINVeSe2 4 IFERR)

NO 18 J=1.N ;
18 HEDI=G(JII*F(I)

CALL HARMi1oVN oINV4Ss=2.IFERR)

IF (OUTTYP «Ede 1) GO TC 63

DC A0 J=2+MNL-1I .

A = H(J)

IF (AT .0) A0

IF (A «GTe 2550) A=255.0

60 GIRL(J+MX2) = A
93 CALL PRESS(GIRLWIDL1)
GC TD 67
63 - DL 65 J=2,MNL-1
65 GIRL(JetMX2) = K(J)
67 CALL DSKIO{GIRL sWIDel 0,CLTDSCBYTS2)
16 CUONT INUE
IF (TURN +FQe¢ 1) G TO 99999
INDS = QUIDS
QUTDNDS = 8
IF (TURN +EQ. 3) OULUTDS = &
CALL TRNSPS(AKP ¢ 1024433 LENJWNTID JNBWRTNRTN I NDS 4JUTDS 4 6)
IBYTSZ = CBYTSZ
IF (TURN <FQe 3) GU TO SY9usS
INDS = 5
TURN = 3
{ = MXZ2

MX2 = VvMX2
MX = MX2 - LF

VMXxX2 = I

GC TC 222
S$S999¢0 CALL FINMI

STopP

END

SLURAUTINE RTN
RETURN
£ND




C <FREI>FHOTO.FUOR:12 SAT 24-NAY-=795 2:1SPM

200

100
*

10

CCMMON TAB(0:2535),1GAM(02255),1IS12
TYPE 200
FORMAT(* SIZE? (256 UR 512)°)
ACCEPT », 1512
SET UP DENSITY LCCK-UP TABLE
CALL DENS
SET UP GAMMA LUCK-UP TABLE
CALL GAMM
WRITE LINEAR DENSITY SCALE
CALL SCAL
TYPE 100
FORMAT(* SCALE DUNE*)
PRE-DISTORT FOR CENSITY,VIGNETTING AND GAMMA
gALL VIGN
NO

SUHRNDUT INE DENS

SETS UP NEMSITY LOOK-UP TABLE

COMMONN TAB(O0:1255),IGAM(0:258),1S12

DIMENSINN A(S),V(9)

DATA AZ4 03130037 e057 0072086009500 1C3.+110,7/
DATA V/0e917¢¢51¢985¢01196315309187¢02214+0255e7

SC=106./7255,

t1=1

12=2
SL=(V(I2)-V(I1) /7 (A(I2)~-A(11))}

00 10 =0, 2€EE

X=4 o+l *5C

IF(X.LE.A(I2)) GAOTO 20

I1=12

[2=12+1
SL={VII2)-VII1))/7{ACLI2)-A(11))

Ox=x-A(11)
TABLI)=V(I1)¢SL*DX
RETURN

END

SUBRUUT INE GAMM .
CCMMON TAB(0:2%95) 4IGAM(022595)4IS12
CST=SURT(255.)

OC 10 1=0,25%

ARG=1

IGAM(]1)=CST*SQRT(ARG)

RETURN

END

SURROUT INE SCAL

COMMUN TAB(0:2255) +1GAM(0:255).,1S512

PAGE 1
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<FREI>DFHOTOL.FOR; 12

5
F1194102,85,68&,
2

‘DG 10 I=1,.1

SUPERIMPOSES
INTEGER QuUT(
DIMENSION IS
DATA lScr2s5

U'IUN N

IF(ISIZEQ.

I1S=1S12/32

DO 10 I1=t,18

18S=1

IF(ISIZ.EQe256) 1SS=]*2-1
132=(1~-1)%32

DO 10 JU=1,32

IND=132+J

QUTCIND)I=ISCLISS)

CALL IPRESS(QUT,,ISIZ,1)
LUP=1S]12-20*%IS12/250
DO 20 L=LUP,ISIZ

CALL DSKIO(OUT, IS SIZsL s0e1,8)
END

SURROUTINE VIGN
COMMON TAB({0:255) +1GAM(
DIMENSION JI(S12),A(S512

Cl=1.25
C2=(Cl =14 )/7((IS12%%2)/2,)

M=[SIZ/2
Al )=C2%

(I
DO 20 LIN=1
CALL DSKIO¢
CALL IXPAND
00 39 1P=1,
DENSITY LOGC
DEN=TAB(IT(
VIGNETT ING
IVIG=DEN/(C1
lF(lVlG.GT.Z
T1ICIP)=1GAM(
CALL IPRESS({
CALL DSKIC(!I
CALL FINI
END

IN}-ACIP))
IVIG=255,

———U‘.

SAT 24-NMAY-7S 2:1SFM

0:255).1512
)
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