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ABSTRACT

Coherent optical systems are of interest in image or
data processing because of their ability to rapidly handle
large bandwidth data in parallel. They have been
restricted to performing linear operations such as Fourier
transformation and convolution, due to the inherent linear
nature of an optical system at low power levels. In this
dissertation, the combination of a nonlinear halftoning
step followed by band pass spatial filtering to vyield a
specific nonlinear intensity transfer function is

explored.

A general analysis of the problem assuming infinite
copy film gamma and saturation density is made. A
constructive algorithm for designing a halftone cell shape
and selecting the diffraction order to yield very general
types of nonmonotonic nonlinearities is presented.

Numerous examples of the synthesis procedure are given.

The design of non-monotonic halftone cells which
allow a non-monotonic nonlinearity with an arbitrary
number of changes of sign in slope to be obtained in the
first diffraction order 1is considered. An iterative

algorithm suitable for computer implementation, and
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numerous examples of halftone cells designed with this

algorithm are given.

The effects of allowing the film gamma and saturation
density to become finite are analyzed, and a technique for
compensating a priori for some of the resulting

degradations is given.

Experimental results with general halftone screens
made on a plotting flatbed microdensitometer are
presented. Logarithmic, exponential, and 1level slice
characteristics have been achieved with monotonic cells.
Intensity notch filter and gquantization characteristics
have been achieved with non-monotonic cells. Other
generalizations of the technique are discussed, including
the possibility of real-time nonlinear processing with

optical input transducers.
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CHAPTER 1

INTRODUCTION

Optical information processing systems are capable of
performing linear operations such as Fourier
transformation and convolution on two-dimensional data in
parallel at high speed ([1-1]. At the low power levels
present in the typical optical processor, only linear
operations are possible unless special techniques are
employed. Many information processing applications
require nonlinear operations to be performed on the data,
and these have wusually been accomplished digitally.
Various technigues however, have been employed to realize

nonlinearities optically.

Saturable absorbers and in some cases feedback have
been used in an optical system to generate a nonlinear
characteristic [1-2,3,4). This requires working at power
levels substantially higher than those usually employed in
optical processing systems, due to the high powers
required to saturate the saturable absorber. Photochromic

materials have been suggested as a possible approach



[1-5]. A theta modulation scheme [1-6]) in which
brightness 1levels are 1locally converted to rotated
gratings has been described. By selective spatial
filtering of these levels, nonlinear functions can be
achieved. Unfortunately there is no straightforward way
to optically perform the theta modulation. Multiple
isophotes have been achieved with holographic technigues

(1-71.

Recently halftone screen preprocessing has been used
to achieve nonlinearities, and this is the overall
approach taken in this study. The halftone process is a
photographic method for representing a picture containing
grey tones as a binary picture. This technigue has been
used in graphics arts for more than 76 years for printing
grey tone pictures with printing presses. The grey tones
are represented as an area modulation of black dots on a
white background which the eye averages to produce the
appearance of qrey. By preprocessing the photographic
input with a halftone screen, the size of these dots can
be wvaried as a function of the density of the original
picture to produce the apparent grey tones. Both
one~dimensional screens (linear gratings) and
two-dimensional screens (arrays of dots) can be used, but
the one-dimensional halftoned wvpicture is usually not as

qood visually as a picture made with a two-dimensional

(¢
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screen, It will be shown in chapter 2 that when nonlinear
transformations in coherent optical systems are the
desired result, one-dimensional screens are as useful as

two-dimensional screens.

The variation in dot size as a function of input
transparency density is the first step of interest in
obtaining nonlinear transfer functions. The second step
involves diffraction order selection, or equivalently
transmitting the energy contained in a specific Fourier
component of the halftoned picture. The functional
dependence of the second step depends on the diffraction
order considered. It will be seen that control of both
the diffraction order used and the halftone screen allows
a wide variety of nonlinear transfer functions to be

realized.

The halftone process is 1illustrated in the next
several figures. Figure 1-1 shows a possible
one-dimensional density profile of a typical halftone
screen. For a two-dimensional screen, the plot of density
vs. vy for an (x,y) coordinate system is similar. Figure
1-2 shows a possible input density function. This
represents a transition from a 1light (DP=.5) to a dark
(D=1.,5) region. The input function and the screen

function are optically added together to produce the sum



Halftone screen density

20t 0 N N 1 0 N r
1.51
1.01

ANV

dot profile

Figure 1-1, A typical density profile for a
halftone screen,



i

Input density

1.0 1
0.5

Figure 1-2, Typical input density function containing
an edge.



density function shown in Fig. 1-3. The addition is
physically accomplished by contacting the halftone screen
with the inpué transparency so a uniform illumination has
been transmitted through both. The light transmitted by
the pair 1is then photographically recorded on a high
contrast copy film. A typical response for such a film is

shown in Fig. 1-4. The D shown in Fig. 1-4 indicates

clip
the maximum density on Fig. 1-3 through which the copy
film can be exposed. The clip level is logarithmically
proportional to the controllable uniform illumination
used. The effect of varving the illumination is to vary

the D value which in turn moves the <¢lip 1level on

clip
Fig. 1-3 up or down on the density axis.

The transmission of the copy film is ideally either 1
or 0 because of its high contrast characteristic. The
halftoned version of a continuous density distribution
such as in Fig. 1-3 will appear as shown in Fig. 1-5. All
values of x for which the density is less than the clip
level have turned black and hence transmit no light. All
values of x for which the density is greater than the clip
level do not expose on the film, resulting in unity

transmission following photographic processing.

It is this halftoned picture, as shown in profile in

Fig. 1-5 which is capable of yielding a nonlinearity when

v
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Density
!

307

20 1

-

1.0 1

clip Ievel/

- X

Figure 1-3, Density distribution used as input to
the copy film.
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hard clip
high contrast
film
high
Y
: -D.
Dc|ip=2'O ‘) ":5
« klog, )

Figure 1-4. Typical response of the copy film.



Figure 1-5. Transmission profile of the copy film
following photographic processing.



placed in a coherent optical system [1-8] as shown in
Fig. 1-6. If this halftoned input picture is made with a
two-dimensional halftone screen, the Fourier transform
plane will be a two-dimensional array of points of light
which will ideally be the centers of distinct spectral
islands, each of which contains complete image
information. This assumes that the picture is sampled at
an adequately high rate. 1If the sampling rate is not high
enough, the spectral islands will not be separable, and
aliasing will occur ([1-9]. One of these diffraction
orders is selected by a spatial filter and retransformed
by the second 1lens to vyield the desampled output. As
shown in this work, the output will be a nonlinear version
of the original picture where the nonlinearity depends on

the halftone screen and the diffraction order chosen.

Margquet [1-16] and somewhat later Marquet and
Tsujiuchi [1-11] noted that if a halftoned image was
desampled in a coherent optical system, various types of
nonlinearities could be produced, depending on the
diffraction order chosen in the Fourier transform plane.
Kato and Goodman [1-12,13] successfully performed a
logarithmic transformation with a commercially available
halftone screen. More recently Lohmann and Strand
{1-14,15,16] have used the halftone technigue to perform

analog-to-digital conversion, and to generate eguidensity

10
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isophotes. Liu has also done some work with
equidensitometry using halftone screens [1-17}. Some of
the results of this dissertation have been summarized in
several publications [1-18,19,20,21,22], where operations
such as exponentiation, level slicing, notch filtering,
and gquantization have been demonstrated using the halftone

process.

The following is an outline of the chapters of this
dissertation and a summary of the specific research

contributions in each.

Chapter 2 considers in detail the dependence of the
system transfer function on the halftone screen and the
diffraction order used. An ideal binary copy film is
assumed throughout. It concludes with a computer
synthesis algorithm for specifying the shape of a
monotonic halftone screen required for a particular
transfer function and specifies the diffraction order to
use. Chapter 3 contains several specific examples of the
use of this algorithm, including halftone screen profiles

and transfer functions.

In chapter 4, the consequences of using a copy film
which is not an ideal binary device are explored and a
mathematical model to predict the system performance is

developed. Numerous computer results showing the effects

12
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of parameter variation are given using this model.

Chapter 5 considers non-monotonic halftone screens,
an unusual variation on the normal type of monotonic
halftone screen. Certain capabilities of this type of
halftone screen for nonlinear processing are explored, and
a synthesis algorithm for designing such halftone screens
for a specific transfer function is presented, with

examples.

Chapter 6 discusses a precompensation technigue which
allows non-~ideal copy film to be used with minimum
degradation of the ultimate transfer function. A
technique for calculating compensated cell shapes 1is
given, with examples. The use of a phase halftoned

picture in the coherent optical system is also considered.

Chapter 7 discusses the procedure used for making
several halftone screens, and presents the experimental
results obtained. Finally, conclusions and
recommendations for further researéh in this subject are

contained in chapter 8.

13



CHAPTER 2
SYMMETRICAL AND NON-SYMMETRICAL

MONOTONIC HALFTONE CELLS

A halftone screen consists of a one or
two-dimensional periodic array of halftone cells.
Commercially available screens for photoreproduction are
usually two-dimensional, although the screens made for
experimentally realizing particular transfer functions as
described 1later are one-dimensional because they are
somewhat easier to fabricate. For this reason,
two-dimensional cells will not be considered in great
detail. Another degree of freedom is that both
symmetrical and non-symmetrical cells can be used.
Briefly, a halftone screen is considered symmetrical and
monotonic if each cell in the screen is an even function
about its center and the density increases monotonically
on either side of center. The screen 1is considered
non-symmetrical but monotonic if the density increases
monotonically from edge to edge of the cell but is not an
even function about the center. Both types of cells are

shown in Fig. 2-1, in which the fundamental period of the

14
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Figure 2-1, (a) Symmetrical halftone cell,

(b) Non-symmetric halftone cell.
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repeated cells is denoted by a.

In using halftones for nonlinear transformations, the
end product of the first processing operation is a binary
halftoned picture. All of the analysis to follow assumes
that the sampling theorem ([2-1] 1is satisfied and the
amplitude distribution present in the Fourier transform
consists of discrete spectral islands, one of which can be
selected for retransforming. If the sampling theorem is
not satisfied, aliasing will occur and the situation
becomes much more complicated. If the sampling theorem is
satisfied, that 1is, if the screen fregquency is at least
twice as high as the highest spatial frequency present in
the image being halftoned, this halftoned picture will be
a pulse-width modulated negative of the original input.
The halftoned picture will consist of dots, usually
square, of varying size, or of bars of varying widths. It
will be shown that the possible transfer functions are
essentially the saﬁe for one-dimensional and
two-dimensional screens. This minimum of ¢twice the
maximum image spatial frequency may be overly cautious,
but it is aquite difficult or impossible to analytically
determine the minimum screen frequency actually required

due to the nonlinear halftoning step ([2-2].

16
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2.1 Amplitude Output from Symmetrical Halftones with a

One-Film Process

As a first step, an expression for the Fourier
transform of an infinite array of opague bars of width b
spaced a distance a apart on a clear background is
required. As will be shown in section 2.5, the bar width
b is controlled by the halftone screen and is a function
of the input intensity in the process. The array of bars
analyzed here represents the pattern on the copy €£film

following the halftoning step.

A single transparent bar of width b on an infinite

opague background can be represented as

v(x)=rect(x/b) ’ (2.1)

and an infinite one-dimensional array of such bars spaced

a distance a apart on an opague background can be

represented as

u(x)=v(x)*((l/a).-comb(x/a))
=rect(x/b)*((1/a).comb(x/a)) (2.2)

where comb is defined by [2-3]
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comb(x)= E 5 (x-n) (2.3)
n=-o
and * denotes convolution. Inverting the contrast to get

opaque bars on a transparent background yields

t(x)=1-u(x)
=l-rect(x/b)*((1/a)-comb(x/a)) (2.4)

as the film transmittance function.,

Equation (2.4) represents the local pattern present
on the halftoned picture, where the width b is some
function of input intensity determined by the halftone
preprocessing. The amplitude distribution represented by
eqg. (2.4) is optically Fourier transformed [2-4] by the
system shown in Fig. 1-6 and a single diffraction order is
selected by a pinhole spatial filter for retransforming to
yield the final output. Ignoring focal 1length and
wavelength factors for simplicity, the Fourier transform

of eq. (2.4) is given by
F{t(x) }=6(f,)-b-sinc(bfy) -comb(afy) (2.5)

where ¥{.} denotes the Fourier transform operation. The

separation into distinct diffraction orders is more easily

18
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seen if the comb function in ea. (2.5) is replaced by a
sum of delta functions as indicated in ea. (2.3).

Equation (2.5) is equivalent to

F{t(x) }=6(fx)-(1/a)oz: 6(fx-n/a)- bosinc(bfx) . (2.6)

n=-o

Replacing f_ in the sinc function with the values

specified by the delta function yields

3{t(x)}=6(fx)-}E: 6(f ~n/a).(b/a).sinc(bn/a) (2.7)
n=-o

as the Fourier transform of the input pattern specified by
ed. (2.4). All image information is clustered in spectral
islands positioned at f,=8, +l1/a, -1/a, +2/a, -2/a, ....
in the Fourier transform plane, as shown in Fig. 1-6 for
the two-dimensional situation. A complete description of
the amplitude present in this plane is rather complicated
and unnecessary, since it is assumed that the islands are
completely separate. In normal use, a single diffraction
order (spectral island) is vpassed by an aperture of
suitable size and retransformed to yield the output. If
the Nyquist criterion is satisfied in the original
halftoning process a single spectral 1island can be
selected, and no subject detail will be lost by this band

pass operation.
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The two distinct cases of interest are the 2zero and
non-zero order selections. Selecting only the n=0 term of
ed. (2.7) yields

F{t(x)},0=06(£) (1-b/a) (2.8)

as the amplitude in the zero order diffraction component.

Selecting any term for which n#8 gives
${t(x)}n¢0=-6(fx-n/a)-(b/a)-sinc(bn/a) (2.9)
as the amplitude present in the nth diffraction order.

The order passed 1is retransformed to yield the output

amplitude. Retransforming eq. (2.8) vyvields

F{F(t(x) }yz0 }=1-(b/a) (2.10)

and retransforming eg. (2.9) gives

${${t(x)}n¢0}=-(b/a)-sinc(bn/a)aexp(-jZnnx/a)
=-(1/nn). sin(nbn/a) - exp(-j2nnx/a) (2.11)

for the local complex amplitude in the image plane. The

operation of the two lenses is modeled as two successive

Fourier transforms. This is the same as a Fourier

20
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transform followed by an inverse Fourier transform except

for a coordinate inversion, which is immaterial here.

The same sampling considerations and technique can be
used to analyze two-dimensional patterns. A single
transparent square with side b on an opague background is

represented as
v(x,y)=rect(x/b)-rect(y/b) ’ (2.12)

and a two-dimensional array of such squares with a center

to center spacing a is written as
u(x,y)=v(x,y) *((1/a%). comb(x/a)-comb(y/a))
=rect(x/b)-rect(y/b) *
((l/az)-comb(x/a)ccomb(y/a)) . (2.13)

Inverting the contrast yields

t(x,y)=1l-u(x,y)
=l-rect(x/b).rect(y/b)*
((l/az).comb(x/a).comb(y/a)) r (2.14)

and Fourier transforming eq. (2.14) gives
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- 2 o .
${t(x,v)}-6(fx,fy)-b -51nc(bfx)-s1nc(bfy)-

comb(afx).comb(afy) (2.15)

as the amplitude in the transform plane. Rewriting the
comb functions as a summation of delta functions making

use of eqg. (2.3) gives

F(E(x,9) }=6(E )= (1/a2) ) D bl -n/a).

NT=c NDM=-o

5(£,-m/a)- b%- sinc (bEy) - sinc (bE,) (2.16)

where them and n specify two-dimensional diffraction
orders. Putting in actual values for fx and fy vields as

a final expression

FE(,Y) )=5(E )= (B8/8) D D~ s(E,n/a)-

S IM=-o

6(fy-m/a)-sinc(bn/a)-sinc(bm/a) . (2.17)

Once again, a single order is selected in the
transform plane and retransformed to yield the output.
The possibilities break up into three distinct cases: 1.)
m=n=0, 2.) m=0 and n#@ or m#P and n=@, or 3.) both m and n
non-zero. In the second case, it is unimportant whether m

or n is chosen to be zero. Examining the three cases
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yields expressions from eqg. (2.17) as follows
FE(x,¥) bg,0=8 (£, £ )« (1-2/&) (2.18)

FE(X,¥) }g,  ==6(£,~n/a) . 6(£,) - (t% /a%) . sinc (bn/a)
=-6(f,-n/a) - 6(fy) - (b/mna) . sin(nbn/a) , (2.19)

and

FE( ) by, == 8(E,-n/a) - (£, ~m/a) - (% /& )-
sinc(bn/a).sinc(bm/a)
== 8(£x-n/a) - 8(£,-m/a) - (1/n’mn).
sin(rbn/a)- sin(mbm/a) . (2.20)

The final output amplitude is obtained by retransforming

eqg. (2018), (2.19)' or (2020) to qive
FF(E(x,) by ot=1-tP/a® (2.21)

S{?{t(x,y)}o'n =~ (b/r na). sin(rmbn/a).
exp(-3j2wnx/a) ' (2.22)

and
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F{F{t(x,y) }m'n =— (1/1-rz mn). sin(mbn/a). sin(mbm/a)-

exp(=j2w(nx+my) /a) ’ (2.23)

respectively.

The output amplitude for non-zero orders in one and
two dimensions are similar functionally, but the
differences deserve some comment. Equation (2.11) for the
one-dimensional output has evenly spaced zeros, as does
ea. (2.22) for the two-dimensional case, but does not have
the b/a multiplicative factor. Equation (2.23) will have
unevenly spaced zeros if m#n, and it also 1lacks the b/a

factor,

2.2 Amplitude Output from Non-Symmetrical Halftones with

a One-Film Process

If a halftone screen is constructed on some device
which makes each cell by plotting a finite number of
points or 1lines depending on whether the cell is
two-dimensional or one-dimensional, a non-symmetrical cell
has twice the wpossible number of points to cover a
specified density range. For example, if a cell for use

in the zero order has to range in density continuously
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from density=0 to density=1 and has twenty lines per cell,
a symmetric cell has only ten lines from density=0 at the
center to density=1l at the edge. A non-symmetrical cell
has twenty lines in this density range, therefore the step
approximation to the desired function takes smaller steps
in density, and will be a closer approximation to the

function.

The effects of using a non-symmetrical halftone cell
must be analyzed. The analysis proceeds in a fashion
similar to that beginning at eq. (2.1), and only
one-dimensional cells are considered for simplicity.

Beginning with eq. (2.1),

v(x)=rect(x/b)

is a representation of a transparent bar of width b on an
opaque background. An infinite one-dimensional array of
such bars, spaced a distance a apart on an opaque
background with one edge fixed in position can be

represented by

u(x)=v(x)*((1/a). comb( (x-b/2)/a))
=rect(x/b)*((1/a)-comb((x-b/2)/a)) . (2.24)

Inverting the contrast yields
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t(x)=1-u(x)
=l-rect(x/b)*((1/a). comb( (x~b/2)/a)) ’ (2.25)

and Fourier transforming this transmittance yields

Flt(x)}=58(f )-b-sinc(bf ) -comb(af )

exp(-jnbfx) (2.26)

as the amplitude distribution present in the Fourier
transform plane. Replacing the comb function by a

summation of delta functions yields

3{t(x)}=6(fx)-:z: 6(fx-n/a)-(b/a)-sinc(bfxy

Nn=-w

exp(-3mbf_ ) . (2.27)

Replacing ﬁx by the values selected by the delta function
yields

F{(x) }= 6(£,) - E 8(£,-n/a) - (b/a) - sinc (bn/a)-

N=~w

exp(-jrbn/a) R (2.28)
which represents spectral islands in the transform plane.

These 1islands will be distinct and separable if the

sampling criteria are satisfied.
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The specific cases of interest are n=0 and n#@. With

n=0 eq. (2.28) becomes
F{t(x)) _o=5(£) (1-b/a) (2.29)

an expression identical to eq. (2.8) for symmetrical
cells. Therefore, since they yield equivalent output,
non-symmetrical cells are to be preferred for the zero
order because they can be made more precisely. For nk@,

eg. (2.28) becomes

S{t(x)}n#0=-6(§x-n/a).(b/a)-sinc(bn/ay
exp(-jnbn/a) . (2.30)

Note that eq. (2.38) contains a nonconstant phase factor

which was not present in eq. (2.9).

The output amplitude is given by the Fourier

transform of eg. (2.29) or (2.30),
FiF{t(x)} _ol=(1-b/a) (2.31)
or

S{S{t(x)}n#0}=-(b/a)-sinc(bn/a)-
exp(-jnbn/a).exp(-j2nnx/a)
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=-(1/nm).sin(mbn/a)-

exp(-jm(b+2x)n/a) . (2.32)

If intensity is detected at this step, as with
photographic film, the additional phase factor in
eq. (2.32) will not matter and eq. (2.32) becomes

eauivalent to eg. (2.12).

2.3 amplitude Output from Symmetrical Halftones with a

Two-Film Process

The procedure involved in the two-film process is to
take the halftoned picture and contact print it onto a
second piece of copy film. The result is a contrast

reversed halftoned picture.

The motivation for considering this case is twofold.
Real photographic £films do not behave as they have been
ideally modeled in chapter 1. The film gamma  oOr
saturation density could be low, rather than infinite.
Using a two-film process allows the effective gamma of the
process to be higher than the gamma of either individual
film, assuming both gammas are larger than one.
Intuitively, it seems that a higher combined gamma should
be superior to either of the lower individual gammas, and

this idea is considered in more detail in chapter 4. The
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second motivation is the sign of the slope of the =zero
order characteristic. Examination of eqg. (2.10), the n=0
case, indicates that the output amplitude is a

monotonically decreasing function of the bar width b.

It will now be shown that by going to a two-film
process, a monotonically increasing function of b, where b
is the bar width on the first film, can be realized in the
zero order. The analysis proceeds as before, beginning
with eqg. (2.1). 1In this case, the derivation is identical

until eq. (2.3).

To begin, the expression for t(x) must be modified to

yield

t(x)=u(x)

=rect(x/b)*((1/a). comb(x/a)) (2.33)
as the amplitude distribution at the input plane of the
optical system. The amplitude distribution in the
transform plane is given by

F{t(x) }=b.sinc(bfy).comb(afy) ’ (2.34)

the Fourier transform of eq. (2.33). Replacing the comb

function with a summation of delta functions yvields
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3{t(x)}=(1/ah:z: 6(f -n/a). b-sinc(bf) ’

Nn=-c

(2.35)

and putting in the actual values for f, gives

F(E(x)}=(1/2))  b(£-n/a)-b-sinc(bn/a)  (2.36)

n=-mw

as the general expression for the

amplitude distribution
in the

FPourier transform plane. Again, the two cases of
interest are n=@ and n#6. For n=0, eg. (2.36) becomes

F{t(x)},_p=(b/a): 8(£,)

(2.37)
and for n#0, eqg. (2.36) becomes
${t(x)}nioz(b/a)-sinc(bn/a)-5(fx-n/a)
=(1/mn). sin(mbn/a)- 6 (fx-n/a) .« (2.38)

The final output amplitude is obtained by Fourier
transforming eq. (2.37) and (2.38) to yvield

’{s{t(x)}n=0}=b/a (2.39)

and

]
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s{s{t(x)}n#o}=(1/nn)-sin(nbn/a)-exp(-jnbn/a) (2.40)

as the amplitude distribution present in the output plane
for the =zero and nth order respectively. Observe that
eq. (2.39) is monotonically increasing in b, as opposed to

eg. (2.10) which is monotonically decreasing.

2.4 Output Intensity

If the system output is detected by photographic film
or other intensity detector, the modulus of the output
amplitudes previously obtained must be squared. From
eqg. (2.18) and (2.11), the intensity output for the
one-dimensional one-film process with a symmetrical

hal ftone cell is
I (b)= | SIS(t(x) ]} _o}|%=(1-b/a)? (2.41)
out n=0
for the zero order, and
I (b)= | FIF{t(x)}_4q}|2
out n#0
-—-|(-1/nn)-sin(nbn/a)-exp(-jZnnx/a)|2

=(1/rm)2 . sin? (nbn/a) (2.42)

for the nth order. From eqg. (2.21), (2.22), or (2.23) the
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intensity output for the two-dimensional one-film process

with a symmetrical halftone cell is

I (D)= | St} o}]?
=(1-b2/a?)’ (2.43)

2
It (D)= | S{S{t(x)}g 1}
=|(-b/nﬂa)-sin(nbn/a)-exp(-jZnnx/a)|2

=b2/(nnaf -sinz(nbn/a) ’ (2.44)

and

2
| F{F {£(x) )y, n}|
|(-1/n2mn)-sin(nbn/a)osin(wbm/ay

Iout (b)

exp(-jZn(nx+my)/a)|z
=(1/n2mn)2-sinz(nbn/a)asinz(nbm/a) r (2.45)

respectively. From eg. (2.31) or (2.32), the intensity

output for the one-dimensional non-symmetrical halftone

cell with the one-film process is

Iyt ()= |FIF(E(x) ) o0} |2
=(1-b/a)2 (2.46)

for the zero order, and
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Iout ()= | F{F(E(x) g0} 2
=|(-1/nn). sin(nbn/a).
exp(-j n(b+2x) n/a) |?
=(1/nm? . sin? (bn/a) (2.47)

for the nth order. From eq. (2.39) or (2.49) the
intensity output for the one-dimensional two-film process

with a symmetrical halftone cell is

Igut (D)= Is{s{t(x)}n=ollz
=(b/a)2 (2.48)

for the zero order, and

2
I gyt (D)= I!{S{t;(x) hngo } |
= |(1/nm) - sin(nbn/a) . exp(-jnbn/a) |2
=(1/nm? .sin? (mbn/a) (2.49)

for the nth order.

Certain features of output intensity behavior should

be noted from ea. (2.41) to (2.49).

1. The zero order (n=0) Iout . is the same
monotonically decreasing function of b for the symmetrical

and non-symmetrical one-film process, and is a
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monotonically increasing function of b for the two-film
process. This has been shown for one dimension and could

be shown for two dimensions.

2, The non-zero order (n#8) one-dimensional Iout
expressions, eq. (2.42), (2.47), and (2.49), are all the
same. This means that the same symmetric cell shape can
be used for either the one-film or two-film process, and
vield identical results. The non-symmetric version of the

same cell will yield equivalent output intensity.

3. The two-dimensional characteristics are not
identical to their one-dimensional counterparts, though
they are similar. In particular, eg. (2.44) has a
multiplicative bz/a2 factor which makes it depart from a

2

strict sin® relation.

2.5 Bar Width Dependence on Input Intensity

Equations (2.41) to (2.49) relate the intensity at
the output plane of a two lens Fourier transform system to
the width b of opaque bars or dots spaced a distance a
apart on a transparent background in the system input
plane. It is the function of the halftone screen to
provide a mapping between 1local input intensity and

resulting local bar or dot size on the halftoned picture.
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This mapping will be examined more closely for the
one-dimensional halftone, and can be analyzed similarly

with two-dimensional halftones.

For this analysis of the ideal situation, the copy
film used to make the halftonéd picture is assumed to have
an infinite gamma, and a qgiven threshold intensity 1I°.
The threshold is defined so that an illumination level
below I° will not result in any film exposure,
Illumination egual to or larger than I° will completely

expose the film, resulting in an opaque region after

development. Let

f(x)=The density of the halftone cell,
one period of the halftone screen,
as a function of position. X ranges
from @ to a/2 for symmetric cells
and @ to a for non-symmetric cells.

I;;, =Input intensity

I; (x)=Intensity transmitted locally by the
halftone cell.

The halftone cell can be regarded as a spatially
varying attenuator, and the intensity transmitted by the
cell is represented as the product of Ij;, and the local
intensity transmittance. Therefore,

. - f(x)
It(x)=1h1'10 . (2.50)
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1f It(x)<1I' the film will not expose and the developed
film will be clear at that value of x. If I (x) 21  the
film exposes and the developed film will be opague at that

value of x. Therefore, for all x such that
It(x)ZI’ (2.51)

the film will become opaque. This process and the

resulting copy film are shown in Fig. 1-3 and 1-5.

Assume for now that f(x) is a monotonically
increasing function on (0,a/2) for symmetrical cells, or
on (0,a) for non-symmetrical cells. The halftone screen
is assumed to be made up of such functions repeating with
a period of a. Using such a screen, bars a distance a
apart will be formed whose width is dependent on I{n and
f(x). This dependence is found from eq. (2.56) and
(2.51) . Combining them gives

f(x)

Ih1/1 210 (2.52)

as the condition for film exposure. Taking the 1logarithm
of eq. (2.52) vields

logyo (I],/1°) 2 £(x) ' (2.53)
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and taking the inverse function of eg. (2.53) yields

X sf'l(loqlo 1 (2.54)

in)
where Ih1=1h1/1 . (2.55)

The bar resulting from a symmetrical halftone cell is
centered at zero and is twice the width obtained from
eg. (2.54), for f defined on (8,a/2). For non-symmetrical
halftone cells the width is given directly by eq. (2.54),
with £ defined on (0,a) and one edge 1is fixed at zero

relative position.

2.6 Transfer Functions and Cell Profile Description

Equations (2.41) to (2.49) describe Iout as a
function of bar width b, which is in turn a function of
Ihx‘ These relationships can be consolidated to vyield
I,ut 2s @ function of I;, , I, =h(I;,), and also f-l(x) as
a function of h(Ijn). The one-dimensional case is
somewhat simpler than the two-dimensional case, and is the
one which will be considered here. The two-dimensional

case could be handled similarly.

It was noted previously that some of the equations

(2.41) to (2.49) are identical. For the one-dimensional
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case, there are only three different expressions to
consider. These are eqg. (2.41) for the =zero order
one-film process, eq. (2.48) for the zero order two-film
process, and eq. (2.42), (2.47), or (2.49) for the
non-zero order one-film or two-film process. Only
symmetrical cells will be treated, with the understanding
that the result obtained need only be multiplied by 2 to
give the non-symmetrical result. For symmetrical cells,

the bar width b is given by
-1
b=2f (loqlo I. ) . (2.56)

in

Using this value for b in eqg. (2.41) yields
= —a-26'q1 2
Iout'h(lhx)'(l'z ( %949 Iin)/a) (2.57)

as the transfer function expression. Taking the square

root of both sides of eq. (2.57) gives

’ -1
h(Ihi) =1-2f (log10 Iha)/a (2.58)

and after some algebra, eq. (2.58) becomes

-1 ’
f (log10 Iin)=(a/2)-(1- h(Iin) ) ' (2.59)
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an expression for the halftone cell profile in terms of
the desired transfer function. I,, must never be less
than 1, or a portion of the desired transfer function will
be truncated to zero. The expression for h(Iin) should be
rescaled if necessary to make this so. The logarithm
represents cell density ranging from 0 for I, =1 to some
maximum corresponding to the maximum normalized input

intensity. Eguation (2.59) is in the form
£1(D)=x (2.60)

where D is cell density and x 1is the position in the

halftone cell.

The other two cases, the zero order two-film case,
and the non-zero order case, can be treated in a similar

manner. Substituting eq. (2.56) into eq. (2.48) yields
B _ -1 2
Iout'h(Ihx)‘(zf (logyq Iin)/a) (2.61)

- as the transfer function expression. Taking the square

root of both sides of eq. (2.61) gives

-1
h(Iin) =2f (loqlo Ih1)/a ' (2.62)

or equivalently,
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-1
£ (log g, Iin)=(a/2)-‘/h(1in) ' (2.63)

an expression for halftone cell profile in terms of
desired transfer function, for the zero order two-film
process. Substituting eqg. (2.56) into eqg. (2.42), an nth

order expression, yields

2 ., 2 -1
I t=h(Iin)=(1/nn) .sin ((mwn/a).2f (loq10 I

)) (2.64)
ou

in

as the transfer function expression. Taking the square

root gives

-1 '
nﬂ"h(ﬁn ) =sin((mn/a)«2f (logjg Iin)) ’

or edquivalently,

-1 _ L -1
f (loqlo Ihl)-(a/Znn)~51n (nm h(Iin | I (2.65)
the halftone cell profile description for any of the three

nth order processes.

If the expressions are desired for non-symmetrical
cells, the cell position predicted from eq. (2.59),
(2.63), or (2.65) should be doubled. Similar expressions

could be obtained for two-dimensional halftones.
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2.7 Halftone Cell Design Technique

Given a desired intensity transfer function,
eqs. (2.59), (2.63), and (2.65) provide an exact technique
for halftone cell design to achieve the function. The
procedure breaks down into several distinct steps, which
are outlined in the following synthesis algorithm for

monotonic halftone cell design:

1. Determine the minimum diffraction order, n, to
use by counting the number of sign changes g in the slope
of the desired transfer function, h. The order required
is given by n 2 (g+l)/2, where n is an integer. There are

three exceptions to this rule:

a. The zero order one-film process has a
negative slope for h everywhere. This means
that a monotonically increasing function can not
be synthesized with a 2zero order one-film
process. The first order, or the two-film

process in the zero order must be used.

b. The 2zero order two-film process has a
positive slope for h everywhere. A
monotonically decreasing function has to be
synthesized in the first order or with the

one-film process in the zero order.
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Ce. If the h function has g2 1 and has a
negative initial slope, g must be increased by

one,

This sign change counting rule and the exceptions are
indicated for up to four sign changes in Table 2-1. The
table can easily be extended to more than four sign
changes. An additional consideration is that n should be
chosen as small as possible, given g, for maximum

diffraction efficiency.

2. Normalize h so the maximum value is equal to the
maximum possible for the diffraction order used, for all

possible Iin . If n=p, h=l., If n#0, hs l/nzrr2 .

3. Select eq. (2.59), (2.63), or (2.65), whichever
is appropriate to the process and diffraction order being

used. Substitute the desired h into the expression.

4, All three of these expressions are in the form
shown in eq. (2.60). To calculate the cell shape, either
solve analytically for f(x)=D, or solve by numerically
running over the possible values of Ihx‘ For n=1 or more,
whenever the slope of h changes sign, the cell size must
abruptly increase such that the output remains constant,

while jumping to a region of ea. (2.64) of opposite slope.
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TABLE 2 -1

ALLOWABLE NUMBER OF SLOPE CHANGES IN THE TRANSFER
FUNCTION FOR VARIOUS DIFFRACTION ORDERS

USING THE ONE-FILM PROCESS

number of sign initial slope minimum order

changes in h(Iin) required

=
(=]

) + 1
1 - 2
1 + 1
2 - 2
2 + 2
3 - 3
3 + 2
4 - 3
4 + 3
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This procedure has been reduced to a computer program
which automatically does all the calculations once a
desired transfer function is specified. The following
chapter has numerous examples of cell shapes calculated

for specific transfer functions using this procedure.
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CHAPTER 3

MONOTONIC HALFTONE CELL DESIGN EXAMPLES

In this chapter, halftone cell shapes for various
transfer functions are calculated. The graphs of cell
shapes are all computer calculated by the cell design

synthesis procedure described in section 2.7.

3.1 Logarithmic Response

In many signal processing situations, noise or
disturbances are frequently multiplicative. Examples
include non-uniform illumination and multiplication of two
transmittance functions. One wuseful method of handling
multiplicative noise is to use a homomorphic filter
(3-1,2]. This type of filter performs a logarithmic
transformation on the signal to convert the multiplicative
noise to an additive form which can be eliminated more
easily. The additive noise filtering is followed by an
exponential transformation which restores the signal to
its previous form. Either monotonically increasing or

decreasing logarithmic functions can be made. The two
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general functions are

I ut=h(1in)=1-koloq10 (I. ) (3.1)

o mn

where koloq10 (Iin) €1 for all Iin’ and

I t=h(Iin)=k'loq10 (I. ) . (3.2)

ou in

A transfer function of the form of eqg. (3.1) is
monotonically decreasing and can be achieved with the
one-film process in the zero order. Equation (3.2) is
monotonically increasing and requires the two-film process

with the zero diffraction order.

To illustrate the synthesis procedure of section 2.7
in detail, the synthesis algorithm will be followed for
both of these functions, assuming two desired decades of
input range. Starting with eg. (3.1), a suitable choice

of k is .5 yvielding

where 1 inn < 1040. Equation (3.3) is then correctly

normalized so that 8 <1I < 1.
out
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The appropriate h(Ihx) expression 1is eq. (2.59).

Substituting this transfer function into ea. (2.59) yields

-1
£7° (1 I, )=(a/2).(1-4¢1-.5-10 I 3.4
(log I )=(a/2)-(1-§ 9, (1)) (3.0
for the expression which must be solved to obtain the

halftone cell shape.
Equation (3.2) is also normalized by setting k=.5
yielding

h(I, )=.5-log (I.) (3.5)
in 1

0 in

where 1 sl:in < 190, The appropriate expression for the
two-film process is eq. (2.63). Combining eqg. (3.5) with
eg. (2.63) yields

-1
£ (log,, Iin)—(a/Z)-r.S log,, (I, ) (3.6)

as the expression to be solved for the cell shape.

In keeping with the philosophy that =zero order
operations are best done with non-symmetrical cells,
eg. (3.4) and (3.6) should be modified by replacing a/2

with a to give
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-1 =a. - - .
£ (log, I )=a:(l Jl .5-log 0 (L))  (3.7)

and,

£ (log)y I, )=aoJ.5-1ogw (L) . (3.8) -

Both of these equations are in the form of eq. (2.60).

Graphs of these transfer functions and the halftone
cells which will produce them are shown in Fig. 3-1 and
3-2. The monotonically decreasing logarithm was tried
experimentally, and the results are presented in section

7.4.2.

3.2 Exponential Response

The exponential transformation is of interest as the
final step in a homomorphic filter. 1In common with the
logarithmic response, either monotonically increasing or
decreasing functions can be made. The general functions
are

1-1;

I =h(I,£ )=10"""in (3.9)
t in

ou

or
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Figure 3-1. (a) Decreasing logarithm transfer function,
(b) Corresponding halftone cell shape.
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Figure 3-2. (a) Increasing logarithm transfer function.
(b) Corresponding halftone cell shape.
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= —r.1alin"1
Iout-h(Ihl)-k 1™ ' (3.10)
where I, Slfloglo k. A transfer function represented by
eq. (3.9) can be achieved with the one-film process in the
zero order. A function of the form in eq. (3.16) requires

the two-film process and the 2zero order.

A three decade decreasing exponential can be
represented by eg. (3.9) simply by restricting Iin to
range between 1 and 4. The appropriate h(Ih‘) expression

is eg. (2.59). Combining eg. (3.9) and (2.59) yields

£-1 (log,, I, )=(a/2) -(1-Vlal'li“ ) (3.11)

as the expression to be solved for the halftone cell

shape.

The transfer function for a three decade
monotonically increasing exponential can be represented by
eg. (3.18) by setting k=.001 to yield

I, -1
h(Iin)=.001-1ﬂm . (3.12)

Combining eq. (2.63) and eq. (3.12) yields
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'1 = . . I' -l

13 (loq10 Iin) (a/2) \/.ﬂﬂl 10 lin ’ (3.13)
the expression to be solved for the increasing exponential
halftone cell shape.

Equations (3.11) and (3.13) both describe symmetrical
cells, The corresponding expressions for non-symmetrical

cells are

£71 (log,, Iin)=a-(l-dlﬂl-1m ) (3.14)

and,

f'l(loq10 I. )=a-J.001'1011n-1 (3.15)

in

respectively.

Graphs of the exponential transfer functions and the
required cells are shown in Fig. 3-3 and 3-4.
Experimental results with specially synthesized halftone

screens are presented in section 7.4.3.

3.37 Level Slice

The level slice characteristic is useful for doing

equidensity contour slicing on images and for histogram
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Figure 3-3. (a) Decreasing exponential transfer function.
(b) Corresponding halftone cell shape.
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Figure 3-4. (a) Increasing exponential transfer function.
(b) Corresponding halftone cell shape.
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K]

calculations [3-3]. The desired function is

in 1
Iy =h(I, )= k I <I <I, (3.16)
) I,<IL, .

This function has only one sign change, so the first order
can be used. The normalization condition is satisfied by
setting k=1/nz, and the appropriate h(Ih1) expression is
eg. (2.65). With n set equal to one for the first order

eg. (2.65) becomes

f'l(loglo L, )=(a/2m) - sin”l (TTJh(Iin) Y (3.17)

which is the equation to be solved for the halftone cell

shape. For the first range, Iin <Il' this becomes
£°1 (log,, I, )=(a/2m)-sin’l (0) . (3.18)

The sin'l(ﬂ) could be either # orm. Because the value of
f'l(loglo I,) is reguired to be a monotonically
increasing function, @ should be selected. Therefore, for
I,, <I;, the bar width on the copy film must be 6, which
means there can be no regions on the halftone screen which

have densities less than 1oq10 Il.
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For the second range, I1 < Iin<:I2 ’ eg. (3.17)

becomes

£ (log), I, )=(a/2m-sin”l(ny1/n?)
=(a/2m).8in"1(1)
=a/4 (3.19)

where a/4 is chosen as the smallest available solution.
This range corresponds to a 56% duty cycle sguare wave

with transmission alternating between # and 1.

For the third range, I2 SIhl' the expression is
identical to eg. (3.18). 1In this case, select sin-l(8)=n

to yield

_1 =
£ (log10 Ihx) a/2 (3.20)
as the smallest possible solution. This corresponds to
opague bars equal in width to their separation, that is, a
completely opaque film. The screen must therefore be

everywhere less dense than loq10 IZ'

The transfer function and calculated cell shape for a

level slice are shown in Fig. 3-5. Experimental results

for this function are presented in section 7.4.1.
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Figure 3-5, (a) Level slice transfer function.,
(b) Corresponding halftone cell shape.
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3.4 Second Order Example

Consider a function such as

( L,<I,
1.0 I, =L, <1I,
I~ )= { .25 I,sI <I, (3.21)
) I, = I..< I,
\ ] Iy <I,, .

This function has three changes of sign in the slope, so
the second order is required. The normalization condition
requires that h(Iin) Sl/4nz. The appropriate h(Ii )

n
expression is eq. (2.65), which becomes

£ (log,, I, )=(a/4m-sinl (2n h(L_) ) (3.22)
when n is set equal to 2. For Iin<:Il, eqg. (3.22) becomes

f“(logw L_)=(a/4m)-sin”! (0)=0 (3.23)
where the zero solution was chosen because it is the
minimum cell size choice possible. For I _<I, <1

1 in 2
eg. (3.22) becomes
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-1 = .sin”! =
£ (loq10 Ihl)—(a/4n) sin *(1l)=a/8 . (3.24)

The a/8 solution is the smallest possible choice in this
< <
case. For IZ Iin 13,
'l = . i -1
f (loq10 Ih‘) (a/4m).sin™* (.5)
=a/24 or 5a/24 . (3.25)

For the halftone cell to be physically realizable, the
choice made must be no smaller than some previous value.

For this reason, choose 5a/24. For I3 sIh1<:I

4'
f'l(loglo Iin)=(a/4ﬂ)-sin'1(1/\’2 ) . (3.26)

The smallest angle which has 1/“42 as its arcsin and
which will also result in a position in the cell at least
as large as the preceeding position is 5u/4. Using this

value gives
-l =
£ (loglo Iha) 5a/16 (3.27)

as the desired solution. For I,sI, .
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£ ] (log 4 I_)=(a/4m).sin"! (g)

=a/2 (3.28)

4

where sin-1(@) has been chosen to equal 2 .

§

This transfer function and resulting cell shape are

shown in Fig. 3-6.

3.5 Edge Tailored Bandpass

Consider a function

/@ I, <L
q(Iin) Il sL <1,
I =R )= ( k I,sI <I, (3.29)
elln) Izsh, <1,
\ @ I,sI .

Assume that g(Il)=0, q(12)=k, and that g is monotonically
increasing between Il and IZ‘ Also assume that r(I3)=k,
r(I,)=0, and r is monotonically decreasing between I, and

I The first order should be used because there is only

4.
one change of sign in the slope of h, and the
normalization is satisfied by setting k=1/nz. Eguation

(2.65), with n=1 is the appropriate h(Ihx) expression.
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Figure 3-6, (a) Transfer function for second order example.
(b) Corresponding halftone cell shape.
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For Iin < Il' eqg. (2.65) becomes

f‘l(loq10 I )=(a/2m- sin“l(g)=0 (3.30)

where @ is chosen as the smallest possible solution. For

I sI <
1 in IZ

15-1(1oqlO Iin)=(a/2n).sin-l(n{g(rm) ) . (3.31)

For I, <I., <Ij,

£71(log,, I, )=(a/2m-sin"l (1)=a/4 . (3.32)

Iin

For I_<I,
i

3 < I4'

n

f‘l(mg10 Iin)=(a/zn).sin'l(nJh(Iin) ) . (3.33)

For I <I ,
4 in

£71(log,q I, )=(a/2m.sin"1(B)=a/2 . (3.34)
When solved for £, egs. (3.30) to (3.34) yield the desired

halftone cell. Each equation defines the <c¢ell 1in a

specific range of densities.
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A possible transfer function of this type and the
resulting cell shape are shown in Fiq. 3-7. A transfer
function similar to this was tried experimentally and is

presented in section 7.4.4.

3.6 Non-Symmetric Cell Design

The examples shown in the figures have all been
symmetric halftone cells. The corresponding non-symmetric
cell can be obtained in all cases by rescaling the x axis
to range from @ to a. The output intensity will be the

same as for the corresponding symmetric cell.
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Figure 3-7, (a) Edge tailored bandpass transfer function,
(b) Corresponding halftone cell shape.
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CHAPTER 4

NON-IDEAL FILM ANALYSIS

The analysis and examples of chapters 2 and 3 assume
that the copy film used to make the halftoned picture has
a binary response (infinite gamma and infinite saturation
density). If this is not so, the original assumption that
the halftoned picture consists of opaque bars of varying
widths 1is incorrect. The purpose of this chapter is to
analyze what happens to the transfer function when the
film gamma and saturation density are finite. These
effects are separately considered for the one-film and the

two-film processes.

As an introduction, the problem will be examined
qgualitatively. For simplicity, only symmetric cells will
be considered, although the analysis for non-symmetric
cells is similar. Consider a cell of some shape as shown
in Fig. 4-1. Given a copy film with an infinite gamma,
the cell shown in Fig. 4-1, and an input intensity egual

to 16°1.1°, the bar width should be b If the gamma is

l.
not infinite, the bar width will differ from bl' For this
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Figure 4-1, Typical symmetric halftone cell with two
different bar widths indicated.
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analysis, assume that the film threshold, I°, stays fixed.
The only effect of varying the gamma is to introduce a
grey scale range into the film response, as indicated in
Fig. 4-2. The saturation density Dsat and film gamma Y
are the two fundamental variables considered in

determining the film effects.

4.1 One-Film Process

Assuming a copy film with finite gamma, the halftone
bars on the copy film resulting from a cell as shown in
Fig. 4-1 can be analyzed. The assumption that I’ is fixed
means that for a width b the density on the copy film
will be non-zero. Since the gamma is finite, not all of
the bar will have density Dsat' If D is selected so that

Y(DI_DZ)=D , a center section of the bar of width b2

gat

will have density Dsa and the bar edges will be varying

t
densities rather than abrupt. The resulting bar shape is
shown in Fig. 4-3. It is clear that the Fourier transform
of a periodic array of such bars will be different than
the Fourier transform of an array of rect functions. It

is this difference, and its dependence on D and y which

at
must be investigated.
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Figure 4-2, Assumed film response.
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Figure 4-3. Density profile of a typical bar on
non-ideal copy film.



4.1.1 Amplitude Output

The guantity of interest here is the complex
amplitude transmittance of the bar structure shown in
Fig. 4-4. The transmittance bar is simply another
representation of the density bar shown in Fig. 4-3., The
transmittance bars as shown in Fig. 4-4 will be the

subject of the analysis.

The shape of the sloping sides depends on the shape
of the halftone cell. 1In this model, the bar as sketched
in Fig. 4-3 is represented as a stack of k trapezoids of

height AD, where AD-k=Ds . Fiqure 4-5 illustrates this

at
procedure. Each trapezoid will have a top of width
2f'1(D1-iAD) and a bottom of width 2f‘1(Dl-(i-1)AD), where
i runs from 1 to k. The trapezoids are a piecewise linear
approximation of the continuous curve. The £~! function
used here is the same function of halftone cell shape as
was wused in the previous chapters. Next, consider what
this implies as a representation for an amplitude
transmittance such as shown in Fiqg. 4-4. The total

amplitude transmittance of a bar such as shown in Fig. 4-4

can be represented as
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Figure 4-4.
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Amplitude transmission profile
of the bar shown in Fig. 4-3.
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\/ 10 Dsat |k ' .

0] a/p a

Figure 4-5. Trapezoid approximation technique. Density
and transmittance representations of the same
bar are shown. Although both functions represent
one cycle of a periodic function, the density
is drawn symmetrically about x=0 and the
corresponding transmittance is drawn
symmetrically about x=a/2,
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k
V(x'Dsat rDllY)= v 1ﬂ_Dl +Z q(i'Dsat levY)‘

i= |

trap(l.Dsat.Dl,Y) (4.1)
where D'=Dsat or y-D,, whichever is smaller
=YkAD

g(-)=qg(i leat 'Dl IY)=J;0-Y(I-1)AD-JIﬂ-Y1AD

trap(.)=trap(i,D_, ,D,,Y)=A trapezoid function with
top width a-2£71(D, -(i-1)4D)

and bottom width a-2f'l(Dl-iAD)

The x dependence of v is contained in the £-! functions of
the trapezoid representation, and the g(:) function is the
weight applied to the ith trapezoid. The (-) notation is
used to avoid carrying several arguments through the

analysis.

The fixed height steps in density from Fig. 4-3 have
become monotonically decreasing height steps in amplitude
transmittance. Note also that the base width of a
trapezoid of a particular density corresponds to the top
width of the associated trapezoid of amplitude

transmittance.
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A linear array of bars of the form of eqg. (4.1) can

be written as

« )= = -D' . . 4
t(-) t(x'Dsat'Dl'Y) Vlﬂ +(29( )-trap(.))*

i=1

((1/a)-comb(x/a)) ' (4.2)

where a is the fundamental screen period as before. The
advantage of wusing a sum of trapezoids is that the
continuous Fourier transform of each elementary trapezoid
can be described analytically. 1In the limit of a large
number of trapezoids, the sum of the individual transforms
of the trapezoids is a good description of the continuous
transform of the entire bar. The next step is to Fourier
transform eg. (4.2). A Pourier series representation for
an array of trapezoids, such as shown in Fig. 4-6 is given

by [4-1]

an=(A(To+Tl)/a)-sinc(nTl/a)-sinc(n(T0+Tl)/a) (4.3)
DC=a0
where sinc(x)=sin(mx) /mx. The an terms are the

coefficients of the cosine terms of the double sided

Fourier series expansion.

The dimensions of the trapezoid for the case being
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Figure 4-6. Trapezoids for series representation,
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considered are
o) = i =a- -l -(i-
To( ) To(l,Dsat,Dl,Y) a-2f (D1 (i-1) AD) R (4.4)

- : - - -1 3 -
Tl(')—Tl(l.Dsat,Dl,y)-(a 2f (D1 i AD)
a+2f'l(Dl-(i-1)AD))/2

=f'l(Dl-(i—l)AD)-f'l(Dl-iAD) , (4.5)
and

A(i'Dsat :DI:Y)=CJ(') . (4.6)

Using the formulation from eqa. (4.3), the Fourier

transform of eq. (4.2) can be written as

k @©
S(E() =Y 107D 6(£ )+ D gl)- ) ((Ty (14T, (+)) /a)
i=1

n=-c

sinc(nT, (-)/a)-sinc(n(Ty(+)+T, (-))/a)-

§(f ~-n/a) ' (4.7)
X

where the two special cases of interest are the =zero and

non~-zero orders.,

The zero order expression
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k

= -D' .
Fle()) _ =Y1070 e(f )+ Ei:q(.)
1=1
((T (14T () /a) B(£) (4.8)

is obtained by selecting the n=0 term of eqg. (4.7). The

non-zero order expression

k
t(. = ) e ((T_(+)+T. (- .
St} o [;g;q( )+ ((Ty () 4T () /a)

sinc(nTl(-)/a)-sinc(n(To(-)+Tl(o))/a)b
6(fx-n/a) (4.9)

is given by selecting n#® in eq. (4.7).

The output amplitude will be given by Fourier

transforming eg. (4.8) or (4.9) to vield

k
$(s(t()__d=(y10D" D ate)
i=1

(To (+)+T, (+))/a] (4.10)
and

k
FF(E()] )= }E:g(-)-((To(o)+Tl(-))/a»
i=1
sinc(nTl(-)/a)-sinc(n(To(o)+Tl(-))/a)b

exp(-i2mn/a)
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k
F(F(E()] b= }[:q(-)-sinc(nrl(-)/a)-(1/nn»

i=1
sin(nrﬂTo(-)+Tl('))/a)P

exp(-j2mxn/a) (4.11)

respectively.

4,1.2 The Ideal Limit

If the ideal film assumptions are made, namely that

Y= , Dsa-*m , and Dl=>0, it should be possible to reduce

t
eq. (4.8) and (4.9) to eqg. (2.8) and (2.9) respectively.
This means simply that the trapezoid representation should
be a somewhat more complicated but equally wvalid

representation of the ideal case, given the previously

mentioned film assumptions.

Considering the zero order expression, egs. (4.4),
(4.5) and the expression for g(.) from eg. (4.1) are

rewritten to vield
TO(.)=a-2f'l(Dl-(i-l)D'/Yk) , (4.12)

T (=£71( -(i-1)p°/vk) -1 (D -iD/Yk) ,  (4.13)
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and

c;(-)=J10'(i'”D"'k -Vl'iD'/k , (4.14)

where in each case AD has been replaced by D’/yk.

Substituting these into eq. (4.8) yields

k
ﬂt(-)}n=0=lJ1a-D' +Z(Jlg-(i-1m'/k ~y107D7% .
i=1

Y=
(a-£71(D - (i-1)D"/Yk) =€} (D -iD"/ Yk) ) /a]-

8(£.) (4.15)

as a rewritten zero order expression. Equation (4.15)

reduces to

k
3«’{t(-)}n#0=l{m'D' +Z ({10-(i-1)D'/k _m-iD'/k .
i=1

(a-2£71 (D)) /2l 8(£) (4.16)

by setting y=o . AS Ds becomes arbitrarily larqge,

JIQ'D' + 8

—— —
Yo -1k g peiD ) g e

=0 for 2sisk , (4.17)

at
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that is, for Y=« and large D at’ the DC term and all
S
terms above the first become negligible. Therefore,

eg. (4.16) becomes

Fle(} o =(@2671m))/ar 8(f ) . (4.18)

D
sat" @

<3

Noting that f‘l(Dl)=bl/2, eg. (4.18) becomes

Flt(:)} =(1-b _/a)- &(f ) ’ (4.19)
n=0 1 X

Y=o

Dsat-bw

which is identical to eqg. (2.8). Therefore the
trapezoidal approximation agrees with the ideal film

analysis in the zero diffraction order.

Now consider ea. (4.9), the non-zero order
expression, with the same ideal film assumptions. It
should reduce to eg. (2.9), the corresponding ideal film

expression. As a first step, rewrite it somewhat to yield

k
Ft(-) 1“0{39<->'Sin°(nT1<'>/a)-
i=1
sin(rm('I'O(oHTl (-))/a)

(l/nn)»é(fx-n/a) . (4.20)

80



>

Combining eq. (4.12), (4.13), and (4.14) with eqg. (4.20)
yields

k
S{t(.)}n#():Z(ﬁ'(l-l)D'/k —"]_g'iD'/k ).

i=1
sinc(n(£"] (Dl-(i-l)D'/yk) -f-1 (Dl-iD'/Yk) ) /a)e

sin(nm(a-£ ! (D, =(i-1)D"/Yk) e (D =iD"/Yk)) /a)-

(1/nm) .&fx-n/a) (4.21)

as the expanded expression for the amplitude present in a

non-zero diffraction order in the Fourier transform plane.

Setting Y=o in eq. (4.21) gives

Fle-) g0 i (Y1o-G-DD'/k Jl‘iD'/k ).

Y=o izl
sin(nn(a-zf'l(ol))/ay

(1/nn) . 8(fx-n/a) . (4.22)

Using eq. (4.17), for 1limiting values of Dsat the

summation of eqg. (4.22) reduces to

F{t()} = (1/nm)e sin(nn(a-zf"(ol))/a).

n#0
b
.eat-'
6(fx-n/a)
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=(1/nn)-sin(nn(1-b1/a)y
6(fx-n/a) (4.23)

which contains only the first term of the summation.
Noting that sin(nn(l-blla))=-cos(nn).sin(nﬂbl/a),

eqg. (4.23) can be rewritten as

g{t(.)}n#o =#(1/nm).sin(mb n/a). &(f -n/a)
Y=
D

- ]

_’Q
sat

=*(b1/a)-sinc(b1n/a). fo-n/a) (4.24)

which is equivalent to ea. (2.9) describing the ideal

case, except for the sign alternation.

The sign changes are accounted for by noting that in
the analysis 1leading to eg. (4.24), the transmissive bar
was centered at x=a/2 rather than at x=0 as assumed by
eg. (4.3). Equation (4.24) and ea. (2.9) can be
reconciled by shifting the input pattern, eqg. (4.2), by
one-half period. This shift produces a phase shift equal
to exp(-jmn) in the Fourier transform. The product of
(-cos(nm)) and exp(-jmn) is always equal to -1,
demonstrating that eg. (4.24) is identical to eq. (2.9),

as desired.

As shown here, the trapezoid representation reduces
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to the ideal <case when the ideal film assumptions are
made. Thus, the trapezoidal model will per form
satisfactorily over all possible values of the film

parameters, including the ideal values.

4.1.3 Output Intensities

The output intensities

ou
n=

k
Y 10"
I =h0(o)=hO(D1'Dsat'Y)—| 10 + Zg(.).
2 1=

(TO(-)+T1(-))/a| (4.25)
and

k
I ,=h ()=h (0,0 ,1=|1 D g(-) sinc(n, (-)/a)-
a0 =1
(1/nm) - sin(nm (T, (+)+T, () /) ]-
exp(-j2nxn/a) | 2 (4.26)

are given by the modulus squared of eqg. (4.10) and (4.1l1).
Writing these out with To(-), Tl(-), and the weighting

function g(.) expanded vields
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= lﬂ-D' + i ( Jl-(i-l)D'/k "’lﬂ-iD'/k ).

i=1
(a—f 1 (Dl-(i-l)D'/Yk)-f"l (D, -iD"/Yk))/al 2 (4.27)

and

I__.=h ()

out n
k
E(ﬁa‘(i-”D'/k -\[m'iD'/k )+ (1/nm).
i=1

n#0
=1
sinc(n(£-1(D -(i-1)D°/Yk)-£"! (D -iD"/Yk)) /a)-

sin(nn(a-f-l(Dl-(i-l)D'/Yk)-

£-1(p, -iD"/vk) ) /2) 12 (4.28)

as the final expanded transfer function relationships.

Since D1=loglo Ih1' eg. (4.27) and (4.28) are

functions which are fundamentally functions of L.+ Dgayv
and Y. They can be used to calculate anticipated transfer
functions given specified non-ideal film characteristics.
A pair of general computer routines have been written
using eqg. (4.27) and (4.28) which calculate and plot

. The

transfer functions degraded by finite gamma and Dsat

following examples were calculated with them.
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4,1.4 Discussion

Some examples of one-film transfer functions degraded
by non-ideal film characteristics are shown in figures 4-7
to 4-12. Figures 4-7 and 4-8 are decreasing logarithm
transfer functions. Note that these are semi-logarithmic
plots, so the ideal response is a straight line. Figures

4-9 to 4-12 are level slice transfer functions.

Figure 4-7 a and b shows the effect of varying the
film gamma while holding the saturation density at a high
value. Figure 4-7 is typical of the response of a smooth
transfer function to low film gammas. The effect of
lowering the gamma is to make the bar edges on the copy
film more curved than they would be for a higher gamma.
Note that as the gamma becomes very 1large the expected
transfer function is very nearly the ideal film transfer

function.

Figure 4-8a shows the effect of holding the film
gamma low and varying the saturation density. Figure 4-8b
shows the effect of holding the film gamma high and
varying the saturation density. This figure illustrates
the effect of 1low saturation density in the one-film
process. Increasing the saturation density decreases the
transmission of areas on the halftoned picture which would

ideally be opaque, and causes the expected transfer.
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Figure 4-7. One-film logarithm transfer functions. Dsat= 10
(@) y=.51,2,4
(b) y =5, 10, 20, 40
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Figure 4-8, One-film logarithm transfer functions,
(a) y=1, Dg e =125, .25, .5,1
(b) y =10, Dgat=.5 1, 2, 4
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function to be closer to the ideal function.

In the following four figures, and all later plots of
transfer functions involving any abrupt jumps, both the
ideal and calculated transfer functions are computed at a
discrete number of points by computer evaluation.
Although this leads to the discrete jumps shown in some of
the calculated transfer functions, in the 1limit of a
continuous representation for the calculated function, the
curve would be smooth. It is the general shape which

should be noted.

Figure 4-9 shows the effect of holding the saturation
density high with two values of gamma. Certain
irreqularities in the step size in the rising and falling
edge are noticeable. 1In a continuous curve, these would
be bends or kinks in what should be a smooth curve. The
step size does not change smoothly, and on the trailing
edge of Fig. 4-9a it is not even monotonic. This is due
to choosing k, the number of trapezoids too small for the
low gammas used. 1In this case the approximation of the
bar by a stack of 50 trapezoids is not good enough. The
same curves are shown in Fig. 4-10 with a 500 trapezoid
approximation. The improved smoothness in the slope and
step size variation in the curve 1is clearly visible.

Larger values of gamma do not require the value of k to be
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Figure 4-9, One-film level slice. Dg,¢ =10, k =50

(@) y=1
(b) y=5
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Figure 4-10. One-film level slice,
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as large for accurate modeling. Because of the 1low film
gamma in this example, areas which should be opaque will
be transmissive to some deqree, causing the type of

transfer function shown.

Figure 4-11 shows a high saturation density with two
high values of gamma. As the gamma becomes larger, the
expected curve more nearly approaches the ideal curve,
because the bar edges are becoming sharper. Fiqure 4-12
shows an extremely high gamma with two values of
saturation density. The effect of lowering the saturation
density is seen to be to decrease the output intensity,
while leaving the shape of the rising and falling edges
unaffected. This occurs because the bar edges are abrupt,
but areas which should be opadgue are transmissive to some

degree.

4,2 Two-Film Process

The two-film process is of value in two situations:
1l.) to change the sign of the transfer function slope when
using the zero order and 2.) to achieve a higher effective
film gamma. With the two-film process, a different gamma
equal to the product of the individual gammas can be
achieved. Thus if both individual gammas are larger than

one, the product will more <closely approach the ideal

91



Iout
R y
- Ideal -
: Non-Ideal ]
- ]
- .
O [l [ ] 1 Il .
1 705N
(a)
Iout
1 ] LJ L L ] 1 4 v 1
" )
~ Ideal i -
C Non-Idea! ]
O " [l J 1 ') ' L '] ] ) ] ]

-

—

@]
4
o

(b)
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infinite gamma.

The production of the first halftoned picture,
film 1, proceeds exactly as described in chapter 1 or
section 7.3, resulting in a bar pattern consisting of
individual bars as shown in Fig. 4-3. The halftoned
picture resulting from this process is copied onto another
piece of film, film 2. The variables present in this

second step are Yé + D and the illumination, I

sat2 ' copy’

used in the copying step. This copying step is
illustrated in Fig. 4-13. Film 1 is assumed to have a

specified gamma and D yielding a bar profile sketched

satl’

in Fig. 4-3. Depending on Icopy, it may not be possible
to expose film 2 through a saturated region of film 1.

Regions of film 1 whose density are greater than

Dmax=1°glo (Icopy/I ) (4.29)

where Ié=the threshold illumination level for film 2, will
yield zero exposure and hence unity transmission on
film 2., Figqure 4-13 is an accurate representation of the

t2 > Dmax.Yz *

in practically all normal situations, since D a is
max

usually chosen rather small. If D s D Y, » the
sat2 max 2

corner of the bar on film 2 will not occur at bl/2 as

copying step whenever Dsa This will be true

shown, but rather at a point between b3/2 and b1/2 whose
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Film 1 to film 2 mapping,

Figure 4-13.
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precise location depvends on g(-) 'Yz 'Dmax r and D The

sat2 *
case of Dsa <D .yé is implicitly included in the

t2 max
following analysis. The density on film 2 can be
represented also as an amplitude transmittance as shown in
Fig., 4-14. The gualitative effect of the second film is a
steepening of the edges on the transmissive bar. Analysis

of a bar pattern with bars as shown in Fig. 4-14 proceeds

much as for the one-film process.

4.2.1 Amplitude Output

It will first be necessary to obtain the functional
dependence of the bar shape in terms of the screen

parameters. The §(-) shown in Fig. 4-13 is this function.

§(+)=8(x,D , Y= YD -£(x))
=Dsatl if Yl(Dl ~f(x)) 2 Dsatl
=0 if \(I(Dl-f(x))s (4.30)

where once again the (+) notation is wused to avoid
carrying a list of argquments through the calculations. It

has been assumed that the fog level on the film is zero.

Proceeding in parallel with the one-film case, the

amplitude transmittance of Fig. 4-14 can be represented as
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Figure 4-14. Transmission profile of bar on film 2.
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-D'
=‘# +
V(x'DsatZ 'Dmax'Dl'Yl'Yz) 10

K
Zh(-)ottap(o) (4.31)
=

_ -Y.(i-1) AD
ax'YZ)—Jlﬂ 2

Jlo‘yziND , (4.32)

AD=D '/sz ’

where h(-)=h(i ’Dsatz ,Dm

D =Dsat2 or Dm .Y , Whichever is

ax 2
smaller,

and

trap(-)=trap(i 'Dsatz 'Dmax ’Dl' YI’YZ)
=A trapezoid function with top
width 2§71 ((D°/¥,=(i-1)8D) ,D ,Y})
and bottom width

2§71 ((0/Y,-18D) ,D;,¥; ) :

The x dependence is implicitly contained in the trap

function.

Using the representation for a trapezoid given in

Fig. 4-6 and eqg. (4.3), the dimensions become
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=2§"1((D"/¥Y,~(i-1)8D) ,D ,Y, ) (4.33)
for the length of the top of the trapezoid,

Ty =T (AeDap Drnax 'Y + %)
~'l e .

~

-1 . .
g ((D /Yz'(l"l)AD) 'DI'YI) ' (4.34)

which is ohe-half the difference of the bottom length and

top length, and

A(i'DsatZ 'Dmax'Y2)=h(.)=h(i'Ds ' Y,)

atl 'Dmax 2 ' (4.35)

the height of the trapezoid. A linear array of bars in

the form of eg. (4.31) can be represented as

t(o)=t(x'Dsat2 ,Dmax 'DI'YI'Y2)=JI-D' +
k
( h(.).-trap(-))*((1/a).comb(x/a)) (4.36)

i=1

and Fourier transforming eq. (4.36) yields

99



k
F{t(-)}= Jla‘D' BE )+ Zh""

i=1

D UF )+ () /a)- sinc(nf, () /a)-

n=-®

sinc(n(Ty (-)+T; (-))/a). 8(f -n/a) (4.37)

as the general expression. The two cases of special
interest are n=0 and n#0. These are obtained by

substituting into eq. (4.37) to obtain

k
sie(] _ =1 V1o'P £ h(e)
i=1

(To(-)+Tl('))/a]- 5(fx) (4.38)

and

k
L)), =[Zlh(-) F((F,(14F (1) /a) - sinc(nf, () /a).
i=

sinc(n(ﬁo(.)+§l(.))/a)]-a(fx-n/a) . (4.39)

The output amplitude for n=0 and n#@ is given by the
Fourier transform of eq. (4.38) and (4.39) respectively.

) k
F(s(t()) o)1= Y1070 + ) (-

(B ()+T, (¢))/a (4.40)
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k
SFEC)) L d=1 ) ) - (Fo(-)+F (1) /a)

i=1
sinc(n'i'1 (-)/a)- sinc(n('-i-o(.)f'i'l(.))/a)].

exp(-j2mmx/a) (4.4]1)

50(-) and Tl(-) contain §°! factors. It is necessary

to get 6'1 in terms of £ !. From eq. (4.30)

and if ﬁ(x,Dl,Yi)=5 and £(x)=D,

~

D=D1-D/Y1 . (4.42)
since §71(5,D v, )=x=£ "UB)=£"1(D -B/y,) ,
~ -l ~ = -1 -~

is the desired relationship between §~! and £f71.

4,2.2 The Ideal Limit

Equations (4.38) and (4.39) should reduce to
eqg. (2.37) and (2.38) respectively if the ideal film

assumptions are made. These assumptions are:
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= =
1 YZ
DsatZ Il

Dmax <Dsat 1

First consider eq. (4.38), the zero order expression,

k

= -D' e)s

$(t()) _=(Y10 +Zl:h( )
i=

~ -] ’ (i .
(@ ((D°A, -(i-1)D"/Y, k) ,D,,y, )+
§M(D /%, =iD /%, Kk) /Dy Y )) /8l B(E ) (4.44)
X

where fo(.) and %l(-) have been expanded. Letting \%=°

yields

k
$e()) o =[¥1872' + D h().
i=1

Y2=w
2571 0,0,y ) /a1 5(E) (4.45)

l in terms of £7! gives

k
Fle()) =[410'D +Zh(.).
i=1

Y2=°°
2f71 (D,)/a] + 8(£ ) (4.46)

and putting §°

as the amplitude present in the zero-order component in
‘the Fourier transform plane with an infinite gamma for the

second film. Equation (4.46) becomes
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K
Fle() ) [ Y10-D' +z;(ﬁg-(i-1)n'/k _
Y2=°° — 1=
»Vlﬂ"D e ). 2£71 (D ) /a)- 8(£) (4.47)

when actual values for h{.) are included. Now, letting

Y1=ea and © only i=1 yields a non-zero

D
sat2+
contribution, and the DC term becomes 2ero. Equation

(4.47) becomes

$lt()},o  =(2671(D))/a) 6(£))
Y,==
Y=
Dsatz"w
=(bl/a)'é(fx) (4.48)

which is the same as eq. (2.37), as desired. Therefore
the zero order expression from the trapezoidal
approximation is consistent with the ideal case. Now
consider the non-zero components. Begin by rewriting

eg. (4.41) to yield

103



k
FHE()) o= ! Z h(+)+ (1/mm).
1=
. N_l ’ -3
sinc(n(g " (D /Y2 1AD),DI:Y1)
=3 TH(D"/¥,- (1-1)8D) ,D , ¥))) /a)-
sin(nm(§ " '((D"/Y,-(i-1)8D),D,,¥,)
-1 . . .
+371((D"/y,-18D) ,D ¥ ))) /2)]
6(fx-n/a)

where fo(o) and TI(-) have been expanded.

eq., (4.32), this becomes

k
Fe()) o=l ;h(o) . (1/nm)-

sinc(n(g ! (D’/Y2 -iD'/YZk) D) #Y )=

§7LUD /Y= (1=1)D°/Y,K) 4D 4 Y )) /a)-

sin(nm(§~H((D*/ %= (1-1)D"/Y,k) ,D ,¥;)
+§7HD/Y,=1D"/Y,k) 4D YY) /2) )
5(f -n/a)
X

where 4D has been replaced with D'/sz. Letting

eq. (4.50) reduces to

(4.49)

Using

(4.50)
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k
Fe()) Zh( .} + (1/nm) -
2 i=1

sinc(ﬂ)-sin(nn(a'l(D'.Dl:ﬁ)

+g-1 (D°,D ,y)))/a)]- 8(£ -n/a) (4.51)

and putting §-! in terms of f~! yields

St (- )} -( Zh( .) +(1/nm).

81n(21mf l(nl-n /Yl)/a)]- b(fx-n/a) . (4.52)

Equation (4.52) is equivalent to

k
9{‘:(')}“#0 =[Z(J1-(i'l)D'/k _Jlg'iD'/k ).

Yz=oo i:l

(1/nm) - sin(2nm £~} (D,-D°/y; ) /a) 1 8(£,-n/a) (4.53)

where h(:) has been expanded. Letting 'ﬁ = and

D_.i27® ¢ only the 1i=1 term vyields any contribution,

therefore eq. (4.53) simplifies to

Flt()} £0 =(1/nm. sin(ﬂnbl /a). 6(fx-n/a) (4.54)
n
Yz'.:co
Y1=w

-
Dsatz ®
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which is the same as eg. (2.38), the ideal two-film
non-zero order expression, as desired. The trapezoid
model for the two-film case is therefore consistent with
the ideal analysis for both zero and non-zero diffraction

orders.

4,2.3 Output Intensities

The output intensities are given by the modulus

squared of eg. (4.40) and (4.41).

= . = = -D'
Iout hO( ) hO(DI'DsatZ 'Dmax 'YI'YZ) | V10 +

n=0 k 5
:Z;h(')'(TO(')+Tl(:))/a
i=

14 (4.55)

and

Iog%fhn(.):hnml'nsatz 'Dmax 'Yl 'Y2)=I_Z h(-)-
? (1/nm) - sinc(n¥ (+)/a)-

~ ~ 2
sin(nn(To(o)+Tl(-))/a)-exp(-j2ﬂnx/a) (4.56)

respectively. Writing these out with the variables

expressed in terms of the photographic parameters yields
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I =hn(.)=[41g'D' +i(\,10-(i-l)D'/k _Jlg-iD'/k ).

out
n#0 i=1

(3" (DY - (i-1)D" /%, k) ,D ¥ )+
~ -1 . _in’ 2

=[JU-D' . i(vlg-(i-l)D'/k _¥1g-iD'/k ),

i=1
(£71D = (D" /y, = (i=1)D"/¥,K) /Y
-1 —n’ _in’ 2
+£71 (D = (D"/ ¥,~iD"/Y, k) /Y;) /@) 17 (4.57)

for the zero order expression and,

k
out B (=1 D BCeYe (1/0m).
n#0 i=1

: ~ -] d -n’
sinc(n(g " 1((D /Yz iD /Y2 k) ’Dl’Yl)
=571 ((D* Ay = (i=1)D"/Y,k) 4D, /¥, )) /a)-
sin(nm(@ 1 ((D°/y, - (i-1)D"/¥,K) /D +Y; )
+3 "1 (D" /Y%, ~iD"/Y, k) ,D,, Y1) ) /a) 1

s t(ﬁ’(i‘lm"k ~V107iD'/% . (1/mm).
izl

sinc(n(£7 1D, ~(D"/y, =iD"/Y, k) /¥,)
- -1 - 4 - 0- 4 .
£71(D, =(D"/¥,= (1-1)D° /Y, k) /%)) /2)
sin(nm(£71(D - (D"/% = (i-1)D /Y, k) /¥})
-1 - e -3 P 2
+f (Dl (D /Yz 1D /sz)/Yi))/a)l (4.58)

for the non-zero order expression. Noting that
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= = I rd I3
Dl loq10 Iin and Dmaxloqlo (ICOPy/ ), it can be observed

that ea. (4.57) and (4.58) are functions of I, , I ’
in copy
Yy e YZ » and D_.e2 and can be used to calculate expected

transfer functions given non-ideal film characteristics.

4,2.4 Discussion

Some transfer functions calculated using these
expressions are shown in fiqures 4-15 to 4-21. The
two-film monotonically increasing logarithm is considered
in Fig. 4-15, 4-16, and 4-17. It could be considered as
typical of the response of two-film smooth transfer
functions to variations in the film parameters. Figures

4-18 to 4-21 are level slice transfer functions.

Figure 4-15 shows the effects of varying Yl while
holding the other parameters fixed. It is indicative of
the fact that the gamma of the first film only varies the
shape of the edge of the bar on film 2, and consequently
has only 1limited control over the resulting transfer

function.

Figure 4-16 shows the effect of varying Dmax while
holding the other parameters fixed. It shows that
increasing Dmax causes the entire transfer function to

shift toward 1larger values of Iin' This is especially
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Figure 4-15, Two-film logarithm transfer function,
(a) vy, =1, Dmax=' 2,Dgat2=1,%=.51, 2,4
(b) Y, =10, D00~ 2, Dgat2=10, Y1=2, 5, 10, 20
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Figure 4-16, Two-film logarithm transfer function.
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clear in Fig. 4-16b.

Figure 4-17 shows the effect of varying only Yz .
Increasing this gamma causes a smaller region of the bar
on film 1 to be used and therefore steepens the edge of
the bar on film 2. Note that a higher gamma results in a
closer approximation to the desired transfer function,

though possibly shifted due to D .

max

Some of the possible variations in a two-film 1level
slice are shown in Fig. 4-18 to 4-21. As Fig. 4-18 shows,
with everything else fixed, increasing the gamma of film 2
results in increased Iout . as long as Dsatz > Dmax’Yz .
This occurs because the maximum density on the film
increases and the diffraction efficiency improves. The
shape of the transfer function also changes somewhat.
Holding everything but Dsatz fixed again varies the
diffraction efficiency, but has 1little effect on the

transfer function edge shape. This case 1is shown in

Fig. 4-19.

Varying only Yl is shown in Fig. 4-28. This has no
effect on the diffraction efficiency, because Ylhas no
effect on the maximum density on film 2. It does have a
pronounced effect on the shape of the transfer function.
This is because increasing Yl results in greater contrast

on film 2, which vyields sharper edges on the transfer
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Figure 4-17. Two-film logarithm transfer function.
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function.

. . in Fig. 4-21.
Varying only Dmax is shown in Fig. 4-21

D is seen to result in a shift
max

function to the left, and an increase in

efficiency as long as D Y, < .
max 2 sat2

Increasing

of the transfer

the

diffraction
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CHAPTER 5

NON-MONOTONIC HALFTONE CELLS

The analysis of chapters 2 and 3 concerns monotonic
halftone cells. In this chapter, the monotonicity
requirement is relaxed and general non-monotonic halftone
cells are introduced. The primary effect of a
non-monotonic cell is to change the fundamental spatial
frequency of the halftoned picture, in addition to varying
the bar width. An advantage of non-monotonic halftone
screens is that an arbitrary number of slope changes is

possible in the first diffraction order.

5.1 Analysis

Consider a single cell region on the halftoned
subject and represent the structure as a sum of small

shifted rect functions,
L
u(x)= Zl(k)-rect( (x-ka/t+a/28) /(a/1)) (5.1)
k=1

where { is arbitrarily large and I(k)=0 or 1 depending on
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whether that specific region is black or clear. Equation
(5.1) represents each period of the halftoned picture as a
sum of a large number of binary-valued shifted pulses, a
form convenient for later computer analysis. A linear
array of bars of the form given in eqg. (5.1) can be

represented as

t(x)=u(x)*((1/a).comb(x/a))

L
= Z I(K)- rect((x-ka/4+a/24)/(a/t))]*((1/a)-
k=1
comb(x/a)) . (5.2)

Inverting the contrast to get black bars on a clear

background gives

A
t(x)=1-(1/a) - ([ ) T(k). rect((x-ka/L+a/24)/(a/4))]*
k=1
comb(x/a)) (5.3)

as the amplitude distribution present in the input plane.

Fourier transforming eg. (5.3) vyvields
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A
FE(x) }=8(£ )-[(1/2)- ( D_1(K)- sinc(af /i)-
X X
k=1
exp(-janx(ka/&))-a-comb(afx))]'

exp(+jnfx(a/t)) (5.4)

as the transform plane amplitude distribution. Equation

(5.4) is equivalent to

® A
= - 6 - . L . L4
$(£(x) }= (£ ) > (£ -n/a) - [(1/2) ;:”‘"

n=-®

sinc(afx/&)-exp(-jznfx(ka/t))]-
exp(+jnfxa/L) (5.5)

where the comb function is relaced with a sum of delta
functions as indicated in eqg. (2.3). Substituting actual

values of fx into eg. (5.5) yvields

® 1
F(t(x))=8(E )= D S(E -n/a)-[(1/4) ; I(K)-

Nn=~ow

sinc(n/4).exp(-j2nnk/2)]. exp(+jnn/41) (5.6)

as the final expression for the amplitude distribution in
the transform plane. If { is allowed to become very large
with respect to n, the sinc term and the exp(+jmn/i)

factor are approximately 1, and eg. (5.6) becomes
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(L)

Fle(x) }=8(£)- D " 6(E -n/a) - (1/1)

n=-o

L
Zl(k)oexp(-j2rmk/&) . (5.7)
k=1

Equation (5.7) is the approximate expression which

will be considered further. The cases of interest are n=0

and nyf@. Substituting these values into eg. (5.7) yields

£
st} =(1-(1/2) ':L;luk)l- 5(£ ) (5.8)

as the zero order amplitude distribution, and

bA
S(E(x)) == B(£ -n/a). (L/L) Z I(k)-
k=1
exp(-3i2nkn/4) (5.9)

as the nth order amplitude distribution in the Fourier

transform plane.

Equation (5.8) is simply a variation on eq. (2.7) and
is not particularly interesting, because the same basic
type of response can be obtained from a monotonic cell.
Equation (5.9) is more interesting, because’it is the nth
spectral component of the discrete Fourier transform of

I(k), scaled by the 1/4 factor.
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Fourier transforming eg. (5.9) vields

£
3{${t(x)}n#0}=-(l/at)-ZI(k)-exp(—jann/&) . (5.10)
k=1
the amplitude distribution in the output plane from a
non-zero order. The output intensity from the nth order

is given by the modulus squared of eq. (5.10)

£
. 2 :
I° %=|-(1/L)' E I(k)-exp(-j2rkn/%L)| . (5.11)
n k=1

A geometrical way of 1looking at eq. (5.11) 1is to
consider it as a vector sum in the complex plane of 4
vectors, some of which may have zero length. The angle of
each vector is given by the exponential, and the length is
# or 1/2. Aan experimental example of screen synthesis and
output calculation wusing this geometrical vector sum

procedure is given in section 7.4.6.

Two things to note are that the monotonic cells are a
subset of the non-monotonic cells, that is, the bar
resulting from a monotonic cell can also be represented by
eq. (5.1), and that if 4 is sufficiently large, an
arbitrary number of slope changes are possible in the
transfer function by using only the first diffraction

order.
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5.2 Synthesis Algorithm

Designing a non-monotonic cell to perform a specific
transfer function involves determining the relationship
between Iin and I(k) which will vyield the desired

function., Equation (5.11) can be rewritten as

£
Iout =h(Iin)=l-(1/{') ’ ZI(k'Iin)‘
n#0 k=1

exp(-i2mkn/2)|? (5.12)

taking into account the implicit dependence of I(k) on the

input intensity.

The cell design problem is one of deciding what
function I(k'Iha) should be wused such that the nth
spectral component of its discrete Fourier transform will
be the desired transfer function. This problem does not,

in general, have a unique solution.

As a possible solution to this problem an algorithm
has been developed which does not explicitly calculate any
Fourier transforms. This algorithm is an approximation
which becomes arbitrarily close to the exact solution as
the number of vectors is increased. The algorithm
iteratively performs the vector additions as suggested by

the formulation. Only the first diffraction order is
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used. A block diagram of the algorithm 1is shown in
Fig. 5-1. Synthesis bhegins by dividing the available
vectors into two groups: those whose angle given by the
exponential falls between 0 and w, and those whose angle
falls between ™ and 2n. On the halftoned picture, these
two groups physically correspond to bar structures with
widths in the ranges 6 to a/2 and a/2 to a respectively.
The vectors are all the same length, which is chosen
arbitrarily at the beginning. The desired transfer
function is represented by an array of numbers. In the
figures which follow, it is specified by 56 values over a
one decade range. The number of values and the range can

be changed as desired.

The algorithm begins by examining the first transfer
function wvalue, and adds vectors from the first group
starting at @ using adjacent vectors one at a time until
the square of the 1length of the sum vector exceeds the
desired value. The algorithm then examines the next
transfer function wvalue. If it 1is 1larger than the
previous value, more vectors are added from the first
group until the square of the length of the sum vector is
again large enough. If the next value is smaller than the
previous value, vectors from the second group, starting at
mm are added to the existing collection. The vectors from

the second group cancel vectors from the first group and
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thereby reduce the length of the sum vector. More vectors
are added until the square of the length of the sum vector
is decreased to a value less than the desired one. The
next transfer function is then examined. This process is

repeated for all remaining transfer function values,

The algorithm terminates in one of two ways. Either
all the available vectors in the range from 0 to m are
used before all of the transfer function values are used,
or all transfer function values are used and there are
unused vectors remaining. The second situation implies
that a portion of the halftone cell area is not being
used. If this is the case, it must be decided if a
sufficient fraction of the cell is being used, or if a
better design is necessary. If it is necessary to try the
desiqgn again due to either possibility, the vector lengths
are all changed to a different value and the previously
described procedure is repeated. If the algorithm
terminates before using all of the transfer function, the
vector 1lengths must be increased. Insufficient cell area

utilization requires a decrease in the vector lengths.

The time required to arrive at a satisfactory
solution depends on several factors. If the initial
length chosen for the vectors is close to the value

actually required, fewer iterations are necessary.

126



o

Increasing the number of vectors {4 results in greater

precision, but it takes longer to compute the cell shape.

5.3 Examples

Four representative examples have been calculated
using the procedure described, and are shown in Fig. 5-2
to 5-5. It should be noted that the guantizer cell shape
shown in Fig. 5-3 is not a particularly good choice. It
is monotonic, and a more efficient monotonic cell using
the zero order can be designed. The notch filter shown in
Figa. 5-4 has been experimentally tested and is discussed

further in chapter 7.
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CHAPTER 6

PRECOMPENSATION AND OTHER TOPICS

In some situations it is possible to modify the
density profile of the halftone screen in advance so that
some of the degradations due to non-ideal film are
compensated. A technique for accomplishing this is
described. As a separate topic, the possibility of
bleaching the halftoned picture to arrive at a phase

structure to be placed in the optical system is examined.

6.1 Precompensaton for Non-Ideal Film

If the gamma and saturation density of the copy film
are non-ideal but known, it is possible in some situations
to calculate a modified cell shape to accurately correct
for these problems. An algorithm to perform these
calculations has been developed. A block diagram is shown
in Fig. 6-1. The first step is to calculate the ideal
cell shape for the specified transfer function. The
actual response degraded by the film characteristics is

then calculated as discussed in chapter 4. Starting with
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the minimum input intensity the required change in bar
width on the halftoned picture is calculated, taking into
account the non-ideal film characteristics. The required
cell width at the density corresponding to this input
intensity can be determined from this calculated bar
width. The process is repeated for larger values of Iiu
and the calculated width corresponds to the cell width at
a density of loqlO Iin' The process terminates when the
calculated bar width required exceeds the halftone cell
size., This value of I - determines the maximum cell

1mn

density, which is given by loqlO I . A density vs.
in
position plot of these calculated cell widths gives the

cell shape reguired.

Precompensation does not work for flat portions or
abrupt jump portions of the transfer function. Achieving
a flat section requires the bar width and density on the
halftoned picture to remain constant over a range of input
intensities. An abrupt jump requires a rapid change in
density over some portion of the copy film in response to
a small change in input intensity. Neither of these is

possible for a film with low gamma and saturation density.

Figures 6-2 to 6~5 show some transfer function and
halftone cell shapes for a two decade one-film logarithmic

response. A two-film situation could be handled in a

134



v L B A A A J v ) LRI

Uncompensated

A 1 1 11

= Compensated N
- -
0
1
(a)
D
2 T 7 7T T 757 ¢V ¢§ v F v 7T ¥ 5 7T 7V 77T v 7 |
- : -
R 4
p- -
P -
N -
o Compensated -
= -
O U S NS AN TN G TUN BN AN B BN B I I I B ) ] x
0 a/2

(b)

Figure 6-2, Two decade logarithm. Y=1, Dsat= .25

(a) Ideal, uncompensated, and compensated
transfer functions.

(b) Ideal and compensated halftone cell shapes.
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similar manner. Note that increasing gamma and Dsat
results in a cell shape nearer to the ideal shape.
Examining Fig. 6-4 shows that even for relatively low
values of Dsat and gamma, a good approximation to the
desired transfer function is possible, although the

effective dynamic range is reduced.

6.2 Phase Halftoned Pictures

A possible variation on the procedure discussed in
chapter 2 1is to bleach the halftoned picture and use the
resulting phase object as the input to the coherent
optical system. The following analysis considers this
situation. It is a somewhat modified version of that

found at eg. (2.1) and following.

A single transparent phase shifting bar of width b in

an opaque background can be represented as
v(x)=exp(je) - rect(x/b) . (6.1)
An infinite one-dimensional array of such bars spaced a

distance a apart on an opague background can be

represented as
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u(x)=v(x)*((1/a)- comb(x/a))
=exp(jep)-rect(x/b)*((1l/a). comb(x/a)) ' (6.2)

and making the background unity transmission yields

t(x)=1-rect(x/b)*((1/a). comb(x/a))+u(x)

=1-(l-exp(j®))-rect(x/b)*((1/a).-comb(x/a)) (6.3)

as the amplitude distribution in the input plane. Fourier

transforming eqg. (6.3) yields

F{t(x) }=6(fx)-(1-exp(3’ep) )e
(b-sinc(bfx)ocomb(afx)) . (6.4)

By replacing the comb function with a summation, eqg. (6.4)

becomes

Flt(x)}= a(fx)-(l-exp(jcp) )+ (b/a) - Z 6(fx-n/a)o

n=-oo

sinc (bf ) ' (6.5)
X

the amplitude distribution in the Fourier transform plane.

Eguation (6.5) 1is the general expression. The
special cases of interest are n=0 and n##. Making these

substitutions into eg. (6.5) gives
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F{t(X)}n=0=6(§<)-(1-(b/a)-(l-eXP(j¢))) (6.6)
as the zero order component, and

3{t(x)}n¢0=(l-exp(j¢))-(l/nn)-
sin(nbn/a)-a(fx-n/a) (6.7)

as the nth order component in the Fourier transform plane.

The Fourier transforms of eg. (6.6) and (6.7) yield
F{¥{t(x)} _,}=1-(b/a). (1-exp(Jop)) (6.8)

as the amplitude in the output plane from the zero order

component, and
s ¥t (x) 20 1= (1-exp(Ig)) - (1/nm) . sin (mbn/a) (6.9)

as the amplitude from the nth order component.

Examination of eg. (6.8) and (6.9) indicates that
using phase allows non-monotonic response in the zero
diffraction order and provides the potential for higher
diffraction efficiency in non-zero diffraction orders, if
the phase shift is chosen appropriately. However, the
same transfer functions can be achieved by using an

unbleached input halftoned picture made with a screen with
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an appropriately chosen cell shape. There appears to be
no reason to introduce the additional processing
complexity. Also, slight errors in phase shift will cause
the zero order transfer function to be different than
expected, because the 2zero 1location will shift., In
non-zero diffraction orders, phase errors can actually
decrease the output as compared with an unbleached

halftoned picture, if the phase shift is such that

[1-exp(jo)| <1.
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CHAPTER 7

EXPERIMENTAL PROCEDURES AND RESULTS

7.1 Halftone Screen Production

Commercially available halftone screens can be used
to achieve certain nonlinear transfer functions, such as
the logarithm performed by Kato and Goodman [7-1,2].
There are various ways a screen can be made, such as by
using a step and repeat camera, by making a defocused
photographic copy of a ruled grating, by use of a plotting
microdensitometer, or by optical filtering of binary
gratings as used by Lohmann and Strand [7-3,4]. As
demonstrated in previous chapters, achieving any control
of the transfer function almost always requires halftone
screens with cell shapes which are not commercially

available,

Every halftone screen used in this work was custom
made for the desired transfer function. For ease in
fabrication, they were all one-dimensional gratings. The
level slice screen was made by photographically

duplicating a Ronchi ruling. A 200 line per inch Ronchi
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ruling was contact printed onto Kodalith film which was
then developed in diluted Dektol developer. This
developing procedure vyields a moderately 1low gamma on
Kodalith and produces a screen with bars of equal width
alternating between two different densities, as required.
All the other screens were made on an Optronics plotting

flatbed microdensitometer.

The procedure for making screens on the densitometer
consists of placing the film, Kodak S0-427 sheet film in
this case, emulsion side down on the glass plate in the
scanning stage and having the computer write the desired
pattern. The film is weighted by a dull black anodized
aluminum plate to keep it flat. Line widths are
selectable down to a minimum of 10 microns by appropriate
choice of the substage aperture and focusing optics. The
line spacing is always chosen to equal the 1line width,
thus providing no pixel overlap. The exposed film is

developed for the recommended time in D-19 developer.

Making halftone screens on a microdensitometer is
quite slow, but it offers the necessary flexibility in

screen parameters.
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7.2 Initial Calibration

The microdensitometer requires a 18 bit input number
for playback. To accurately make screens, the
relationship between this input number and the final
density on the S0-427 film must be known. This
relationship was determined by making a 64 level grey
scale with input numbers ranging from # to 1023 in steps
of 16, thus spanning the available range. The film was
then carefully processed and the densities were measured
on the microdensitometer. The resulting data were plotted
as density vs. input number and used as the reference
thereafter. The readings taken were not very precise due
to noise in the photomultiplier and/or associated
circuitry. This noise also made it impossible to measure
any densities greater than approximately l.4. For this
reason, no halftone screens with cells requiring densities
substantially greater than 1.8 were constructed. The
accuracy of those in the range from 6 to 1.6 D 1is also
questionable, although the transfer functions obtained
indicate that the errors are not too large in most cases.
If more accurate readings of plotted densities could be
made, overall dynamic ranges much better than 2 decades
could be achieved using microdensitometer plotted halftone

screens.,
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7.3 Making and Using the Halftoned Picture

The halftoned picture is made by contact printing the
halftone screen and subject transparency on a piece of
copy film and then processing the film. The copy film is
placed emulsion side up on the base of an enlarger. The
screen is placed emulsion side down on the copy film, and
the subject transparency is placed emulsion side down on
the screen. Finally, a piece of glass is placed on top of
the three pieces of film to insure good contact. The
enlarger provides the light for the exposure, which can be
varied by changing the exposure time or lens aperture.
Following exposure, the film is processed appropriately

for the type being used.

After the film is dried, it is placed in a coherent
optical system, in the front focal plane of a positive
lens. The optical system is shown in Fig. 1-6 for an
input made with a two-dimensional halftone screen. For an
input made with a one-dimensional screen, the system
itself is identical, but the Fourier transform plane has
only a single row of spectral islands rather than a
two-dimensional array of them. In the back focal plane,
the diffraction order appropriate to the transfer function
desired 1is selected by a small aperture. The diameter of

the aperture is chosen to egqual the spacing between
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spectral islands so that the maximum amount of information
contained in the diffraction order is passed, and all
other diffraction orders are excluded. The order passed
is retransformed by a second lens and the desampled output
is available in the back focal plane of the second lens.
It is this output which is photographed to give the

pictures shown later in this chapter.

The transfer functions for which measured values are
plotted, specifically the logarithm, exponential, and edge
tailored bandpass, were measured by halftoning a step
tablet, passing an unexpanded laser beam through the
various steps on the halftoned picture and measuring the
output intensity Iout in the appropriate diffraction order
with an optical radiometer. Iin is calculated from the

step density.

7.4 Specific Examples

This section discusses in some detail the transfer

functions which were synthesized experimentally.

7.4.1 Level Slice

The halftone cell shape required for this function is

calculated in chapter 3. The screen was made as mentioned
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previously by contact printing a Ronchi ruling onto
Kodalith film and developing in Dektol developer. The
resulting halftone screen has approximately 8 1lines per

millimeter.

A one-film process using Kodalith film developed in
Kodalith developer did not work well due to a tendency of
the lines to hloom and merge together in the overexposed
regions of the film. All the analysis made depends on the
copy film holding line widths correctly, and the output in
this case appears as if the trailing edge of the slice is
sloped rather than abrupt. A wide slice is not possible

due to the large exposure range involved.

Using 649-F film developed in D-8 or D-19 also proved
unsatisfactory because the gamma was too low. The slice
obtained was wider than desired, with sloping sides. The
cause of this is visually apparent in a case where a step
tablet was halftoned. Figure 7-la is a photomicrograph of
this halftoned step tablet. The grating structure which
should be present only in one step is visible over 3
steps. The steps are .15 D apart on the step tablet. The
output of the optical system for this case is a bright
step with one 1less bright step on either side, and no
output from any other step. This clearly indicates the

sloping sides of the transfer function actually realized.
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(b)

Figure 7-1. Photomicrograph of a section of a halftoned
picture of a step tablet,
(a) One-film level slice.
(b) Two-film level slice.
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Very little tendency for the lines to bloom was noted on

the 649-F film.

A satisfactory solution 1is to wuse the two-film
process with 649-F film as the first film and Kodalith
film as the second. This exploits both the superior 1line
holding characteristics of the 649-F and the high gamma of
the Kodalith, by allowing only a rather narrow exposure
range on the Kodalith. The exposure between the first and
second film was adjusted so that only densities from 6§ to
approximately .2 on the 649-F passed enough light to
expose the Kodalith. This small exposure range of 1less
than two to one can be adequately handled by the Kodalith.
The step tablet halftoned in this fashion yields output
only in one step, clearly indicating the steepened sides
on the transfer function. Figure 7-1b shows a
photomicrograph of the two-film halftoned step tablet.
Note that the grating structure is only visible in one
step. An original input picture and level slices at two
different levels are shown in Fiqures 7-2 and 7-3.
Photomicrographs of a portion of the first and second
films which produced Fig. 7-3a are shown in Fig. 7-4 and

7‘5&
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Figure 7-2., Geometrical figures used as system input.
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(b)

Figure 7-3. Two level slices of the geometrical figures.
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Figure 7-4.

Photomicrograph of a section of the first
film from a two film process.
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Figure 7-5.

Photomicrograph of the same section
as shown in Fig, 7-4, of the second film.
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7.4.2 Monotonically Decreasing Logarithm

This halftone cell profile is calculated as indicated
in chapter 3, except only over one decade of input range.
The screen was made with the microdensitometer using a 10
micron aperture. The cells are non-symmetrical, each
consisting of 25 scan lines. The resulting screen has 4

halftone cells per millimeter.

Due to the substantial time required to scan even a
small area of film with a 10 micron aperture, the screen
was made 1009 lines wide with 7000 pixels per line. This
took approximately 2 hours. A step tablet was halftoned
with this screen and the Iout=h(1h1) function measured.
The result shown in Fig. 7-6 is quite linear over nearly
the entire decade. The restriction to only one decade is
due to the inability to accurately measure densities on
the film qgreater than l.06 with the particular
microdensitometer available. This precludes using
densities greater than 1.8 on the screen, and with 1.0
density as a maximum, only one decade of operation is

possible.

The halftoned picture was made on Kodalith using the
one-film process. Line blooming does not have much effect
on the transfer function in this instance. The

non-symmetrical cell causes blooming to occur
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Figure 7-6. Output obtained from the logarithmic
halftone screen.
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preferentially on one edge of the bars on the halftoned
picture. If the blooming displaces this edge by a fixed
amount for all exposures above a certain level, it simply
shifts the transfer function without changing its shape
for all input intensities above this level; each Iin wquld
have a fixed amount less IOut than expected. Blooming
also causes Iout corresponding to Iin less than this fixed
amount to be 1larger than expected from the rest of the
measured values. As shown in Fig. 7-6, these effects
occured experimentally. The point for Ih1=1 falls above
the line through the rest of the points. 1In addition, the
base of the logarithm is not 10 as desired, probably due

to errors in cell densities.

7.4.3 Monotonically Decreasing Exponential

The halftone cell is calculated as shown in chapter
3. The aperture size, resulting screen dimensions and
scan time were the same as described in section 7.4.2 for
the logarithm. The one-film process on Kodalith was used,
and the measured transfer function is shown in Fig. 7-7.
The fit to a straight line is quite good over 3 decades,
and the base of the exponential is close to the desired

10.
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Figure 7-7,

Output obtained from the exponential
halftone screen.

158

¢



7.4.4 Edge Tailored Bandpass

An edge tailored bandpass screen was designed using
the procedure of chapter 3. Plots of the desired transfer
function and calculated cell shape are shown in Fig. 7-8.
The aperture size and screen dimensions are the same as
for the logarithm. This screen was used on the step
tablet to produce three halftoned pictures: one-film on
Kodalith, one~-film on 649-F, and two-film with 649-~F first
and Kodalith second. The measured output along the rising
edge of the transfer function is shown for these three
cases in Fig. 7-9, 7-190, and 7-11 respectively. None of
these is precisely correct, due to line blooming on the
Kodalith, finite gamma effects on the 649-F, or both. It
is also possible that the cell shape 1is not totally
correct due to calibration errors or processing

variations.

This example serves to point out some of the
difficulties in realizing a precise transfer function on

photographic film.

7.4.5 Notch Filter

This function uses a non-monotonic halftone cell

similar to that shown in Fig. 5-3. A cell made exactly as
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Figure 7-8. (a) Edge tailored bandpass transfer function,
(b) Corresponding halftone cell shape.
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Figure 7-9. Edge tailored bandpass output using
the one-film process on Kodalith film.

161



"

out
8 [ § 1] | )
A A
N . . - |
- A -
A

N A i

. A J

sy A -

A
» 'y i
'y
A
1 1 1 .

Figure 7-10, Edge tailored bandpass output using the
one-film process on 649-F film, e
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Figure 7-11, Edge tailored bandpass output using the
two-film process with 649-F film first and
Kodalith film second.
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shown in Fig. 5-3 does not work well with the one-£film
process on Kodalith film. The reason for this is that the
lines on the copy film tend to bloom on one edge, the edge
with the 1least dense cell bar adjacent to it. A way of
eliminating this problem is to use a halftone cell in
which all the active areas are separated by opague bars.

Such a cell is shown in Fig. 7-12.

This halftone screen is used in the first diffraction
order, and the halftoned picture was made using the
one-film process on Kodalith. The effect of the dense
bars separating the active areas 1is to cause any line
blooming due to overexposure to occur symmetrically. The
screen was made with a 28 micron aperture, and was 2000

pixels square.

.

Input intensities above the copy film threshold 1°,
but less than 18°1.1° will produce bars in the 8 to a/8
range on the film, vyielding some diffraction into the
first order. Intensities in the range 16°1.1° to 19°2.1°
will produce bars on the film in the ranges @ to a/8 and
a/2 to 5a/8. This range of inputs effectively doubles the
spatial frequency and reduces the first order diffracéion
to zero. Input intensities between 16°2.1° and 10D3'I'
will yield three bars, lying in the range 8 to a/8, a/4 to

3a/8, and a/2 to 5a/8. In this range some diffraction
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Figure 7-12, Halftone cell profile for notch filtering.
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into the first order occurs. The effect of this halftone
screen 1is to exclude all intensities between 16D1-I' and

lﬂDZ'I’o

A photomicrograph of the halftoned picture of a
corner of the rectangular solid of Fig. 7-3 is shown in
Fig. 7-13. Note the different grating structure generated
for the three different input intensities. Fiqure 7-14
shows a notch filtered version of the original picture in
Fig. 7-3. A photomicrograph of a small section of the

screen used for the notch filtering is shown in Fig. 7-15.

7.4.6 Quanti zer

In the interest of simplicity, a guantizer screen
with only 3 gquantization 1levels was constructed. This
screen represents an interesting exception to the analysis
in previous chapters. The cell is non-monotonic, but it
is different from the cell in Fig. 5-2 and uses the second
diffraction order rather than the first. The cell profile

is shown in Fig. 7-16.

Low input intensities, less than 10D1'I' will vyield
no bar structure on the copy film and hence no second
order diffraction. Medium input intensities, between

16°1.1° and 1002.1° will vield bars of width a/8 spaced a
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filter halftoned picture of the geometrical

Photomicrograph of a portion of the notch
figures.

Figure 7-13,
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Figure 7-14, Notch filtered geometrical figures.
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icrograph of a small section of

the notch filter halftone screen.

Photom

15.

Figure 7-
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Figure 7-16. Cell profile for a three level quantizer.
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distance a apart. High input intensities, larger than
lﬂDZ-I', will vyield ¢two bars of width a/8 in each cell

area separated by a/4.

Using the geometrical approach presented in chapter
5, the output can be determined as follows. Using the
second order corresponds to having vectors evenly spaced
in angle between @ and 4nm radians. Because the entire bar
structure falls in only one half of the cell width, the
range from 2w to 4w can be ignored. Intensities less than
lleoI’ vyield no bars, and consequently no second order
diffraction. One bar, coming from the midrange of input
intensities corresponds to vectors from @ to m/2 summing
to provide a vector 1length of some amount x at w/4
radians. Two bars corresponds to the previous case plus
vectors from the range 3m/2 to 2mw. Adding these
additional vectors makes a resultant vector of lenqth‘da-x
at @ radians., The output intensity is the square of these
values, so the three intensity values are @, xz, and 2xz.

This process is shown pictorally in Fig. 7-17.

A screen such as shown in Fig. 7-16 was made on the
microdensitometer using a 28 micron aperture and a 2000
pixel square scan. It was used with the one-film process
on Kodalith. The reason for using a screen such as this

rather than a simple gquantizer in the zero order, or one
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Figure 7-17.

Diagram of the vector addition used to
calculate the output from the quantizer
screen.
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such as in Fig. 5-2 in the first order is that this screen
produces a halftoned picture whose diffracted amplitude is
much less sensitive to slight 1line blooming due to
overexposure. It depends not so much on the precise width
of the line as on how many lines there are. This results
in a much more distinct quantization effect. A quantized
version of Fig. 7-3 is shown in Fig. 7-18. The result is
particularly visible on the face of the cylinder, showing

a decrease through the three output quantization levels.
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Figure 7-18, Quantized geometrical figures.
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CHAPTER 8

CONCLUSIONS AND TOPICS FOR FURTHER RESEARCH

In this dissertation an analysis of nonlinear optical
processing by hal ftone screen preprocessing has been made.
The technique is very general, allowing arbitrary transfer
functions to be achieved with either monotonic or
non-monotonic cells. An exact algorithm for synthesizing
monotonic cells has been presented, with illustrative
examples. In general there exists no unique solution to
the synthesis problem for non-monotonic cells; however an
algorithm which yields a solution of arbitrarily high
accuracy was presented. Non-monotonic  cells are
frequently to be preferred to monotonic cells for abrupt
jump types of transfer functions because they are somewhat
less sensitive to line blooming problems on the copy film.
Consideration was given to the effect on the transfer
function of non-ideal film in the halftone process., It
was discovered that finite gamma and saturation density
ldegrade the transfer function, with the greatest problem
‘occurinq at sharp jumps in the transfer function. These

sharp jumps become rounded rather than sharp. A technique
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for compensating for the resulting deqradations which is
apol icable in many cases was presented. The
precompensation technique works for smooth curves, but at
the cost of a somewhat decreased dynamic range. Better
films with a high gamma and less tendency to bloom in the
overexposed areas are needed to improve the performance of

the halftone method.

Several theoretical topics seem worthy of further
effort. The analysis of the non-ideal film situation for
non-monotonic hal ftone cells should be considered. These
cells are attractive hecause of the greater power present
in the first diffraction order and the decreased
sensitivity to blooming due to overexposure. The use of
more than one diffraction order, and the placement of
amplitude and/or phase shifting masks in the various
orders would probably vyield interesting results. For
example, it might be possible to synthesize a wide variety
of different transfer functions by using the appropriate
combination of diffraction orders, each appropriately
phase delayed and amplitude scaled. The proper choice of
the halftone cell shape to yield the maximum variety and
range of possible functions would be an interesting
problem. It might prove possible to devise a halftone
screen which would yield several transfer functions of

interest in different diffraction orders. This screen
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might be two-dimensional and multiple orders could be
used. It could also be capable of yielding these various

transfef functions simul taneously.

The feasibility of the hal ftone techniaque has been
exper imentally verified. The performance limitations are
the halftone screen itself and the medium used to record
the hal ftoned picture. A technique for fabricating
complex hal ftone screens accurately is necessary if the
full potential of this method is to be realized. Since
this need be done only once for each transfer function,
speed is not a primary consideration, The scanning
microdensitometer approach was not found to be
sufficiently accurate for precise work, though this is
perhaps not generally true for all microdensitometers.
Alternatives such as the shifted grating method or a step
and repeat camera could be considered. The non-ideal
characteristics of the recording medium are a serious
limitation., In addition to finite gamma and saturation

density, the film regquires several minutes to process.

In any practical system, the photographic film must
be replaced by some sort of real-time optical element,
This would make real-time or near real-time operation
possible. Two possibilities are the liguid crystal light

valve [8-1] and the PROM device [8-2). Either device has
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been designed for wide range inputs and conseauently has a
relatively low gamma (approximately 2.0 in the case of the
liquid crystal device). They are not ideal binary
thresholding devices, and will therefore not vyield ideal
results, but some type of compensation is probably
possible. The hal ftone technique is an attractive one for
these devices because it does not reguire variable device
characteristics to achieve different transfer functions.,
It is a challenge to develop high gamma devices with a
large saturation density now that a demonstrated real-time

need has been found.

As an example of how a real-time nonlinear processing
system might be constructed, consider a situation in which
an outdoor scene must be nonlinearly processed. This
could be accomplished with the following procedure: 1.)
Image the scene onto the halftone screen, 2.) Image the
screen onto an incoherent-to-coherent conversion device
with a high gamma characteristic, and 3.) Process the
coherent 1light as indicated in chapter 1 to yield the
output, This accomplishes the processing at an operating
‘speed limited only by the response time of the active

optical element.

In conclusion, the halftone technique is a very

versatile, flexible technique to consider for performing

178

o



(<

nonl inear analog operations on two-dimensional data. It
would be applicable in any situation where the halftone
screen can be made and the precision of digital processing
is not required. The other factor which should be
considered is that the digital method regquires scanning
the input data with some sort of analog device in the
beginning., It is therefore also limited by the precision
achievable in an analog system. As a final note, this
optical technique in common with other optical techniques
is very much less expensive to implement than a digital

system to per form the same task.
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