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operations are presented. One approach realizes the halftone
method of nonlinear optical processing in real time by replacing
the conventional photographic recording medium with a real-time
image transducer. 1In the second approach halftoning dis
eliminated and the real-time device is used directly. In this
case the nonlinearity is obtained by the inherent nonlinear
characteristic of the real-time device. A third method uses the
ability of certain real-time devices to perform an intensity-
to-spatial frequency conversion.

Following a review of halftoning and real-time devices, a
general analysis of the halftone process considering the nonideal
characteristic of the recording medium is presented. From this
analysis one can predict the amount of degradation of the output
due to different parts of the recording medium characteristic
curve for any nonlinear transformation. Specific results for
logarithmic and level slice processes are obtained.

The problem of designing the halftone screen cell shape is .
considered for a piecewise linear recording medium by solving a
nonlinear integral equation. It is shown that the solution can
be achieved for certain monotonic functions including exponentialf
and power transformations. To obtain the solution in general, an
approximate method which considers a discrete halftone screen
density profile is described. This gives the halftone screen
density profile for any form of recording medium characteristic
curve and any type of nonlinearity by minimizing in mean-square
sense the difference between desired and degraded outputs.

The results of computer simulation for logarithmic and level
slice functions are shown. Experimental results are obtained
for an optimized halftone screen which matches the characteristig
of a liquid crystal light valve (LCLV). An overall logarithmic
transfer function is produced in real time.

The procedure for obtaining nonlinearities without halftone
preprocessing is explained. Experimental results using a
special birefringent liquid crystal device which produces a 3-bit
parallel A/D converter in real time are shown.

The variable grating mode (VGM) of ligquid crystal light
valve systems and its application in real-time nonlinear optical
processing is discussed. A detailed analysis of the variable
phase grating is made and from this the processing limitations
of the VGM are determined. Experimental results showing real-
time level-slicing with a VGM liquid crystal device are given.

Possible extensions and limitations of this work are
discussed. ‘
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ABSTRACT

Existing methods for nonlinear optical processing

involve an intermediate photographic step which prevents
real-time operation. Although optical information
processors have a large space-bandwidth product, the
problem of real-time input has been 2 major limitation 1in
taking advantage of this processing ability. In this
research, the realization of nonlinear optical processing
in real time is 1investigated. Several techniques for
performing such operations are presented. One appfbach
realizes the halftone methaod of nonlinear optical
processing in real time by replacing the conventional
photographic recording medium with a real-time image
transducer. In the second approach halftoning is
eliminated and the real-time device is used directly. 1In
this case the nonlinearity is obtained by the inherent
nonlinear characteristic of the real-time device. 2 third
method uses the ability of certain real-time devices to

perform an intensity-to-spatial fregquency conversion.

Following a review of halftoning and real-time
devices, a general analysis of the halftone process

considering the nonideal characteristic of the recording
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From this analysis one can predict

medium is 'bré;én£éa:“
the amount of degradation of the output due to different
parts of the recording medium characteristic curve for any
nonlinear transformation. Specific results for logarithmic

and level slice processes are obtained.

|

The problem of designing the halftone screen cellé
shape is considered for a piecewise linear recording'mediuml
by solving a nonlinear integral equation. It is shown that}
the solution can be achieved for certain monotonic%
functions including exponential and power transformations.l
To obtain the solution in general, an approximate method:
Iwhich considers a discrete halftone screen density profilej
’is described. This gives thé halftone screen density%
profile for any form of recording medium characteristicf
curve and any type of nonlinearity by minimizing' ini
mean-square sense the difference between desired and%

degraded outputs. The results of computer simulation for

logarithmic and level slice funétions are shown.

Experimental results are obtained for an optimized halftone

screen which matches the characteristic of a liquid crystal!
light valve (LCLV). An overall logarithmic transfer:

function is produced in real time.

The procedure for obtaining nonlinearities without:

halftone preprocessing is explained. Experimental resultsi
|
using a special birefringent liquid crystal device which!
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produces a 3-bit parallel A/D converter in real time are

shown.

The variable grating mode (VGM) of 1liquid crystal
light valve systems and its application in real-time
nonlinear optical processing is discussed. A detailed
analysis of the variable phase grating is made and‘from,

|
this the processing limitations of the VGM are determined.

Experimental results showing real-time level-slicing with a

1

i
1
{
'

VGM liquid crystal device are given.

Possible extensions and limitations of this work arei

discussed. ;
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CHAPTER 1

INTRODUCTION

l.1 Introduction

Optical information processing is of great interest
because of its capability for parallel processing of two
dimensional data [1-1]. This inherent characteristic of
optical processing makes it even more desirable for
operation on two-dimensional date in the form of
continuous-tone images. The analog nature of optical
processing eliminates the sampling and quantization steps
usually required before digital processing [1-2]. Linear
operations such as convolution, correlation and Fourier
transforming can be easily performed with optical

processing systems [1-3].

To extend the usefulness of optical processors, other
operations which are not necessarily linear are needed.
Several efforts have been made to extend the flexibility of
the optical processors to nonlinear operations such as
logarithms, exponeqtiation, level slicing, pseudocolor, and
analog-to-digital conversion. Marquet and Tsujiuchi [1-4]
were the first to note that the halftone screen method

could be used for nonlinear processing. Kato and Goodman

1



[1—5]Aobtained a 1o§a;ithmic transformation wusing this
method. Later Sawchuk and Dashiell [1-6] performed a level
slice transformation with the halftone method. Lohmann and

Strand [1-7] used this method to obtain analog-to-digital

conversion. Pseudocolor with the-halftone method was shown‘

by Goodman and Liu [1-8]. i

None of the above nonlinear operations has been%
i
obtained in real time. This means that the nonlinear|

1

4

transformation of an input scene cannot be done without
significant time delay. This is due to the fact that thei
input and output of these processors often rely on:
photographic techniques which are not a real-time
realization. Recent developments have simplified the:

output problem: television and solid state devices are

available to efficiently make use of the two-dimensional

processed output. In many situations, the human eye or

observer is the end user of the information, so that:
| i
' optical systems with their inherent two-dimensional nature;

are 1ideally suited to process pictorial information

intended eventually for the human observer. The major'

!difficulty lies with real-time input to these processors.
gFlexible real-time optical input modulators which can
iconvert image information into a form for input to the:
processing system are needed. Significant research over

the last several years has made progress on certain aspects

of this problem. For ordinary linear optical processing a

™
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|
|

greatvdeal'pprrdé}ésé hééAbeen‘ﬁéé;Aniﬁ“maévelaging fast,
sensitive and easily usable real-time controllable;
replacements for photographic film. There are many?
different materials and systems, each with its own%
particular characteristics and tradeoffs [1-9 to 1-13].E

One common characteristic of nearly all curient devices is:i
that they are intended to operate 1linearly with moderate‘
contrast (photographic gamma of 3) over a, broad dynamic:

range (densities of 0 to 2 or 3).

Our main goal in this research 1is to study the
feasibility of doing nonlinear optical processing using a
real-time image converter and present methods which
successfully perform such operations. We will take two
different approaches to this problem: 1) realization of the
halftone process in real time; and 2) obtaining
nonlinearities without halftone preprocessing. - In the
following we first introduce these two methods and then

present the organization of this dissertation and its

research contributions.

1.2 Real-Time Nonlinear Processing with Halftone Screens

In halftone nonlinear processing the continuous tone

- input picture is transformed into a binary picture by

contact printing the continuous input data tHrough a

halftone screen onto a high-contrast recording medium. The
product of the input and halftone screen transmittances is

3



gclipped in the process, giving an array ofAbinaryAaots%
whose size 1is a function of clip 1level, the inputi
transmittance, and the halftone transmittance profile. Thei
"periodic nature of the halftone screen causes each:
subregion of the binary image corresponding to a constant-
input intensity to become quasi-periodic. When placed in
the usual coherent optical filtering system, multiple
diffraction orders appear in the Fourier transform plane
because of the sampled input. The procedure for producing
nonlinearities involves the use of one diffraction order
combined with specially made halftone screens. A filter is
placed in the Fourier plane that transmits the light around
one diffraction order and blocks everything else. This in
effect demodulates the image [1—3]. After the filtered
diffraction order in the Fourier plane 1is inverse
transformed, the continuous nonlinearly transformed output

appears.

To realize this process in real time the photographic’
hard—clipping step should be replaéed with some real—time‘
method. This means that a real-time image converter is
needed instead of the photographic film. Among presently
' developed devices, the liquid crystal 1light valve (LCLV)
appears to be one of the most promising for use in optical
processing systems [1-12,1-13]. It offers the advantages
of 1) relatively good modulation transfer function (to 50
or 60 cycles/mm.); 2) fast, reusable, simple operation; 3)

4.
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room temperature operation; and 4) physical compactness:

‘ with minimal controlling electronics required. This is the

. type of device that has been chosen for use in real-time

" halftone processing experiments.

Like most other real-time devices, ‘the LCLV has

generally been optimized for a large linear dynamic range,

"in contrast to the hard-clipping characteristic required

' for halftone processing. Given the choice of a linear LCLV

for real-time halftone input, methods of predicting the

?degradation“ and compensating for the nonideal
. characteristic have been studied. Dashiell and Sawchuk
“have investigated some implications of non-ideal recording
;materials [1-14]. They found methods to compensate - for
§finite gamma and finite saturation of the photographic film

for monotonic nonlinearities.

We will consider a recording medium with a general

shape of characteristic curve and try to compensate for its

' nonideal characteristic for general nonlinear functions.

1.3 Real-Time Nonlinear Processing Without Halftone

Screens

We present two different methods for obtaining
nonlinearities without halftone screens; a) direct; b)

variable grating mode.

1.3.1 Direct Nonlinear Processing



[ To achieve nonlinear functions without halftone
Iscreens the inherent nonlinear characteristic of a
|

recording medium or real-time transducer is directly used.!

. This invovles the proper biasing and selection of operating

i

points on a nonlinear curve to directly achieve a

point-by-point intensity transformation. The processing{

may take place with incoherent illumination, avoiding the |
|

problems of speckle, phase noise, and the possible;

necessity for a laser source. It also requires a lower:

space-bandwidth product on the real-time input device

because the halftone screen is eliminated. One drawback is,

- that the flexibility of this technique is considerably more,

limited than halftoning. Tai, Cheng and Yu [1-15] havez
!
 obtained a logarithmic nonlinearity directly (not in real:

time) using photographic film with special processing. . ‘

1.3.2 Variable Grating Mode Nonlinearities

This method involves the conversion of different input

1intensities to a local phase-modulated grating whose!
- spatial frequency is a function of the brightness. Wheng
" the variable grating is placed in the front focal plane ofE

a coherent Fourier transform processor, the difference in.

“local spatial frequency should cause different input levels:
_to be effectively placed at different points in the
. transform plane. By selective filtering and recombination’

l . . o ‘
. of .the transform components, various nonlinearities should.
|




be possible. This method relies on the behavior of certain
liquid crystal real-time devices which have shown the

variable grating mode in experiments [1-16].

1.4 Organization of the Dissertation and 1Its Research

Contributions i

In the second chapter we review halftone nonlinear%
processing and characteristics of a liquid crystal 1ight;
valve (LCLV) as a real-time image converter. We then;
explain how these two techniques can be combined to produce:
nonlinearities in real time. Chapter 3 presents a?
formulation of the halftone process with a nonbinary:
recording medium. This formulation relates the input and%
output intensities through the halftone screen parametersé
and the recording medium characteristic curve. The results

for the binary recording medium are obtained as a special’

‘case of the general recording medium.

-

In Chapter 4 we use the formulation of chapter three
to predict degradations due to the nonbinary characteristicé
of the recording medium. The result of computer?
simulations for different parameters of the recording?

medium characteristic are shown.

1 In Chapter 5 vWe try to compensate for the degradations
by analytical methods. It is shown that for some

nonlinearities we can obtain the halftone screen parameters

L_*,, I ‘—— 7,




{without any precompensation for the nonbinary recording

‘ medium.
|

. Chapter 6 gives a new analysis of the halftone process

|

+

1
i

. in which the halftone screen density function is considered

as a discrete function. With such analysis we describe new.

ioptimized methods of halftone screen design. Results of
computer simulation for different parameters of the

recording medium characteristic are shown.

In Chapter 7 we discuss methods of making halftone
' screens and present experimental results for a real-time
logarithmic process using an optimized halftone screen with

a LCLV.

Chapter 8 explains how the nonlinear characteristic of
a special birefringent LCLV can be used to generate an

analog-to-digital conversion nonlinearity directly without

any halftone preprocessing. The result of an experiment

producing a 3-bit parallel A/D conversion in real time is

shown.

In Chaptef 9 the variable grating mode VGM of the
liquid crystal and its application in real-time nonlinear
processing 1is discussed. In a detailed analysis we
determine the processing 1limitations of the VGM effect.
Preliminary experimental results using a VGM liquid crystal

device for real-time level slicing is presented.



; Chapter 10 discusses conclusions and possible!
: i
| extensions of this work.

i

The specific research contributions of this work are;
énow described. The analysis of the halftone nonlinear;
:process has been extended to predict the nonlinear
" input-output curve with any recording medium characteristic
~curve shape and any halftone screen cell shape. New
;analytical design formulas for halftone cell shape with a
fpiecewise linear recording medium and certain
1nonlinearities have been derived. New design procedures
" for halftone screen cell shape are presented which produce
screens that compensate for the nonideal characteristic of
ithe recording medium with any nonlinearity. New me%hods‘
have been develdped for obtaining real-time nonlinear.

functions without halftone preprocessing using the

birefringent liquid crystal device and the variable grating

mode (VGM) liquid crystal device. Experimental

: !
~demonstrations of logarithm, 3-bit parallel A/D conversion,i

and level slice functions in real time have been made.



CHAPTER 2
REVIEW OF HALFTONE NONLINEAR PROCESSING AND

THE LIQUID CRYSTAL LIGHT VALVE

In this chapter we review nonlinear halftone;
processing and the liquid crystal light valve (LCLV) as a.
real-time image converter. We then discuss how they can be:
combined to produce parallel nonlinear transformations in

real time.

2.1 Nonlinear Optical Processing with Halftone Screens

Halftone nonlinear optical processing methods rely on
| a pulse -width modulation intermediate step, in which the
input data is coded, and a filtering part that recovers a

continuous-tone picture from the coded one [2-1]. The:

. pulse-width modulation step, often called the halftonei
gprocess, transforms a continuous-tone picture 1into a
ipicture with only two levels of density. The resulting
!picture is called a halftonéd picture. ‘It consiéts of
§gr6ups of dots or bars depending on whether the halftone
~screen used in the process 1is one or two-dimensional.

. Corresponding to each density level in any part of the

~original picture a group of equal-area dots or a series of

10
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equal-width bars is present in the halftoned picture. The

"area of the dots or the width of the bars is a function of!

" the corresponding density level in the original picture and%

‘ t
- the density profile of the halftone screen. Thus, the;

information about the original picture density levels is

encoded . into areas of the dot groups or the widths of bars

present in the halftoned picture. The method is shown in

'Fig. 2.1.. The input 1illumination passes through the

‘original picture transparency and falls on a periodic array

‘of partially absorbing dots or lines (halftone screen).:

~The light transmitted by the halftone screen falls upon a

hard-clipping photograpic film which acts as a thresholding

device and records a binary image. The operation for a one

dimensional halftone screen 1is shown in Fig. 2.2. Note

- that the densities of the input' picture transparency . and

the halftone screen add together to effectively partially

absorb this illumination at any point. Depending on

- whether this sum of densities is less than or greater thané

the threshold density of the hard-clipping film, it will or;

- will not be activated. This causes the amplitude

. transmittance for the encoded picture transparency to look

:like Fig. 2.2(e). From the amplitude transmittance of the

" halftoned picture we see that the effect of the halftone

process on the input picture is equivalent to sampling. If
this sampled picture is used as an input to a coherent

optical processing system as shown in Fig. 2.3, different

L : R ¥ ¥
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m
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HARD-CLIPPING FILM

Figure 2.1 Production of halftoned picture
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—;iffféction ordefé appear in the filter plane. To be abl;}
to successfully filter out any single order, the spatial%
frequency of the halftone screen should be much greater%
than. the maximum spatial frequency present in the inputi
picture. Assuming that such a requirement holds, we cané
put a simple spatial filter in the Fourier plane and select%
one of the orders. The selected order is then transformed
back to éive a desampled image in the output plane of the§
processor. The intensity at any point of this output

picture is then a nonlinear function of the corresponding

point in the input. The form of this nonlinearity is

. determined by the shape of the halftone screen density

profile and the diffraction order selected in the spatial:

filtering system. Details of the mathematical relationship

between the output and input intensities will be worked out

. in the following chapters.

;2.2 Liquid Crystal Light Valve

1

The term “"liquid crystal" is applied to substances;

' whose rheological behavior is similar to that of fluids but

whose optical behavior is similar to the crystalline state

over a given temperature range [2-2]. One class of liquid

crystals called nematics is the most common type used 1in

devices whose properties interest us. The nematic liquid
crystal phase is formed by many organic compounds. The

most significant common feature of all these compounds is

15
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that they have 1long rodlike molecules [2-3]. When an

material is reoriented in space by both the field and ionic

conduction effects. If the conductivity of the liquid

. the nematic is simply reoriented by the field [2-4].

; The field effect operation of a LC device is based on
|
!

the electrically controlled birefringence characteristic of

placed between a transmitting electrode and a reflecting
mirror. ‘An incident polarized beam of 1light on the
transmitting electrode will be reflected back from the
'mirror while traveling through the liquid crystal as shown

'in Fig. 2.4.

electrical field 1is applied to a 1liquid crystal, the:

whereas in the absence of significant conductivity effects,

i

crystal is sufficient, conduction effects will predominate,?

the nematic liquid crystsl. The LC layer is normally:

Depending on the voltage across the 1liquid crystal,.

the reflected light will experience some phase retardation|

'

due to reorientation of the LC molecules by the field.;

. This phase retardation can be detected as an intensity

polarizer that is either parallel or perpendicular to the

one in the incident beam. With such arrangement we have a
light wvalve in which the electric field variation across
the LC controls the intensity variation of the output beam

;(reflécted light). Now, if we introduce a photoconductor

L. . e e e e

variation if we pass the reflected light through a second

16



Figure 2.4
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Diagram of a tunable birefringence field
effect cell (P=Polarizer, A=Analyzer,
TE=Transparent electrode, M=Mirror,
LC=Liquid crystal
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jlayer in the system we can transform the intensity’
-variation of a second light source (input light) to voltage
variation across the photoconductor that in turn can be
transferred to voltage variation across LC. Hence, the end
result is a light controlled light valve. This is shown in
Fig. 2.5 with a light blocking layer added to separate the
input and output beams. If the LC is twisted by 45O we
could get a dark off-state and the resulting device would
be the so-called standard linear LCLV [2-5]. This device
can be made to operate with a speed of about 30

frames/second or TV frame rate.

2.3 Real-Time Nonlinear Optical Processing with Halftone

Screens

To realize the halftone process in real time both the
halftoning step and output readout should be performed
rapidly. As described in chapters 1 and 2 the output is
easy to obtain in real time. To achieve the halftoning in
real time the photographic hard-clipping medium should be
replaced with a real-time image converter. The ideal
real-time device should have two properties: 1) the ability
to convert an incoherent imége to a coherent imaée; 2)
infinite gamma. Everywhere in this work we define the
parameter gamma as the slope of the linear portion of the
output amplitude transmittance vs. log of input intensity

of the real-time image transducer. Our definition of gamma

18
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Figure 2.5 Cross-sectional schematic of LCLV
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;should not be confused with the photographic definition ofj
gamma as the slope of the linear part of density vs. log of
the input intensity. The first property is common to many
image transducers and the liquid crystal light valve (LCLV)
described shares this property. On the other hand, almost
all real-time image <converters are optimized for linear
processing and do not possess the second property. This
can be seen from Fig. 2.6 where a typical characteristic of

a standard linear LCLV is shown.

In the following chapters we investigate this problem
by developing a new formulation of the halftone process and
presenting methods for the compensating for nonideal

characteristic of real-time image converters.
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CHAPTER 3

HALFTONE PROCESSES WITH GENERAL RECORDING MEDIUMS

Halftone nonlinear processes, described in chapter

. two, have been formulated with the assumption that a binary

1
i
i
i
i

i recording medium is used in the halftoning step [3-1].

With this assumption, once the output intensity is

1
I

expressed as a function of input intensity and the halftone
‘screen density profile (analysis), we can easily invert the
iproblem and get the halftone screen density profile given
the relationship between the output and input intensities

(synthesis).  Unfortunately, almost all recording media

deviate from the binary assumption. This deviation which

is quite small for high contrast photographic films, is

quite noticeable for any real-time image converter at the:

present time [3-2,3-3]. Consequently, to appreciate the:

halftone processes fully, we should remove the assumption
of 2 binary recording medium from the very beginning of our
. mathematical formulation of these processes. Dashiell and
JSawchuk have considered the effects of finite gamma and
saturation density of the recording medium on halftone
Aprocess by modifying the formulas for the ideal recording

medium [3-4].
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1

This formulation does not predict the effects of the
curved portions of the recording medium characteristic
curve on the overall nonlinear transformation. Moreover
the formulation is restricted to monotonic halftone cell
shapes. 1In this chapter we present a formulation of the
halftone process which considers a recording medium with a
characteristic curve of general shape and predict the final
degradation of the output due to such characteristic curve
for any halftone screen cell shape. This formulation is
used for the case vof a binary recording medium and its

result is compared with previous derivations.

3.1 Mathematical Formulation

For a general recording medium in the halftone process
we should replace the binary characteristic curve of
Fig. 2-2a by a curve 1like Fig. 3.1. This causes the
amplitude transmittance of the halftoned picture to
consist of pulses that are no longer rectangular as shown
in Fig. 3.2. The amplitude, width and shape of these
pulses depend on the input picture density levels, halftone
screen density profile, and the shape of the characteristic
curve of the recording medium. Each group of these pulses
corresponds to a constant intensity subregion in the input
picture. The period L (Fig. 3.2) of the halftone screen is
chosen to be small in comparison with the period of the

highest spatial frequency component in the input picture,

23



Figure 3.1 Transmittance vs input illumination density

for a general recording medium

0 —ex

Figure 3.2 Amplitude transmittance of the halftoned
transparency made with a recording medium
like that in Figure 3.1
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Eso any local region of the amplitude transmittance of the;
. halftoned transparency is approximately a periodic sequence:

of pulses and can be expanded in complex Fourier series

+
t, (x) = Z B, exp (-j2wkx/L) ' (3.1)
h k=-64{
1where
2mkx
B

1 L
Ek =7 IO th(x)e dx. | (3.2)
- In the above sum each term represents a grating order, and
" when we take the Fourier transform of the halftoned picture
in the coherent optical processor, these orders appear in
" the Fourier ‘plane as 1isolated spectral islands. The
;spatial filter in this plane selects a single order.

Hence, the resulting intensity distribution at the

processor output is

2
T, (T5,0k) = Byl
L .szx " (3.3)
0

which relates the intensity at any point of the output
picture to the amplitude transmittance of the halftoned
picture and the selected order. Now t; (X) can be related
to the input intensity as follows. Let the local input

picture intensity that produced the above train of pulses

25
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on the halftoned picture be denoted by I;,. If the density
variation of one period of the halftone screen is
represented by f(x), then the intensity transmitted by the
U-f(x)

halftone screen is I, _-°1

amplitude transmittance versus log exposure curve of the

recording medium be described by g(logE), then we can write
t (x) = gl{loglI, +10"F¥) 1} = gllogr, -£(x)] (3.4)
h in “%in ‘ *

and replacing it in Eq. (3.3), we have

. 2Tkx
=T

dx|? (3.5a)

I_(1; k) = |2 [ ; gllogI, -£(x)]e
which relates the intensity at any point of the output
picture to the intensity of the corresponding point in the
input picture through a nonlinear integral relationship.
When the specific forms of g(logE) and f(x) are substituted
in this relationship and the integral is solved, the
overall relation between the output intensity and the input
intensity 1is nonlinear. This nonlinearity depends on

g(logE), f(x) and the value of the order selected.

The above formulation could be performed in terms of
the . intensity transmittance, 1(Xx), of the halftone screen
rather than its density profile. In this case, for
simplicity, we also need the transmittance versus éxposure
curve of the recording medium, T(E), rether than g(logE).

If we go through similar arguments as above we get
26



2Tkx |
J

L _—
J i1, ct0le T ax|? . (3.5b) |
0 |

3.2 Binary Recording Medium

The characteristic curve of a binary recording mediumi
%is shown in Fig. 3.3. Ideally a=0, and b=1l. Note that
. this form of characteristic curve is applicable to aé
?positive transparency. We could also consider the more.
ifamiliar.negative transparency although the basic results
|
'remain the same. We will choose the positive transparency
" curve because they are more similar to the characteristic
. curves for real-time devices. We now simplify the general

relationship of Eg. (3.5a) using the characteristic curve

lof Fig. 3.3.
3.2.1 Zero order

For the zero order case k=0, and Eg. (3.5a) becomes §

L
= {= - 2 3.6
Io(Iin'o) = {L[ . gllogI, f(x)1dx}“. ( )

. Considering Fig. 3.3 we can write

a (3.7)

if 1oinn—f(x) < logIr then g}logE)

and

b. (3.8)

if loinn—f(x) > logIr then g (logE)

27
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g(log E)

-
log I, log E

Figure 3.3 Characteristic curve of a binary
recording medium
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Assuming £(x) to be a monotonically increasing function we!

have
if x> £ (log=R) then g(logE) = a (3.9)
r
and
-1 Iin
if x < £ (logjf—) then g(logE) = b. (3.10)
r
When used in Eq. (3.6), this gives
I.
-1 in
£ (1oqI—) 0
1 r 2
I (1, ,k) = {=I J bdx + f adx] }“(3.11)
o'"in L 0 I.
f-l(logjéﬂ)
r
or after simplification
(b-a) .~1,,  Tin,,2
IO(Iin,k) = [a+ T —f (1ogj;—)] (3.12)

r
which is the same as the results obtained previously for

the case a=U, b=1 [3-1] except for the fact that it is

obtained in a more straightforward manner and can easily be.

generalized.
3.2.2 Nonzero order

For k=0, the above simplifications for the

characteristic curve can be used in Eq. (3.5) to obtain

I.
£ (Log=2) j2mkx L  2mkx

J
I (T ,k)=|%f Tpe” T dX+I ae” U dx]lz- (3.13)

0

-1 Iin
f (long—)
r
29




let

-1 Iin
= £ (logjf—d
r

X1

then

'2nkxl

- B e
2rkx
L

[
-

-
e
|

-_2nkxl
~1) (e L .y

1

_ (b-a)2

=g (e
417k

2 Tkx (3.14)

Tk

1

_ (b-a)? . 2 Tkxg
=~ 35 sin —g—
m°k

~after replacing = for X, we have

2 I.
k) = {82l sin2[%§ £ (Log2D) 1. (3.15)

I (I,
° Tk r

in’

v )

‘This also agrees with the previously obtained results

[3_]-] .

3.3 Halftone Screen Density Functions for Some Useful

- Nonlinearities

The halftone screen density function for different
nonlinearities with the general recording medium will be
determined in later chapters. Here, for our reference we

will find the halftone screen density functions for the

- - . : B 30



nonlinearities.

3.3.1 Logarithmic Transformation

-
1
!
|
|

This transformation can be obtained in the zero order..

i
lHence from Eq. (3.14)
|
!

in I

e oy I,
1 r (1, .0 = [a+®rle  (og 1%, (3.16)
: r

t
; ,
[For a logarithmic transformation

% IO(Iin,O) = Klog(I; /I.) (3.17)

. where K is a constant. Combining Eg. (3.17) and
' Eq. (3.16), we get

I. I.
Klog (=2) = fa+iP=2) 71 (1051012, (3.18)

L
r r

Binafy recording med ium for several specifieél

!

|

!

'
'

I.
If we let log.j%Ebe represented by f(x) and note that

r
£-l[£(x)]1=x then Eq. (3.18) can be written as
_ 1 b-a_,2
f(x) = K[a+—t—x] (3.19)

which gives the density profile of the halftone screen for

"a logarithmic transformation.
3.3.2 Exponential Transformation

This transformation can also be obtained in the zero
order. We want

31



Eig R —

(3.20)i

'
'
]

where o and B are constants. Combining Eg. (3.20) and:

' Eq. (3.16) we get

lin ‘
Ir (b-a) -1 Iin 2 ‘
o (B) = [a+—L—- f (log—T—)] (3.21):
r |
or T
1og(—I—)
o s S
a (g)L10 = [a+22)e™d (159102, (3.22)
r
From this we can write
f(x)] 3 |
a(B)[lo = [a+19321x]2. (3.23)

Taking the logarithm of both sides twice and simplifying,
we obtain

(b’a)x]—loga}-log logB. (3.24)§

L

f(x) = log{2logla+

This gives the density profile of the halftone screen for:

" an exponential transformation.

3.3.3 Power Transformation

This is another example of a transformation possible

in the 2zero order. We want

32,



| .
I (I, ,0) = y(=%? (3.25)

where vy and ) are constants. Combining this with

Eg. (3.16) we have

I, oy I,
(7§E)A = [a+(bLa)f 1(109752)]2 (3.26)
r - by
or
Iin
Alogjf—- 1. )
vy (10) T o= asfBraleml(goq 20 (3.27)
r
from which we can write
vy ) o atbrady 2, (3.28)

Taking the 1logarithm of both sides of Eq. (3.28) and

simplifying we obtain

f(x) = %log[a+iéiélx]-% logy . (3.29)

This gives the density profile of the halftone screen for a

power transformation.
3.3.4 Level Slice Transformation

In this case the desired input and output intensities

are

33



0
2 < 1
Io = c for Il < Iin < I2
0 for I2 < I, .
— Tin

(3.30) :

and this equation is shown in Fig. 3.4. To obtain thisE

transformation we should use the first order, i.e., k=1 in

Eg. (3.15). We have

(b—-a)2

- o 2T
Io(Iin,l) = —?— sin

-1 IinA

Combining Eq. (3.30) and Eq. (3.31) we can see that

I.
~1 in, _
£ (logt) =0 for Iin < Il,
£l ii—3) = Lgjp~1 S for I. < I._ < I
og’Ir = gsin -a Jtor 4y T tin 27
~and
-1 Iin
f (10912:) =L for I., 2 I,.

These are summarized in Fig. 3.5 where

-1 cm

si —
in b-a

3|

From Fig. 3.5 we can obtain the density profile

(3.31)

(3%32)

(3.33)

of the

halftone screen for the level slice transformation as shown

| i.n Figo 3.6-
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Figure 3.5 Inverse function of the density profile of

the halftone screen which performs the level

slice transformation of Figure 3.4
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)
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Figure 3.6
performs the level slice transformation

of Figure 3.4

Density profile of the halftone screen which
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CHAPTER 4
DEGRADATION OF THE OUTPUT INTENSITY IN THE

HALFTONE PROCESS

The nonbinary characteristic of the recording medium
in the halftone process is the main source of degradationg
of the output intensity. This analysis theoreticallyi
predicts the departure of the nonlinearity achieved fromi
the ideal so that a compensation for this effect can be%
included in the design of the halftone screen. A typicali
characteristic curve of a nonbinary recording medium is%
shown in Fig. 4.1. Comparing this figure with the%
characteristic curve of a binary medium shown in Fig. 3.3{;
we can see that there are three distinct regions in these%
two curves that make them different. As shown in }ig. 4.1,
they are usually referred to as the toe, the linear part, |
and the shoulder of the characteristic curve. The effect%
of finite gamma and finite saturation of the recording;
medium on the halftone process has been considered beforez
[4-1). 1In the following analysis, we will show how each of:
these three regions of the characteristic curve contributes
to the final degradation of the output intensity. Thei

i

analysis will be done separately for the zero and nonzero
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Figure 4.1 Typical characteristic curve of a

nonbinary recording medium
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orders.

4.1 Zero Order

"medium characteristic curve affect IO(I

The general formula relating the output intensity in

the zero order to the input intensity from Eq. (3.6) is

-
_—
H
~

o
-
1]
~

ol |

L 2
JO g[loinn—f(x)]dx} . (4.1)

To find out how different parts of the nonbinary recording

in'o)' we can use

the halftone screen density profile that 1is designed for

the binary recording medium and some model characteristic

curves which are binary in every respect except for their

toe, linear part, or shoulder as shown in Fig. 4.2,

“Fig. 4.3, and Fig. 4.4. This has been done for the

.logarithmic process as explained in the following sections.

~4.1.1 Degradation Due to the Linear Toe of the -Recording.

;Medium Characteristic Curve in the Logarithmic Process

In this case

I (I3,/0) = K log(I; /T.) (4.2)

.where K is a constant and I, is shown in Fig. 3.3. For the

ideal recording medium the halftone screen density profile

from Eq. (3.19) is

(b-a) X] 2

£(x) = %[a+-—z—— i (4.3)
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>
logl, loglI, logE

Figure 4.2 Characteristic curve of a recording
medium with a linear toe
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I
log I, log I, Tog E

Figure 4.3 Characteristic curve of a recording
medium with a linear part

-
logl, logl, log E

Figure 4.4 Characteristic curve of a recording
medium with a linear shoulder



Let

rf
i

log(Iin/Ir)
and (4.4)
log(Iz/Il)

m
I

anéd now use Eq. (4.2), Eg. (4.3) and the characteristic
curve of Fig. 4.2 in Eq. (4.1). For simplicity assume a=0,
b=1. After some simplification the result is

3

2
40°K € _
(t+7) for loinn < logI,

9e2

1/2
{zaK-——[(t+€)3/2—(t—%)3/2]+K1/2(1-a)(t- %)1/2}2

3e 2
Io(Iin’o)= for logI2 < loinn < % (4.5)
1/2
1/2 _&,1/2 a,. _€,_20K _E 3/2_ o 2
for 1 < logl
K — in )

The quantity o is defined in Fig. 4.3. These equations
have been calculated for a =0.1 and different €'s. This.
means that the height of the toe is kept constant while its
slope changes. This way the input intensity range over
which the linear toe exists is extended to higher values of
€. The result is shown in Fig. 4.5. From this figure it
is seen that increasing € causes the tranéfer curve to lose
some dynamic range while its shape is preserved. If we
assume a curved toe rather than a linear toe, we expect to
get some small change in the shape of the transfer curve

o 42

ﬁ\



[l
o
c
b=}

| | T T 1 T TTTI T T 1

(c)

rr1i11r1tr1rrrrrvritriribl
O T T T T T T O O I

L1 1 1 till I T I B
| 10

100

[

N
If

Figure 4.5 Logarithmic transfer function for a

recording medium with a linear toe

(a) binary medium'e=0; (b)Y €=1.0;

(c) €=0.33; (d) €=0.20;
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but same loss of dynamic range.

4.1.2 Degradation Due to the Linear Part of the Recording|

Medium Characteristic Curve in the Logarithmic Process

Using the assumptions of section 4.1.1 and the!
lécharacteristic curve of Fig. 4.4 in Eq. (4.1) we get afteré

some simplification

952(t-_) for loinn < logI, ;
- )3/2_ (- 3/2,2 1 ;
EIo(Iin'O) = 9e [(t+§ (t- ] for'loglzf;oglin<K7(4.6)‘
1/2
£ €,3/2 1
[ (t- —-) (t— ) ﬁ*l] for X < lOinn

. where we assume a=0 and b=1. These equations have been'
"calculated for different values of € The result is shown
in Fig. 4.6. From this figure, we can see that extending
the 1linear part of the recording medium characteristici

!
1

~curve to larger input intensity values causes the transferi

curve to lose dynamic range and also to change shape.é

iAlthough the loss in dynamic range is undesirable, the

transfer curve shape change is even less desirable.

4.1.3 Degradation Due to the Linear ‘Shoulder of the
Recording Medium Characteristic Curve in the Logarithmic

" Process
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Figure 4.6 Logarithmic transfer function for a
recording medium with a linear part

(a) binary medium €=0; (b) €=1.0;
(c) €=0.33; (d) €=0.20; (e) €=0.10
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Using the assumptions of section 4.1.1 and the
characteristic curve of Fig. 4.5 in Eq. (4.1) we get after

some simplification
K[Ell—ﬁl(t+€)3/2+B(t+%)1/2]2 for logI, <logl,

R(ZUB) [ (645932 (e-5) ¥ 2148 (245 /%)

0)

I, (14 for logI,<logI; <1/K (4.7)

(1-8) ,, _€,_2(1-8) € 13/2,2
2B (e-5) 25527

(t-3 3z (t-

1
for g < 1ogIin .

where we assume a=U and b=1 as before. The result of the
above equations for 8=.9 and different values of € are
shown in Fig. 4.7. The transfer curve change is seen to be

similar to the one for the linear toe.

Noting that the input intensity range over which the
toe and shoulder of the recording medium characteristic
curve are present is usually much smaller than the range
for the linear part, we can conclude that the linear part
is responsible for most of the degradation in the output
intensity for a monotonic nonlinearity like the logarithmic

process.

4,2 Nonzero Order

The general formula relating the output intensity in

the nonzero order to the input intensity from Eqg. (2.5) is
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Figure 4.7 Logarithmic transfer function for a
recording medium with a linear shoulder

(a) binary medium €=0; (b) e=1.0
(c¢) €=0.33; (d) €=0.20
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2mkx
J

L .
{ gllogr, -f(x)]e L dx|2 (4.8)

where k is the order selected and the rest of the

parameters are explained in section 4.1.1. To find the

degradation due to each part of the characteristic curve of
the recording -medium, we can go through the same sort ofi
procedures as in the zero-order case. The specific example%
we consider here is the level slice function. It turns outE
in this case that the calculations simplifyannithedifferent%
parts of the recording medium characteristic curve do not’

have to be considered separately. This is shown in the

following sections.

: 4.2.1 Degradation of the Output Intensity Due to thei
| Nonbinary Characteristic of the Recording Medium for a

fLevel—Slice Process

The level slice function is a nonmonotonic:
i
! nonlinearity and hence we have to use a nonzero order to’
obtain this function. Since it has only one sign change in:

éits slope the first order should be used. We want to have

0 for Iin < Ia
_ 2
Io(Iin’l) = c for Ia < Iin < Ib (4.9)
0 for Ib < Iin'

For simplicity we choose c2=i%l The form of this function
m
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is shown in Fig. 4.8. With an ideal recording medium show;w

in Fig. 3.3 and a=0, b=1, the halftone screen density fromi

Fig. 3.6 is
L H
log(Ia/Ir) 0 < x < > -
Elx) = (4.10) '
| L |
i log (I, /I ) > <x <L
!as shown in Fig. 4.9. From Eg. (4.8) the output intensity
for a general recording medium in the first oxder is E
| L L j2£¥ .
: Io(Iin,l) = |f Io g[loinn-f(x)]e dx| (4.11)
and subgtituting for f(x) from Eqg. (4.10) we have
| 1 L/2 jg-TIT—‘—}E
| Io(Iin'l) = IE{J' g[loinn-log(Ia/Ir)]e dx + -
|
i 2mx (4.12)
| - [logI. -log(I,/I_)] T }|2
! L/2g 0gijn o9/l e
{
! or
!
! _ l -
[ Io(Iin,l) = ;7{g[loglin log(Ia/Ir)]
: (4.13)

2
-g[loinn-log(Ib/Ir)]} .

From this equation we can say that the output intensity is
| obtained by shifting the recbrding medium characteristic
curve by amounts log(Ia/Ir) and log(Ib/Ir) (determined from
the level slice characteristic), subtracting these. shifted
;curves from each others, and then squaring the result.

This shows how a perfect level slice function is obtained
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Figure 4.8 Level slice function
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Figure 4.9 Halftone screen density for the
level slice function of Figure 4.8
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when we have a binary recording medium with a
characteristic curve shown in Fig. 3.3. On the other hand,
for a nonbinary recording medium with a characteristic
curve like Fig. 4.1, the toe and shoulder of this curve
makes the sharp corners of the level slice function rounded
and the linear part of this curve make the rise and fall of

the level slice function linear rather than abrupt.
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CHAPTER 5

PIECEWISE LINEAR RECORDING MEDIUM i

|
|
In the previous chapter we saw how the nonbinary’

i

characteristic of the recording medium affects thel

t

nonlinear process. We conclude that for smoothi

i nonlinearities the 1linear part of the recording medium:

characteristic is the main source of degradation for the’

output of the process.

In this chapter, we design halftone screen density%
profiles that éompensate for the nonbinary characteristic;
of the recording medium. This means that Qe want to find
f(x) from Eq. (3.5) once Io(Iin,k), the form of g(-), and k
are specified. This 1is a nonlinear integral - equationi
problem which may not have a general solution. Batten andi
Everett [5-1] in their study of the control of filmi
characteristics have obtained closed form solutions to ai

similar integral equation for certain types of nonlinear:

functions. Unfortunately their method cannot be applied to

"our formulas for the important cases of logarithmic and

. exponential processes. This occurs because the integral on:

i

the right-hand side of Eq. (3.5) is raised to a power of;

two while in their equation, they only have a simple
52
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integral. So, the solutions that they have obtained for
the logarithmic and exponential processes are not

applicable in our formulation.

To simplify somewhat the above-mentioned integral
equation, we a&ssume that the recording medium has a
piecewise linear characteristic as shown in Fig. 4.4. This
assumption, as mentioned above, is a good one for monotonic
nonlinearities. Noting that monotonic nonlinearities are
possible 1in the zero order, we then have k=0 in Eg. (3.5)
leading to added simplification. With this procedure we
get an integral equation which is easier to work with at
the expense of limiting ourselves to monotonic

nonlinearities.

In the followings we attempt to find f(x) from Eq.(3.5)
with the above assumptions. The results that we obtain
work only for monotonic nonlinear functions. Compensation
methods for other forms of nonlinearities will be discussed

in the next chapter.

5.1 Halftone Screen Density Function for Monotonic

Nonlinearities Using a Piecewise Linear Recording Medium

The piecewise linear recording medium characteristic

curve is shown in Fig. 4.4. From this figure we can write

g(+) = a, when 1?inn-f(X) < logI, (5.1)
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1

9() = 1597L, /1)

{ (b-a) [logI, -f(x)l+alogI,-blogI,},
in 2 %5.2)

when logIliloinn—f(x)<1ogI2

and
g(*) = b, when log I, < log Iin—f(x). (5.3)

Noting that we are solving for monotonic nonlinearities,
£(x) can also be assumed to be a monotonic increasing or
decreasing function, depending on the type of nonlinearity.
Here, we -assume f(x) to be a monotonically increasing
function which is applicable to the increasing 1logarithmic
and exponential nonlinearities. If we let the inverse

function of f(x) be represented by h(+), then we have

Yy = lOg(Iin/Il) (5.4a)

€ = log(Iz/Il) (5.4b)
and

lOg(Iin/Iz) = y-€. (5.4¢)

Then the conditions of Eq. (5.1) through Eq. (5.3) are

equivalent to
g(+) = a, when x > hi(y) (5.5)

g(+) = Ll(a-b) £ (x)+by-aly-€)],
€ (5.6)
when h(y-e) < x < h{y)
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g(+) = b, when x < h(y-¢). (5.7)

These equations specify the characteristics of a piecewise

linear recording medium. Now, rewriting the general{

formula in the zero order from Eg. (3.6) in the form !

1 (I 0)-{lL [logI. -f(x)]dx}> (58)%
oTin’® = {g| ~gllogl;,~fix)ldx -8) |

t

and using the above requirements for g(*) in it, we get

L h(y-¢€) 1 () ' : 1
J g[loinn-f(x)]dx = I bdx+g J [ (a-b) £ (x)+by-a (y-€) ]dx
0 0 h(y-¢) :
L (5.9):
+ f adx :
| h(y) !
! ,
|

%which after simplification becomes
; \
| L b-a Y ;
1 J gllogI, -f(x)1dx = — f h (u)du+alL. (5.10)
i 0 in e Jy-e |

i P
!The integral on the right-hand side of the above equationi
|

' can Dbe simplified again as described in Appendix A. The,

. result is

' (h(y) Y

| I f(x)dx = yh(y)-(y-e)h(y-€)- I h(u)du (5.11)

| h(y-€) y-€

and when used in Eq. (5.10) gives
L b-a (¥ ' |
f gllogI, -f(x)]dx = —/— } h (u) du+alL. (5.12)

0 in € y-€



i ‘

?This combined with Eq. (5.8) reduces to

Y
_ rb-a 2 ‘
IO (Iin, 0) = [T [y_eh(u)du+aL] . (5.13)

'Taking the square root of both sides of Eq. (5.13) gives

O 1in €

. (Y
WITT 07 = 222 J h(u)du+al. . (5.14)
y-¢€

The positive sign has been chosen for the square root since
both y and h(-) take on nonnegative values. The right-hand
side of Eq. (5.14) is a function of Iinr which in turn is a
function of y through Eg. (5.4). This dependence can be

shown through

z(y) = +/I_(TI. ,0) (5.15)

o in

and when used in Eq. (5.14) results in

- y
z(y) = 22 J h(u) du+aL. (5.16)
y-¢€
To remove the integral, we can differentiate both sides of

this equation with respect to y to get

2'(y) = 22 [h(y)-h(y-e)]. (5.17)

This is a difference equation in terms of h(° ). One method
to solve such an equation is to use the Laplace transform

[5-2]. Considering the definition of y in Eg. (5.4), we
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see that for a physically realizable problem this paremeter
is nonnegative. So, we can take the Laplace transform of

both sides of Eg. (5.17) to obtain

5]

2' (s) = 22[H(s)-H(s)e " (5.18)
where
7' (s) ==2[z"'(y)]
(5.19)
H(s) = £L[h(y)].
Equation. (5.17) can be written as
_ e ., _2'(s) (5.20)
H(s) = 53 1-e" €S :

This equation gives the Laplace transform of the function

h(*). Before transforming back to obtain h(®), note that

le"®%] < 1 (5.21)

hence

_ 1 4 e €S 4 g7285 4 7388, [ (5.22)

€S

1
l-e

which permits Eq. (5.20) to be written as

H(s) = B§5[z'(s)+z'(s)e'€s+...]. (5.23)

Now taking the inverse Laplace transform of both sides of

Eq. (5.23) gives

hiy) = peglz’ (y)+z' (y-e)+z' (y=2e)+...] (5.24)
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which is easily seen to satisfy Eg. (5.16) except for a

constant. When we include this constant, the complete

solution is

hiy) = poglz' (y)+2' (y=€)4. .. I+ps (5.25)

which expresses the inverse function of the halftone screen
density in terms of the derivative of the nonlinear
function that we want to generate. To get a solution from
this formula, the nonlinear function should be
differentiable, a condition which is true for the |wusual
smooth monctonic nonlineerities in practice. On the other
hanéd, the solution for h{(-) should be monotonic and hence
invertible to give the density function. 1In the following
sections we consider specific examples and find out whén &

satisfactory h(-) exists.
5.2 Examples

In this section we consider the power, logarithmic,
and exponential transformations separately. In each case,
the desired input-output relationship will be used in the
results of the previous section to obtazin the proper

halftone screen density function.
5.2.1 Power Transformation

For this transformation we want

I.
(1, ,0) = Y(-il—n)A (5.26)
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1

%where y and A are constants and I, is defined in Fig. 4.4.;
: I. ;
- Replacing for 7%3 in Eq. (5.26) from Eq. (5.4) we get

' 1

= ve10 Y .
Io(Iin,O) = y-10 (5.27);

and combining with Eq. (5.15) gives

1l
AY .
z(y) = +y/%.1072 (5.28)
From this’
Y
z' (y) = K;-10 (5.29)
~where
A 1/2
Ky = 3°Y /2. gn1o0. (5.30)
Now we use Eg. (5.29) in Eqg. (5.25) to obtain
1 1l
€K Ay Ay (y-€)
h(y) = _5___%[10 2 4102 +...]+-§% (5.31)
1 ;
FAY ,
eK,+10 * e -paeze |
= - [1+e ~ +e +...1. (5.32)°

Noting that the term inside the bracket is a geometric.

series which sums to

we can write
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1 €K, e 2 i
hiy) = g3 - +aL . (5.33)
A€ ‘

{ l-e
%This can easily be inverted to obtain f(x) as
ﬁ 1

i aL , .b-a ~g A€

£(x) = % [ln(x—s:;)+ERI(l-e ). (5.34)

5.2.2 Logarithmic Transformation

For this transformation we want

Io(Iin,O) = K-log(Iin/Il) (5.35)‘
' where K is a constant and Il is defined in Fig. 4.4.
: Replacing for 7%3 in Eq. (5.35) from Eg. (4.4) we get
i 1
Io(Iin’o) = Ky (5.36)

|
i
H

~and combining with Eq. (5.15) gives

| z(y) = +(&y) /2, . (5.37).
| !
%From this we obtain

: Z' (y) = %Kl/Zy—l/2‘ (5.38)

|
|
EWhen used in Eq. (5.25) this gives us

Y2,  _1,2 ~1/2 aL
= ly +(y-€) oo lbpoe

h(y) =

. K
X (5.39)

‘Noting that z'(y) is a monotonically decreasing function we
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see that h(y) is not necessarily monotonic. Hence, in this
~case, we cannot invert h(y) to obtain f(x), although it

will be obtained in the next chapter by another method.
5.2.3 Exponential Transformation

For this transformation we want

in

I
I (1,0 = a(B) 71 (5.40)

where o andB are constants and I is defined in Fig. 4.4.
I.

Replacing for -fulin Eq. (5.40) from Eq. (5.4) we have
1

y
- 10 (5.41)
I (I;,,0) = a(B) .
and combining with Eq.(5.15) gives
.10Y
2(y) = +at/2(p) /210 (5.42)
From Eg. (5.42) we have
y
z'(y) = K2°10y-810 (5.43)
where
K, = % al/2.9n10- 2n8. (5.44)

Now we use above in Eg. (5.25) to obtain

Ky€ Y e 10Y7E4...1+2L

hiy) = B%gloy[slo +107%.8 b-a.

(5.45)
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It can be seen that z'(y) is a monotonically increasing
function which would make h(y) a monotonically increasing
function also. Although we cannot invert h(y)

analytically, it is possible to do so by numerical means.

5.3 Comments

Equation (5.25) gives the inverse function of the
halftone screen density function for a piecewise linear
recording medium. To obtain the density function we should
be able to-invert the function obtained from this equation.
The logarithmic process example shows that this inversion
is not possible in general. This, of course does not mean
that the compensation problem for monotonic nonlinearities
should be restricted to a certain class of such functions.
The fact is that too many restrictions are placed on our
problem to make it manageable with the mathematical
formulation presented here. In the next chapter we
consider the compensation problem in general énd try to
find new methods of compen;ating for the nonbinary
characteristic of the recording medium for both monotonic

and nonmonotonic nonlinearities.
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CHAPTER 6

DISCRETE DENSITY HALFTONE SCREEN

Several methods are available in practice for
zgenerating halftone screens with a desired density profile.
%Some methods are purely optical and involve the
;photographic recording of geometrical shadows or
.diffraction”patterns from ruled gratings. Although this

technique produces continuous halftone screens, it does not
have the flexibility to precisely produce arbitrary screens

needed for nonlinear processing.

Another type of halftone screen density profile Ehat

~can be generated in practice is a step function
approximation to the desired continuous density. These

halftone screens are generated by digital image recorders,

“plotting microdensitometers or step and repeat cameras.
Hence the theoretical accuracy available in designing the

" halftone screen density profile is limited by the practical
limitations in making the screen. This motivates the
following analysis which considers the halftone screen

density profile as a step function approximation with

discrete values. As will be shown in this chapter, this

assumption helps to simplify the formulas and allows us to
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obtzin some conclusions which cannot be drawn from the
continuous density analysis. To do so, we formulate with a
discrete density halftone screen and derive optimization

formulas for the zero.and nonzero orders.

6.1 2Zero Order

The general formula relating the output intensity 1in

the zero order to the input intensity is given by

I (I 0) = {l - [logI., -£f( )]dx}2 6.1
o'in’ - 'L Og oglin ¥ (6.1)

as expressed in Egq. (3.6). Let £(x) be approximated as
shown in Fig. 6.1, then Eqg. (6.1) can be written as

L

L
_ ol (1 _ 2 _
IO(Iin,O) = {f[JO g(logI, al)dx+JL g(logI, a,)dx+
1 (6.2)
L 2
...+JL g(loinn-aN)dx]} .
N-1

Assuming that we have equal dimensions on the x-axis, i.e.

(6.3)

2|t

“Ly = ... = Lg=Ly =

then
1
Io(Iin,O) = {f[(Ll—O)g(loinn—al)+(Lz—Ll)g(loinn—a2)+
(6.4)
.. o (Lyg=Ly_) 9 (logI; ~ay) 1}

or
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f(x)

continuous f(x) _

discrete f(x)

- X

O L,L,L, L=l

Figure 6.1 Step approximation to halftone
screen density profile
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N
i .
IO(Iin,O) = { iglg(loglin—aN)}z. (6.5)%

|

el

‘The above formula gives the output intensity in the zero
~order as a function of the discrete grey levels on the
"halftone screen and the characteristic curve of the

Erecording medium.
:6.1.1 Synthesis Problem (Zero Order)

The synthesis problem here is to find aj;, i=1,N in

'Eq. (6.5) when g(-) and the functional relationship of’

;Io(Iin’U) in terms of I, is given. Since Eq. (6.5) holdsr
' over the input intensity range, the functional relationship’
' . . m
;of Io(Iin,O) in terms of Iin holds for discrete values of
%Iin' say Iin=Ik, where k=1,K. Thus 1in discrete'form
" Eq. (6.5) can be written as
N ~ |
| _ ol - 2 ,
: Io(Il’o) = {ﬁ- ;g(logll ai)} |
: ; i=1 |
‘ E N : :
= (1 - 2 |
IO(Ik,O) = {ﬁ Eg;g(loglk ai)} (6.6)?
N
1 2
' IO(IK,O) = {f\]— Zg(logIK-ai)} .
f i=1
_One procedure to find the optimum a;'s is to minimize the
mean square error expression
™



k=1
al,az,...,aN

This should produce values of ai's that bring the

desired output intensity in the mean-square sense.

Now, since 8y7s...r8y are the different density

c < a.

pcd

la transformation that simplifies this problem and

we let :
a., = (d-c)sinzy +c
i i
this makes the values of ajslimited to the range

Note that

5E _ oE 233

9y B da; Y, i=1,N.

1

“When we minimize E with respect to y , we set

K N
min E = :E: {Io(Ik'O)-[% ;E;g(loglk—ai)]z}z. (6.7)
= i=

output

intensity in the zero order as close as possible to the

|
values,

on the halftone screen, their values should be positive and;

i

remain between certain practical limits, as expressed by

i

(6.8):

where ¢ and 4 are given constants. This makes the:

|minimization problem a constrained minimization. There is’

imbede

' the constraint in the expression to be minimized [6-1]. If:

(6.10)

(6.11)
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and combining Eq. (6.10) and (6fll) we have

dE

A 0 i=1,N (6.12)
i
or
da.
—*=0 i=1,N. (6.13)

To perform the minimization we want Eq. (6.12) to Dbe
satisfied at the same time that Eq. (6.13) is not satisfied

in the range [c,d]. To check for this condition note that

i _ _ .
§§I = (d-c)sin2y; (6.14)
which when set to zero gives
Yi = 0 = ai = C
or i=1N (6.15)
=T = =

It can be seen t%ﬁ: the only values of ais in the range
(c,d] that make§§§=0 are the boundaries of this interval,
and this can be prevented from causing any problem by
choosing ¢ and d, such that the interval [c,d] contains the

limit values for the aj's.

6.1.2 Example of A Function Possible with the Zero Order:

Logarithmic Screen

In a logarithmic process we want the relationship

= 6.16
I (1;,,0) = mlog(I; /I.) ‘ ( )
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. between the output and input intensities where m is a!

constant and I, is shown in Fig. 3.3. The corresponding

screen density profile for a binary recording medium shown

in Fig. 3.3 is obtained from Eq. (3.19) as

bay12, 0 <x < L. (6.17)

f(x) = %[a+

Hence the initial values for the ai's are

= l[a+922 x.]z, 0 < x,

i m L i <L, i=1,N. (6.18)

1l —

From Eq. (6.9) the corresponding y;'s are

e 5y I N § b-a 2_ 6.19
y; = sin V%:E Zla+="x,1%-c . ( )

Hence to find the optimum screen giving a logarithmic
relationship as in Egq. (6.16) with a recording medium
characteristic curve g(logE), we must perform the
"minimization
N

N
min E = Z {mlog(Ik/Ir)— [% Eg (logIk- (d-c)

k=1 i=1 (6.20)
ylly2l"'lyN

sinzyi-c)]z}2
with the initial values of Eq. (6.19).

A computer routine has been generated which performs
the above minimization. A subroutine which is taken from

the IMSL library [6-2] and uses a dquasi-Newton algorithm
L. | 69



i
k
!
i
i
]
{

x
l

for finding the m
is the main part
piecewise 1linear

with different slo

inimum of a function of N variables [6-3]

of this roufine. The results for a

recording medium (Fig. 4.4 with a=0, b=1);

pes in its linear part (gamma) are showni

'in Figs. 6.2 through 6.9. It is assumed that there are 30,

discrete points in the halftone screen density profile and;

I2 (shown 1in Fig

ithe density values are between 0 and 2 in these figures.
' It is also assumed that the values of 1log Ir (shown in‘

| Fig. 3.3) lie in the middle of the values of 1log Ll,and 1og1

. 4.4). Note that the plots of the

input-output curves are semi-logarithmic and hence the:

ideal result is a

curve 1is seen to

error.

To examine

straight 1line. The optimized output

approximate the ideal result with a small

how the discretization affects the

degradation of the output, we have computed the degradation

from Eq. (6.5) for

a recording medium as above with a gamma

éequal to one and for different numbers of points in the

halftone screen density profile. The result is shown in

-Fig. 6.10. Figure 4.6b is a similar result with a

' continuous density profile, and comparing it with Fig. 6.10

shows that for

quite well.

6.2 Nonzero Order

higher values of N the two graphs agree

The general

formula relating the output intensity in

.. .10
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Figure 6.2 Logarithmic transfer function for a piece-
wise linear recording medium with gamma=1.0

(a) ideal; (b) degraded; (c) optimized
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Figure 6.3 Halftone cell shape corresponding to Figure 6.2

(a) ideal; (b) optimized
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Figure 6.4 Logarithmic transfer function for a piecewise
linear recording medium with gamma=3.0
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Figure 6.5 Halftone cell shape corresvonding to Figure 6.4

(a) ideal; (b) optimized
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the nonzero orders to the input intensity is

_.2mkx

L 7T 2
I (I._,k) =|{— I gllogI, -f(x)]e dx}| (6.26)
o 0 in

from Eq. (3.5a). Using a quantized approximation to £f(x),

as in the zero order case we can write (from Fig. 6.1)

e 32X (6.27)
IO(Iin,k) = |f[J 0 g(loinn—al)e dx+
L2 j22fx L jzﬁﬁx R
J g(logI, -a,)e dx+...+[ g(logI., -a )e dx]|°.
in 72 in "n
L Iy-1

For simplicity we let

g(loinn-ai) = g5 i=1,N. (6.28)
Then
2ka1 2tk 0 2TKkL
y i i
_1 L
I (I;,/K) = —53 |9, (e -e +...+gy (e -
417k
. 2TKL
J N-1 2
e L ) |
jZNk-O j21rk(L1-0) (6.29)
1 | L L ‘
= g,-e (e -1)+...+
4 2k2 1
jznkLN_l jznk(L-LN_l)
gy L (e L —l)|2

Now from Eqg. (6.3)
-L, = L,~-L, = = L-L = E
= Ly-Ly = ... = = Jr (6.30)

so when Eg. (6.30) is used in Eq. (6.29) we have
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jZTTkLl 5 1
_ 1 L L 2.
j21rk
le” N 112

Note also that

L. =

N’ LI ) r i iﬁ, 1l = l,N’ (6032)

consequently Eg. (5.31) can be written as

21k

J j21Tk(i—l)
e N—llz-

L |2

N
' g(loinn—ai)e
i=1

(6.33)
Equation (6.33) gives the output intensity in any nonzero
order k in terms of the input intensity, the characteristic

" function of the recording medium and the discrete grey

levels on the halftone screen.

6.2.1 Synthesis Problem (Nonzero Order)

The synthesis problem here, as in the case of the zero:

order, 1is to determine suitable aj values from Eg. (6.33).
The procedure that we take is the same as the one for the

zero order. Namely, we minimize the expression

M j2rk
1 N 2
min E = 2—;1 W le” N -1)2.
al,a2,n-.,aN
N j2ﬂk(i—l) (6.34)
2
IZ g(logI -a.)e L |2] .
=1
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transform the problem to the m1n1mlzat10n

[To 11m1t the resultlng den51ty values as in Eq. (6 8) ;;%
l

!
I
P
|

|
[

: M 2nk
' L 2
min E = :E: {Io(Iin,k)-—~%—7|e -1]“.
m=1 A1"k ;
Yqr¥pr---r¥y (6.35)
|:E:g[loglm—(d—c)sinzyi—c]e |2}2.

i=1

1

| The y. 's are related to the a;'s through Eg. (6.9). To
1 i

?initialize the values of the yi's for this minimization

:procedure, we use the density values obtained for the

screen when the recording medium is binary.

' 6.2.2 Example of a Function Possible in the Nonzero Order:

" Level Slice Screen

To obtain a level slice transformation the first order

is a suitable choice. For this function we want

for Iin < Ia

o
Nh‘

a in

i

0 for Iin > Ib
and this function is shown in Fig. 4.8. The density
profile giving such a relationship for the binary recording

medium shown in Fig. 3.3 is

A

»®

A
N £

1og(Ia/Ir) for 0 <

£ (x) (6.37)

()

L
1og(Ib/Ir) for 5 < x <
from Eq. (4.10). The corresponding density levels in the
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v

'discrete screen are

A
N2

log(Ia/Ir) for i
a. = (6.38) !

log(Ib/Ir) for i>

N 2

'Using Eq. (6.38) in Eg. (6.9), we have

1 1eg9(I /I)-c '
sin d—c for i

sin_]"Jlog(Ib/Ir)—C for i N
d-c 2 ¢

A
N 2

(6.39)
i

|v
I

With the initial values for yj's as above we then want to
minimize
M jZl
1 N
min E = Z {1 (1_,1)-—=|e " -1|°.
=1 o m 4ﬂ2

Yyreer¥y N (67 40)

S~ E g[logIm-(d-c)sinzyi-c]|2}2 .
i=1

A computer routine similar to the one for the

e e e e

logarithmic process has been generated to perform the above
minimization. With the same assumptions about the
recording medium and the halftone screen as with the
logarithmic process (section 6.1.2), the result is shown in
.Figs. 6.11 through 6.18. It is seen that the optimization
procedure is successful in restoring the shape of the level
slice function, but cannot do much for the edges with
finite slope in the degraded response. As explained in
section (4.2.1), the finite slope edges are a direct

consequence of the characteristic curve of the recording

79



I 1 [jlllll — T T T TTTT
(a)

A I T T I I O I O A B

TTT T T T TTTTT P T TThTnd

NN
10

100

Figure 6.11 Level slice transfer function for a piecewise
linear recording medium with gamma=1l.0
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Figure 6.12 Halftone cell shape corresponding to
Figure 6.11
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Figure 6.15 Level slice transfer function for a piecewise
linear recording medium with gamma=5.0

(a) ideal; (b) degraded; (c) optimized

w—n
—
”
—~—

N

T T T T T T T I T T T TTTITTTTihld

I T I I

(b)
(a)

|

TTT 11T TTTT DTl

I N T T T AN T N T Y )
0 L
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(a) ideal; (b) optimized

82



IOUT
| 1 TTTTT T T T T 1777

(c)
(b)

Tt r T rrTTrTTT T T T T T I T

N T T O T A Y O O |

| | L1 1l L 1 Lt

0 0 L
AN
I,

Figure 6.17 Level slice transfer function for a piecewise
linear recording medium with gamma=10.0

(a) ideal; (b) degraded; (c¢) optimized

f(x)
-] S S N N O O

P11 il

(b)
(a)

i

rTrgqrirrrrrrirrirered

O O O

I T T T O T W T W W N N O A T
o .

r

Figure 6.18 Halftone cell shape corresponding to
Figure 6.17
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mediam and cannot be improved.
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CHAPTER 7

EXPERIMENTS WITH HALFTONE SCREENS

7.1 Halftone Screen Fabrication

To generate a halftone screen we must plot a given

‘density profile (such as those obtained in Chapter 6) on
- photographic film., To do so, various methods have been
‘tried in previous work. Some more recent methods are:

.optical filtering of binary gratings by Strand [7-1], use

of a plotting microdensitometer by Dashiell and Sawchuk

[2-1], and moving a slit grating on top of the photographic

film with repeated exposures as done by Liu, Goodman and

Chan [7-2].

We have used a computer controlled Dicomed Digital.

- Image Recorder to generate our screens. This machine can:

plot up to 4096x4096 discrete points in a 4"x4" areas.
There are 256 different intensity levels for each exposure

setting. To plot any pattern on the film with this

‘machine, an input matrix of numbers between zero and 255

representing the digitized pattern is read into the
computer. Before doing so, we have to find out what is the

relationship between those numbers and the final resulting

‘density on the film. To find out this relationship a grey

.85



glevel test pattern was plotted by the Dicomed on Kodak!

350-115 film (the same film used for the screens). The

exposed film was then developed for the recommended time in
D-19. developer. The densities on the test pattern were
then measured on a Macbeth transmission densitometer. This
‘procedure was repeated for different exposure settings on
the Dicomed. That resuits in a series of curves which
;represents the final density on S0-115 film versus the
:input numbers to the computer for each exposure setting on
' the Dicomed. From these curves one that covered the
density range of our halftone screen was selected. This
curve was then used as the basis for fabrication of that

screen.

As a check on the calibration, a test pattern was
generarated on a separate film with the same exposure
setting of the Dicomed each time a new screen was made. If
any deviations were observed, the exposure setting was

re-adjusted and the experiment was repeated.

7.2 Experiments with the Logarithmic Screen

To make a logarithmic screen experimental data for the
characteristic curve of the standard LCLV (45° twisted
nematic hybrid field effect) was gathered. This data was
then used in the optimization routines for the logarithmic
process (sec. 6.1.2) to obtain the density profile of the

optimized screen. The corresponding halftone screen was
86



2later generated using the method described in section 7.1?
i The screen was then used in a real-time experiment to test%

" its effectiveness.
7.2.1 Logarithmic Screen Fabrication

The experimental set up to determine the LCLV
characteristic curve is shown in Fig. 7.1. With.no input,
‘the control surface of the 1light valve is illuminated,
.directly by an incoherent arc lamp source. Readout was
performed coherently at 632.8 nm with a simple optical
'filering system. In this case, no spatial filter was used
in the filter plane. The resulting output intensity
transmittance versus input intentisy is shown in Fig. 7.2.
By taking the square root of the output intensity
transmittance valves, and the 1logarithm of the input
intensity values a plot of the amplitude transmittance vs.

log exposure curve of the device was obtained. This is

shown in Fig. 7.3 after normalization.

A discrete version of this graph was then fed to the
computer routine for generation of the optimized density
profile. The result is shown in Fig. 7.4. There are 16
discrete points in this graph. Using these values in the
procedure of section 7.1, the correspondihg halftone screen
was made. Recalling that we can plot 4096 points over 86

mm with this method, the halftone screen has
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Figure 7.2 LCLV input-output transfer characteristic
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Figure 7.3 Amplitude transmittance vs log exposure

characteristic for LCLV of Figure 7.2
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4226 X 861mm = 3 lines/mm

This halftone screen was then placed in the input
plane of the experimental setup shown in Fig. 7.1. Note
that the logarithmic screen was designed on the assumption
of wusing the zero-order of the diffraction pattern of the

halftoned picture. A simple pinhole spatial filter at the

position of the zero order in the filter plane was used to

pick out this order. The resulting transfer function is

-shown in Fig. 7.5. It approximates a logarithmic transfer

~function with less than 5% error over one decade and less

than 10% error over another decade.

" 7.2.2 Logarithmic Screen Performance

To test the effectiveness of the 1logarithmic screens

~in another experiment, two crossed multiplicatively

combined Ronchi rulings were used as an input picture for

the experimental setup of Fig. 7.1. The period of these

~rulings was approximately 3 mm, much higher than the

halftone screen period of 0.33 mm. The spectrum in the

i filter plane is shown in Fig. 7.6a. Next, the 1logarithmic
"halftone screen was placed in contact with the rulings.

' The filter plane spectrum 1is shown in Fig. 7.6b. The

difference 1in Fourier spectra between multiplicatively
combined gratings and additively combined gratings obtained
by real-time 1logarithmic filering is as follows. The

additive spectrum components lie only on the x and y axis
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(a)

(b)

Oth st 2nd

Figure 7.6 Fourier spectra of crossed gratings

(a) multiplicative spectrum
(b) additive spectrum (result in the
Oth order)
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around the zeroth diffraction order in the frequency domain}

iwhile the multiplicative spectrum contains cross-term.
| ;
foff-axis components. Figure 7.6 also shows the higher
:diffraction orders that arise due to halftone screen. For .
simple logarithmic processing, these highér orders would be

"eliminated by spatial filtering.

The two-dimensional point logarithm obta@ned here in:
ireal time is particularly useful in a signal-processing‘
Etechnique called homomorphic filtering [7-3,7-4].
| Homomorphic filtering 1is useful for processing multiplied
;or convolved signals, with specific applications in
'radiogfaphy (7-4,7-5], speech processing, and image

- processing [7-3].



CHAPTER 8
DIRECT METHOD FOR OBTAINING NONLINEAR FUNCTIONS

IN REAL TIME

Although the halftone screen method is a flexible way
to obtain different nonlinear functions, it 1is often
desirable to bypass the halftoning step and obtain the
nonlinearities directly. By eliminating the halftone
screen we rely on the nonlinear characteristic of the
recording medium to generate an overall nonlinearity. Tai,
Cheng and Yu [8-1] have used the nonlinear portion of the
photographic film characteristic curve to dJenerate a
logarithmic function. Because their method uses

photographic film, it cannot be implemented in real time.

In this chapter, we discuss how the nonlinear
characteristic of a special birefringent liquid crystal
device can be used to produce nonlinear transformations in
real time. In particular, we consider implementation of
the analog-to-digital conversion nonlinearity by this

method.
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6.1 Birefringent Liquid Crystal Device

The liguid crystal light valve described in chapter
two can be used as a pure birefringent device. 1In this
case no twist is present in the alignment of the 1liquid
crystal with its substrates. As the input light changes
the birefringence of the liguid crystal layer through the
photoconductor, the output beam goes through a series of
phase changes. This, in turn, is transformed into output
intensity variations by the crossed polarizers. The output
intensity variaion with respect to the applied voltage to
the 1liquid crystal (no input light) is shown in Fig. 8.1,
and its variation with respect to the input intensity is
shown in Fig. 8.2. It is seen that the optically
controlled device characteristicrcurve has fewer intgnsity
peaks than the electrically controlled one. This is due to
the saturation of the photoconductor material at high input

light intensities.

The direct nonmonotonic nature of the device is useful
for some limited approximations to obtain nonmonotonic
functions. Different parts of the curve shown in Fig. 8.2
can approximate different polynomials. Each period of this
curve also approximates a sine-squared function. A
particularly useful function 1is the optical parallel
analog-tc-digital conversion function which is discussed in

more detail in the following.
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Figure 8.1 Electrical response of the pure
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Figure 8.2 Optical response of the pure
birefringent LC device
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8.2 Real-Time Parallel Analog-to-Digital Conversion

The process of analog-to-digital (A/D) conversion is

the representation of analog (continuous) information in

digital (binary) form. For one-dimensional signals any |
coding procedure which assigns to each signal value a groupi
of digits (bits) performs such én operation. For |
two-dimensional signals (images) we must find a method%
which assigns to every continuous-tone image a number ofi
binary images (bit planes). Each binary image records theg
value of one particular bit of the quantized intensity atg
each image point. Fig. 8.3 shows how the A/D conversion
bit planes may be obtained from the device characteristic.

For simplicity, it is assumed that the device has a uniform%

sine squared characteristic over two periods as shown in

| Fig. 8.3a. By thresholding the output at 1/2 we get ai

|
binary function wich can serve as one bit of a three bit:

binary code. The other two bits are then ob%ained by!

attenuating the input intensity to effectively get the!
first cycle and first half-cycle of the characteristic&

curve. These curves are then thresholded at the 1/2 1level:

as shown 1in Figs. 8.3b and c. Note that the binary

functions in Fig. 8.3 are the three bits of a reflected

' binary or grey code corresponding to any continuous input

iintensity value between 0 and 8. To obtain all these three:
: : ]

ibits in parallel we can place an array of 3 periodically?
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Figure 8.3 Analog-to-digital converter bit
planes for three bit Gray code
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repeated attenuating strips, which can attenuate by factors:
of 1, 1/2, and 1/4 over the write surface of the LC device.
If the period of this array 1is much smaller than the
inverse of the maximum spatial frequency of the input
picture, then corresponding to each input intensity value
we have three outputs. These outputs are the three
sinusoidal curves of Fig. #8.3. By placing an array of
electronic thresholding devices in the output plane, we can
sense the three bits at the same time all in paresllel as
shown in ‘Fig. 8.4. Similar ideas have been used for
.electro-optic A/D conversion [8-2,8-3], but none have been

achieved in an optically controllable device.

8.3 Analog-to-Digital Conversion Experiment

In this experiment we want to obtain the bit planes of
an input picture in real time as explained above. The
first step is determination of the response curve of the
ligquid crystal device. From this curve we obtain suitable
quantization and thresholding levels for the actual A/D

experiments.
8.3.1 Device Transfer Function

The experimental set up to obtain the input output
characteristic of the pure birefringent LC device is shown
in Fig. §.5. The input light source is a mercury arc lamp.

A pair'of fixed and rotatable polarizers in the input light

100



Readout System

&'E é 7Po|urizcr .
AN N ()
;'= R ‘e,
: ' /
§§5 § ot ‘Yo
AR Hs
/ §§ ) Analyzer ., :
Low LCLVv Photodstector
Spatiol 3 Periodically Array
Frequency Repeated Electronic
Input Attenuoting Strips Threshold

Figure 8.4 System for parallel A/D conversion
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beam provide a means to vary the input 1light intensity;;
The Corning short wavelength cut filter eliminates
wavelengths shorter than 493 nm to make sure that the write
beam. wavelength is within the sensitivity range of the C4dS
photoconductor. The read light source is another mercury
arc lamp. Due to the dispersion of birefringence in the
liquid crystal, it should have a narrow spectral bandwidth.
A cCorion interference filter with peak wavelength 434.7 nm
and bandwidth of 18.4 nm was used to meet this requirement
for the read light. With no picture in the input plane the
output intensity varies in a quasi-sinusoidal fashion with
increasing input illumination due to the changing
birefringence. If the amount of birefringence varied
linearly as a function of the write beam intensity, one
would expect a strictly sinusocidal variation of the output
intensity. However, a number of factors, including the
optical nature of the liquid crystal and the photoconductor
characteristic properties affect the output characteristic
and produce an approximately sinusoidal output whose
frequency varies (monotonically) with input intensity. The

response curve obtained is shown in Fig. 8.6.
8.3.2 A/D Experiment

Although the theory behind the A/D conversion assumes
a strictly periodic response characteristic, it is in

general possible to produce the desired bit planes using
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the quasi-periodic response curves of the actual devices.
The trade-off that must be made is that one must resort to
a non-uniform quantization. The quantization levels used

in this expriment are indicated in Fig. 8.6.

There are no attenuating strips on the LC device used
in this experiment. Instead, the bit planes were generated
serially. Also, the output was recorded on hardclipping
film rather than a thresholding detector array. A test
target was generated consisting of an eight gray level step
tablet. The gray levels were chosen to match the
quantization levels shown in Fig. 8.6. This test object
was imaged onto the LC device and the output was
photographically hardclipped. This produced the 1least
significant bit plane of a three-bit A/D conversion. Next
the write illumination intensity was decreased, effectively
rescaling the device response curve to generate the next
bit-plane. The last bit-plane (most significant bit) was
obtained by attenuating the write intensity again and
photographing the output. The input and three bit planes

thus generated are shown in Fig. 6.7.

Although the output contains some noise,. the
expériment illustrates the principle of real-time parallel
incoherent optical A/D conversion. It was found later that
the computer generated gray scale was somewhat noisy due to

the grain of the high contrast film used. It is possible
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Figure 8.7

Direct analog-to-digital conversion.
The eight level analog input is shown
at the top. Below is the binary coded
output in the form of three bit-planes
of the Gray code
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! that future experiments with cleaner inputs and improvedi
éperiodic light valves should produce better experimental

results and more bits of quantization.

These results represent the first real-time parallel
A/D conversion to be performed on two-dimensional input.
The A/D conversion bit rate potential can be estimated from
typical parameters of devices currently available. The
important parameters are device resolution which is
typically 40 1line pairs/mm, device size which is on the
order of 50mmx50mm, and speed which is generally designed
for 30 frames/second. Multiplying all the parameters
" together implies an A/D conversion rate of l.2x108 points

processed per second.
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CHAPTER 9
NONLINEAR PROCESSING USING INTENSITY-TO-SPATIAL

FREQUENCY CCONVERSION

In the direct method of nonlinear optical processing,
described in the previous chapter, the halftone screen is
eliminated at the expense of losing versatility. In this
chapter we discuss a method of real-time nonlinear optiqal
processing which does not need any halftone screen. The
method operates by transforming intensity to spatial
frequency before performing the nonlinear operation.
~Although we still need a coherent optical processor for
this method, its advantages of eliminating the halftone
screen and flexibility makes it one of the most promising

methods for real-time nonlinear optical processing.

In the following sections we describe a new 1liquid
crystal device capable of intensity-to-spatial frequency
transformation and describe how this property is wused ¢to
obtain an overall nonlinear transformation of intensity.
We also consider the processing limitations of this method
and present experimental results showing a real-time level

slice nonlinearity.
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{9.1 Variable Grating Mode (VGM) Liquid Crystal Device

In chapter two it was mentioned that conduction
effects will predominate if the conductivity of the liquid
crystal is sufficient. In this situation, with certain
conditions 6f thickness, voltage, frequency, etc., stable
domains are formed [9-1 to 9-3]1. These domains are like a
volume phase grating structure. Figure 9.1 shows a picture
of such domains taken through a polarizing microscope. The
spatial period of these domains may be extremely fine. The
period of the grating shown in Fig. 9.1 is approximately 18
um. The interesting property of these domains is that
their period is a function of the applied voltage. It has

"been observed that the relationship between the spatial
frequency of these domains and the bias voltage is linear
over a voltage range of 20 to 60 volts and spatial
frequency range of 106 to 700 1line pairs per milimeter
[9-3]. By adding a photoconductor layer to the liquid
crystal the period of the domains should be a function of
the 1light intensity £falling on the photoconductor. The
ligquid crystal and the photoconductor 1éyers can be
arranged in a form similar to the standard LCLV described
in Chepter 2 to read out the phase grating variation in
reflection. Another option is to simply sandwich the
photoconductor and the liquid crystal layers together and
use different wavelengths for the write and read beams.

The latter configuration has been employed in the device
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Figure 9.1 VGM domain structure

110



"used in our experiment as shown in Fig. 9.2.

9.2 Nonlinear Processing with the Liquid Crystal Variable

Grating Mode

The VGM liguid crystal device can be considered to be
an intensity-to-spatial frequency converter capable of
operating on two-dimensional images. When an input image
is 1imaged onto the photoconductor surface of this device
the intensity variations of the input image change the
local grating frequency. If we read out in coherent light
and Fourier transform the read-out image, then different
spatial frequency components of the encoded image would
appear at different locations of the frequency plane as
shown in Fig. 9. 3a. This means that different locations in
the frequency plane correspond to different intensity
values in the input image. Thus, by placing appropriate
spatial filters in this plane we should be able to obtain
different transformations of the input intensity in the
output plane as depicted in Fig. 9.3b. This figure
describes the variable grating mode nonlinear processing
-graphically. The input intensity variation is converted to
spatial frequency variation by the characteristic function
‘of the VGM device (upper right-hand quadrant). This
spectrum is modified by a filter in the Fourier plane
(upper left-hand quadrant). Finally, the intensity 1is

observed in the output plane (lower left-hand quadrant).
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Taken together these yield the overall nonlinearity (lower

right-hand quadrant). Design of a proper spatial filter

for a desired transformation is a relatively easy task
compéred to the design of a halftone screen. The only
parameter available in the design of the spatial filter is
the location in the frequency plane. For example, for a
level slice transformation a simple slit that passes
certain frequency bands will be adequate. For a better
understanding of the nonlinear processing with VGM, we now

formulate this process in mathematical terms.

9.3 Variable Phase Grating Analysis

Assume that we have a phase grating (periodic array of
phase shiftihg elements) extending to infinity in both the
x and y directions. Let g(x,y) be the complex amplitude
transmittance of the phase grating. Since the grating
extends to infinity we can assume that g(x,y) is a periodic

function of x and write it as a Fourier series expansion

g(x,y) = 2: gnexp(j2nnx/L) (9.1)
n=-cw
where
1 L
Sh T T I g(x,y)exp(-jZnnx/L)dx (9.2)
0

and L is the period of the grating. Because we assume that
the grating extends to infinity in the y-direction, g(x,y)

is not an explicit function ofy.

114



Now we assume that there is an aperture a(x,y) in the:

input (x-y) plane where

1, for (x,y) inside the

a(x,y) = aperture (9.3)

o, otherwise

Then the transmittance function is
+

t(x,y) = g(x,y)-a(x,y) = a(x,y)* 2 c,exp(j2mnx/L). (9.4)

n=—00
If this aperture is placed in the input plane of a coherent

optial processor, then in the Fourier plane we get

A +o0
Ty fy) = AlEg £ ) s D) e 8 (Eg-RiEy) (9.5)
n=-o
where
T(fy,fy) = #lt(x,y)}
é(fx’fY) = 3{a(XIY)}
or
+o0
= - .
T(fy,£,) = n:;:,mgng(fx rrEy) - (9.6)

For simplicity, we assume that the aperture is square with

dimension bxb. Then

a(x,y) = rect(%)rect(%) .(9.7)
and’
A(f,,£,) = bsinc(bf,)sinc(bf,) . (9.8)

Hence
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+4o0
_ 2_ . _n .
?_(fx,fy) = ngm Snb s:.nc[b(fX f)]s:an(bfY) (5.9)

and in the Fourier plane we have different diffraction

orders each of which is a two-dimensional sinc function.
Note that if b is large [9-4]
lim b sinc bt = §(t) (9.10)

b-)-oo

and we have

4+
n
2 c 8 (£ D gy

n=-w

(9.11)

+o0
n
n=-co
Assume that we use a filter H in the Fourier plane that
passes the first order only. Then the amplitude in the

output plane is

Vix,y) = % e 8 (Fy-f £ H(£y, £))
1 (9.12)
The output intensity is then
_ 1 2
I (xqr¥g) = lc,B(F,0)] (9.13)

and the value of the intensity at any point in the output
plane is related to the value of the filter function at the
frequency (%,0) in the Fourier plane. Now if we omit the

assumption of b-+w the output amplitude is
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- 2 . .
V(xg:¥g) =5 l{Elb San[b(fx—%)]-s1nc(bfY) (9.14)
"H(fy, £y) ).
This assumes that the orders are nonoverlapping, a

condition which occurs if Db>>2L. For an aperture of

general shape

1

-1
!(XO,YO) = % {Elé(fx_f'fY)E(fX'f }. (9.15)

Y)
If b is the average dimension of the sperture, then A will

have a width on the order of 2/b as in the case of the

square aperture. The output intensity in this case is

I (xge¥g) = 18 NI AR T ER(E,, £ T2, (9.16)

Now, if H(f ) is slowly varying, we can consider it to

x'Ey

be essentially constant over the width of A. Thus we can
write

= -1 _;I'_ l. 2

IO(XOIYO) = IW [clé(fx L’fY)E(L’O)]I

1 o=l 1 2
|H(£, 01 " [cAlE -, E)]|

R

(9.17)

I

1L, 010 a(xg,vg) exp(-32mx /1) | 2

1 2
clla(xo,yo)'g(f,0)|

Going back to the definition of a(x,y) in Eq. (6.3) we have

clIH(i,O)lz, for (x4,Yg) within the
( ) - aperture (g9, 18g)
Io X0¥p

0 , otherwise.
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Thus, this filtering process produces an aperture in’

the output plane corresponding to an aperture a(x,y) in the.

input plane modulated by the phase grating with period L.

The output intensity is related to the grating period:

through the filter function given by Eq. (9.18).

The above analysis can be used to estimate the
processing 1limitations of the VGM device. The fundamental
question to be answered is how large the smallest picture
element, or pixel, must be with respect to the VGM grating

frequency.

Suppose that the usable spatial frequency range over
which the VGM device can operate 1is Avo. To avoid
crosstalk from higher orders the VGM device can only be
operated between the first and second diffraction orders of
the lowest frequency used. If this lowest frequency is

denoted by Vg then we have

V.= 2v_ - Vv =V (9.19)

és shown in Fig. 9.4. Now if the number of intensity
levels that we wish to distinguish is N, then the Fourier
transform of any one aperture represented by 2Av in
‘Fig. 9.4 must be contained within a region of width vo/N in

the Fourier plane. So we must have

28v < v /N . (9.20)
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1f the pixel width is b then the width of 1its Fourier

tranform is 2/b which means

v = 2 (9.21)
Combining Eq. (9.20) and (9.21) we have

2 < v /N (9.22)
or

bv, > 2N. (9.23)

This requires that the pixel size spans 2N periods of the
lowest grating frequency if N grey levels are to be

processed.

As an example if Vg =200 cycles/mm and N=50, then
each pixel must have a size b=0.5 mm. Thus if the device
has a 56 mm square area a 100x100 pixel image could be

processed.

.4 Experiment with the VGM Device

In this experiment we show the ability of the VGM
device to generate a level-slice nonlinearity. The
experimental setup is shown in Fig. 9.5. The input picture
is illuminated by an arc lamp source and imaged onto the
photoconductor surface of a VGM device which has an
existing phase grating structure due to a bias voltage.
The grating period is localiy modulated by the input
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ipicture intensity, and this modulation is mapped into a;
position along a line in the spétial filter plane. a red‘
filter ensures that only the laser beam enters the coherent
optiéal processor. Small circular annuli of varying radii
are used to pass certain spatial frequency bands. This in
effect allows certain input intensity ranges to appear in
the output. Figure 9.6 shows the input and level sliced
output pictures. Figure 9.6a shows 3 positive print of the
original image as photographed on the imaging screen. A
negative of the original was used in the experiments.
Figure 9.6b shows a low intensity level slice corresponding
to a VGM periodicity of 120 lines/mm with approximately 3%
bandwidth. In Fig. 9.6c another level, corresponding to
153 lines/mm, 1is shown. Figure 9.64 at 236 lines/mm,
illustrates the interference from second harmonics. Weak
second harmonics of the low-intensity image slice
corresponding to 118 lines/mm can appear in the 236
lines/mm level slice. In Fig. 9.6e, a broader slice of
approximately 11% bandwidth was taken centered about the
level corresponding to 140 lines/mm. This picture may be
compared with the previous slices and particularly with the
slice shown in Fig. 9.6c. Finally, Fig. 9.6f shows a very
high intensity slice at 440 lines/mm of 10% bandwidth.
Three grey 1levels may be seen simultaneously; these
correspond to the superposition of three wide intensity

slices.
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CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH TOPICS

In this dissertation we have presented three different
techiques - for performing nonlinear optical processing in
real time. These methods specifically use the following
ideas and devices to obtain nonlinear transformetions: 1)
halftone preprocessing with a real-time image transducer;
2) nonlinear characteristics of a real-time device; and 3)
capability of a real-time device to produce

intensity-to-spatial frequency conversion.

To implement halftone nonlinear processing in real
time we have replaced the conventional photographic
hard-clipping recording medium with a real-time image
transducer. The nonbinary characteristic of the real-time
device degrades the output of the process. A detailed
anélysis has been made and we have found exact methods for
predicting such degradations. The analysis is general and
works for any recording medium characteristic curve shape
and any halftone screen cell shape. It hés been shown that
for some monotonic functions it is possible to obtain exact
compensation for the nonideal characteristic curve of the
recording medium. The compensation problem has been solved
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[ 3
| in general by an approximate method which obtains the!

halftone screen density profile by minimizing the
"difference in a mean-square sense between desired and
‘degraded outputs. The advantages of the halftone method
"are its flexibility to produce a variety of nonlinear
transformations and that it is a well-explored technique.
Its limitations are the soft threshold characteristic of
the real-time device and necessity for accurate high
space-bandwidth product halftone screens. A real-time

logarithmic transformation via this method has been shown.

The inherent nonlinear characteristics of a special
‘real-time birefringent 1liquid crystal device were used to,
obtain direct nonlinear transformations. This method" is
particularly interesting because it may be done with
incoherent light and the space-bandwidth product of the
image to be processed can be as large as the
space-bandwidth product of the device. However, it is
limited because the type of nonlinearity achievable depends
on the nonlinear shape of the characteristic curve of the
real-time device used. A real-time three-bit parallel
incoherent analog-to-digital conversion nonlinearity. has

been obtained by this method.

The property of the liquid crystals to generate, under
certain conditions, a volume phase grating whose period

varies with the applied voltage was found suitable for
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nonlinear optical processing. It was shown that a‘
real-time device with such property is capable of
intensity-to-spatial frequency conversion which can be used
to generate nonlinea; transformations. Like the halftone
method this method is very flexible and can generate many
nonlinearities. As in the halftone method, the. carrier
frequency modulation ‘required limits the space-bandwidth

product of the picture to be processed. A real-time

level-slice nonlinearity was obtained by this method.

Several topics seem worthy of further effort. Our
analysis for the_ halftone process shows that although‘we
can achieve good approximations to the desired nonlinear
transformations with nonideal devices, a device with sharp
_threshold characteristics can improve the results quite
significantly. Research for real-time image transducers
with such a characteristic should continue so that the full
potential of the halftone method can be achieved. Findiné
new methods to design accurate, high space-bandwidth

product halftone screens is still a problem.

The capabilities of direct nonlinear processing are
not yet fully understood. New applications for the
existing device éharacteristics remain to be found and new
devices with specified characteristics are to be developed.
One obvious extension 1is to achieve a parallel A/D .

conversion nonlinearity with more than three bits. 1In this
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case we need a device which has four or more intensig;]

'

peaks with very regular period in its transfer!

characteristic. Other parameters like wavelength and the

ibias voltage could be used to give extra dimensions to the
gwhole process. For example, different nonlinear
%characteristics could be obtained at the same time for
Edifferent wavelength. The immediate use of such a property
iis in A/D conversion where we then can obtain different bit

. planes in different colors.

In the area of the VGM device the theory presented in
Chapter 9 should be extended to explictly consider entire
~images as a whole rather than just single apertures. This
%way the interaction of all apertures which comprise an
~image will be taken into account. Another theoretical
"question to be addressed concerns the fact that the VGM
‘devices do not produce strictly periodic phase gratings as
.can be seen in Fig. . This results in a blurring of the
"diffraction orders. This in turn affects the number of\

gray levels that can be processed with a given device and a
fixed image space-bandwidth product. The thfee dimensional
nature of the phase grating structure observed in the VGM
ifdevice is another factor that should be considered in a

future analysis of this device.
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APPENDIX A

To simplify

f h(y)
h(y-¢)

f(x)dx

where h(.) is the inverse function of f(+), let
_ 1 —
u=f(x) =>x=f “(u) = h(u)

then

f (%)

X h(y-e) ==> u flh(y-e)] = y-¢

and

x=h(y) =>u=f(X) f[h(Y)] =Y
also du=f'(x)dx but since x=h(f(x))

1 1

f! (X)'h' [f(X)] =1 or f! (X) = h' [f(x)] = R’ (U)
=> dx = h' (u)du

hence

J h(y)

Y
f(x)dx = f u-h' (u)du.
h(y-¢) y-€

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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o < = 0 4+ i e o — ey s

Usin Eﬂ£égratio
[ h(y)
h(y-€)

£(x)dx

n by parts in this integral we have

n

y Yy
uh(U)\ - J h(u)du
y-€ y-€

)

' Y
yh(y)-(y-€)h(y-€)- f h(u)du
y-€

129



REFERENCES

[1-1] Special issue on Optical Computing, Proc. IEEE,

Vol. 65, January 1977.

[(1-2] W.K. Pratt, Digital Image Processing, Wiley~-

Interscience, New York, 1978.

[1-3] J.W. Goodman, Introduction to Fourier Optics,

McGraw-Hill, New York, 1968.

[1-4] M. Marquet and J. Tsujiuchi, “Implementationﬁ of

Particular Aspects of Dehalftoned Images," Optica Acta,

Vol. 8, pp. 267-277, 1961.

[1-5] H. Kato and J.W. Goodman, "Nonlinear Filtering in
Coherent Optical Systems Through Halftone Screen

Processes," Applied Optics, Vol. 14, pp. 1813-1824, 1975.

[1-6] S.R. Dashiell and A.A. Sawchuk, "Optical Synthesis

of Nonlinear Nonmonotonic Functions," Optics

Communications, Vol. 15, pp. 66-70, 1975.

[1-7] A.W. Lohmann and T.C. Strand, "Analog-to-Digital

Conversion of Pictures with Optical Means," Proceedings

Electro-Optics/International Laser Conference 1975,

130



Anaheim, Calif., pp. 1l6-21, 1975.

[1-8] H-K. Liu and J.W. Goodman, "A New Coherent Optical

Pseudo-Color Encoder," Nouv. Rev. Optique, vol. 7,

ppo 285—289, 19'}6.

(1-9] B.J. Thompson, "Hybrid Processing Systems-An

Assessment," Proc. IEEE, Vol. 65, pp. 62-76, 1977.

[1-1u] D. Casasent, "A Hybrid Image Processor," Optical

Engineering, Vol. 13, pp. 228-234, 1974.

[1-11] S. Iwasa and J. Feinleib, "The PROM Device in

Optical Processing Systems," Optical Engineering, Vol. 13,

pp. 235-242, 1974.

[1-12] T.D. Beard, et al., "AC Liquid Crystal Light

Valve," Appl. Phys. Lett., Vol. 22, pp. 90-92, 1974.

[1-13] J. Grinberg, et al., "A New'Real-Time Non-Coherent

to Coherent Light Image Converter," Optical Engineering,

Vol. 14, pp. 217-225, 1975.

(1-14) S.R. Dashiell and A.A. Sawchuk, "Nonlinear 'Optical

Processing: Effect of 1Input Medium and Precompensation,”

Applied Optics, Vol. 16, pp. 2279-2287, 19717.

(1-15] A. Tai, T. Cheng and F.T.S. Yu, "Optical
Logarithmic Filtering Using Inherent Film Nonlinearity,"

Applied Optics, Vol. 16, pp. 2559-2564, 1977.

(131



)

[1-16] J.M. Pollack and J.B. Flannery, "A Low-Noise 1Image

Amplifier," Society for Information Display 1976

International Symposium Digest, pp. 142-145, 1976.

[2-1] J.W. Goodman, "Operations Achievable with Coherent

Optical Information Processing Systems," Proc. 1EEE,

Vol. 65, pp. 29-38, 1977.

[2-2] G.H. Heilmeier, et al., "Dynamic Scattering: A New
Electrooptic Effect in Certain Classes of Nematic Liquid

Crystals," Proceedings of the IEEE, Vol. 56, No. 7,

pp. 1162-1171, July 1968.

[2-3] R. Williams, “Domains in Liquid Crystals," The

Journal of Chemical Physics, Vol. 19, No. 2, 1963.

[2-4] J.D. Margerum and L.J. Miller, "Electro-Optical

Application of Liquid Crystals," Journal of Colloid and

Interface Science, (19Y77); Hughes Research Laboratories

Research Report 499, June 1976.

[2=-5] J. Grinberg, et 2l., "A New Real-Time Non-Coherent

to Coherent Light 1Image Converter," Optical Engineering,

vol. 14, pp. 217-225, 1975.

[3-1] S.R. Dashiell and A.A. Sawchuk, "Nonlinear Optical

Processing: Analysis and Synthesis," Applied Optics,

vol. 16, pp. 10G3S-1025, 1977.

132



6

|

§0ptical Processing Systems," Optical Engineering, Vol.

pp. 235-242, 1974.

13,

[[3-2] S. Iwasa and J. Feinleib, "The PROM Device in]

!
4
!
)
t
i
1
i
]
{
]
[l

- [3-3] J. Grinberg et al., "A New Real-Time Non-Coherent?

to Coherent Light Image Converter," Optical Engineering,

:Vol. 14, pp. 217-225, 1975.

. [3-4] S.R. Dashiell and A.A. Sawchuk, "Nonlinear Optical.

ﬁProcessing: Effects of Input Medium and Precompensation,":

‘Applied Optics, Vol. 16, pp. 2279-2287, 1977.

;[3—5] J.W. Goodman, Introduction to Fourier Optics,

{McGraw—Hill, New York, 1968.

[4-1] S.R. Dashiell and A.A. Sawchuk, "Nonlinear Optical

- Processing: Effects of Input Medium and Precompensation,"”

Applied Optics, Vol. 16, pp. 2279-2287, 1977.

[5-1] G.W. Batten, Jr., and R.L. Everett, "Control

of

.Film Characteristics by Modulating Intensity and Space,"’

J. Opt. Soc. Am., Vol. 68, pp. 1118-1124, 1978.

.[5-2] R.E. Bellman, and K.L. Cooke, Differential-

;Difference Equations, Academic Press, New York, pp.

1 1963.

[6-1] R.W. Hamming, Numerical Methods for Scientists

63,

Engineers, McGraw-Hill, New York, pp. 673, 1973.

and .

133




[6-2] This subroutine was taken from the IMSL library 2
which is available from IMSL, 7500 Bellaire Boulevard,

Houston, Texas 77036.

[6-3] R. Fletcher, "Fortran Subroutines for Minimization
by Quasi-Newton Methods," Report R7125 AERE, Harwell,

England.

(7-1] T.C. Strand, "Techniques and Applications of

Nonlinear Processing with Halftones," Proc. SPIE, 20th

Annual Technical Symposium, San Diego, Ca., August 1976.

[(7-2] H-K. Liu, J.W. Goodman, and J. Chan,
"Equidesitometry by Coherent Optical Filtering," Applied
Optics, Vol. 15, pp. 2394-2399, 1976.

[7-3] H.C. Andrews, A.G. Tescher, and R.P. Kruger, "Image

Processing by Digital Computer," IEEE Spectrum, Vol, 9;

No. 7, pp. 20_37’ 1972.

[(7-4] A.V. Oppenheim, R.W. Schaefer and T.G. Stockham,
Jr., "Nonlinear Filtering of Multiplied and Convolved

Signals," Proc. IEEE, Vol. 56, pp. 1264-1291, 1968.

[7-5] H. Kato and J.W. Goodman, “"Nonlinear Filterihg in
Coherent Optical Systems Through Halftone Screen

Processes," Applied Optics Vol. 14, pp. 1813-1824, 1975.

[8-1] @ A. Tai, T. Cheng, F.T.S. Yu, “"Optical Logarithmic
Filtering Using Inherent Film Nonlinearity," Applied
134



[8-2]) H.F. Taylor, "An Electrooptic Analog-to-Digital

63, pp. 1524-1525, 1975.

Converter," Proc. IEEE,

i8-3] F.A. Ludewig, Jr., "Digital Transducer System,"

U.S. Patent No. 3087148, April 23, 1963.

[9-1] G.H. Heilmeier, et al., "Dynamic Scattering: A New
Electrooptic Effect in Certain Classes of Nematic Liquid
No. 7,

Crystals," Proceedings of the IEEE, vol. 56,

pp. 1162-1171, July 1968&.

[9-2] R. Williams, "Domains in Liquid Crystals," The

Journal of Chemical Physics, Vol. 19, No. 2, 1963.

J.M. Pollack and J.B. Flannery, "A Low-Noise 1Image

[y-3]
Information Display 1976

Amplifier," Society for

International Symposium Digest, pp. 142-145, 1976.

135



