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ABSTRACT

This dissertation presents a degree of freedom or information
. content analysis of images and imaging systems in the context of
digital image processing. As such it represents an attempt to
qQuantify the number of truly independent samples one gathers with
imaging devices.

In quantifying the degrees of freedom of an imaging system it is
necessary to develop an appropriate model, In this work the imaging
system is modeled as a linear system through the continuous-discrete
imaging equation, The associated gram matrix is then employed as
an aid in defining the system degrees of freedom. The gram matrix
eigenvalues are shown to be related to those of the associated
continuous -~continuous model and can be used to predict the discre-
tized system performance. These ideas are then applied to the
tomographic or projection imaging system, and result in the ability
to predict the performance of this system by indicating where
redundant data is achieved, and the best ways of increasing the
degrees of freedom with a minimum sample increase,

The degrees of freedom of a sampled image itself are developed
as an approximation problem. Here bicubic splines with variable
knots are employed in an attempt to answer the question as to what

extent images are finitely representable in the context of a digital
ii



computer,

Relatively simple algorithms for good knot placement are given,
and result in spline approximations that achieve significant parameter
reductions at acceptable error levels. The knots themselves are
shown to be useful as an indicator of image activity, and have

potential as an image segmentation device.
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Chapter 1

INTRODUCTION

This dissertation is concerned with the concept of degrees of
freedom (DOF) or information content of images and imaging systems
arising in digital image processing., This concept is important, as it
is fundamental to problems such as image coding and image restora-
tion. In coding problems, one is interested in the transmission of
that information relevant to the users' needs and in the elimination of
irrelevant data; while in the restoration problems, the object is to be
restored from samples of a corrupted image,

These two examples are given to illustrate that the subject could
be approached from two points of view, Namely, the image could be
treated as the output of an imaging system whose characteristics are
known and thus dependent on the DOF of the imaging system; or the
subject could be considered by itself as in the coding problem where
the imaging system characteristics are either secondary in import-
ance or considered ideal.

Fundamentally, this concept of degrees of freedom can be viewed
as an attempt to quantify the number of truly independent samples of
data one gathers with photographic or other imaging devices. As

image sensor technology grows, the quantity of data gathered



increases, and it becomes reasonable to ask what the true increase in
information content is as one increases image samples. This is
especially important in medical imaging applications where an
increase in the quantity of data gathered, while not producing a
corresponding increase in image information, subjects the patient to
an unnecessary increase in radiation exposure, Thus in designing
imaging systems for medical applications it is extremely important
that the information content of the imaging system be quantized.

Since half the thrust of this dissertation will be towards inform-
ation content in imaging systems in general, and to the tomographic,
or projection, imaging system in particular, a mathematical model
for imaging will be necessary.

1.1 Mathematical Imaging Models

In modelling imaging systems an assumption often made is that
of a linear system, While it is not true that every imaging system is
in fact linear, this assumption is useful in that it makes the analysis
tractable and provides reasonable results, Even if untrue, the
system can often be considered linear if the region of observation is
kept small enough. Thus imaging systems can be analyzed by
considering them in terms of two-dimensional linear system theory.
In applying these methods to imaging systems the assumption is

made that an image, g, is related to the original object, f, by a

¢

«



superposition integral as follows:

gxy) = [[ nx, yie, mee, magan., (1-1)
R

Here h(x, y;€, 7)) represents the weighting function of the imaging
system and R is the region of integration over the input coordinate
system, In this dissertation the assumptions will be made that

h(x, y;€,T ) is continuous in x and y, bounded, and such that

J[T” |h(x, y;€, M|° dxdydedn < =

Furthermore, it will be assumed that f(€, 1) will also be bounded- and
at least piecewise continuous. These assumptions will imply that
g(x,y) will be continuous in x and y, This assumption on the part of
g(x,y) is necessary for digital processing since only a sampled
version of g will be dealt with, Thus if we define g to be g(x, y)
sampled in the image coordinate plane (x,y) and similarly for h, then
the vector form of equation (1-1), the continuous-discrete imaging
model, is obtained [1-1,1-27

g = [[ ne mee, maean + (1-2)
R

where n is an error term and all vectors are Nxl columns, Here the
aim, as in any reconstruction process, is to recover f as best as
possible, in some sense, knowing h and g, This model is depicted

in Fig. (1.1).



Intuitively, the concept of degrees of freedom (DOF) fits nicely
into this model as can be seen by noting that (g, T) is defined on a
continuum, namely R, and as such represents a noncountably
infinite number of DOF. The image g is described by a finite
number of samples N, and atbest represents N DOF. However, the
imaging integral equation causes reduction of this number due to the
point spread function (PSF') blur provided by h(g, f}). Here the PSF
is described by an N-vector whose elements are continuous functions
of the object coordinate system (§, 7). One's intuition might serve
here in the concept that the greater the blur, the fewer the DOF,
Thus, if hi(g, 7) is a "narrow' function the DOF would be greater
than if hi(g, T ) were a 'broad' function. Because hi(g, M) can repre-
sent a space variant point spread function (SVPSF), we can further
let our intuition suggest that in regions in which the object is in
'"better focus' (i.e., narrower PSF) we would be obtaining greater
DOF than in regions of "poorer focus' (i.e., broader or greater blur
PSF).

The rationale behind the separation of the problem into two
classes should be a little clearer now. If the system is taken to be
ideal, then g is simply (€, 1) sampled in the output coordinate plane
and we are confronted with the problem of relating the DOF of a
sampled image to its original unsampled version. It must also be

considered that to sensibly discuss sampled images, one must be
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dealing with ones that are band limited, If £(5, T|) is not band limited,
which is often the case, we can assume that its sampled version { is
‘obtained from some other function whose band limited version
coincides with f at the sample points, In this case, h can be taken
‘as an ideal low pass filter,

1,2 Research Objectives

The objectives of this research will be to develop a measure of
the DOF of imaging systems and to apply this to two areas of study,
The first is that of the tomographic or projection imaging system.
The second area will be that of developing '"smart sensors'' by variably
adapting to the DOF of the sensed image, With respect to the former
projection imaging system [1 -3] , it will be necessary to develop a
weighting function for the tomographic imaging system and its
associated continuous-discrete model.

By quantifying the degrees of freedom of the tomographic imaging
system we will, for the first time, be able to predict the resolution
capability of the system for large numbers ofsamples. It will also be
shown that the resolution limits in tomography are not a function of
the particular reconstruction algorithm employed, but are funda-
mental to the process itself,

While the main intent in the first area of research is to investi-

gate the degrees of freedom and information content in the projection



imaging process, structure will be shown to exist that makes a
linear algebraic solution to the reconstruction problem feasible for
images of a rather large dimension. This linear algebraic algorithm
will be developed, and the results presented in this dissertation
concerning information content in projection imaging will be obtained
from this model.

It will also be shown that the difficulty in image restoration
arises not so much from the sampling scheme used, but is innate to
the original continuous-continuous model of linear imaging systems
in general, This will be accomplished by relating the eigenvalues of
the gram matrix of the kernel vector h with the singular values of
the original kernel h(x, y;€, ). The gram matrix will be discussed in
Ch. 3. The situation where h(x, y;€, 1) is unknown will also be treated.
Here the problem will be considered as a two dimensional approxi-
mation problem and the concept of an ""epsilon degrees of freedom'"
will be developed. By this it is meant that the degrees of freedom
of an image at a level epsilon will be the minimum number of func-
tions needed to approximate £(g, 1) within an accuracy of epsilon
assuming a particular metric,

From a "smart sensor'' viewpoint by way of motivation, if we
consider a sampled image consisting of N2 samples that could be

approximated to an acceptable error by a least squares polynomial of

g
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M2 variables with M2 «Nz, it would be reasonable to say that this
image had less than N2 DOF in a least squares sense using a poly-
nomial as the approximation technique. This approach is taken to
circumvent the difficulty of associating a finite DOF to an image
defined on a continuum which obviously has an uncountably infinite
DOF if we desire to specify that image exactly, However, if we are
willing to accept an approximation with a small but nonzero error,
then the possibility exists in quantifying the DOF in this manner,

In effect this represents an attempt to '"bridge the gap'* between
the continuous domain upon which images are defined and the discrete
point sets involved in digital computations. Shannon's sampling
theory represents one method for reconstructing uniformly sampled
band limited images, but by taking a more general approximation
theoretic approach other sampling and reconstruction techniques may
be used, For example, the desirability of nonuniform or adaptive
sampling can be illustrated by considering an image that contains
high frequency information in a small region in its domain of
definition with the remainder containing only low frequency compon-
ents, If it is desired to reconstruct this sampled image using
Shannon sampling, then it must be sampled at the Nyquist rate
defined by that small high frequency zone, Intuitively, it would seem

then that the regions of low frequency content are over sampled.



Realizing that we can never collect an infinite number of samples for
application on a digital computer and that some error always results
from this technique, it might be possible to achieve a reasonable
error by a finite ""Shannon interpolation' at the respective Nyquist
rates in each of those regions. More formally, in one dimension if
BT is the bandwidth of the function and T is the length of the interval

of observation then there are approximately 2 B_ T independent

T
samples from this function in the interval [0, T]. If we wish to say
that in the interval [o, a], a < T the highest "effective'' frequency

corhponent is B_ and in [a, T] the highest "effective' frequency

T
component is Bl’ (B1 < BT), then the number of independent samples
in [0, T becomes Z[BTa +B)(T-a)]. Since B| < B, it follows that

2[BTa. + Bl(T-a.)] < ZBTT. Depending on the ratio of BT to B, it
might be possible to reconstruct the function to reasonable error by
this :;v.pproach with far fewer samples,

To illustrate the applicability of adaptive processing consider
that advances in charge coupled device (CCD) sensors are such that
some preprocessing within the sensor itself is not so unrealistic.,
This preprocessing could involve some evaluation as to what data
constitutes information to the user and transmits only that data

relevant to the users' needs, Surface acoustic wave devices (SAW)

are becoming available that can provide a Fourier transform of an

]



image at video data rates so that it is possible to obtain a sensor that
provides a transform of the image as its output, This increase in
sensor sophistication coupled with the ability to gather large quantities
of data, the ability to do adaptive sampling or some other more

exotic processing to get at the real information content in the data,

may provide fruitful results.
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Chapter 2

REVIEW OF THE STATE OF THE ART

2,1 Tomographic Literature Review

The concept of degrees of freedom (DOF') has arisen in the
imaging literature in an attempt to quantify the number of truly
independent samples of data one gathers with photographic or other
image sensing devices,

In obtaining an estimate, f, for f in (1-2), consideration must be
taken of the fact that the PSF kernel vector, h, is comprised of
kernel functions that are not necessarily independent, Neglecting
the error term for the moment, this dependency of kernel functions
implies that some of the output samples can be predicted by linear
combinations of the others,are thus superfluous, and serve to reduce
the DOF of the imaging system. The error term aggravates this
situation in so far as, if an output element can be predicted by a
linear combination of the others to within an accuracy better than the
measurement error, that measurement adds no new information to
what is already known. For one dimensional systems it has been
suggested that the Gramian formed from the PSF N-vector could
provide a quantitative measure of the DOF available in an imaging

system, The entries in this matrix represent the correlation or

11



overlap of each PSF with its neighbors, If we consider the following

one dimensional continuous-discrete model
g = [ hEHEME
R

The gram matrix [T'] is given by

[r] = [ neEm*enae
R

where all vectors are considered as Nx1 column vectors and *
indicates vector conjugate transpose. The rank and/or eigenvalue
map could be used in the definition of the DOF [2-1,2-2, 2-3], In
this dissertation we pursue this development in two dimensions and
apply the analysis to the tomographic or projection imaging system
as an imaging system examiple.

Projection imaging or three-dimensional reconstruction has been
the subject of much research in recent years, This is the result of
important applications such as electron microscopy [2-4, 2-57, radio
astronomy (2-6,2-7], and trans-axial tomography (2-8,2-9,2-10], to
name a few, There has been a somewhat intense effort in this last
application in the medical community with the proliferation of
articles, reports, conferences, and even the manufacture of
equipment, While the mathematical basis upon which transaxial
tomography is founded is quite sound, many of the practioners

of the technique have developed a variety of image reconstruction

12



approaches which are seemingly unrelated and controversial,

Basically the technique requires computational reconstruction of
an image and researchers have developed algorithms which can be
roughly classified as follows: convolutional [2-6,2-7] , Fourier
transform [Z -47], algebraic, in the sense of ART [2-9], and linear
algebraic as described by Kashyap [2-10] . The convolutional and
Fourier transform algorithms can be considered as closed-form
algorithms in the sense that a continuous solution is first obtained,
and then discretized for implementation on a digital computer,
While mathematically elegant, this sequence gives little insight into
the errors incurred due to discretization and the presence of noise
or measurement errors in the system. Linear algebraic approaches
somewhat circumvent this situation, but have not received as much
attention, most likely, as large matrices are involved for images
of even a moderate dimension. Nevertheless, the information
content in a particular sampling geometry can be determined by
considering the spectrum of the point spread function matrix
describing the imaging system, This is not to say that linear
algebraic methods are the only way to approach the information
content or error analysis in the projection imaging system, Klug
and Crowther [2-117 have formulated the image reconstruction

problem as an eigenvalue problem in the continuous domain, and

13



have drawn analogies to optical data processing systems in analyzing
the effect of a finite number of projections, In addition to this effort,
Smith, Peters and Bates [2-127 have considered the effect of a finite
number of projections in the reconstruction process,

2.2 Image Approximation Literature Review

The concept of the degrees of freedom of a sampled image as an
approximation problem arises quite naturally in the context of image
coding by transform methods, In transform image coding an ortho-
gonal transformation is performed on a sampled image matrix and a
bandwidth reduction is obtained by transmitting only those transform
coefficients above a certain threshold whose level is consistent with
the desired error [2-13] . The large bandwidth reductions reported
are due, in part, to the compacting-of-image-energy property of
the orthogonal transforms employed, However, any compacting in
the transform domain is at the expense of an increased dynamic range
in the transform coefficients because of the conservation of energy
inherent to all orthogonal transformations,

Another situation is the application of the singular value
decomposition (SVD) algorithm [2-14] to the sampled image matrix
where upon the number of degrees of freedom can be equated with the
number of effectively nonzero singular values, with the remaining

parameters describing the orthogonal singular vectors,

14
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In both of these situations we are dealing with a sampled version
of the image only, and as a result the degrees of freedom could be
affected by the sampling method used and thus could lead to mis-
leading results. The point to be made here is that the degrees of
freedom should be a characteristic of the original image and
reflected in the sampled image only by our inability to collect an
uncountably infinite number of samples for application on a computer,

It is to this end that approximation theory is directed, In fact
the Remes algorithm represents a method for finding the best
approximating polynomial (in the uniform norm) of degree <nto a
continuous function in the interval [a,b] in terms of a sequence of
solutions involving finite sample point sets with n+2 elements each
[2-15] + Unfortunately, no equivalent algorithm is available in two
dimensions but it should be noted that the Stone-Weinstrass theorem
assures the ability to uniformly approximate a continuous function of
2 variables by a bivariate polynomial with arbitrary accuracy [2-16,
2-17].

Recently Hou [2-18] and Peyrovian [2-19] have employed
spline functions to image restoration problems with considerable
success, However, in both of these works the knots were both
fixed and uniformly spaced with no attempt being made to improve the

approximation by adjusting the knot placements, In one dimension
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the existence of best approximating splines with both fixed and free
knots have been shown to exist [2-20] » and that the approximation
capabilities of splines are greatly increased with the allowance of

free knots, Recently Schultz has developed error bounds for multi-

o

variate spline approximations, in both L_ and L, norms in terms of

2

the maximum mesh width of the knots and the moduli of continuity
(2-21,2-227,

While Schultz' results are mainly concerned with error bounds
and not the best approximating properties of splines, it is one purpose
of this dissertation to demonstrate experimentally that a sensible
placement of the knots adds considerable power to the image approxi-
mating capability of bivariate cubic splines, Furthermore, since the
mapping of the sampled image into its spline coefficients represents
a nonenergy conserving transformation, a bandwidth reduction
(man‘ifested as a reduction in the number of spline coefficients needed
to describe the image) that is not necessarily at the expense of an
increased dynamic range. Thus the possibility exists of more
efficiently quantizing and encoding those coefficients than those of the

more widely used orthogonal transforms.,

"

2,3 Overview of the Dissertation

[l

The main features of this dissertation are: a) the adaptation of

a continuous-discrete model for image restoration in general and its

16



application to the tomographic imaging system in particular; b) the
use of the eigenvalues of the gram matrix in predicting the tomo-
graphic imaging system performance; c) the adoption of an approxi-
mation theoretic approach to relating the degrees of freedom of a
sampled image to its original unsampled version when a system
weighting function is either unknown or of secondary importance to the
particular image processing task; and d) the application of that
approximation theory to the design of ""smart sensor'" imaging arrays.

The following is a brief summary of the dissertation on a chapter
by chapter basis,

Chapter 1 serves as an introduction to the notion of image
degrees of freedom and as such outlines the difficulties involved,
Models for imaging systems are introduced along with their appropri-
ate constraints that will be used throughout the work,

Chapter 2 serves as a review of the research efforts towards
characterizing the degrees of freedom of imaging systems with a
known weighting function. The recent efforts in algorithm develop-
ment and information content in the tomographic imaging system are
also covered. The main intent is to review known systems and the
approximation theoretic approach will be reviewed here and expanded
upon in Chapter 5 after it has been properly motivated,

Chapter 3 contains the development of the tools necessary for

the investigation of information content in imaging systems, Here the
17



relation between the gram matrix eigenvalues and system degree of
freedom is developed along with algorithms for estimating fusing the
gram matrix of the continuous-discrete model. This is done for both
the case where the system of equations is invertible, and where the
system is singular and a constrained least squares approach is
necessary, The separable gramian is also discussed and shown to
result in a significant computational reduction, Finally, the relation
of the gram matrix eigenvalues to the continuous-continuous model
eigenvalues is explored and bounds are given for the separable
gramian,

-Chapter 4 is the application of the results of Chapter 3 to the
tomographic imaging system., A continuous-discrete model along with
its associated gramian is developed. Structure in the gramian is
shown to exist making a linear algebraic solution possible, The
degrees of freedom of the tomographic system are obtained using
the gramian and are shown to be in excellent agreement with the
general type of system tomographic imaging describes, Numerical
results include some excellent reconstructions for experimental
projection data,

Chapter 5 is devoted to the information content of a sampled
image. In this chapter the problem is shown to be an approximation
problem related to the prior methods (where the approximating

functions are taken to be linear combination of the PSF kernels in thf



"«

continuous -discrete model). However, in this case there is con-
siderably more flexibility, The concept of an ""epsilon degrees of
freedom" is defined and related to sampled images us.ing splines
with free knots,

Chapter 6 is devoted to the experimental results of the 'free' or
'variable knot' splines of Chapter 5,

Chapter 7 contains a summary of the dissertation along with
some conclusions and possible future work,

Appendix A deals with the relevant computational properties.of
normalized B-splines,

Considering the dual nature of this work a flow diagram of the
chapters is given in Fig, 2.1, It should be useful in visualizing the

directions taken through the dissertation.
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Chapter 3

THE CONTINUQOUS-DISCRETE MODEL AND THE GRAMIAN

3.1 General Development

In this section we relate the DOF of the imaging system (mani-
fested as dependent data) to the linear dependence amongst the PSF
kernels of Eq, (1-2), In doing this we will select an arbitrary unit

length vector g which when dotted with the imaging equation yields

<wg> =<z, [[ hE e, MagaD> +<and> . (3-1)
R

If the first term on the right is much smaller than the second, then its
contribution can be considered minimal, Taking this with the fact that
lla]l = 1, we must reduce the degree of independence or number of

DOF by one for every independent g such that

2 2
I<a, [] nz Mg, magan S = ||z (3-2)
R

where || 2"2 can be considered the sensor noise which contributes to
the definition of the signal to noise ratio of the imaging system., We
can further investigate the implications of equation (3-2) by noting
that the vector inner product on the left can be related to the

continuous inner product of £ with h by -

21



2 2
I<a, [[ nee, mec, magan [ = | [[ 2z, m < b, m), o> dgan |
R R

and applying the Schwartz Inequality

2 2 " 2
| [[ #e, 1 <, m, @ >aeanl” s [[ 1se, mI"azan][ Kace, m, o > dzdn
R R R

- e Ml 2* [Tl

Here [T'] is the gramian of the PSF kernels and is defined as

h(g, Mh™(E, n)dedn

(r) = |

I
R
or

Y = g h,(€, MhH(E, ME dn

which is Hermitian having real eigenvalues only. Because £(§, M) can
be considered bounded, ]f(E, 'n)l =E, we will assume in conjunction

with equation (3-2) that

E%g*lrle = |an|®

Expanding [T] into its eigenvector decomposition [T']= [ U][A] [U]*
and let B = [U]*g, another unit vector, we have

£2p*(Ae = In | .

Clearly Q*[{\] B is minimized by the allowing of 8 to be the eigen-

vector associated with the smallest eigenvalue of [I'], which leads to

the conclusion, that for every eigenvalue ) such that:
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2 2
E <nli

one degree of freedom is lost,

We can now turn our attention to the problem of obtaining an
estimate of the object 2 , and demonstrate the role played by the
gramian, In doing this we will determine a minimum normed least
squares estimator with the constraint that the norm of the error be
equal to the norm of the noise vector. The least squares approach is
taken as it leads to a generalized inverse solution in the discrete-
discrete model which Rao [3-1, 3-27] has shown to be 2 minimum
variance unbiased estimate of the original object, f. The discrete-~
discrete case is developed first and serves to motivate a minimum
normed least squares solution to the continuous-discrete problem,
The discrete-discrete problem is nothing more than a regression
problem wherein the image vector g is related to the object vector f

through a blur matrix [H] as follows
g =[H]L+n (3-3)

Here all vectors are Mxl column vectors and [H] is an MxN matrix
with M#N in general, n is a noise vector whose elements will be
taken to be identically distributed independent random variables so
that E{x_m__x_’x_T] = [Rn] = [I] [3-2] . An estimate f can be obtained from
the following:

minimize | £[F
23



subject to

2
IEE)E-gl = Iz E
which results in the minimization of

f_,T

% 2
wE) = £7£ +y{([H]L-g)"([H]E-g) + |n |5}

This leads to
L)+ yERTFEHIE = v[aTg
resulting in
~ - -1 "
it tartn| wrs

which can also be expressed as [3-3]

a 1 * -1

Ee )} U+ W7 g (3.4
The Moore-Penrose pseudo inverse, @-l].}, is given by [3-3, 3-4]

-1
tH'j+ = lim [H]*[l [17+ [H][H]*] (3-5)
Yoo Y
and taking i: [H]+_g results in a minimum normed least squares
solution to Eq. (3-3), Also note that [H]+ involves the matrix [H)[H]*
which is a discrete form of the gramian.
The continuous-discrete model can be treated in a similar

manner by stating the problem as

2
minimize [ £ (6)d6

24



2
subject to || J‘ye)f(eme-gl\: = |nll,

where 6= (£, T|) for notational simplicity, The criterion, w(f(6)), to

be minimized is given by

wie) = J £2@ae+v (|| [horerae-glf + ) n [p) (3-6)

Minimizing w(f(e)) necessitates the use of the calculus of variations

N~

wherein we let E(G) = fo(e) + €A(8). fo(e) is the estimate minimizing

Eq. (3-6) and A(0) is any function of 6, Thus we have that:

= minimum value
e=0

1) wEe)

achieved at the f( 8) such that

2) 2 w@en| =0
de e=0
and
az 2
3) —5 w(f(e)) 20
d€ e=0

to guarantee a minimum, Substituting f(e) = fo(e) + eA(9) into Eq.

(3-6) we obtain
A A 2 T T i~
w(£(6)) =I(fo(9) +€A(6)) do+yg g-2vg Ih(e)(fo(e)+eb(end9

A ~ Z
+y[[B*(ORM(E,(8) +ea(0)) «  (£y(M)+ea(mdedn +y | nl,

(3-7)
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The first derivative with respect to € results in
ow e 2 T
3c WEIeN=2[ (£,(8)+eA(8))A(8)dB - 2y g~ [ h(6)A(0)dB

+2y [R¥(MUEHM + ea(M)dn [ h(6)a(0)do 5-8)

2

2~ wde) = 2] F(e)a0+ 2y [ h*@mMAGIA(IEOdD = 0
d¢

If Y20 we will have a minimum, Setting Eq, (3-8) equal to zero and
evaluating at € = 0 we obtain a minimum at 30(9) satisfying
J 808y {£(8) - Yn*(8)g(6) +Yh*(8) h(m)f, (M)dn}do = 0

which will be satisfied if

2,(0) + ¥R () A(ME(Man = yh*(o)g (3-9)

Notice that this expression is of the algebraic form

(L +y0)iy (M = yh¥O)g

where
~ A * ~
¥ig(n) 2 [ h¥e)h(ME, (n)dn
which can also be written

¥, (M) = [K(8, M (mdn

where

K(8, M) = h*(8)h(M)
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8o that we recognize Eq. (3-9) as a Fredholm integral equation of the

second kind which can be solved by iterated kernels giving

Fm = 2 (-y'sh*e)g
i=0
since

Y eyt = @y (3-10)
i=0
if (I+yﬂ()-1 exists and |Jyx | <1.

To obtain an explicit form for the solution and conditions for

convergence note that

24 " -
¥“£,(n) = [ h¥*(@h(Hh*(E)hMIE (MANdE

[ h*(@) [T BMEy(Man
implying that the kernel of this transformation Kz(e, T ) is given by
2
K“(6m = h*®)[r]hm)
and that g{zf(’n) can be written
~ -1 P
Wi (m = [ B¥e)[r T hmEman

and that K8, M) = b*(0)[FT"'h(N). Thus

y lim {t (--Yi&()i }h*('ﬂ),g,

£,(6) '

n+o (i=0

.1 . .
ylim {Z (-y)'[ g*(e)[r]"l_lg(m_lz*(mdn}g

nde (i=0
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= Ylim { le% (-V.‘) h*(e)[r]i }.g.

n-»es

a . -1
£,08) = yh*@({1]+vy[T T ¢ (3-11)

if the limit exists, However since [I] and [T'] are both matrices and
[I"] has nonnegative eigenvalues only, every eigenvalue of [I] +Y [l"]
will be nonzero for Y>0 implying that [[ I] + Y[l"]]-l exists, Thus we
can rearrange the right side of eq. (3-11) and obtain the estimate,

fe,m) = £,(0)
-1 .
A “ 1
f(g, m) = h*(g, M) [Y— [1]+ [1"]] £ (3-12)

Note the similarity between (3-11) and (3-9), and that a Moore-

Penrose pseudo inverse will be obtained by letting Y-+ « so that

fe,m = n*e nirTe

which will be

- " -1
f(e,m = h¥*E, Mr] g

if [T] is nonsingular.

A criterion for the convergence of the series in eq, (3-10) is
that |y = || y|| l|s| <1. This has physical significance for passive
imaging systems since the output image energy will be less than the

input image energy for such systems. Thus
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lel = felf

so that

vl
“?"-2— s1

resulting in

Il

llsdl, = sup s1
2 " 40 T,

At this point it is interesting to investigate the relative error in the

estimate f(E, M) is of the form
flte,m = <h¥(e, M), 0>
where
1 -1
a= [; 1]+ [1‘]] £
If we let o' = [U]-lg-_ so that
fe,M = 2%, M2’

where the cpi*(g, 1) are orthogonal and o*(€,n) = h*(€, M)[U], then the
relative error in f(g, M) will be given by J{-[%ﬁ-;-u « This can be
accomplished by expanding in the eigenspace of [l"] by letting [U] be
such that

WTr] (vl = [a)
where [A] is the diagonal matrix of eigenvalues of [I'], and
[u)*ful=[1]. Thus
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oM = [UTheEm

and the solution of the continuous-discrete imaging equation will be

a solution up to the degrees of freedom of [T']. Then we note that

[T o(g, Me*E, mdean= [ [UTh(E, Nk*E, muldedy
R R

= UT(r] L]
= (A7,

i.e, the set {¢(g, M)} is orthogonal, Then o' is as follows

1

o = o [Rue i)
= [% (u]+ [U][A][U]*[U]]-l g

-1
1
[ o]
If [I‘] is nonsingular the pseudo inverse solution is obtained by

letting Y+ so that

1
a' = [AT [Ul*g
It is easily verified that in terms of ©(E, 1)
- . -1
£z, M) = <@ (€, M a'> = h¥*E,mrT g (3-13)

The results of equation (3-13) indicate an ill-conditioning problem
in which an upper bound on the relative error ||6a!|| /||a}]| can be

found to be

30
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lsarll a1 fial
=T = Tl Tel

»
In general then we can obtain our estimates for f(g, T) in the eigenspace
of the point spread functions with the same results, and can generalize
to other quadratic constraints by letting [C] be a nonsirgular constraint

matrix and postulate the problem as follows,
minimize a*[CJa

subject to H_g-[U][A]g_If = 0.

The criterion to be minimized becomes

a*[cla + vlig-fu] [a)a)f

when y is the usual Lagrange multiplier, Performing this minimiza-

tion results in a constrained least squares solution of

a= (Y'l c]+ [A]z)'l[z\] [ul*g (3-14a)

and

fig,m = 2*[U7*nE, M) . (3-14b)

Proper conditions on [C] and y result in the pseudoinverse reconstruc-
tion and are developed elsewhere [3-5,3-67,

3.2 Separable Kernels

In image processing we are often confronted with very large
matrices that make implementation of the algorithms of section 3.1

difficult if not impossible, If it is noted that if a sampled image data

31



point is obtained at each coordinate tuple (xi, Yi) and that there are Nx
and Ny samples in the x and y directions respectively, then the image
vector g is an Nx- Nyxl column vector and [F] will be a NxNYXNxN
matrix, Thus for images of even a moderate dimension, say 100
by 100, [I'] will be a matrix whose dimension is 104x 104 containing
108 elements. Clearly some structure in [1"] must be found that
allows a simplification,

The structure investigated in this section will be that of a
separable kernel. By a separable kernel it is meant that hi(g, M can

be written as the product of two functions as follows:

= !
1

(2) : =
h.(€,M) (E)h, (M)  Vi= l’z"“’Nx'Ny (3-15)

i
This subject is of interest becaw e it often occurs in practice and that
separability allows a significant computation reduction over the
general case.

From (3-15) the kernel vector h(g, M) of (1-2) becomes
1 2
ne,m = W@ e n?m

1
where @ denotes the Kronecker, or direct product between ll_( ) and

1®) thus:
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-~ _
n{Me).n®m)

n{M ey @)

h(g, M)

(1)

hN(g) SR

. 1
_ Nx Nyx
The computational savings provided by kernel separability lies in the
fact that [I‘] can be shown to be the Kronecker product of the two

gramians [1"](1) and [1‘](2) as follows

1 2
ir] = rfVe r1®
where
*
[I‘](l) =] h(l)(ﬁ)_lz(l) (E)dE (3-16a)
R
3
*
i = | a®mn® (man (3-16b)
Ry

To show this consider,

[r] = If b, Mh'(E, ndgdn
R

which for separable kernels becomes
ir]= ff (8o @a®mitn™e) @n® miagan
R

From Bellman [3-7] we know that

M) on® m1* = 6 e)* @n®my*
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thus
1 1 * ES
ir]= [ M@ ¥ mi ™) @@ v M) azan
R

But by the algebra of Kroneckers [3-7]

(2)*

1 2 1)* 1 1)* 2 ()"
Mo er®mi " @en® mi= e @lenim® m

so that

1= 2Men® @aeef x¥mn® man

Re R

1 2
ir] = r1e (01 (3-17)
Clearly it is a significantly simpler task to diagnoalize two matrices
of dimension N_ and N_ each than one NN XN _N matrix. By way of
x y Xy xYy
illustration, since [1"](1) and [I‘](Z) are Hermitian they are diagonaliz-

able as follows

o - o e e

nf® - i P w?

then from the algebra of Kroneckers [3-7]

- o1 = o et o wi® P i?
_ [U]a)*® [U]w)*[r](l)@[l.](m[u](l)®[U](2)

and finally from Bellman [3-7] we have that
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-1 -1
1 2) -1 1 2
rVe w7 - w1V o 0¥
Consequently, the coefficients for the estimate of f become
-1 % -1 *
a = D\](l) [U](l) ® [A](Z) [U](z)g_ (3-18a)

-1 -1
o 9 1 1 2
£(g, 1) =g"‘[1‘]( ) 11,( ‘or® [1‘]( ) g‘z)(m (3-18b)

For the case where [I‘] is singular and the constrained least squares

solutions are used, we have the following

-1 1 2)m-1 1 1 2 2
o = v (el 0o WFT I 11V e 1101
If we let [C] be separable and nonsingular as is often the case

(take for example [C]= [1]), then
a= ' e1M el P o 1T M T @ i1 tu
- - - -1
ot ot B e b o 1 T

. [A](l)[U](l)®[A](2)[U](z)g

» ~

t - a1 oWl o @n,m)
Thus we see that the constrained least squares solution to a problem
with separable [T] and [C] matrices involves the diagonalization and
inversion of far smaller dimensioned matrices, The discussion of
another attractive structure is deferred until the section dealing with

the tomography gramian.,
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3.3 Gramian Eigenvalues and System Eigenvalues

In the preceding section the degrees of freedom of the continuous-
discrete model of a linear imaging system has been identified with
the number of effectively nonzero eigenvalues of its gram-matrix,
This prompts the question of exactly what is the relationship between
the gramian eigenvalues and the original continuous system eigen-
values, for it would certainly seem reasonable that they exhibit a
similarity,

In this section we will apply a result of Keller [3-8] that will
allow us to relate the eigenvalues of [T'] to the singular values of a
four continuous variable kernel h(x, y;E, 1) which is not necessarily
hermitian. To do this we form the auxiliary kernels h'(x, yv:E, M) and
h''(x, y;£, 1) and formulate an outer product expansion for h(x, y;€, M).
Under the original assumption, namely, that h(x, y;€, T) is square
integrable, i.e.,

2
[T0F |hx, y;8,m)|" dxdydedn < »
R

and defining the adjoint kernel h*(g, ;x,y) as

h*(g 5%, ¥) = h(x, y;E,T)

then the auxiliary kernels are:

h'(x,y:€,m) = [[ h(x, yip, 0)h™*(0, 68, M)dpde

[[hex, yip, 8)h(E, Mip, 8)dode (3-19)
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h'(x, v3€, M) = [ h¥(x, yi0, 0)hip, 8;€, N)dpde

= [[ hip, 8:x, y)h(p, 8;8, N)dpde (3-20)

and
Hsile,y) = [T B'ix, 38, hey(8, Mdedn (3-21)
MsbsGey) = [ B'(x, yiE, M (8, MdEdn (3-22)
luj |%¢3(x.y) = [ hix, v;g,n)wj(g, n)dgdn (3-23)
Iujﬁbj(x.y) = [T b¥x, yi, Ny (6, MIdgan (3-24)

Then h(x, y;€, 1) admits of the following expansion

& 1
h(x, y3g, M) = Zl Iy ey, v (5 1) (3-25)
k= .

If we sample h'(x, y;&, 1) at the coordinate tuples _:EM = (xi’ Yi) and
x = (x.,y.), i=1,...,N.N_, j=1,...,N N_, it should be clear
- J ) Xy XYy

that

b, x7) = v

Let 'i\lf be a two dimensional qQuadrature rule approximating

ﬂ' fée,y )dxdy g1ven by
N N

X
22_;' CRALA 1Zgrw.-l N=N_N

) JI;! f(x, y)dxdy
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Sampling f(x,y) on a cartesian product grid we can separate Wij into

(x)

a product of two weights w. ,W;Y) [3-9] where these are the respec-
tive quadrature weights for one dimensional integrals along the x
and y directions, The quadrature rule then becomes

Ny N

H = £(x., Y w

NxxNy i=l j=1

(), ()
1

To simplify the quadrature notation let x = (x,y), 8 = (§, M) then the

samples become:

i) _ . (i) 2
_x_ - (xi’vj) 1= l,z,...,NxNy £ eR
G) _ i 212 N N o) Rz
_e_ - (gj:'ﬂj) J r My 000, Xy — €

W(J) - ng).wfv) j 1,2,...,N N
J J xy

Then the quadrature approximation to (3-21) becomes
(i) tiseti). g (3)3 () (i)
M)~ D b e )w g (8 (3-26)
(i)

or in vector form

e, ~ (r1vle
where [w] is a diagonal matrix of quadrature weights, If we let )‘k
be the k' eigenvalue of [T'] [w] and U, its associated eigenvector,
then

WG, = T1x]y,
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il

considering those quadrature rules with weights greater than zero,

and such that

lim £ = ﬂ' f(x, y)dxdy
N 4= N xN

x Xy
N e

Keller has shown that for every eigenvalue )‘k of [1"] [w] there exists

an eigenvalue My in (3-21) such that

1
Iy | = |‘_AR+o(1)]z m:x le(x)| (3-27)
where -
le@| = | [f bxE, M@ (E, M)agdn- »  hig |
R NxNy

and AR is the area of R, By letting R equal the unit rectangle and

employing a rectangular integration rule with evenly spaced samples

i 1
such that W(J) NN’ then the eigenvalues of [1"] converge to a
Xy
constant, (dependent on the number of samples), times some eigen-

value in eq. (3-21),

Since the error in the estimate ;in eq, (3-6) is upper bounded by
the condition number of (1‘] , |_)1fn;ax;_ ,» the actual value of the cons-
tant is unimportant, What is important is that the shape of the eigen-
value map of [T'] [w] will be in good agreement with the spectrum of

the kernel in the continuous -continuous model, These results serve

to put on a firm footing what should be our intuitive feeling towards
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the image restoration problem, namely, that the difficulty in restor-
ation is not so much a function of the sampling method used (for any

one consistent with a quadrature rule "n such that "’nf -»Ifdi could be

used), but is innate to the original continuous-continuous formulation
of the image restoration problem,

3.4 Eigenvalue Error Bounds for Separable Kernels

For separable kernels actual numerical bounds on the error
h‘k-p‘k| can be obtained, Wielandt [3-107] investigated and developed
bounds for the errors in estimating the eigenvalues of a hermitian
operator in one dimension using various quadrature rules, Since the
two dimensional separable problem reduces to two one dimensional
problems, it is relatively straightforward to extend those results to

the two dimensional separable problem. In the previous section the

1 .
NN for all i.
. A xy
This presents no difficulties in obtaining f in Eq., (3-5) since we

eigenvalues of [T'] w] were investigated where w, =

simply scale both sides by The results of the previous

1
NN °
Xy
section are also valid for other quadrature rules where neither the
sampling subintervals nor the quadrature weights are constant, To

deal with this we must multiply both sides of Eq, (3-13) by the

appropriate quadrature weight matrix [W] and obtain

(wlg = WIrl{vle (3-28)
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If we restrict our rules to those with the property

max w,

—_— <M asNN 4+ e
min w, Xy

then the invertibility of (3-13) is dependent on [I‘] and not Eﬂ]. Now
w][r] is similar to [T][w] which is itself similar to the hermitian
matrix Bav]%:[l"] [w]% implying that these matrices all have the same
eigenvalues. Thus we can analyze the separable gramian eigenvalues
using Wielandt's results applied to [T] [w] .

As before, we form the auxiliary kernel h'(x, y;€, 1) as follows

h'(x,y:E, M) = [[ h(x,yip, 8)h(E, Nip, 6)dpde
R
1 2 1
- 2 (x, 0@y, 0inM (g, @, 0)dpde
1

= 1 Ve emMie,0iapf 1Py, anPn, 0)a0
R R
% y

Then
1

nx e, M = b (% en@ iy, 1) (3-29)

For a separable kernel Eq, (3-21) becomes

(1) @) (1) (0 (2) oy - M adD @)t od?)
My by 95 ey () = jR B (x, E)g u—;)dgj; B Gy, Mg (A
x ¥ (3-30)
where
1 1) 1
w oMy = 1 2 e, 61V ieae (3-31)
R
X
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2) 2
IS S [

g R
y

The appropriate quadrature rules with x and y sampled on a cartesian

(Mdn (3-32)

produce grid yield

(1), () _ (1)p (1) (1)

IO A [r7 '] 'u, (3-33)
(2)52) | rp) g q2)y(2) 334
ML T =1y (3-34)

which implies

1) (2 1 2 1 2 1 2 1 2
x(i )ng )=Ha( )‘3’2; . 19 o [r 12 eV @ ) ).Hg )®E§ )

The desired result is to bound

1). (2 1) (2
I )x; ) By I

To do this consider that

(1),(2)_ (1) (2) _ ,{1)_ (1) (2)_ (2) (1), (2)  (2)
A xj My Wy = (), i )(1 AN (xJ. K )
(2),. (1) (1)
Since IJ?)Z 0 Vj and u( ) 20 Vi, taking the triangle inequality implies
that
1) (2 1) (2 1 2 2 2 1 2 (2 1 1
|7\()()(,()||()()\|7\()()| ()“\ ()‘w)‘().()|
Since we can consider that ugl) <1 and ugz) < 1 we obtain
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(1)(2 1) (2 1) (1)) (2 2) (2 1) q
l J)()()|l()()||k()()||;)_u.(i)|+‘)\i()_ui()|

(3-35)
Now Wielandt's result applied to h(l)'(x, E) for rectangular integration
with N_ points from 0,17 equally spaced such that w, =Nl —j» for all
i is such that if h( )* (%, €) is a hermitian kernel such that
2,0 M) gor anl ec [0,1] then for every )\( )

|ax »an eigenvalue
(1)

1) 1
of [1"]( )ﬁ_ , there exists a M; »an eigenvalue of (3-27),8uch that
x

(x,F,)]SL

MO 1,08L")
L

N
x

The results for [I‘](Z) are identical. Applying this to (3-35) we have
for rectangular integration with Nx and Ny evenly spaced points in the

x and y directions that

2 1 2
(), @)_ (1) (z)l (1.08)° (1) (@), 1.08L! ’+ 1.08L(%)

h‘ J N N N N (3-36)
y x y
where
d L (1) (1
|2 M 0]« L) veelo, 1]
and

2\ 2
& 1 m| = ) vnefo,1]

] 1
If the kernels h(l) (x, €) and h(z) (y, M) are twice differentiable such
that
1
ox

(x,€)] = L(l)

vee(o, 1]

and
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2
231
2= by,

oy

<@

vne [0, 1]

we can apply Wielandt's result for Simpson's rule to (3-35) and

obtain

(1) (2) (1) (2)
(1) (z) (1)“!z)| (. 75) L +.75L +.75L > (3-37)

el (N_ -1y? L -1y (Nx-l)z (¥ -1)

lx

For Gaussian quadrature over a cartesian product grid with Nx
and NY points along the x and y directions respectively, if the

13yt 1
auxiliary kernels h‘ ) (x, €) and h(z) (y, M) possess continuous pth

partials
1 P2
LM ey ana 2 1@ )
p P2
ax+ 1 dy

then for Nx 2p, and NY zp, using Wielandt's results for Gaussian

quadrature it can be shown

d. p d, p P
(1),(2) (1) (2) 1 N1/ "2 V2 21! ay
I Aoy | < 16(N -1) (N -1) mex (x, £)
x y x, £ |ax 1
P2 .
v, lay 2
1 1y
4( al n (x .E)‘
Bxpl
pz P2 o0
+4(N ) ™ a_p h ity m
v, |3y 2

where
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1’72 °

4.0 ifp),p, 27

These results are summarized in Table 3,1 for each of the
aforementioned quadrature rules in both one and two dimensions,

3.5 Conclusions

The concept of the gramian eigenvalues in determining the
degrees of freedom of the imaging system have been developed, The
gramian eigenvalues have been related to the system singular values
by way of auxiliary kernels and have been shown to be closely
related to those singular values. Since for every I..2 kernel these
singular values tend to zero,the numerical instability in digital
image restoration arises from the original continuous-continuous
model for imaging systems, For imaging system kernels that are
separable, actual numerical bounds for the distance between the
gramain eigenvalues and the square of the system singular values
were found. This should be quite useful in obtaining upper bounds
for the number of effectively independent samples one can obtain for

separable imaging systems,
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Chapter 4

PROJECTION IMAGING AND THE GRAMIANI

4,1 Continuous-Discrete Model

We are now in a position to apply these analytical methods
obtained through the continuous-discrete imaging model to the trans-
axial tomographic projection imaging system, In the ideal c;.se the
output of such a system, as modeled in Figure 4,1, is a projection,

p(r, 8), related to the original object, £(§,T), as follows:

o(r,0) = [[ £ Mh(e, r;&, Magan. (4-1)
R

In any real system finite detector width, beam spread, scatter-
ing and other phenomena cause the line projection to be distorted.
Thus it is appropriate to consider the distorted projection, p(r, 8) to
be related to £(€, 1 ) through the general blur h(8, r;€, ). In the
important case where the blur is space invariant along r, and
independent of 8, the projection becomes

o(r, 8) = ]’ £(E, N)b(E cos 0+ Nsin § - r)dEAT. (4-2a)
R

1Thiss and portions of the proceeding chapter are summarized in
McCaughey, D, and H. C, Andrews, '""Degrees of Freedom in

Projection Imaging, '' IEEE Transactions on Acoustics, Speech

and Signal Processing, vol. 25, no. 1, February, 1977,
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where b(E cos 6+ Tsin 8 - 1) is b(r) evaluated along the line

(Ecos 6 + N 8in 8 - r), For an infinitely narrow blur we have the
ideal imaging system, and the PSF kernel would be a line mass such
that

b(Br;E,M) = 8(Ecos 6+ T sin 6 - r)

along the line (Ecos 6+ Tsin § - r), Hereafter R will be taken to be
the unit circle.

For this ideal imaging system the line mass projection becomes

oy (r,0) = ” £(E, M)8(E cos 6+ 7 sin 6 - r)dedn (4-2b)

R

and it can be shown that p(r, 8) = pL(r, 8)*b(r). If the Fourier trans-

form of p(r, 8) is denoted by J{p(r, 0)}, then

I{p(r, 0)}

7{p; (r, )37 (r)} (4-3)

where

I{p(z, 0)} J’ p(r,e)e“z"judr.

From the projection slice theorem [4-1] we can relate the Fourier
transform of the projection to the central section of two-dimensional

Fourier transform of £f(&, 1) as follows:

J{pL(r, 8)} = H £(e, me-jznu(z cos 8+ Msin e)dg an.
R

Denoting 7 {b(r)} as B(u) and letting g(u, 8) = I{p(r, 8)} we have
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g(v, 8) = B[ £(g meFEMIE c08 O+ MR Bgeqq,

(4-4)
R

Finally letting 8 i be g(u, 6) evaluated at the coordinate tuple
»

(uk, ei ), we have the following continuous-discrete characterization

of the projection imaging process:

-j2 . i
g ¢ = B [[ e, mePMklE o0 S AN qean  (au)
R

i = l,z,ono,MB

l,z,ouo,Mr

k

where Me and Mr are the number of samples taken around 8 and

along r, respectively, In the notation of the previous section, then,

the total number of samples N must equal MBMr =N,

By lexicographically ordering the indices (i, k) to form the

image vector g, the above imaging system has a gramian consisting

of the following blocked matrix

pa

D @2 Mo 7]

o - r® Y &2

rrfMer )

- (r]™Mer Mg)

where each [1"](1’ m) is a symmetric Mr X Mr matrix whose k, 2

entry is given by
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-j2mug(Ecos §+Nsinf) -l-erruz(Ecos 9m+1]sin9m)

Yy ) = BlagBw) (e e
R .dedn.
Letting
E = rcosé
N = rsing
dxdy = rdrdé
Yzi’ ?)) _ B(uk)B*(uz)rl zne-Jznukr cos (-9, )erfm ¥ cos(é- em)rdr“

Letting § = é-ei, dy = d4d, -9. Sy S2m- 9. then

1 2v-6 -JZﬂukr cos () j2mu rcos(¢+e -6 )
Yo ) = BlwB¥w,) j; e ! ™ rdrdy

Temporarily let A8 = ei-em

9; -JZﬂu r cos(}) j2mu r[cos(y)cos(AB)
(L, m) * -6 k ¢
Vi g) = B9 )BT )f I e

1 -sin(y)sin(A0)] dyrdr

1 2n-8 -errr[cos(w)(u cos (4 8)-u, )-sin(})u sm(Ae)]
= B(u JB*(u )J' j' dyrdr

Define:

& 1}

e, -uzcos(AG) -y e, = u, sin A@

= e =2 cos e =2z 8in
z e ‘e, c (@), e, (a)

-1
a = tan (es/ec)
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We have that

1 2m-0, .

(£, m) _ * i jlnr [z cos()cos(a)-z sin(y)sin(a)

Yoo 3y = BB z)J; “[:e e Jayrar
i

1 2m-6
v Y]
= B(uk)B-. (uz).[o I.e 1 eJ nrz COS(Wﬂ)dwrdr
i

1
= B(u, )B*(u Z)Zn.ro Jg(@m2)rdr

J. (211z)
= B(w)B¥(u) ——

By resubstituting for z we have the desired result

L4 2 z -l_
(£ m) 2.‘I1 [Zﬂ(uk-Zukut cos(ei-em) + uz)z]
ik, 2)

= B(u,)B *(u Jr (4-6)

2 2.5

-2 - 2
2~|-1'(uk ukuzcos(ei em) + uz)

where Jl(.) is the first order Bessel Function of the first kind., This

) combined with the block

functional form for the entries in [I‘](i’ m
structure resulting from the lexicographic ordering of the k, i indices
from equation (4-5) provide a structure for [1"] which facilitates its
generation, diagonalization, and inversion., If we note that ei and

Gm influence [1"] only through the cosine of their difference, by samp-
ling 8 uniformly over [0, 2m) and u independent of 6, and noting that
the cosine property of cos(ei-em) is even symmetric about MG’ El"]

will have the following form which is even symmetric circulant

only in the indices i, m:
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[ ]
1,1 1,2 1,3 1,3 1,2
[T]( y 1) [1-.]( ) U.]( ).” [1-.]( ) [I‘]( )

iy 2) [1.](1,1) [r]“'z’... gt [1‘](1'3)
r1=|{. : . (4-7)

i](l,?.) e e, D

From this it is seen that each row of blocks is a right circular shift
of the preceding row. Thus for simplicity we can let [l"](i’ m) =
[I‘](i) hereon, In the special case where each [I‘](i) is itself a circu-
lant, [T'] becomes a block circulant matrix. Hunt [4-2] has shown
that block circulant matrices are diagonalized by an orthogonal
matrix that is the kronecker product of two matrices each of which
represents a discrete Fourier transform, However, for our pro-
jection imaging case [T‘](i) is only symmetric and not circulant so a
more general result than Hunt's is required if we are to effect a
computational reduction in diagonalizing [1‘] .

In generalizing Hunt's result to include the pseudo-circulant
type matrix [I‘] we are confronted with, we will consider a matrix

[T], whose elements are taken from a complex vector space V.

This will allow a far more general result applicable to circulant

The term pseudo-circulant is introduced here to emphasize that
[[])is neither circulant nor block circulant, but simply has two of
its four indices operating as in circulants,
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‘matrices of rather arbitrary elements, By a complex vector space
is meant a vector space whose source of scalars is the field of com-

plex numbers, ¢ Then [[] is given by

pre—

YO ¥ .. y(MgD) ]

Y(Me-l) ¥(0) ... Y(Me-Z)

(r]

y(1l) Y(0)

where Y(j) are elements of V and may be scalars, vectors, matrices,
or tensors,

Letting w(k) be one of M roots of unity the closure of the com-

8

plex vector space V implies that
w(k)y(i)€EV  VY({)eEV, wk)eC.

Following Hunt, we have in vector form

.

2T/ Me_‘
w(k) = .
o 2mki/Mg

and

by, ] = — [0 }emi... jeeegen]. (4-8)
6 M

From the properties of the complex exponentials the matrix [uMe] is

orthogonal and
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()= Lo, ] (0] Lo ]
The matrix [AV] is a diagonal matrix whose diagonal elements are
elements of the complex vector space V which may in fact be ma-
trices. The case of interest here is when the vectors y(i) are taken
to be matrices comprised of complex numbers. The set of all such
matrices clearly forms a complex vector space, and the above results
apply. Using Kronecker products [4-3] it follows that the matrix
[T] can be reduced to block diagonal form by the matrixjml—-e\ [UMB] ®

1] and

-[A](l)
[A](z) O 1 sk
i [lumgl* @ B110] Tumg) @ 7]

O s (4-9)

" e

w;re fJand [A](i) are M_ X M_ matrices, [I] being a diagonal,

[A] (i) being full and [wMe] being defined by equation (4-8). The block
diagonal matrix on the left side of (4-9) contains diagonal matrices
that are symmetric if [F](i) is symmetric Vi and thus diagonalizable.
In addition the orthogonal matrix reducing the left side of (4-9) to
diagonal form is itself block diagonal, the blocks being the orthogonal
matrices diagonalizing [A](i). We thus have the result that the

complete diagonalization of [1"] becomes
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)

r[!\](l)

O

i

L ]
L[]
LJ

O

WM

o
i

1" O
[U](Z) - | (4-10)

o - wMe

L —

where [U](i)*[]\](i)[U](i) = [D](i) for all i, [D](i) being a diagonal
matrix of complex scalar elements,

If Vi, [I‘](i), is a circulant matrix, Hunt's result for block
circulant matrices can be obtained as a special case of (4-10) by
noting that the set of all circulant matrices whose elements are
complex numbers comprises a complex vector space,

The results of equation (4-10) can be summarized as requiring
a general discrete Fourier transform to reduce the block diagonal
form followed by individual subblock diagonalizations provided by a
singular value decomposition (SVD) routine developed by Golub [4-4].
By not performing the multiplications involving zero, a significant
computational reduction is achieved in diagonalizing the transaxial
projection imaging gramian. Furthermore, the nature of cos(ei -em)
over [0, 211) implies a further computational reduction in that only
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the first Me/2+l blocks of [I'] need be calculated for My an even

number since the first row becomes

. MY My 2 e My2) | o)

Thus once ﬁ‘]ﬁ) i=1,2,.,., Me/Z +1, is determined, [T'] is known in
its entirety, This also applies to the reduction from block diagonal
form to diagonal form since the discrete Fourier transform is
conjugate symmetric about the folding frequency, and only [I\]m
i=1,.,., Me/Z +1 need actually be diagonalized by the SVD,

To illustrate the significance of the above simplifications con-
sider the case where 64 samples are taken for Mr and 512 samples
for Me. [I‘] is then a 32, 768 dimensioned matrix containing over 109
elements, Without the above computational savings it would be un-
feasible to even calculate [T'], let alone diagonalize it, However,
by calculating only the first MO/Z +1 blocks of [I‘] » performing the
Fourier transform indicated in (4.9) and employing the SVD algorithm
of Golub [4-47, this particular (T] was calculated, diagonalized and
inverted in under 2 hour cpu time on a PDP-10 computer,

The gramian developed in the above transaxial tomographic form
has been based on the even sampling of u (or r) and 8 resulting in
erM9 data values, While this even sampling of u and 6 has
resulted in a significant computational reduction, it does present some

difficulty, In discussing this and for the remainder of the chapter we
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consider the projection imaging system to be ideal; namely, p(r, 0) =
pL(r, 8) and B(u) = 1 in equation (4-4). Looking at (4~5) it can be
seen that if uk = 0, for some k, then the k-th row of [I‘] (i) will be the

same for eachi=1,,,,,M.. Therefore the rank of [I‘] must be no

e.
greater than Me(Mr-l) + 1 and consequently the gramian is singular,

Physically the u, = 0 term represents the d.c. or average value of

k
f(€, ) over R, which of course is rotation invariant, and thus no new
information is gained concerning the d.c, value after the first
projection is obtained. Naturally this will result if a discrete
Fourier transform is applied to the projection data to obtain g and
the u = 0 term is retained in each projection. Because of this inher-
ent singularity in [I‘] , the estimate of f(f;,',‘n) mus! necessarily result
from either a pseudo-inverse or a constrained least squares solution
as developed in equation (3-14). For a minimum norm estimate of
f(g, M) we would set the constraint matrix such that [c1=[1].

Utilizing a discrete Fourier transform on the projection data to

obtain gwe have
1
2

[
]

*
.

Me
(i‘)

is an erl column vector whose k-th element, 8y » is the

(i)

where 4

k-th harmonic of the discrete Fourier transform of the i-th projection.
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Utilizing this result, the following matrix representation of the

reconstruction algorithm is obtained.

EI](I) ]
fe,m) =Mie n*e, mTayg] ® 7] wi?
O . [U](Me_)J
i S | (M ]
-1 2q-1 (2)% O 2)
Oy " 1+0A1°7 (A (U] oMol &
. (MG):J .
B O (u] ] _E(Meﬁ

(4-11)
Itis the above equation which is utilized as the reconstruction algor-
ithm for the images in subsequent sections of this chapter, and a few
comments are in order,
Clearly the matrix [1"] must be diagonalized and a constrained
least squares inverse precalculated only when the geometry is
changed. Recalling that

fe,m = h¥(E N

and that the [[ we]®[l]] can be implemented using fast Fourier
techniques, the bulk of the computati'ons in calculating a lies in the
multiplication by the constrained least squares matrix, Since this
matrix is block diagonal, by not performing the calculations involv-

ing zeros, it should be evident that this step involves the same
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number of operations as the convolutional poftion of a convolution
algorithm for the same projection data format, However, the
convolution algorithm involves only a single sum in the back
projection step {4-1] while this algorithm involves a sum over both

the w and ei indices where k = 1, ...,Mr andi=1,,..,M, Thus

¢
the convolution algorithm should be more efficient computationally,
One advantage of the continuous-discrete formulation described
herein is that it provides as an output, a function which can be
evaluated at the points of interest without an interpolation step in the
algorithm, This eliminates one source of error while providing
flexibility in the output format. Reconstructing a 64 x 64 output
array, approximately 8 min of CPU time was required for Mr =32
and M9= 128, This is somewhat slower than the corresponding 4 min .
for the convolutional algorithm, and for larger arrays the computa-

tional advantage should favor the convolution algorithm,

4.2 Experimentally Determined Degrees of Freedom

To further emphasize the usefulness of the gramian in estimat-
ing the degrees of freedom of an imaging system, some computational
examples are developed below. The resulting [I"]was determined
and diagonalized by the procedure described in the preceding section

for nine different combinations of Mr and M. . Three values of Mr

0

equaling 16, 32, and 64 were selected and for each of these, three

values of Me were selected as ZMr' 4Mr, and 8M,. Thus the
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resulting gramians ranged in dimension from 512 x 512 up to
3
32,768 x 32, 768, Table (4,1) lists the appropriate combinations.
The gramian associated with the nine combinations of Mr and

MB listed in Table (4.1), were formed and the procedure for reducing

the full {T'] to block diagonal form using Fourier methods ([mMe] ®
[17) was employed. The block diagonal form was further reduced
utilizing the SVD routines of Golub [4-4] , yielding a completely

diagonal MrM X MrM matrix with eigenvalues on the diagonal. The

8 8

eigenvalues so computed are plotted in figures 4,2,4.3,4.4 for
Mr =16, 32, and 64 respectively., In each figure results are shown

for M9 equaling ZMr, 4Mr' 8Mr' Since nonsingular permutation

matrices can be included in the eigenvector matrices of [1"'] , without
loss of generality the eigenvalues are plotted in decreasing order,
Note that due to the large dynamic ranges involved, a logarithmic

scale is used and that )‘MA

e is always unity, This is taken to be the

case since [1‘] can always be normalized by dividing by )‘MAX'

Figures 4,2, 4.3 and 4.4 display a characteristic behavior in the

A parenthetical comment is in order here for those readers
familiar with tomographic scanners. In this chapter we have
gathered M,, sample points along each radius from (0, 1) and
have gathered M9 projections at angles from (0,2w). In
practice projection data is often taken radially from (-1, 1)
and at angles from (0, 11) (see fig.4.1), Clearly the same
region ia covered, the only difference being a permutation of
indices,
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' spectrum of [I']. In each plot, after an initial decline, \ remains
i

relatively constant with increasing n until a critical point, called
Ncrit’ is reached; whereupon an abrupt drop of 4 orders of
magnitude in )\1 occurs, Subsequently >‘n decreases more slowly
with increasing n, However, the eigenvalues were calculated on a
DEC PDP-10 digital computer in single precision arithmetic and
since the SVD algorithm calculates eigenvalues in decreasing order,
1ittle confidence should be attributed to values of ) less than 10-6.
Consequently we can attribute the tail of the eigenvalues spectrum to
be due to computer roundoff and computational noise. This coupled
with the abrupt drop in )\ at Ncrit’ will allow us to roughly estimate

the degrees of freedom in the projection imaging system to be Nc

rit’
Note that this abrupt drop allows us to set a threshold of approxi- |
mately \ = 1()"4 and achieve a consistent mid point of this step drop.
Table 4.1 includes the number of eigenvalues above 10-4.

This behavior of relatively constant A out to a point followed by
an abrupt drop has been shown to be characteristic of ideal circularly
symmetric systems that are bandlimited and observed over a circle of
finite radius [4-5]. In considering the projection slice theorem, we
notev that the Fourier transform of the output projection is the central
section of the Fourier transform of the original cross section,

Therefore even ideal projection imaging (i.e. no blur) is "band-

limited' by inclusion of only Mr harmonics, and thus this eigenvalue
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behavior should come as no surprise, More will be said about this
bandlimiting process later.
In figures 4.2, 4,3, and 4,4 it is evident that increasing Me

from ZMr to 4Mr results in a significant increase, but not a doubling,

in Ncrit' This behavior is born out in table 4,1, Also in table 4.1
the value ﬂz(Mr-l)2/4 is included with other parameters of interest,
Note that the number 1'r2(Mr-l)2 /4 is in relatively good agreement
with the value at which Ncrit does not significantly increase with
increasing M

and that Ncr‘ is always less than the maximum

0’ it
possible rank of [T ]. This agreement is related to the bandlimiting
mentioned before and can be explained by noting that the continuous-
continuous ideal projection imaging system described in section 4,1
when band-limited with a one sided bandwidth B and constrained to

a circular input region of radius R, is a circularly symmetric

ideal imaging system that is bandlimited and observed over a finite
area. Gori and Guattari [4-6] have shown that the degrees of
freedom of such a continuous-continuous system are in reasonable
agreement with the Shannon number, which for a circularly symmetric
system of radius R and bandwidth B has been shown to be T\’ZRZBZ.

In our case if we consider the pupil to have Fourier harmonics no

higher than (Mr-l)/Z and take R equal to unity we have the following

estimate of the degrees of freedom or NDOF=
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4

2 2
T (M_-1)
DOF 7] .

N

Note that this estimate of the maximum number of effectively nonzero

eigenvalues of [T'] is a function of M_ only and not M,. Intuitively

0
this makes sense since increasing samples in § more densely fills
the circle of nonzero frequency components of radius (Mr-l)/ 2 in
frequency space and does not increase its possible area. This is
exactly the situation in the continuous case for the circularly
symmetric system where the accessible Fourier area is a function
of the radial bandwidth B, More rigorously, the results of Section 3

have shown that for sufficiently large M, the rectangular integration

0’
rule implicit in even sampling provides a Gramian whose spectrum
approaches that of the continuous-continuous model of the ideal
projection imaging system whose aforementioned degrees of freedom
are independent of 6.

If Mr is specified, considering that Ncrit SMr- Me we should
certainly not expect an increase in reconstruction performance if
Me is taken much greater than N

for the number of projections once Mr is specified as follows:

DOF/Mr' This results in an estimate

2 M -1)2
M s X
] 4 M

r

which for Mr sufficiently large reduces to
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4,3 Experimentally Determined Projections

The previous section was devoted to investigating the degrees of
freedom structure provided by the eigenvalue spectrum of the gram-
ian of the imaging system. In this section we turn our attention to the
actual reconstruction algorithm to estimate the object f(g, n)e

Shown in figures 4.5, 4,6, and 4,7 are perspective plots of a
reconstructed phantom for Mr equaling 16, 32, and 64, As before

multiple values of M are taken for each Mr' The phantom consists

0

of two circular regions of density of 0.1 and 0, 05 superimposed on a
circular background of density 0,1. These results we obtained with

the algorithm of equation (411)where y is such that the dynamic range

-1
of the elements of the diagonal matrix Ty [I'] + (A]Z] is 104. As

expected from the eigenvalue plot for Mr = 16 an increase from

Me = ZMr to M, = 4Mr produces an improvement in the reconstruction

6

while an increase from Me= 4Mr to Me

effect as shown in Fig. 4.5. However, for the cases of Mr equaling

= 8Mr has a far lesser

32 and 64 the respective increases from M = ZMr to M, = 4Mr

8 8
produce little noticeable improvement. This behavior is not predicted
by eigenvalue plots for Mr equaling 32, and 64, nor should it be,

These plots in reality predict an upper limit to the improvement in

the reconstruction as a function of an increased number of
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projections given the number of sample points per projection. For
the cases of Mr equaling 32 and 64 the full eigenvalue spectrum of
the matrix [1"] is probably not necessary to achieve a reasonable
reconstruction of this relatively simple image., This fact is some-
what emphasized by the results of Figure 4.8 where for the case

of Mr equaling 64 a very reasonable reconstruction is obtained for
Me equaling 64. In analyzing this it should be considered that in
these experiments M  was specified a priori at 3 different levels and
for this simple phantom Mr equaling 32 and 64 probably indicates
radial oversampling, This would seem to indicate that the radial
sampling rate should be set to reflect the highest spatial frequency
believed present in the data., Thus if Mr is determined in this
manner a more substantial improvement in the reconstruction should

be evident in increasing M, from ZMr to 4Mr’ but in no case will a

9
comparable improvement be exhibited by increasing Me to 4Mr to
8M_.
r
Figure 4.9 shows the reconstruction of a monkey's head which
153
was irradiated by a Gd5 radioisotope source, Hence Mr = 32 and
projections were taken at 1 degree increments from 0 to 360 degrees,
Subsets of these projections were taken to obtain Meequaling ZMr,

4Mr, and 8Mr' In this case increasing M_ from ZMr to 4Mr produces

8

an improvement in the reconstruction while an increase from 4Mr to
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8Mr produces an improvement of a comparably lesser degree,
Obtaining the projections by the method described probably introduced
some angular error and the improvement of Fig. 4,9c over Fig.4.9b
is due more to these errors being averaged than any significant in-
crease in information content,

4.4 Conclusions

This chapter has attempted to present a generalized degree of
freedom analysis for imaging systems by utilizing the gramian of
the point spread function kernel, The gramian's eigenvalue spectrum
provides an indication of the DOF, and various sensor signal to noise
ratios and computational noise considerations become useful para-
meters in the eigenvalue space., The general gramian approach
to imaging was then directed to the specific imaging geometry of
transaxial tomographic projections. The associated gramian was
shown to have considerable structure allowing computational savings
in calculation of the eigenvalue spectrum, These computational
savings utilized a fast Fourier routine to reduce the gramian to a
block diagonal form. This block diagonal form was then further
reduced by performing a series of lower dimensional singular value
decompositions resulting in diagonalization procedures to handle
extremely large sized gramians. This linear algebraic approach

also provided a useful reconstruction algorithm for obtaining
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estimates of the original object from the projection data.
Experimental verification of the analytic work was then developed
by computational procedures on nine different sized gramians for
different projection imaging sampling geometries, The computational
eigenvalue spectra so obtained agreed quite well with the theoretical
predictions and also demonstrated some additional structure in the
imaging system inherent in circular imaging. The degrees of free-
dom were quite easily obtained from the eigenvalues. A critical
number of eigenvalues was consistently observed and in retrospect
this number agreed quite well with the inherent bandlimit of such
systems when analyzed from a continuous-continuous imaging model.
Finally, the reconstruction algorithm, which inherently makes
use of the gramian data, was exercised for obtaining estimates of
the original objects from their projection data. Again experimental
consistency provided added confirmation of the results from the
gramian analysis. Essentially the visual quality of the pictorial
reconstructions agreed quite well with the predicted behavior based

upon the degree of freedom analysis.
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f(go‘ﬂ) | p(r, 61)

unit circle

Figure 4.1, Projection imaging geometry.
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Figure 4.5(a), Phantom Reconstruction with M, = 16, Me = 32,
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Figure 4.5(b), Phantom Reconstruction with M_ = 16, M

9

= 64,
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Figure 4,5(c).

Phantom Reconstruction with Mr = 16, Me =128,
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Figure 4,6(a). Phantom Reconstruction with Mr = 32, M9= 64,
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Figure 4,.6(b). Phantom Reconstruction with Mr = 32, M9 =128,
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Figure 4,6(c), Phantom Reconstruction with Mr = 32, Me = 256,
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Figure 4.7(a). Phantom Reconstruction with Mr = 64, Me =128,



Figure 4, 7(b). Phantom Reconstruction with Mr =64, M

0

= 256,
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Figure 4, 7(c). Phantom Reconstruction with Mr = 64, Me = 512,
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Figure 4.9(a). Monkey's Head Reconstruction with Mr = 32, MG= 64.
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Figure 4.9(b). Monkey's Head Reconstruction with Mr = 32, M9= 128,
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Figure 4.9(c). Monkey's

Head Reconstruction with M‘r = 32, M9=256'
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Chapter 5

THE DEGREES OF FREEDOM OF SAMPLED IMAGE

5.1 Introduction

In the preceding chapter the number of effectively nonzero
eigenvalues of the gram matrix has been used to characterize the
degrees of freedom of a sampled image when viewed as the output of
a linear imaging system, However, difficulties arise if the image is
considered as an entity to itself as in the coding problem, While it
is reasonable in the discussion of sampled images to assume that
we are dealing with bandlimited scenes sampled at least at the
respective Nyquist rates along the x and y directions in the output
palne, we will thus assume that every image is the output of a linear
imaging system, namely the ideal low pass spatial filter whose

Fourier transform H(u, v) is as follows:
u v
H(u,v) = Rect( 2B )Rect( 2B )
x y
where

Rect(x) =

{1 el <4

0 otherwise

Bx and B are the one-sided bandwidths in the x and y directions,

The system weighting function is then given by
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h(x,y;E,N) = 2Bx Smc(.?.Bx(x-g))ZBY su-nc(ZBy(y-'n))
where
sinc(x) = Sn{m)
=
While this assumption is certainly reasonable it leads to trivial
results as will now be shown,
We can consider the bandlimited image f(x, y) under consideration

to be related to some other non-bandlimited image f'(§, 1) through the

ideal bandpass filter h(x, y;€, 7)) as follows

(x,y) = ([ 2B, sinc(2B_(x-2)B _ sinc(2B_(y-M)E'(E, 1)dgdn  (5-1)

-0
which results in the following continuous-discrete representation

£x,, y,) = J]' 2B, sinc(2B, (x,-€)12B  sinc(2B_(v,-T)E'(E, M4gdn

Note that the kernel of Eq. (5-1) separates implying that [I"] = 1)®

[I‘](z) defining
(1) _ ¢ 1)
[P] - [Yi, j]

@) _ r2)
130 L N
(1)

Y. .and Y(Z) are as follows
i, ] m, n

1 2 ¢ ‘
Y‘E,j) = 4]3x I ) sinc(ZBx(xi-i)binc(ZBx(xj-g))dg i,j=1,..., Nx

(2) . 4B2 J'“ sinc(2B (y_ -MBinc(2B_(y_-1))d =12 N
Ym’n— Yy o me YYn MTm,n=1,4,,.,.., y
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1
Working with [1"]( ) if we let 8= xi-g, it can be shown that Yi(l; is

given by the following convolution:

1
i

i,

Note that
(1)
Yi,j -
and
(2) _
Ym,n -

[}
4B2J sinc(2B_(x,-x,-0))sinc(2B_0)d®
xJ_ X1 x

ZBx smc(ZBx(xi-xj))

2B if x =x,
x i 7
xi-x.

0 If—'lsz=1'2,ooo

ZBY 1fym=yn
Y.~y
m 'n
0 lf ZB "‘1,2.!..
Y

Thus we see that sampling at the respective Nyquist rates along x and

y produces a gramian that is an Nx- NY square matrix that is diagonal

as follows

r]

(r]

4BxBy. [Il\l XN ® [11\1 xN
X x Yy

4BxBy[11\l +N xN «N
x v x Yy

where [I]NxN is an NxN identity matrix,

This is a little less than satisfactory for another reason,

namely that to obtain this full rank diagonal gram matrix we must
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sample at the respective Nyquist rates everywhere along x and y.
Since images are rarely stationary, the frequency content of the
image is not constant over the entire region upon which the image is
defined which would intuitively suggest that we are oversampling
unless the frequency content of the image is spatially invariant,

Thus to define the degrees of freedom for an image of this type
another approach is necessary. One such approach is to apply the
singular value decomposition (SVD) algorithm [5-1] to the sampled
image matrix whereupon the number of degrees of freedom can be
equated with the number of effectively non-zero singular values with
additional parameters needed to describe the singular vectors,

This method deals with a sampled version of the image only and
in such a way that the degrees of freedom are affected by the sampling
method used and can result in misleading results, This is readily

apparent by considering an image f(x, y) that can be written as the

product of two functions fl (x) and fz(x) as f(x,y) = £, (x)-fz(y). If this

L,2,...,N,k = 1,2,

image is sampled on a Cartesian grid (xi, yk), i
«++, N, then the image matrix can be written as the outer product

of the two vectors [fl (xl). . .f1 (’ﬁ\])] and [fz(yl). . .fz(yN)] and will be
a rank one matrix for all such separable images f, This represents,
at most, 2N degrees of freedom, Again the point to be made is that

the degrees of freedom should be a characteristic of the original
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image and reflected in the sampled image only by our inability to
collect an uncountably infinite number of samples for application on
a computer,

This brings up some conceptual difficulties since the number of
degrees of freedom of a function defined on a continuum is countably
infinite at best, viz., the space of all square integrable functions on

fo, 17 wherein any function can be expressed in a L, sense by a

2
countably infinite expansion of any orthonormal basis functions that
span the space, Thus we need to determine in what sense a class of
functions defined on the unit rectangle, 8= {x,y;-1 <x,y <1} are
finitely representable, It is to this end to which approximation

theory is directed,

5.2 Degrees of Freedom and Shannon's Sampling Formula

Before proceeding further a few words considering bandlimited
functions are in order since Shannon's sampling theorem provides a
method to relate the original function to its sampled version and, to
some extent, the ability to finitely represent the image when it is
available only over the rectangle @= {x,y: |x|< X/2, |y|s ¥/2}. In
this case the image f(x, y) is given in terms of its samples taken at

the respective Nyquist rates along x and y as follows:
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N N

X .
f(x,y) = lim Z Z:y f(-zl? ,?é— smc(ZB (x -— »
N _~+» i=-N_y=N x y
Nx-n» x y
y
.smc(ZB (y ZB )) (5-2)

Here Bx and BY are the respective bandwidths in the x and y
directions, Equation (5-2) involves infinite sums and in any practical
situation an image f(x, y) is taken to be non-zero only over the
rectangle, g, so that Nx = Bxx and NY = ByY results in 4B}2(ByY
samples of f(x, y) for application in (5-2), Then finite term Shannon
interpolation becomes an approximation problem with the L, error
given by:

2

2 o)

lil>N_ |j|>NY

f(2?3 ' 2B )l 20

which is dependent upon the rate at which

outside R,

The results of an earlier portion of this section concerning the
gram matrix of the bandlimiting operator are interesting in this
context, in that they indicate that sampling at the respective Nyquist
rates along the x and y directions will produce a diagonal gramian of
constant entries whose dimension will be 4meyY. Increasing the
number of samples beyond this point will force the gram matrix to

contain non-zero off diagonal terms implying an increased

91



correlation between samples. Since this gram matrix is that of a
bandlimited operator observed over a finite area, increasing the
number of samples sufficiently will produce a gramian eigenvalue map
similar to that of the continuous-continuous operator--namely one
that is constant out to a point, not significantly greater than 4B,2(ByY,
with an abrupt drop beyond that point, Thus we can consider that
there could be approximately 4B’2(Byv independent samples of f(x, y)
in R.

In reality Shannon's sampling theorem provides a method of
bridging the gap between the continuous and discrete for bandlimited
images by providing a reconstruction method involving uniformly
spaced samples over £, However, by considering the problem in a
more general approach it may be possible to define other adaptive
and possibly more efficient approximation methods.

In this light consider that the spatial frequency content of most
images is not constant over the entire image and the possibility exists
that if the rectangle @ is broken up into 2 sets Ry and RZ such that
R= Pl UEZ then the portions of f(x,y) defined over l?l and PZ can be
considered sections of a bandlimited image with x and y bandwidths

B(l), B(z) and B(l), Bi’z)

x in each of these regions, By way of

example consider £, = {x,y: -X/2 sx <0, lyl< vz}, Ry =
{x,y: 0=<x=<X/2, |y|sY/2}. Then f(x,y) need be sampled only at

the respective Nyquist rates in each of these regions. 92



: Ny - ap(D)
For R, and R, respectively we obtain Nx NY = ZBx XByY and

Nf )Ny = ZBS‘Z)XByv so that the approximate number of independent
(1) @) .5

<SB orB
X x x

samples is ZXYBY(B;1 )+B§‘z)). Now either B % so
that it follows that the number of independent samples is less than or
equal to 4BxXB}(. This heuristic argument is presented to motivate
the question of why should an image be sampled over its entire
domain of definition at a Nyquist rate dependent on a bandwidth that
may be relevant to only a small region, A similar idea will be
presented in the next chapter for bicubic splines,

In summary then the eigenvalue map of the bandlimited gram
matrix gives an upper bound to the number of independent samples
available and a subsectioning of the image represents a low order

attempt at reducing this upper bound--hopefully at an acceptable error,

5,3 The Degrees of Freedom Viewed as an Approximation Problem

In characterizing the degrees of freedom of an image as an
approximation problem we are confronted with two questions, namely:
1) to what extent is f(x, y) finitely representable, and 2) the determin-
ation of the finite representation from a sampled version of {(x, y).
In dealing with these questions we will take f(x,y) to be an ele-
ment of a metric space W with metric d,,. For example, this could
be the space Lz(a) where §= {x,y: -1sx, y <1}, if we do not dis- -

tinguish functions that differ only on a set of measure zero. Consider
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then the following generalized bivariate polynomial approximation

scheme .’o :

N
N N

¢ X o A o

f(x,y) = IZ_; JZ_: aijﬂi(x)f,j(x) =dy N= Nx-Ny
with the property that if we have any other approximation scheme "N
where

N N
x i
= a.. b (x)L.(y)
w7 2y &y Nk

that

O
d (Es) S dy(ah) .

Then Jcl’q is a best approximating generalized polynomial in the metric

w* We also require that ch:l +f(x,y) as N += so that for every ¢>0,

d
there exists an N(e, 4, dw) (in general dependent on the set { £} and the
o
. ; 3 <
metric dW) such that NxNy >Nf(e, £, dW) implies that dw(f,,}w) €.
Thus we could define the degrees of freedom of f at level

epsilon, or more succinctly the epsilon degrees of freedom, DOF

(dw. €), as

. o
DOF(d = inf {N(e, &, dW). dw(f, ,/N) <el.

» €)
w {2)#f

Here the infimum is taken over all approximating functions not equal
to f to avoid the trivial case of DOF(dW, ¢ ) equaling 1, (the approxi-

mating function being f itself),
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In general, this is a difficult problem since for each set of
functions {2,1 (x) Ll(y). .o sz(x)’N (y)} we must find a best approxi-
mating bivariate generalized polznomial (if it exists) and then
determine the set of functions minimizing NxNy' Thus we are
concerned with the existence of a best approximation in addition to
its determination,

However, if we consider a one dimensional case where N is
taken to be the space of bandlimited L2 functions observed over a
finite interval of the real line, the distance dW being the L2 metric,
the result is known, Here for every ¢>0 the inf N(e, £, dW) was
found by Landau and Pollak [5-2] to be achieved by the functions {4}
which are related to the prolate spheroidal waveforms, as first
described by Slepian and Pollak [5-37]. While this is known, the

"determination and utilization of these waveforms for large space
bandwidth products has met with little success. Most likely then to
arrive at any significant results in two dimensions, we will have to
restrict the search to those sets of functions that are computationally
feasible ;nd possess the approximating properties required,

In the context of a digital computer the actual functions available
are those that can be obtained by finite sums and pr'oducts. Thus
ultimately all functions must be reduced to those that can either be

generated by recursioms or by truncated and shifted polynomials. So
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a restriction of the search of functions to polynomial splines would
seem to be reasonable,

Polynomial splines are chosen due to their approximation
properties and the fact that they possess a basis namely, the
normalized B-spline basis, that brovidea a local basis property thus
allowing a rapid generation with the matrices involved in generating
a B-spline fit to a function f being well conditioned., With DeBoor's
algorithm for computations using normalized B-splines [5-4] no
difficulties are encountered in handling multiple order knots, Here-
after we will consider a spline Sk,N N of the order k with (the degree
being equal to k-1) Nx and NY knots ?n the x and y directions respec-

tively, to be of the following form:
N

By S :
Sen n ) S Z; z: S, N (&N, | (My) =, )
XYy 1= 3=
where Ni k(- ) are the normalized B splines of order k satisfying the

following recursion relationship over the knot sets {gl, §2, cees EN }
x

and {N;, My, .00, Ny (6-4].
y

x-8; Si4k*
N. ,(E;x) = —— N, (Ex) + 7/ N. (Esx)
ik Siako1"§ bkl Sipr Syqr LKA

N, 1(&x =
0 otherwise

and
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M2

1Ni’k(rg;x) = 1 vxe[gl,...,ng]

i
These functions are discussed in Appendix A,

For the duration of this chapter we will consider f(x, y)e Lz(cs)
with the distance being the L, metric. Thus for any x and y knots
sets {§1.. ‘&N }and {'nl, e My 1 the matrix [Si,j] of coefficients
minimizing th: L2 error for a particular set of x and y knots is given

by the solution to the following matrix representation of the normal
equations:
(x) (y) - U’ )N L (T:
0y NP Y RO Ll e N, (£xN, (1;y)(x, y)dxdy
X v Xy X Yy E
(5-3)
where Ek(g;x) and Ek(_n;y) are respectively the Nx and Ny column

vectors of the normalized B-spline basic functions and
(x) (x)
1™ = [Yij 1,
1% = o)1
where

(x)

1
J'-l N, &N, | (Ex)dx

(y)
ij

1
Y j‘_l N, (YN, | (y)dy

Thus finding the best approximation to f(x, y) over the x and y knots

sets can be stated as follows:
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1

2

Minimize: [J'I |fx, y) - S, N N (x.v)lzdxdv]
8 "Txy

over all possible x and y knot vectors {gl, cees €N 1, [’nl, ooy ]
x
subject to

l,oco,N
X

|gi‘sl Vi

s sl j I'OOQ,N
InJl Vi v

This is nothiﬁg more than nonlinear minimization over the possible
knot sets in 8, the solution of which has been shown to exist by Rice
(5-57.

Thus specifying an error €, we can find the epsilon degrees of
freedom by a sequence of minimizations decreasing the number of
knots in the x and y directions until we reach a point at which the
error will be exceeded with any further restriction in the number of
knots,

For this to make sense we must be assured that for every ¢>0

there exists Nx and N_’r such that

|| £(x, y) - St N N (x,y)“2 <e
td x Y

and that a minimum over the knot sets exists, Addressing this con-

vergence problem Schultz [5-6] has shown for k = 4 that
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2
I, ) - Sy yy a9l =( {“— f(x,y)“ 22 f(x.y)“
Yy ox ay
4
1 —a—4f(x,y)\ }
dy 2

_ , 2
where g = max{m?x(gi_*_l-fi), m?x(nj“-'ﬂj)} . Thus taking N_< = ,
N 2 % we have as Nx’ Ny + o such that 5 +0 the bicubic spline

P

approximation will converge to f(x,y) in an L2 sense over the unit

rectangle & .

5.4 Computational Considerations and Conclusions

Heretofore the concern has been the existence of a solution to
the problem of finding DOF(d e ) of an image on the unit rectangle.
While a solution exists in the form of a sequence of best approxi-
mating splines with a successively decreasing number of knots, this
requires the solution of a nonlinear minimization at each step. For
approximations of the form of (5-3) involving even a modest number
of knots this is computationally infeasible. Furthermore since we
are dealing with a computer, the right side of (5-3) must be cal-
culated using numerical quadrature and this involves only an
approximation, Thus we must settle for a procedure that provides
an approximation with a good, if not optimal, knot placement, In
the next chapter some numerical results involving bicubic spline

approximations to simulated and actual images will be given. It will
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be shown that there exist relatively simple methods for placing the
knots that provide much better approximations than a bicubic spline

with uniformly placed knots.
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Chapter 6

EXPERIMENTAL RESULTS FOR SPLINE APPROXIMATION

6.1 Introduction

The purpose of this chapter is to present some numerical
results concerning the ""epsilon degrees of freedom' concepts devel-
oped in the preceding chapter. This was developed as an approxi-
mation problem whose solution was seen to involve the determination
of a sequence of best approximating (in an L, sense) B-splines with
variable knots, While the determination at each step of such a best
approximating spline is simply a nonlinear minimization problem
over the knots defining the spline, it is computationally infeasible.
Thus we must follow DeBoor [6-1] and settle for spline approxima-
tions with good if not optimal knot placements. In what follows, two
easily implemented methods for placing the knots will be given that
can result in a significant error reduction over the uniform knot case
for the proper class of images,

The results in this chapter will be developed using cubic splines

giving the following fourth order spline approximation f(x, y)

N. N
X
I , gy A .
fx,y) = .2_1: 2y S, a8y, 4@ 25,y B (6-1)
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where € and 1 are the knot vectors in the x and y directions respec-
tively. The spline coefficients, Sij were obtained by solving the

following system of equations:

N_ N
f(xz.vm) = lg g 13 i, 4(5.::)1\1 (ﬂ;ym)

for 2=1,2,,..,Nandm=1,2,...,N. In matrix notation this

becomes

[fGe 0 v ) Iy [N 45 xz)]NxN ij In xNY[Nj,4m' ymﬂNny

(6-2)

where [ ]T indicates matrix transpose, To simplify notation let
lttx,y, )] = [F]

TS

48 %))

oY

N, 4@yp,)]
equation (6-2) becomes

(] - [N]‘E’T[sijn Inf2

Since N >Nx and N >NY in general equation (6-2) cannot be solved
exactly, However the spline coefficients minimizing the normalized

least squares error ¢ given by
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N N

2 2
2 lfee oy )-E0x,y )]
. #=lm= 6-3)

2
=1 m=

can be obtained by taking [Sij] to be

;) - (1D T N2 ey D (gD e
- (6-4)

6.2 Knot Placement from Projections

In this section we investigated the possibility of placing the
knots for the x and y knot vectors from the projections of f(x,y) along
the y and x directions respectively. To do this we borrowed an idea
suggested by DeBoor [6-1], wherein he suggested placing the i+1£
knot with respect to the i-t-ll knot for a k‘& order spline according to
the following

g,
j’ i+l |f(k)(x)|1/kdx = constant

g,
i

(k)

t
where f ’'(x) indicates the k h derivative of f(x). To determine the x

knot set for a bicubic spline fit the knots were such that

S | o o :
J.I —ZI f(x,y)dy|] dx = constant (6-5)
§i ox -1
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The y knot set is obtained in a similar manner, Note that if f(x,y)
can be written as f(x,y) = fl(x)- fz(y) then equation (6-4) can be

written as

J.I — fl(x)‘ f fz(y)dy dx = constant
€. dx -1
1
and we have that
1
r§i+1 34 £ 4d _ constant
J 4 l(x) x = = 1 _%
& d3x

“_1 £,(y)dy

It is reasonable to expect that this method of placing the knots would
be quite effective for images that are either separable or exhibit a
high degree of separability, and not so effective for images that do
not, This point is illustrated for the following experiments involving
two images--one an analytic image consisting of a Gaussian pulse
with standard deviation 02 equaling 0.1 and the other consisting of an
actual image of an armored personnel carrier (APC), For each
experiment N was taken to be 128 so that the effects of the quadrature
error implicit in the residual of equation (6-3) and the computations in
equation (6-4) should not be a significant factor in evaluating the
results,

The results for a bicubic spline fit to the Gaussian pulse with

10 knots placed by the projection method are shown in figure 6,1,
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Also shown are the results obtained with 10 and 20 knots placed
uniformly, the original image, and the knot placements for 10 knots
placed uniformly and by the projection method. The corresponding
mean square errors are tabulated in table 6.1, Note that visually
the results of 10 knots placed acéording to this projection method are
as good as of 20 knots placed uniformly and are far better than those
obtained by placing 10 knots uniformly, From the results of table 6.1
it is clear that placing 10 knots in the x and y directions by the
projection method is better than placing them uniformly even up to
the situation employing 20 knots,

Figure 6.2 shows the results of a bicubic spline approximation
to an actual image of an APC for 40 uniform knots in each direction
and for 40 knots placed by the projection method. Also shown are.
the corresponding knot placements in each direction for both cases.

Figure 6.3 is the original. Here the results indicate that the
projection method is not so good as the uniform method. This is
evident in table 6,2 where the projection method results in an error
that is an order of magnitude greater than that obtained in the uniform
knot case,

While these results show that the proper placement of the knots
can result in a significant error improvement in the approximation of
separable images, another method must be employed for those images

that are not separable,
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6.3 Spline Approximations by Subsectioning

In this section the possibility of subsectioning the image and
using different knot densities in each of the subsections is investi-
gated, This method might provide fruitful results when one considers
an L, error bound given by Schultz {6-2'] for cubic splines., Recalling
that the error is given by the L, norm, |- "Z of the difference between

the function and its approximation, this bound is given by

- -4 a4 32 aZ
“f—f"z < 4(%) { —Z f(x, v) + ——Z'——zf(x,y)
dx 2 dx 3y 2
a4
+[| =5 2= } (6-6)
)4 2
where
p = maX{m{ax(gi+l-Ei)’m?x('nj-l-l-’nj)} (6"’7)

From the discussion of Chapter 5 concerning local bandwidth and
Shannon sampling it follows that if the image derivative energy is
large only over a small region, then using a uniform knot bicubic
spline with knot mesh width equaling ; given by equation (6-7) should
result in an overly good approximation of the image in those regions
whe re the image derivative energy is low., Thus we should be able
to obtain reasonable results by employing a different bicubic spline
with uniformly spaced knots in each subsection, the knot density in

each subsection being proportional to the value of
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in that subsection,

This approach was taken for the APC of figure 6,3, The image
was partitioned into 64 square sections and the derivative energy in
each section was calculated by central differencing, Figure 6.4
shows the results for this method along with the associated knot
density, It éan be seen that this associated knot density is highest in
the region containing the insignia and lowest in the sandy regions
surrounding the vehicle. The bright lines at the subsection boundaries
indicate a fourth order knot at the boundary, and note that the regions
containing the minimum number of knots have x and y knot vectors
consisting of two fourth order knots each at the subsection boundary.
As noted in Appendix A this corresponds to a bivariate cubic poly-
nomial approximation in each such subsection,

Table 6,3 lists the number of parameters necessary to re-
construct the image, the reconstruction error, the data reduction
ratio for the uniform knot case, the projection placement case, and
the subpartitioning case. Note that the error is lowest for the sub-
partitioning case and that it provides the best reconstruction.

To further explore the subpartitioning method a series of

bicubic approximations involving image subsections of different sizes
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was run on the APC image, an aerial reconnaisance image and an
image of Los Angeles International Airport (LAX). For this series
the image dimension N was taken to be 256 and three subsection sizes
of 32 x32, 16 x 16, and 8 x 8 pixels were used for both images. For
each subpartition size three knot density ranges were employed. In
all cases the maximum knot density is taken to be such that the
matrices of normalized B-splines in equation (6-4) are nonsingular
thus resulting in the image being interpolated in at least one sub-
section, The lowest knot density in each subpartition sequence was
taken to be that corresponding to a fourth order knot placed at each
of the subregion boundaries for the x and y knot vectors respectively,
The number of knots was then increased by raising the minimum
number of knots employed. The results for the APC image along
with the associated knot densities for subpartitions of size 32 x 32,

16 x 16 and 8 x 8 are shown in figures 6.5, 6.6, and 6,7 respectively.
Figure 6,8 is the original, Here the fourth order knots at the sub-
partition boundaries are not displayed for aesthetic purposes. Note
that all of the approximations are qQuite good and that the knot
densities are quite adaptive for each subpartition size, The
corresponding error, data reduction ratio, and number of para-
meters necessary for the bicubic spline approximation are listed in

table 6.4, Note that the error for the 32 x 32 case corresponding to
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the data reduction ratio of 5,62:1 is lower than the error for the

16 x 16 case for the 5,31:1 data reduction ratio. This would seem to
indicate that for low error levels the 32 x 32 partition size is better
than the 16 x 16 sized partition which itself is better than the 8 x 8
case,

This same sequence was obtained for the reconnaisance image
and the results along with the corresponding knot density patterns
are shown in figures 6,9, 6,10, and 6,11 for the 32 x32, 16 x16, and
8 x 8 cases respectively, Figure 6,12 is the original, Table 6,5
lists the relevant errors and corresponding parameters as for the
APC. Note again that the best reconstruction for the 32 x 32 case is
at a lower error than the 16 x 16 case, and at a higher corresponding
data reduction ratio. This would again seem to indicate that for low
error levels the 32 x 32 sized partition is better than the 16 x16
partition,

The sequence for the image of LAX is contained in figures 6,13,
6.14, and 6,15, Figure 6,16 is the original. Note here that while
the errors are relatively high the results are quite good visually
and that the knots serve fairly well in locating the areas containing
the aircraft, Note also that the best results occur for the 8 x 8
subpartitioning case, This is8 most likely due to the relatively small

size of the items of interest - in this case the aircraft.

109



6.4 Summary and Conclusions

In this chapter the attempt has been to demonstrate the utility
of variable knot splines in achieving a data reduction and quantifying
the degrees of freedom of sample images by the number of variable
knot bicubic splines necessary to approximate a particular image at
an error level epsilon, Considerable success was achieved for an
analytical image consisting of a Gaussian pulse with c = 0.1, Here
10 knots, each in the x and y directions were placed by an algorithm
dependent on the 4th partials of the projections and provided an error
reduction of three orders of magnitude over the situation where each
of the knot sets were uniformly spaced in the x and y directions. The
error was such that 10 knots placed in the above manner provided an
error lower than that achieved by placing 20 knots uniformly in the x
and y directions, This method was not very successful for the APC
image due to the lack of any separability characteristics. However
by subsectioning the image and employing a different spline approxi-
mation in each subsection whose knot density was dependent on the
derivative energy in that region good results were obtained. A high
degree of adaptability was in evidence through the knot density
patterns with acceptable errors being obtained at reasonable data

reduction ratios,
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NUMBER OF PLACEMENT MODE MEAN SQUARE
KNOTS ERROR
. 10 uniform 2, 158)<10-3
10 4th differences 1.29 x 1070
N 20 uniform 3,24 x107°

Table 6.1, Mean Square Error for Knot Placement on Gaussian
Pulse g = 0. 1.

NUMBER OF PLACEMENT MODE MEAN SQUARE
KNOTS ERROR
40 uniform 6.413 x 1o‘3
40 4th differences 6,308 x 10'?‘

Table 6,2, Mean Square Error for Knot Placement on APC Image.

PLACEMENT NUMBER OF DATA REDUCTION | MEAN
MODE PARAMETERS RATIO SQUARE
ERROR
uniform 1936 8.46:1 6.413x10™
4th differe’nces 2016 8.12:1 6. 308x10-z
on projections
) subpartitioning 1885 8.69:1 5. 578x10-3

Table 6.3, Data Reduction and Errors for a 128 x 128 Bicubic
Spline Reconstruction of the APC Image.

111



-

*o8ew] DAV 96Z X 962 ® JO uorjeunixoxddy suirdg oiqnorg
pauol3oasqng I0J siajawieled JO IaqunN pue uolponpay eieg ‘10113 axenbg uesapy °$°9 a[qel

% 1° 1°2L°1 120 ‘8¢

%LT* 1:2%°2 0L0 ‘L2

%He” 1:29°¢ 0,0 ‘8T gX8g
%92"° 1°1€°S 41 A

%1€ ° 1°88°9 6LE ‘6

%€ ° 1:92°6 120 °L 91 X 91
%62 ° 1:29°S 6%9 ‘11

%z¢ * 1wl L S9% ‘8

%8¢ * 18 6°6 688 ‘9 € X 2€

ANITIdS DIdNDId
(0} p:icC oI1Lvyd INIIFd OL X ¥VSSADAN AZIS
FIAVADS NVIANW NOILONAdY vivd SYALAWVYIVCd 40 I INAN NOILDIASLNS

112



*afew] aouvssIBUUODIY 967 X 967 © 30 uoljeuntxoxddy aulidg oiqnoirg pauoirjoasqng
103 saajowIeIed JO I9qUNN PU® OljeYy UOlPNpPay eeg ‘doxay aaenbg urs]N °G*9 3[qel

%1€ * RCR VA | 622 ‘8¢
%6%* 1°6€°2 608 ‘L2
%LL® 1°1€°¢ L9L ‘61 8X8g
%6¢ * 1%9¢°2 859 ‘L7
%0L ° 1°1L°¢€ G9% ‘L1
% Z°1 1°62°S SLE ‘21 91X 91
%8¢ ° 1°96°2 2L6 ‘52
%€9° 1°9% °¢ 016 °‘81
% ¥°1 1369 °% 566 ‘€1 2€ X 2¢€
ANITdS DIdnDIig
qouyd O IRAS ANIIFQ OL AYVSSAD AN qZIS
AYVNOS NVIN NOILONAHAY V1IVd SYALANVIVA 10 YIINNN NOILDASENS

113



*XVI 30 a8ew] 9gz X 9gz ® yo uoljeuixoxddy suildg oiqnorg psuoidasqng
I103 saajowreaed jJo Iaqump pue O1j3ey UO1PNpay BIRg ‘I0oxay saenbg uesN 9°9 srqel

%99 ° I°1L°1 912 ‘8¢
%0 ° 1 1:6€°2 19¢€ ‘L2
%S °1 166 °¢ 6% ‘81 8 X8
%B1°1 1:28°2 LLt ‘e
%8 °1 1:6€°s 892 ‘21
%G °2 1°61°6 GeT ‘L 91X 91
%E °1 119 °¢ SHez ‘61
%6°1 1'8¥%°¢ $66 ‘11
%8 *Z 1°61°6 621 ‘L 2e X 2¢
ANITTdS D1gNDId
Jouyd o1Lvy ANIJIAA OL AYVSSADAN ICVALY
FAIVADS NVIN NOILONA3Y VIVd SYILINVIVL J0 YAGWNAN NOILDASIANS

114



Bi-Cubic Spline Fit with 10 Knots
in X and Y Direction Determined from 4th
Partials of X and Y Projections.

Bi-Cubic Spline Fit with 10 Uniform
Knots in X and Y Directions,

Figure 6.1 Results For A Bi-Cubic Spline
Fit To A Gaussian Pulse With ¢® =, 1
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Bi-Cubic Spline Fit with 20 Uniform
Knots in X and Y Directions

Original

Figure 6.1 (continued). Results For A Bi-Cubic >
Spline Fit To A Gaussian Pulse With ¢” =1
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Figure 6.1 (continued). Results For A Bi-Cubic
Sgline Fit To A Gaussian Pulse With
gé=,1
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40 Knots Uniformly Placed in X
and Y Directon

i : :
Wl

40 Knots in X and Y Directions

placed by 4th Differences on X and Y
Projections

Figure 6.2 Bi-Cubic Spline Approximation For APC

With 40 Knots
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Figure 6.2 (continued) Column Knot
Placements For The APC Image
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Figure 6.2 (continued) Row Knot
Placements For The APC Image
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Figure 6.3 Original 128 x 128 Pixel
APC Image
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Bi-Cubic Spline Approximation
by Subpartitioning

Associated Knot Density

Figure 6.4 Bi-Cubic Spline Approximation
by Subsectioning
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MSE = .38%

Parameter Reduction = 7.74:1

I LS

Parameter Reduction = 5.62:1 B MSE = .25%

Figure 6.5 Bicubic Spline Reconstructions and Associated Knot
Densities for an APC Photograph Using Subregions of

ize 32 by 32.
Size y 123
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Parameter Reduction = 9, 26:1 MSE = .37%

Parameter Reduction = 6.98:1
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Parameter Reduction = 5, 31:1 MSE = .26%

Figure 6,6 Bicubic Spline Reconstructions and Associated Knot
Densities for an APC Photograph Using Subregions of
Size 16 by 16, 124



Parameter Reduction = 3.62:1 MSE = ,24%

Parameter Reduction = 2,42:1
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Parameter Reduction = 1,72:1 MSE = . 1%

Figure 6.7 Bicubic Spline Reconstructions and Associated Knot
Densities for an APC Photograph Using Subregions of
Size 8 by 8. 125



Figure 6.8 Original 256 by 256 APC Image.
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Figure 6.9 Bicubic Spline Reconstructions and Associated Knot
Densities for a Reconnaissance Photograph Using
Subregions of Size 32 by 32, 127



Parameter Reduction = 3. 71:1
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Figure 6.10 Bicubic Spline Reconstructions and Associated Knot
Densities for a Reconnaissance Photograph Using
Subregions of Size 16 by 16.
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Parameter Reduction = 1.71:1

Figure 6.11 Bicubic Spline Reconstructions and Associated Knot

MSE = .77%

muAsmRoDBbdonNHAEBHTNEBD

mAamAHNNBE AR @A

oODoDo W By
epoflol
Esuo@
o Rfa N

u
]
b
[
o
o
u
a
]
]
[]
]

7|
v

1]
n
)
u
a
)
°
u
¢
=
©
o
)
]
]

dosnaoecnEEECcEo afae@onee e

B

n

ane

an
0B
Ee
nn
on
nn
oo
'
o
oo
om
un

"
v

atn

unn

n
a
0
o
B
N
[
o
c
5
8
o

AaFEmREocoOBdODaAaEcEOnSsEfle o

mmscptanmenBaD

mamdnEss=EEcanassf]
saocoancas

mabuarePpBoOGcH0A
L EELELEEEE]

Densities for a Reconnaissance Photograph Using

Subregions of Size 8 by 8.

129



Figure 6,12 Original 256 by 256 Reconnaissance
Image.
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Parameter Reduction 3.41:1

Figure 6.13, Bicubic Spline Reconstructions and Associated Knot
Densities for LAX Photograph Using Subregions of
Size 32 x 32, 131



'MSE = L, 8%

Parameter Reduction 2, 82:1 MSE =1, %

Figure 6,14, Bicubic Spline Reconstructions and Associated Knot
Densities for LAX Photograph Using Subregions of
Size 16 x 16, 132
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MSE = 1,5%

Parameter Reduction 2. 3:1 _ MSE =1,0%

Figure 6,15,

Parameter Reduction 1, 71:1

| SE = .60

Bicubic Spline Reconstructions and Associated Knot
Densities for LAX Photograph Using Subregions of
Size 8 x 8.
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Figure 6,16, Original 256 x 256 LAX Image.

134



4

Chapter 7

SUMMARY, CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

The dissertation has presented a degrees of freedom analysis of
images and imaging systems in digital image processing. The analy-
s8is has been applied to image restoration when the image is viewed as
the output of a linear imaging system, the problem being to restore
the original image up to the degrees of freedom of the system, once
this has been quantified; and to sampled images directly where the
desire is to relate the sampled image to the original unsampled and
unblurred version. In reality both situations are approximation
problems since the restoration of an image through the continuous-
discrete model involves the determination of an estimate for the
original image in terms of a linear combination of the point spread
function (PSF) kernels of the model, while in the latter case
the researcher is free to find an approximation over a wide
class of approximating functions. In modeling the restoration
problem the continuous-discrete model was adopted since it most
closely represents the imaging--data gathering--reconstruction
sequence, eliminating any quadrature approximation to the super-

position integral implicit in the linear system assumption, Further-
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more, the eigenvalues of the gram matrix of the PSF kernels were
shown to determine to what extent restoration of the image is
possible,

The assumption that imaging systems are linear and represent-
able by a two dimensional Fredholm integral equation of the first
kind presents difficulties in the restoration process since restoration
is no more than an attempt to numerically invert the associated
integral equation. In this dissertation we have bounded the error
between the eigenvalues of the system gram matrix and the singular
values of the original continuous-continuous model kernel. It was
shown for a wide class of quadrature rules with their corresponding
sampling schemes that the eigenvalues of the gramian converge to
the square of the singular values of the continuous-continuous
kernel, Since this singular value sequence possesses zero as its only
limit point, it is obvious as to why the image restoration process
becomes ill-conditioned for large data ensembles,

More important is the fact that if the eigenvalue behavior of
the original kernel is known, it is then possible to predict the number
of effectively independent samples that can be obtained from an
imaging system,

The continuous discrete model was developed for imaging

systems with separable kernels and the associated gram matrix was
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shown to be the direct product of two smaller gramians with a
resultant computational reduction, Actual numerical bounds were
obtained for the difference between the gramian eigenvalues and the
continuous -continuous model singular-values for several quadrature
rules.

These concepts were applied to the tomographic imaging system
with excellent results. The continuous-discrete model was shown to
possess a structure that made diagonalization of the tomographic
gramian possible, and a linear algebraic solution feasible, The
tomographic imaging system was shown to be a circularly symmetric
imaging system that is bandlimited and observed over a finite radius
in the output plane and whose degrees of freedom and eigenvalue
behavior are known, The gramian eigenvalue behavior was exactly
as expected--exhibiting a rather constant behavior out to a predicted
point followed with a large drop. The reconstruction algorithm
developed from the continuous-discrete model provided excellent
reconstructions from real projection data,

In dealing with the image itself the degrees of freedom was
approached as an approximation problem where the degrees of
freedom at a level epsilon was taken to be the minimum number of
functions needed to approximate the image with an error epsilon.

Since this minimum is difficult to find, the functions used were cubic
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splines with variable knots. By dividing the image into subregions a
significant data reduction was achieved with reasonable errors, It
was found that the number of knots and thus the degrees of freedom
was higher in regions of higher image derivative energy than in
those regions where the image was relatively constant, It was also
found in one case that while the mean squared errors in this scheme
were of the same order as obtained with a uniform knot spline
approximation with a comparable number of parameters this method
produced reconstructions with far more visible detail,

Finally it should be said that in effect this represents an
attempt to bridge the gap between the continuous domain upon which
images are defined and the discrete grids upon which they are
sampled and defined for analysis by digital techniques,

7.2 Future Work

There are several topics concerning the spline approximations
presented in this dissertation that deserve further study. This is not
to say that there are no other interesting qQuestions concerning the
gram matrix, for its application to Fredholm integral equations of
the second kind is certainly one example. Nevertheless the topics
discussed here will mainly be concerned with spline approximations
as an image coding device.

In this light we have seen that a sampled image can be approx-

imated with a tolerable error by a bicubic spline with fewer
138
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coefficients than pixels in the original image, and as such it repre-
sents a data reduction scheme. However this is a reduction in the
number of computer words and not bits necessary to represent the
image, and in order for these results to be applicable to digital
communication systems they must be in terms of bit reductions. This
would indicate that an efficient quantization method for the spline
coefficients must be developed, The conjecture that the dynamic
range of these coefficients might not be significantly greater than that
of the original image makes this a particularly interesting topic for
further study, Furthermore the normalized B-spline basis functions
exhibit a local basis property which might transfer some of the
image spatial correlation properties to the spline coefficients thus
making a further de-correlation possible with some post-processing.
In this work the image was subsectioned into sqQuare regions
only, In each of these regions the knot density was quite adaptive to
the image derivative characteristics and it would be quite interesting
to determine if this adaptivity could be employed in determining the
subregion boundaries. If this is possible then variable knots splines

could become a useful image segmentation tool.
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APPENDIX A

SOME PROPERTIES OF NORMALIZED B-SPLINES

In this appendix the properties of the normalized B-splines of
order k are discussed, The discussion will be limited to the one
dimensional case as the extension to a direct product of splines for
two dimensional approximations is immediate,

For the one dimensional case a spline S (x) of order k with

k, Nx
Nx knots approximating f(x) is given by
Ny
A "~
= ’ = 1
Sy, Nx(x) IZﬂ 8N, 1 (&%) f(x) =xef0,1]

where Ni k(g,x) are the normalized B-splines of order k satisfying

the following recursion relationship [A-1] over the knot vector §,

where
E = (gligzr'ﬁ'ngN ,o--,gN +k)
x x
gk S X s EN
x
x-E, g, -X
i itk
— N., ,(E;%) + ™ N, (8:x)
BiterSy A1 Siak = Bpq1  1HLE-L
N, (E:x) = (A-1)
i, k
0 otherwise xe [al , gi-i-k]
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where [T] is as follows

(1] =

With these properties we can now demonstrate an interesting
th . th
property of k= order least squares splines, A k  order least
squares spline with Nx knots for f(xi) i=1,2,..., N(Nsz) is given

by the solution to the following normal equations:

T
_ (€) (€)4-1 £)
-§Nxx1 = [InT" W] kxxNy[NilxxN LSV (A-2)

T
where ile = |:f(xl )y eaes f(xN)'l

wnTE - [Ni,k(_g_:xj)quxN

If we take Nx = k and the knot vector £ to consist of two kth order

knots at 0 and 1 then this is equivalent to determining a k-1 degree

least squares polynomial for f(xi) i=1,...,N. Alternately if we

take the knot vector E to contain the two kth order knots at 0 and 1

and a sufficient number of internal knots so that Nx = N then the

matrix [N]S)XN will be square and nonsingular so that eq, (A-2)
x ' x

becomes
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1
xeg, 8, 01)
Ni, l(gix) =
0 otherwise

and

N
X
2 N, =

Note that eq, (A-1) indicates that Nx+k knots are required to generate
Nx normalized B-splines of order k, and that Ni, k(_g_;x) is nonzero
only over the interval [gi, §i +k)’ Also a knot may have multiplicity p,
up to k in which the multiplicity indicates a discontinuity in the
(k-(p+1)) derivative at that knot. If we follow Rice [A-2] and adopt
the convention that the spline is differentiable of order 0 or -1 at the

knot E_ if the spline is continuous or has a simple jump at €o

2o
t
respectively, a fourth order order knot at §0 for a cubic or 4 h

order spline indicates a simple jump in the spline at £. Figures A.1l

and A.2 illustrate the normalized B-splines of order 4 for the knot

vectors
T
g = [0,0,0,0,.25,.5,.75,1,1,1,1]
and
T
g, = 0,0,0,0,.7,.8,.9,1,1,1,17]

respectively. 5_1 corresponds to the uniform knot case while 52
illustrates the effect of shifting the internal knots towards 1,

Table A.1 lists the knots over which N, ,(£;x) is non-zero fori =
’ 142



1,2,...,7. Note also that there are a total of 11 knots to define these
7 nonzero normalized B-splines,

Table A.1 and figure A.l serve to illustrate the relationship
between multiple knots and the differentiability of the normalized

B-splines, Note that N (_§1 ;X) involves a fourth order knot at x =0

1,4

so that k-(p+l) is equal to -1 and N (_t::_l ;X) possesses a simple

1,4
jump at x = 0, The third order knot at x = 0 for N2 4(5_1 3X) results in
k-(p+l) equaling 0 and from figure A.1l it is clear that N, 4(5_1 ;X) is

merely continuous at x = 0, The second and first order knots at x = 0

for N3,4(£1 ;xX) and N4’4(_§1 ;x) respectively result in N (El ;X) being

3,4

once continuously differentiable and N (_g_l ;x) being twice continuous-

4,4

ly differentiable at x=0, The same sequence of events is true for
N5,4(_§1;x), N6’4(_§1;X) and N7’4(_§_l;x) atx=1,
t
Another interesting property of the k h order normalized
B-splines arises in the case when the knot vector consists of solely
two kth order knots at x = 0 and x = 1, In this case the kth order
spline with Nx = k knots can be shown to be equivalent to a k-1 degree
polynomial. For k = 4 the four nonzero normalized B-splines are
listed in Table A.2 for the knot vector £ = (0,0,0,0,1,1,1,1), In
4
. . _ ot . .

this case if u4’ 4(x) = lz_; SiNi, 4(_E_,x) is the fourth order spline with
four knots and g;aixi'l is a cubic polynomial it is simple to show

= T T
that a = (al,az,a3,a4) and S = (Sl, S,, S3, 84) are related through

the matrix [T] by
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(e

-1
s = M g

corresponding to interpolation. Thus by varying the number of
internal knots from 0 to N-k so that Nx = N-k+k = N, we can deter-
mine a least squares spline that goes from a least squares polynomial
of degree k-1 to an interpolating spline of order k,

In summary this appendix has been presented to illustrate some
of the computational properties of the normalized B-splines, This has
been done in the hope that the interested reader might be better able
to appreciate them from a computational standpoint and to more
effectively apply them to approximation problems, It is also felt
that these facts coupled with the recursion formula of eq. (A-1)
should give the reader enough information to implement his own
spline subroutines with variable knots without an excessive amount

of difficulty,
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®

NORMALIZED B-SPLINE FUNCTIONAL FORM

N, (& 1-t)°
1’4(5”:) ( = )

N H 3t(l-t 2
2,4(5,") ( = )

N 1x) 3t2 1.t
3, 48 (1-t)

3
N4’4(_§_,x) t

Table A.2. Normalized B-Splines for £ = (0,0,0,0,1,1,1,1)T,
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Figure A.1 Normalized 4th Order B-Splines For
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