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ABSTRACT
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demonstrated that MAP estimation with the Poisson noise
model has improved performance because the MAP filter can
be generalized to linear or nonlinear image models and to
noise models different from additive Gaussian noise. In
addition, the MAP filter can be a local adaptive processing
filter and extended to the case of space-variant blurring.
It also has been shown that image models with a
nonstationary mean and stationary variance give useful a
priori information for the MAP filter. The MAP estimation
equations are nonlinear and have large dimensionality. A
sectioning” method with a Newton-Raphson solution has been
adapted to cope with these problems. It has been shown
that the strategy 1is an effective and fast way to solve

nonlinear MAP estimation equations.

The Cramer-Rao lower bound (CRLB) on the mean-square
estimation error of the MAP unbiased estimate is derived
for the Poisson noise model. It is shown to be a very
useful bound for finding the best suboptimal sectioning

filters.

Finally, a comparison between the performance of the
MAP filter and that of the linear minimum mean-squaré error
(LMMSE) filter is made for Poisson noise models. The
performance of the MAP filter is much better than that of
the LMMSE filter. The LMMSE filter works very well for

higher signal-to-noise ratios, but the MAP filter works
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better for low signal-to-noise ratios where Poisson noise

dominates.



CHAPTER 1

INTRODUCTION

.1.1 Introduction

Image restoration can be viewed as an estimation
process in which operations are performed on observed or -
measured noisy data to estimate the object. More clearly,
image restoration 1is the estimation of the original image
signal by both blur removal and noise suppression. Image
enhancement is the attempt to improve the appearance of the
image for better human viewing or machine processing.
Hence, image enhancement may not specifically need
knowledge of the degrading phenomena. However,.in order to
effectively develop an optimal restoration filter with
various criteria, it is necessary ”to characterize
gquantitatively the image degradation effects of the
physical image system. Image restoration begins with a
model of degradation effects, assumes given a Briori
information and then develops an optimal filter to obtain a
restored image. Hence, accurate image modeling and more a
priori information are often the key to effective image

restoration.



In this dissertation, optimal restoration filters are

developed in the sense of maximum a posteriori probability

(MAP) and maximum likelihood (ML) for blurred image signals
detected at low 1light 1levels. This 1low level photon
resolved image signal 1is modeled as an inhomogeneous
Poisson point process. The photon noise (which we call
Poisson noise throughout this thesis) is inherent in any
detected image signal particularly at low light levels. At
these 1low 1light 1levels, the emission of photons is
described by a Poisson process with the average rate of
emission proportional to the integrated incident intensity.
The estimation 1is performed assming that the number of
photon events counted by the detectors are independent,
Poisson distributed random processes for a given unknown
object radiance. Since the variance of the Poisson
distribution is identical to its mean, the. Poisson noise is
neither multiplicative noise nor linear additive Gaussian

noise. It is, indeed a signal-dependent noise.

1.2 Organization and Contributions of the Dissertation

In next chapter, we discuss three 1image models and
some system models for image noise; we also present an
inhomogeneous Poisson process model which is a photon
counting system. In Chapter 3, we review some important
linear and nonlinear image restoration filters for Poisson

noise models and their motivation for the work in this



dissertation. We also review other restoration filters for
different image noise models. 1In Chapter 4, we develop and
implement an MAP filter without blurring degradations for
the Poisson noise model. In Chapter 5, we develop and
implement MAP filters with blurring degradations for the
Poisson noise model. In Chapter 6, we derive Cramer-Rao
lower bounds (CRLB) on the estimation error for MAP filters
and discuss the results. In Chapter 7, we compare the
restored image performance of the MAP filter with that of
the LMMSE filter. In Chapter 8, we conclude this

dissertation and discuss future research on the problem.

The specific research contributions of this
dissertation are now summarized. A model for photon
resolved low 1light level image signals detected by a
counting array is developed. These signals are impaired by

signal dependent Poisson noise and linear blurring.

An optimal restoration filter based on maximizing the

a posteriori probability density (MAP) is developed. A

suboptimal overlap-save sectioning method using a
Newton-Raphson iterative procedure is used for the solution
of the high dimensionality, the nonlinear estimation
equations for any type of space-variant and invariant
linear blur. An accurate image model with a nonstationary
mean and stationary variance is used to provide a priori

information for the MAP restoration filter. The Cramer-Rao



lower bound (CRLB) of the unbiased MAP restoration filter
is derived. Finally, a comparison between the MAP filter

and a linear space-invariant minimum mean-square error

(LMMSE) filter is made.

()
\

———leie



CHAPTER 2

SYSTEM MODELS FOR IMAGE NOISE AND IMAGE MODELS

2.1 Introduction

Using a statistical approach to develop an optimal
restoration filter, the effectiveness of the algorithm
depends on the completeness of the statistical description
of image and noise. Hence, we investigate image and noise

models in detail in the following two sections.

In section 2.4, we present an inhomogeneous Poisson
process model (we refer this inhomogeneous Poisson process.
as the Poisson noise degradation throughout this thesis)
which is a photon counting systtem. 1In section 2.4.1 we
investigate a general photon counting system containing
blurring and Poisson noise degradations. 1In section 2.4.2,
we first discuss a single detector model and derive its
statistical properties. In section 2.4.3, we extend the
single counter to an array. In section 2.4.4, we discuss
guantum limitations of photon resolved image signals, and
in section 2.4.5, we discuss the simulation of images with
Poisson noise at different ensemble mean signal-to-noise
ratios. A comparison is made between Poisson noise

degraded images and linear additive Gaussian noise degraded

5



images. Finally some conclusions of this chapter are

presented.

2.2 System Models for Image Noise

2.2.1 Linear Additive Gaussian Noise Model

This model is most often used for image formation in
the field of digital image processing. 1Its block diagram
is illustrated in Fig. 2.1, where the image g(x,y) and
object f(x,y) may be considered intensity functions of two
spatial dimensions (x,y), and h(x,y) is the point-spread
function (PSF) or impulse response of the imaging system.
Because the linear blurring degradation in all image noise
models 1is the same as in this model, we investigate more
details about the PSF in this section. The function n(x,y)
is additive noise which is signal-independent and Gaussian.
To unify the notation, we denote continuous functions with
(x,y) and discrete functions with (i,]) throughqut this
thesis. The mathematical representation of Fig. 2.1 is

oo

g(x,y) = JJ h(e,n;x,y)f(e,n)dedn+n(x,y). (2.1)

- 00
This equation is a first order Fredholm integral equation
plus a random noise component, where (e,n) is the spatial
coordinate of the object of interest and h(e,n;x,y) is a

general space-variant point-spread function (SVPSF)

describing the effects of the optical imaging system.
6



Ideally, it is desirable that the point-spread function for
s Dirac delta function 8 (x,y), in which case the image
g(x,y) equals the object f(x,y) in the absence of noise.
Furthermore, if h(e,n;x,y) 1is a function only of the

differences between respective coordinates, that is

h(e,n;x,y) = h(x-g,y-n) (2.2)

the PSF is said to be spatially invariant or isoplanar. 1In
all other situations, the BPBSF is said to be spatially
variant or anisoplanar. The physical meaning of a
spatially invariant PBSF is that the blurring degradation is

unchanged across the image plane and the image and object

are mathematically related via a two-dimensional
convolution
gix,y) = Jf h(x-€,y-n) £ (e,n)dedn+n (X,y) (2.3)

oo

or eguivalently

gix,y) = J[ h(e,n) f (x-€,y-n)dedn+n (x,y) . (2.4)

o

These convolution integrals can be Fourier transformed to

yield
G(u,v) = H(u,v)F(u,v)+N(u,v) (2.5)

where the capital letters denote the Fourier transform of



the respective function represented by lower case letters
and (u,v) is spatial frequency. In the discrete domain
Eg. (2.5) can be expressed by a discrete Fourier transform

(DFT) equivalent.

To process image signals on a digital computer we need
a spatially discrete form of signal. Equation (2.4) can be
represented as a discrete-discrete system [2-1,2-2] by a
matrix. This matrix can be represented as 2 vector by
lexicographically ordering the column of the matrix, 1i.e.,
the (i,j)th element of the MxN matrix is the [(j-1)m+l]th
element of the vector. This ordering permits the use of =2

very simple matrix model

g =Hf + n (2.6)

. 2 .
where g is an N X1 recorded or measured image data vector
. 2 . .
f is an N X1 original object vector
. 2 A . .
is an N X1 additive Gaussian noise vector

. 2 . . . .
H is an NZXN blurring matrix which is a

=]

transformetion matrix representing the

blurring degradation.
Thus the linear restoration matrix model is as shown 1in
Fig. 2.2. The additive nature of the noise in Eq. (2.6) is
a model for thermél noise and amplifier electronics noise
in image sensors. This additive noise is often itself
modeled as a Gaussian process. Since this model represents

the physical reality well and is mathematically tractable,
8



it is the most conventional practical model.

2.2.2 Multiplicative Image Noise Model

A block diagram of a multiplicstive noise model
[2-6,2-7,2-6] and the associated restoration filter is

illustrated in Fig. 2.3. 1Its mathematical expression is

g(x,y) = [f(x,y)8h(x,y)] n(x,y) (2.7)

or

g(x,y) = [” h(e,n;x,y)f(s,n)dedn]-n(x,y) (2.8)

where h(x,y) is the BESF of the linear system, f(x,y) and
g(x,y) are the obejct and degraded image functions
respectively. Here n(x,Yy) denotes signal-independent
Gaussian noise, and ® denotes two-dimensional convolution.
T. Yatagai [2-9%]) has used this model for speckle noise in
the sense that standard deviation of the speckle is egqual

to its mean.

2.2.3 Additive Signal-Modulated Image Noise Model

The additive signal-modulated image noise model and
the associatea restoration filter is illustrated in

Fig. 2.4. 1Its mathematical expression is

gix,y) = f(x,y)@h(x,y)+c[f(x,y)@h(x,y)]'n(X,Y)- (2.9)
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Figure 2.4. Block diagram of the additive, signal
modulated image noise model and the
associated restoration filter
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Here C is generally a memoryless point nonlinear‘ function,
n(x,y) is the signal-independent noise and @ denotes
two-dimensional convolution. Film-grain noise and magnetic
tape recording noise are accurately modeled as additive

signal-modulated noise [2-10,2-11].

2.2.4 Poisson Image Noise Model

Because of the quantum nature of light, photons arrive
at random times and give rise to a fundamental graininess
in detected images at low 1light levels. The graininess
tends to obscure the detection of fine details and faint
contrasts, thus, a large number of photons is required for
high quality imaging. The emission of photons is governed
by a Poisson random process [2-19], hence, we 1label the
noise as Poisson noise. Because a detailed mathematical
model for Poisson noise is given in section 2.4, only
qualitative comments on Poisson noise are given here for

the completeness of this section.

Poisson noise is another basic type of
signal-dependent image noise which is quite different from
film-grain noise and speckle noise. The signal-dependent
nature of Poisson noise is associated with the fact that
the variance of the Poisson probability distribution is
equal to its mean. If the signal information received by
an array of photo detector elements is contained in the

mean number of events recorded by each element, then the

12



Poisson distribution of these events implies that Poisson
noise is a form of signal-dependent noise. All low-level
photon resolved signals are examples of signals corrupted
by Poisson noise. These situations occur in scintillation
camera imaging, medical imaging, astronomical imaging, and

low light level television systems.

2.3 1Image Models

Three of the more detailed image models are discussed
in this section. Better estimates of statistical images

should come from more accurate image models.

2.3.1 Gaussian Image Model

On the basis of physical arguments and mathematical
tractability, Hunt [2-12,2-13] developed one of the most
accurate 1image models. The image is modeled as a
multivariate Gaussian process with nonstationary ensemble
mean and with stationary covariance. The image vector 2

priori probability density function (pdf) is
p(6) = (2nV2 R exp(-F(e-DTR;HED} (2.10)

where f=E[f] is the nonstationary mean vector
Rf=E[(£-£)(£—£)T] is the stationary covariance matrix
|Rf| is the determinant of Ry and T denotes
transpose.

Lower case p denotes probability density function (pdf) and

13



capital case P denotes probability throughout this thesis.
Equation (2.1U) describes a 'random process of stationary
fluctuations about a nonstationary mean value. Hunt
deri§ed this image model based on a heuristic analysis from
following "thought" experiment. Suppose that several
thousands of photographs with similar statistical
properties (such as driver's license photographs) were used
to calculate an ensemble mean image. Each face is
positioned in approximately the same way in each image
frame. Clearly such an ensemble mean image would not
consist of a uniform shade of gray indicating spatial
stationary. More likely, the mean image probably consists
of an oval region where the face is expected to be and some
dark spot where the eyes, nose, and other facial features
are expected to be. Thus, images are generally
nonstationary in first order statistics and are described
by a spatially non-stationary mean vector fl The ensemble
mean is strongly dependent upon the context which is
established by the sample mean of the image to be modeled.
The ensemble is called a context-dependent image ensemble.
Wintz [2-16] has shown that images may have identical
covariance statistics and the same constant mean intensity,
but be completely unrelated in context. Therefore, the
context-dependent ensemble properties are portrayed most
strongly in the mean vector f, since this vector has the

gross structure that represents the context of the ensemble

14
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from which the sample vector f is drawn.

The spatial statistics f and Rg of Eq. (2.12) do
not represent a "second-order" stationary random process if
the context-dependent ensemble mean is assumed, since f is
assumed to have nonstationary gross structure that depends
upon the ensemble and its context. The covariance
statistics can be described as spatially stationary
fluctuations about a spatially nonstationary mean vector
f. The random process associated with the image ensemble
is not ergodic in the mean, since the ensemble average of
the context-dependent ensemble is not equal to the spatial
average of an ensemble member. However, the process can

have a stationary autocovariance.

If an image f(j,k) can be described as being the sum
of two components, a low frequency or blurred component
F(j,k) and a high-frequency component s(j,k) of the

fluctuations about f, i.e.
£(5,k) = £(3,k) + s(j,k) (2.11)

then T(j,k) represents the nonstationary mean and the
variance of the difference image between the image f and
the nonstationary mean image f is approximately equal to
that of the high-frequency component s(j,k). Thus, the
ensemble mean of the random process for an image is

nonstationary and carries the low spatial frequency gross

15



features of an image, while the covariance properties sbout
this ensemble mean represent random perturbations carrying
the detailed image structure. This image model is one of
the most sophisticated and will be used in deriving optimum

nonlinear filters in later chapters.

2.3.2 Laplacian Image Model

Trussel et al. [2-13] using @ nonlinear 1least-square
fit technigue found that @ Laplacian pdf had a better fit
to experimental image pdf's than the Gaussian pdf. Thus

the model of Eq. (2.9) cén be restated as

-1 ”
p (£) = k exp{-v2 [ (£-E) "RE (£-F)1%) (2.12)
where
f = E[f]
R, = E[(£-) (£-D) 7).

This process is similar to the Gaussian model because it
contains a nonstationary mean and stationary covariance.
The square root of the term in brackets in Eq. (2.12) mekes
the model Laplacian instead of Gaussian. The MAP filter
and other restoration methods are later derived for both

the Gaussien pdf and Laplacian .pdf.

2.3.3 Lebedev's Composite Image Model

This image model repesents a completely different
apprcach from Hunt's image model. Lebedev and Mirkin

called their model a "composite model of an image fragment"
16



which includes the nonstationary statistical properties of
an imagé [2-14,2-15]. They model an ensemble of images as
a random field with an n-dimensional point pdf p(f) where
f = [fl'f2""'fn]' They decompose the image statistically
into M classes of fragments, whose stru;tute is
distinguished by the type of correlational 1links between
pixels. Some classes are formed by fragments with
isotropic structure; others are found by fragments with

some anisotropy.

Let p(f) be the pdf of a fragment of image £, on the
condition that the fragment belongs to the class ©
(6 = 1,2,...,M). Denoting the a priori density of the

classes by m(0), we have

M (3
Y, mee) =1 (2.13)
p=1 '
and
M
p(f) = D m(B)pg(£). (2.14)
8=1

Expression (2.14) is a matrix density decomposition of p(f)
in terms of Pe(i)' 8 =1,2,...,M [2-18]. This
representation 1is especially useful when p(£) is
approximated closely by a small collection of Gaussien

distributions

17



-1 1.T. -1
Py (f) = |R8| exp{-5£ Ry £} (2.15)

where Re is the covariance matrix corresponding to the

class § fragment image.

Using this image model for developing a spatial
restoration filter with a maximum likelihood (ML), maximum

a posteriori (MAP) or Wiener criterion leads to a

multicategory filtering problem because of the
decomposition properties of the image model. This
composite 1image technique seems to be a good model for the
local nonhomogeneous information in the image signals,
hence an optimal filter can be a local adaptive filter.
Although this model is not used in the results presented,
it is believed that using this model with the MAP criterion

may yield good results in future work.

2.4 Inhomogeneous Poisson Process Photon Counting System

Model

2.4.1 Photon Counting System

In many practical situations a detected image can be
modeled as a photon counting system illustrated in Fig. 2.5
with its corresponding block diagram shown in Fig. 2.6.
For ease of notation, we use a lexicogrephic ordering

vector notation in which

18



{3

Jo?

>

)

H gp;t:;l (Aberrations,
Y blur diffraction,
turbulence)

2-D Sensor
Array

Processor

Figure

l

£

~

Estimate f

2.5. Two-dimensional photon counting system
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2

1+h

is an N“x1 object vector

2

is an N“x1 blurred image vector

o

2

is an N“x1 photon count vector

is an N2x1 display image vector

Iy 120 ha

is an N2x1 estimate object vector

is the NZxN2

=

and blurring matrix.

Here, H lumps together all the linear blurring degradation
effects such as motion blurring, turbulence, diffraction,
and aberrations. The detailed derivation of the
two-dimensional discrete operator H from a two-dimensional

continuous superposition integral is discussed in

[2-1,2-2].

The counting array counts photons incident on the
two-dimensional sensor array. The mean of the photon count
is proportional to the incident integrated image intensity
and the counts themselves are random variables which have a

Poisson distribution.

The photon count is a dimensionless number, so we
include a scale factor o which provides an image intensity
which is displayed. Thus the photon counting system is
modeled as an inhomogeneous Poisson process. This is a key
assumption of this thesis because the MAP estimate of the
image in the non-blurring and blurring cases in the
subsequent two chapters is based directly on it. For

mathematical simplicity and ease of physical understanding,

21



we first derive the statistics of a single counter and

later extend it to a large array.

2.4.2 8Single Photon Counter

From Fig. 2.5 we first assume the H matrix is the
identity matrix, and assume only one counter instead of a
vector array as in Fig. 2.7. According to the
semi-classical theory of photon detection [2-19,2-26], the
probability that 9; photon events occur for a given fixed
intensity f; is

g. =Af.
(A£) Te *
plg;|£;) = o ' (2.16)
i

where A is a constant rate parameter. By direct summation,

the conditional mean andé variance of g; for constant fi is

g, = Ay, (2.17)
oy, = M (2.18
gi i’ hd )
and
E; - ) = Average # of photon counts (2.19
£ Intensity unit - (2.19)

With the low light level image signals in which we are

interested, we have [2-21,2-26]

WT >>1, (2.20)
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or equivalently,

Ei << WT, - (2.21)

where W is the temporal bandwidth and T is the integration
time, 1i.e. the mean number of counted photo events is
small compared to the time-bandwidth product of the 1light.
This condition 1is always satisfied for natural thermal
sources encountered in practice. In such cases, Mandel
[2-26] has shown that the count fluctuations are
predominantly Poisson shot noise due to the discrete nature
of wave-detector interaction, rathér than classical
"fluctuation noise" associated with the random nature of
the image intensity. Thus the count registered on the ith
counter is a Poisson random variable with mean Ei and = pdf

expressed by Eg. (2.16).

From the 1linear transformation di=agi with a a

constant display scale factor, we have

di = ag; = aAfi, (2.22)
ol = a?e? = aZAfi. (2.23)
i 93

and p(dilfi) is given by
' 9 £

1 d; (Af;)ae
p(d;|£;) = Sp(5-I£;) = T (2.24)

1
a(--)!

We usually choose o)l =1 in order to keep the mean value of

24



the processed display image signal the same as the observed

noisy image.

Before we define an r.m.s. signal-to-noise ratio, it
is useful to discuss some details about signal-to-noise
ratios (SNR's) in general. A study of SNR's at different
points in a system enables us to pinpoint the significant
contributions to the noise. It is also a simple criterion
for the design of systems to minimize from the noise
degradation and thus it provides a measure of the
"noisiness" of a system. In most cases, the SNR criterion
is applied with signal-indepéndent zero mean additive
noise. If the signal and noise are dependent, then the SNR
is difficult to define because the cross correlation and
other moments are nonzero. Poisson noise is a case of
signal-dependent noise because the variance in Egs. (2.18)
and (2.23) depends on the signal. In order té compare the
noisiness of images with Poisson noise, we will define an
r.m.s. SNR denoted by (SNR)rms. Because an image signal is
a random process in space and time, we must define an
ensemble mean (gﬁﬁ)rms as the ensemble average of the

(SNR)rms over the random image field.
In the case of Poisson noise, the (SNR)I,ms is

d; 3
(SNR)rms = —— = ( Xfi) (2.25)

94,
1
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and the ensemble mean (SNR),n g is

(BFR) __ = (xfi)li - Af”if (2.26)

Thus, (SNR)rm is proportional to the square root of the

s
signal, and is signal-dependent.

This behavior is quite different from additive noise,
multiplicative noise, or film-grain noise. Figure 2.8 is a
digital simulation of a 1low-level one-dimensional image
signal whose peak SNR 1is approximately 18. It is clear
from the illustration of Fig. 2.8, that at 1low signal
levels the noise 1is statistically nonstationary and
non-Gaussian. As the signal becomes photon resolved at
very 1low intensities, there is little resemblance to the
classical signal. However, at higher signal 1levels, the

noise becomes more Gaussian [2-27].

2.4.3 sStatistics of Array Counters

An array counter model for non-blurred image signals
with Poisson noise 1is shown in Fig. 2.9. For one single
counter the conditional density 1is given by Eqg. (2.16).
For an array of counters, we must find the joint ensemble
statistics for a given object vector f. Some assumptions
are necessary to find these joint ensemble Poisson
statistics. Walkup [2-20,2-21], Clark [2-22], and Wang

[2-23] have shown that given f, the joint ensemble photon
26
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counting statistics at the N detectors of Fig. 2.5 are
independent Poisson variates whose mean is proportional to
the mean intensities at each of the N disjoint detectors.
For this to be true, the time-bandwidth product WT must
satisfy WI>>1 where W is the temporal bandwidth of the
optical image signal and T is integration time. This is
the usual case in this thesis. From the WT >>1 assumption,
Mandel [2-26] also has shown that the counts registered by
the N detector/counters may be taken to be statistically
independent, since classical fluctuation noise is
negligible for light with a low degeneracy parameter, when
Poisson shot noise predominates in the photon count
fluctuations. The degeneracy parameter describes the
variance characteristics of the photon counts, and it is
defined as the ratio of classical fluctuation noise to
Poisson shot noise. Thus, all g, are independent for a
given £ (i.e. every Poisson generator is independent) and
each gi depends only on its corresponding fi' Also, we
assume that individual detectors have a smaller scale than
the spatial intensity variations of the image so that no
loss of information results from the sampling. We also
initially assume that background intensities and thermal
noise in the measurement system is negligible compared to

the Poisson noise. Representing the array values by

T T

g = [gy,9,---sgy] and £= [£,55,...0 5] (2.27)
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we have

p(glf) = plgylf)plg,lE) .. .plgylD) (2.28)

Now, each = depends only on its corresponding fi' thus

g. —Xfi
(Afi) le
p(g|lf) = T 57 (2.29)
1 1
Now from Egs. (2.22)-(2.24) we have
P(A|f) = p(d;|£)p(d,[£)...p(dylE) 2.30)
= p(dllfl)p(d2|f2)...p(lefN)
di -af,
(M) et
p(d|f) = T T (2.31)
' T el

From this conditional density an MAP estimate is derived in

Chapter 4.

2.4.4 The Quantum Limitations of Photon Resolved Image

Signals

The information content of a finite amount of light is
limited by the finite number of photons, by the random
character of their distribution, and by the need to avoid
false alarms. These limitations mean that a considerable
number of photons is required to delineate the fine detail
of images. Low 1light 1level image signals conspicuously

suffer from these quantum limitations [2-24].
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(i) Discreteness of Light Quanta

The number of picture elements N required for a well
resolved image signal often lies in the range of 106-107
[2-24]). Hence, 108-109 photons are needed to delineate the
iocation and brightness of pixels, assuming that 100
photons per pixel are arranged in a precise array.
Unfortunately, nature does not work in so orderly 2
fashion, and photons arrive at random times and places and
give rise to a fundamental graininess in any detected
image. This grain noise obscures the detection of fine
detail in 1low contrast images and is called Poisson noise

at these low light levels.
(ii) Random Character of the Photon Distribution

Suppose that the average number of photons arriving in
a given area is Ny and that a number Ny Rgsees sy are
distributed around n, in such a fashion that the average
value of (ni-no) is also n,. Then the mean of the photon

count is the same as the variance and the (SNR)rmsis n%/%

If we need to detect a 1% contrast variation in a
signal, we require that the noise level defined as the
r.m.s. deviation of the mean number of photons also not

exceed 1%. This can be achieved by having an average of

104 photons falling on each pixel of the image. The r.m.s.

deviation (noise) is then the square root of 104, or 102,
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and the ratio of this random deviation to the average will
be 10_2, or 1%. 1In general, if we want to detect an image
signal with contrast C we must increase the number of
photon counts proportional to é%; In addition, we must
guard against false alarms, that is, the mistaking of any
particularly random fluctuation for the real signal to be

detected.
(iii) False Alarms

False alarms and spurious visual patterns may arise
from the random character of the photon distribution and
not from the original scene itself. If we define the mean
photon count as the signal, and the r.m.s. deviatign as
noise, then we can use detection theory to find the false
alarm probability. Figure 2.10 shows the distribution of
noise fluctuations around the mean value of a parameter.
The ordinate is the probability density and the abscissa k
is plotted in units of the r.m.s. deviation. The second
abscissa scale n 1is a particular example for which the
average number of photons is 900 and 1its r.m.s. deviation
is 30. From Fig. 2.10, we can calculate the false alarm
probability given a signal which is k units above its mean
vaiue. Table 2.1 gives the probability that noise
fluctuations will exceed the mean value of the background
by an integer number of units of the r.m.s. value of the

noise.
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Figure 2.10. Probability distribution of a RMS
deviation of photon counts about its mean

Table 2.1

False alarm probability of exceeding various
values of k

k prob. of éxceeding k
1 0.15

2 0.023

3 1.3 x 1073

4 3 x 107°

5 3 x 1077

6 2 x 1077
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If we locate the signal at k=5, then we find that only
15% of the time will the signal appear k<4. It will exceed
k=4 85% of the time on the average and be 3judged a real .
signal. Hence, we usually choose k=5 to avoid false alarms’
in order to give a reasonable reliability to our
observation. The ratio of the r.m.s. deviation to the
average background brightness varies as nO%/n0=1/n0%, where
n0 is the average number of photons in the background.

Hence, it will be necessary to increase n by a factor of

%

k in order to decrease the ratio l/n0 by k. In summary,
the density of photons required varies as k2 in order to.
avoid false alarms. In dgeneral, the expression for the
total number of photons required to detect a contrast C

where CQAB/B and 0<C<1 is

Total number of photons = N Ji k2 (2.32)

c
Here, N is the total number of pixels in the picture and
reflects the discrete nature of the photons. The factor Ji
is a consequence of contrast the C and the random charactgr
of photon distributions, the factor k2 reflects both the
random character of photon distribution and the need to
avoid false alarms. The expression (2.32) is only for the
case in which we do not have any a priori information about
the image. However, we usually assume that the image is a

Markovian random field with correlation coefficient p in

image restoration work. Thus, we should be able to obtain
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better results than obtained in Eq. (2.32)

2.4.5 Comparison Between Linear Additive Gaussian Noise

Degraded Image Signals and Poisson Noise Degraded Image

Signals

Figure 2.11 illustrates experimental results of
pictures with Poisson noise and Gaussian noise for

comparable (SNR)rmS.

The upper left image (A) in Fig. 2.11 is the original
ideal object. The upper right image (B) contains Poisson
noise with some constant amplification and (§ﬁ§7;;;=6 db.
The lower - left image (C) has additive Gaussian noise with
(SNR)rms also 6 db. The lower right one (D) also has
linear additive Gaussian noise with (SNR)rITls approximately
1 éb. From this experimental result, we have demonstrated
that images with Poisson noise are more severely degraded
than images with linear additive Gaussian noise for
comparable (SNR)rms even though the (SNR)rms is 6 db lower
than that of an image with Poisson noise. The Poisson
noise has obliterated almost completely the detailed edge
and contrast of the face. The image takes on a mottled
appearance which depends on brightness whereas the image
degraded by Gaussian noise appears uniformly degraded with

some edge contrast still discernible at comparable (SNR).
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Figure 2.11 Poisson noise image vs linear additive
Gaussian noise image

(A)
(B)

(C)

(D)

Original object image __
Poisson noise image for (SNR)

—6 db rms
Linear additive Gaussian noise
image for (SNR)rmS=6 db

Linear additive Gaussian noise
image for (SNR)rms=l db
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2.5 Conclusions

We have presented some system models for image noise
and three image models. We have discussed the difference
between the Poisson image noise model and other important
image noise models from a system point of view. The model
which we have developed in the section 2.4 is used in later
chapters for developing and implementing an MAP filter for
the Poisson noise model. Appendix A describes a computer
algorithm which is used to generate Poisson noise for all
simulatioﬁs throughout this thesis. The guantum
limitations of photon resolved image signals are presented
in order to further understand the physical meaning and
causes of Poisson noise in low light level image signals.
By modeling the 1low level signals as an inhomogeneous
Poisson process, a very accurate, complete model for many
physical systems including medical imaging, astronomical

imaging is developed.
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CHAPTER 3
REVIEW OF LINEAR AND NONLINEAR OPTIMAL IMAGE RESTOkATION

FILTERS FOR THE IMAGE NOISE MODELS

3.1 1Introduction

In this chapter, we review previous work on linear and
nonlinear restoration filters with Poisson image noise
models and other important image noise models. These image
spatial restoration fillers are developed based upon the
system models for image noise given in Chaper 2. The
relationship of these fillers to the work presented in

later chaptes is also discussed.

3.2 Spatial Restoration Filters for the Signal-Independent

Noise Model and Signal-Dependent Noise Model

3.2.1 Spatial Restoration Filter for Signal-Independent

Noise---Linear Additive Gaussian Noise Model

Most previous work in image restoration is based on
the model of section 2.2.1. Different filters such as the
inverse filter, constrained least-squares filter,
parametfic Wiener filter, homomorphic filter, maximum
entropy filter, and pseudo-inverse filter have been

developed under various criteria [3-1,3-2]. Hunt and
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Trussell [3-3,3-4,3-5] have also developed a nonlinear MAP
filter based on the direct maximization of the posterior

density function with a linear additive image noise model.

3.2.2 Wiener Spatial Filters for Signal-Dependent Noise

Model---Multiplicative Noise, Additive Signal-Modulated

Noise

The models in sections 2.2;2 and 2.2.3 are
signal-depdnent noise models. Walkup et al. [3-7], Kondo
et al. [3-8] and Yatagai [3-9] developed an optimal spatial
filter in the sense of minimizing the mean of the squared
error [f(x,y)-g(x,y)]2 in the manner of a Wiener filter.
From the minimum mean-square error criterion, the
orthogonality principle is developed, leading to a spatial

[Rgg] , Where ng and Rgg are the

cross-covariance matrices between object and image and the

Wiener filter W=ng

covariance matrices of the image respectively [3-12]. 1If
g(x,y) and f(x,y) are spatially wide-sense stationary
random processes, then the two-dimensional Wiener filter

has a spatial frequency domain transfer function

¢f (u,v)

w(u,v) = $_ETETVT (3.1)

99

where ¢fg and ®__ represent the cross-spectral densities of

g9
the image g(x,y) with the object f(x,y) and the spectral

density of the image g(x,y), respectively.
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Naderi and Sawchuk [3-10] also developed a better
spatial adaptive Wiener filter for signal-dependent
film-grain noise wusing a more accurate, complex noise
model. Walkup et al. [3-11] developed an MAP spatial
filter for signal-dependent noise models such as film-grain
noise and magnetic recording noise. Their filter involved
scalar rather than vector processing and did not include

blurring degradations.

3.3 Linear, Invariant Least-Squares Restoration Filter for

the Poisson Image Noise Model

Goodman and Belsher [3-13] have modeled a 1low 1light
level imaging system with blurring and Poisson noise by the
continuous system shown in Fig. 3.1. This system is a
special case of the discrete restoration model discussed in

section 2.4. The detected data is represented as
N
glx,y) = Z § (x=x ., ¥y-y,) (3.2)
n=1

where 8(*,*) is a two-dimensional Dirac delta function
(XY p) represents the location of the nth photo
event
N is the total number of photo events produced by
the blurred image b(x,y)
In the expression (3.2), N, x, and y, are all regarded as

random variables.
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£(x,y) b(x,y)] Poisson [g(X,Y)] Restora- £(x.y)
. random |—® tion .
lhie,nix,y) generator filter R

Figure 3.1l. Block diagram of the continuous
restoration filter with Poisson noise
model
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From the semi-classical theory of photo detection

[3-14,3-21], the probability that N events occur in an area

A on the detector is taken to be Poisson,

[” )\(X,Y)dde]N

A

PA(N) = N

where A(x,y) is a rate function

_ nb(x,y)
hv

A(x,y) T

is the quantum efficiency
34

= - ]

<|

is the mean optical frequency
T is the detector integration time

and

exp}— JJ A(x,Y)dxdy$ (3.3)
A

(3.4)

is plank's constant = 6.624x10 - W-sec/HZ

b(x,y) = J[ h(e,n;x,y) £f(e,n)dedn . (3.5)

- 00

Because the image f(x,Y) is a random process, the rate

function A(x,y) is a random process.

Thus the whole

process is called a compound Poisson process or doubly

Poisson process [3-14,3-15]. The event locations (xn,yn)

are independent variables for different

given, and it has pdf.

X(xn,yn)

p(xn,yn) = —
IJ A(x,y)dxdy

- 00

n's for A(x,y)

(3.6)
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In Fig. 3.2, we illustrate a one-dimensional typical object
intensity distribution and a corresponding typical detected

image.

Based on the model of Eq. (3.2) and Fig. 3.1, Goodman
and Belsher [3-13] developed an linear, space-invariant,
least-square restoration filter (LMMSE filter). The filter
is derived in the Fourier transform domain using the
orthogonality principle. The form of the filter is

—_ %
Ny (u,V)@f(u,V)
W.(Ulv)

- (3.7)
14N (u,v) 120 (u,v)
where ¥ is the two-dimensional Fourier transform of h(x,y)

¢f is the spectral density of the object f(x,y)

N is the mean number of photon counts

* denotes complex conjugate

(u,v) are spatial frequency variables

Equation (3.7) can be rewritten as

*
Wu,v) = ——(4,v) (3.8)

¥ (u,v) |2+%

where a=ﬁ¢f(u,v). This filter can be implemented iﬁ the
Fourier domain using the FFT. Goodman and Belsher did not
apply this filter to two-dimensional picture data, so it is
implemented in Chapter 7 and compared with the MAP filter

described in Chapter 4 and 5. From Eg. (3.8), if o is very
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f(x,y)

) X
(a) Object intensity
b(x,y)
X
(b) Blurred object intensity
d(x,y)
X

(c) Resulting detected image

Figure 3.2. Model of photon- resolved imagery

(a)
(b)
(c)

object intensity
blurred object 1nten81ty
resulting detected image
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large, then W(u,v)=H-l(u,v) which 1is the ideal inverse
filter in the absence of noise. Hence, the LMMSE filter
should work very well at high values of a. However, for
the low light levels in which Poisson noise dominates, a is
very small. -Therefore, the performance of the LMMSE filter
is expected to be poor due to 1ill-conditioning in the
deconvolution process. Furthermore, the LMMSE filter
assumes that the object signal and noise must be at 1least
wide-sense stationary and requires knowledge of the blur
function and object and convariance functions. It cennot
be extended in the Fourier domain to space-variant
blurring. Because it assumes that signal and noise are
stationary, it leads to a filter that tends to smooth edges

because of its insensitivity to abrupt changes.

3.4 Nonlinear Filtering with the Square-Root Transform for

the Poisson Image Noise Model

Inouye [3-16] developed an ad hoc nonlinear filter
with a square-root transformation to suppress Poisson noise
in nuclear medicine images. He assumed that the observed
data g(x,y) is the summation of the object function f(x,y)

and quantum fluctuation n(x,y) as expressed by
glx,y) = £(x,y)+n(x,y) (3.9)

where n(x,y) depends on f(x,y) according to
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n(x,y) =0 ,

nz(x,y) = af (x,Yy) ’

where @ is a constant of proportionality.

square root of both sides of Eq. (3.9) we get

[g(XIY) ];5 = [f(x,y)+n (x’y) ]!5'
[,y 1% = €% 0c,y) (1REN

(3.10)

(3.11)

Taking the

(3.12)

Taking the first two terms of a Taylor series expansion of

the above and assuming f(x,y)>>n(x,y)

approximation
g,y 1% 3 £ 0x,y) (1450 )

We now rewrite Eq. (3.13) as follows:

~ ~

(g(x,y)1% = £(x,¥) + n(x,¥),

where

£

E(x,y) (x,v¥),

n(x,y) = 2n(x,y) /£ (x,¥).

From Egs. (3.10) and (3.11), we have

nix,y) = 0,

yields an

(3.13)

(3.14)

(3.15)
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o =

hx,y)1% = L a (3.16)

and the noise statistics of the square-root transform are
stationary [3-17]. Thus this transform of g(x,y) gives a
signal-independent fluctuating component n(x,y)/Zf%(x,y)
around an average value (f(x,y))%. Equation (3.13) becomes
an approximately linear additive noise model and the usual
linear filtering technique 1is applied. Inouye did not
include any burring effects of the imaging system and it is
difficult to judge the level of improvement from the line
printer pictures in his paper. In addition, this
square-root transform works only at higher (SNR) image

signals, because he assumes f(x,y)>>n(x,y).

3.5 Nonlinear Optimal Filter for the Poisson Image Noise

Model

From Bayes' law we have the posteriori conditional
density
p(d|£)p(£)

p(f|d) = , (3.17)
p(d)

where f is the original image (object) to be estimated and
d 1is the observed data. The use of the posterior density
for estimation is well known [3-18]. The minimum
mean-square error estimate (MMSE) is the mean of the

posterior density given by E[f|d], the maximum a posteriori
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estimate (MAP) is the mode of the posteriori density as
expressed by max p(f|d). The maximum likelihood estimate
(ML) given by é%x p(d|f) can be viewed as a special case of
the MAP estimat;-when the a posteriori density is equal to
a priori density (i.e. when p(f) has a uniform
distribution). The MMSE, MAP, and ML estimates are
generally nonlinear, depending on the form of the
probability density functions. The MMSE estimate also
needs the density of the observed data p(d), but this is
often difficult to obtain in practice. Thus, a linear
minimum mean-square error (LMMSE) estimate is commonly used
as described in section 3.3. The MAP estimate tries to
find the value of object f which maximizes the posterior
density p(£|d). Thus, it does not need p(d) at all but

does need p(d|f) and p(f), while the ML estimate only needs

the a priori density p(d|f).

Burke [3-19] has developed a ML spatial filter based
on the Poisson noise model in Fig. 3.1. Its ML estimate is

obtained recursively according to the iteration

qg.
(n+1) (n) ) -
£, = g exp{B E[ 1]ij} (3.18)

] (n)
BT Hyeky

where fk is the kth component of the object to be estimated

gj is the observed data g of the jth component
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Hij is ijth component of the blurring matrix H
B is the quantum efficienéy constant,

ans the superscript denotes the iterative step.

Burke's experimental results are very impressive
compared to the Wiener filter results. Unfortunately, only
simple images of very small size (32x32 pixels) were
processed and the recursive Egq. (3.18) converges very
slowly. The ML estimate assumes that no information can be
extracted from the a priori term p(f). Modeling the object
as a nonstationary random field with a probability density
p(f) to perform an MAP estimate can be thought of an

extension of ML estimation.

3.6 Conclusions

It is well known that 1linear 1least squares image
restoration is not optimal in the sense of maximum
likelihood or maximum a posteriori probability when the
image statistics are Poisson. Rather, nonlinear filtering
is required for true optimality. In addition, Fourier
techniques cannot treat space-variant imaging. Thus, it
seems reasonable that a nonlinear filters should perform
better than linear space-invariant filters in the presence
of signal-dependent Poisson noise. In subsequent chapters,
we try to formulate and implement MAP filters in order to
perform nonlinear MAP filter for the 1low SNR's image

signals with Poisson noise.
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CHAPTER 4

RESTORATION CF IMAGE SIGNALS WITH POISSON NOISE

4.1 1Introduction

In this chapter, we develop an optimal MAP filter for
non-blurred image signals with Poisson noise based on the
model developed in previous chapters. There are many
practical situations 1in which the degradation due to
blurring is negligible or zero. More importantly, we
develop a framework for MAP estimation with a Poisson noise
model to evaluate the concept for future application to
more complex problems. In section 4.2 we present the
formulation and solution to the MAP estimate equations. In
section 4.3, 4.4, and 4.5 we address the implementation of
an MAP estimate with different a priori knowledge. In
section 4.6, we describe a recursive MAP filter for the
Poisson noise model. In section 4.7, we discuss a local
adaptive MAP filter and finally some conclusions are

presented.

4.2 MAP Estimate Formulation [4-10]

Previously we derived a conditional density p(d|f) for

displayea image data d given an ideal object f with a
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Poisson noise model. Alsc from chapter 2, we have the pdf

of the object expressed as Eg. (2.10).

From the MAP estimate definition, we have

p(d| £)p(£)
Max p(f|d) = (4.1)
£ p(d)

It is often easier to maximize a monotonic function of the
posterior density, such as the logarithm. Taking the log
of Eq. (4.1) we have

Max [¢np(£|d) = np(d|£)+inp(£)-2np(d)]. (4.2)
£

Since tge last term &n p(d) on the right does not depend on

f, we neglect it in maximization with respect to f£. Thus

the MAP estimate equation is given by

denp (£]4) 3snp (d| £) 3enp (£)

- T
5E = 5E + 5T =0 (4.3)
From Eq. (2.31), we have
(Ag,)917%"
tnp(d|£) = Z n T
Ot(—)l
. (4.4)
Y {é—i 2 (£, )-Af.-fno-1 [(di)'l}
= n p i i nao n T . .
From Eq. (2.10), we have
inp(£) = tnk -3 (£-5) TREN (£-) (4.5)
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indivicdually with

Differentiating tne ébcve two ecustions

respect to { we get

dLnp (4] £) B [ d, . d, . dyg x] a6
= \ g e ey TE T ’ .
of afl afz afN
&na
9¢np (£f)
=l e Tl _ e Tl
5E 52 2(£-E) "R.” = -(£-E) "R¢™. (4.7)
Substituting Egs. (4.6) and (4.7) into Eg. (4.3), we get
d d d
1 2 N =T -1 T
— =A, —— =Ayeen, ———--X]—(E—E) R.7= 0". (4.8)
[afl af2 afN f
1

the above equation

Taking the transpose on both sides of
. -1 . . .
and assuming that the covariance Rf is 2 symmetric matrix,

(i.e. R;1=(REI)T) we then get
C 4T

(4.9)

Re¢ denoted by

if the norm of

From Eo. (4.9), we know

IR ¢]| is very large, then
£
fuap © = fup
where d is the observation data vector and f is the
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maximum likelihood estimate vector. 1In the blurred image
case, the EML is the inverse solution instead of the

observation data.

On the other hand, if the norm of R is wvery small

f
then

|Hh>

L F

MAP

where T is the a priori nonstationary mean of the imezge.

Therefore, solving these equations for EMAP tries to

move the solution of f from the & priori nonstationasry meen

A

to a meximum likelihood estimate £ ..

1]

Here Rf is =&

measure of our confidence in the nonstationary mean f and

A~

maximum likelihood estimate ;M as a solution to ‘the
restoration problem. Equation (4.9) appears very simple,

but the complexity of the estimate implementation depends
heavily on the structure of the Rf covariance matrix. Thus
we will aiscuss in the two following sections methods of
implementing Eq. (4.9). One assumes Re is an identity
matrix, and the other assumes that Re is a Markovian

matrix.

4.3 DMAP Estimate Impliementatin with an A Priori Image

Covariance Matrix - Identity Covariance Matrix

FoR simplicity, we assumeRf=0§I,thus each pixel of
the picture 1is uncorrelated. 1In real picture data, each

pixel is highly correlated with its neighbors [4-11], and
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this assumption 1is treatea in the next section. From
Eg. (4.9) ana Rf=c§1 we then have
0 ]
(l_—f__— >\ fl“fl 0
1
d 1
2 - = - | _ (4.10)
—= A 2 f,-f =10
afz O¢ 2 72
d, - . :
N -—
af; A fN f 0

From Eg. (4.10), we-see that the MAP estimate becomes a

very simple point process instead of a vector process

because equations are decoupled. Hence we can get a closed

form solution

= 2 2 2
e - (fi—Aof)fd(fi-ko§+4Aofdi

1 2

(4.11)

where the positive root 1is taken because intensity is

always non-negative.

4.3.1 1Implementation and Experimental Results

The observation data are photon counts with some

amplification gain a@. The photon count is simulated from

an original picture (256x256) through a Poisson random

noise generator wich is described in detail in Appendix A.

in order to implement Eq. (4.1l1l),we must estimate the

)

variance 0% and nonstationary mean f from the available

data. Hunt [4-13] has shown that an estimate of the

nonstationary ensemble mean of a context-dependent ensemble
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can be made by blurring the given ensemble member with a

point-spread function as expressed by

<Eplx,y)> = f(x,y) = h(x,y)®f(x,y) (4.12)

where <fK(x,y)> denotes an ensemble average at (x,y) over
all k ensemble images

E(x,y) is the nonstationary mean of the object

f(x,y) is the object intensity

® denotes two-dimensional convolution

h(x,y) is a point-spread function related to the

probabilistic process which generates the
ensemble.

Equation (4.12) states that an estimate of the ensemble
-mean can be made by convolving the original image with a
point-spread function h(x,y). In the experimental work
shown in this section, an estimate of the nonstationary
mean &along each 1line 1is made by blurring the noisy
measurement data with a point-spread function h(x,y) chosen
to be square blurring function. We have chosen an 11 pixel
linear moving average window along each line in order to
obtain nonstationary mean estimate. Because of this large
moving window, the noise 1is averaged out while the low
frequency components of the object remain. The 1image
variance 1s estimated by an unbiased estimate of the

population variance.
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The restored pictures produced by the solution of
Eq. (4.1U0) are shown .in Fig. 4.1 for different mean rms
signal to noise ratio denoted by (SNR)__ .. From Fig. 4.1
it can be seen that the restored pictures are improved
compared to the noisy pictures and that the nonstationary

mean carries the important low frequency image information.

4.4 MAP Estimate Implementation With An A Priori 1Image

Covariance Matrix - Markovian Covariance Matrix

In this section, we assume R is a Markovian
covariance matrix with correlation coefficient P. The
Markovian covariance matrix is very good approximation for
real image signals. The Markovian covariance matrix for a

one-dimensional image model is

N-1
1 P p2 cee P
N-2
2 ;.) p eee P .
- N- -
oN-1 N-2 N-3

where 0 is the correlation coefficient between pixels and

|D|<1. It can be shown that the inverse of Rf is [4-12]

L 0 ]
1+p
R;1= . B - (4.13b)
1
0 -8
| 1402 |

where
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Figure 4.la Restored image with a MAP filter with

Re
(a)
(B)
()
(D)

= 02I and ZSNRirms=/§

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.1b Restored image with a MAP filter with

Re
(a)
(B)
(C)
(D)

=021 and (SNR) =/10
rms

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.1c Restored image with a MAP filter with
Re=021 and (SNR) _ =v20

(R)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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1 1
r = 3 B = 02 » lpl <1 and |B] <3.
O¢ 1+p

Substituting Eq. (4.14) into Eq. (4.9), we obtain a set of

three types of nonlinear equations with N unknowns

d
1 r k3 £
( ) - (£,-F,)+Br(f,-£,) = 0
afl 1+p2 1" "1 2 72
i — — =2 —
(afi X)+Br(fi_1'fi-1)_r(fi-fi)+8r(fi+1-fi+l) - 0(4_14)
i=2,3,...,N-1
dN - r F
(= A) +Br (£ _4-Fy_q)-—— (£ -F) = 0 .
atg M N-1 "N-17 27N N

Due to the largé dimensionality and nonlinear nature of the
above system equations, ordinary linear signal processing
matrix operations and Fourier methods are of no use. Thus,
it is impossible to directly solve those equations in order
to obtain optimal solutions. Instead a suboptimal method
with sectioning to reduce the dimensionality of the
equations is used. After trying several techniques for
numerical solution of the nonlinear equations, we have
found that a Newton-Raphson iterative method [4-4] 1is the
best. This method is very easily implemented and converges
rapidly with a good starting guess. In this application,
convergence is generally reached in about three to four
iterative steps. The details of applying this method to

the MAP estimate will be discussed in Appendix B.
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4.5 Implementation and Experimental Results

The estimate of image variance 0% and the
nonstationary mean are done by the same technique as in the
last section. The initial value of f in the Newton-Raphson
method might be assumed to be the nonstationary mean'i or
the raw observation data, but the final estimates must
converge to the same values. The convergence criterion is
based on the numerical closeness to the ideal image
(object). The convergence rate is also controlled by the
estimated variance 02

£

of the local variance is very important to the convergence

of the image. An accurate estimate

of the algorithm. The 1iterative Newton-Raphson method
employs the gradient of the function to obtain the
increment value for iteration, thus it converges much more

rapidly than other numerical methods.

The boundaries between sections must be carefully
considered when the MAP equations are solved by
Newton-Raphson techniques. The overlap sectioning method
may minimize the boundary effects, but more computing time
is required because the number of arithmetic operations in
the Newton-Raphson solution goes up roughly as the cube of
the section size. Thus, there 1is a compromise between
section size and processing speed. The sectioning
technique is best explained with the use of diagram shown

in Fig. 4.2. In implementing the one-dimensional MAP
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rﬁ

(1)

(2)

(3)

IRzd

Np/2 N Np/2
9] K

- Ny e
Np/2 Ny Np/2
V/ Y/

/e /

A Kk W
".Nol‘— [ ]

N. measured image data points are processed in each
s8ction with an overlap of N, data points between
sections.

Each section keeps N, valid processed data points and

discards ND/Z erroneous processed data points at the
two ends,

NS' Ny N.. and N. are the section size, overlap size,

valid processed gata size and discarded data size
respectively.

Figure 4.2 One-dimensional sectioning
method diagram
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filter we have found that a section size of 32 pixels and
overlap of 16 pixels in each section works well., This
choice reduces the processing time and also minimizes the
boundary effects. These assumptions are based on the fact
that pixels separated by 16 unit sampling distances are
éssentially uncorrelated even if p=0.95. The restored
pictures with the MAP filter using different overlap sizes
in each section are shown in Fig. 4.3 and Fig. 4.4.
Figure 4.3 is the restored picture produced by an MAP
filter with 8 pixels overlap in each section. Figure 4.4
is the MAP restored picture with 16 pixels overlap in each
section. From Fig. 4.3 and Fig. 4.4, we can see some
sectioning boundary effects although the restored piqpure
of Fig. 4.4 has reduced edge effects compared to Fig. 4.3.
The sectioning edge effects of Fig. 4.4 are almost
invisible. Thus, an overlap of 16 pixels in each section
is a good practical choice for minimizing the sectioning
boundary effects. Therefore, all the following
one-dimensional processed pictures have used the overlap
sectioning method with a section size of 32 pixels and an

overlap of 16 pixels in each section.

We have also found that the cpu processing time of the
MAP filter with p=0.95 1is lesser than that of the MAP
filter with p=0.0 because of the a priori knowledge of
pixel correlation. The restored pictures with MAP filters

are shown in Fig. 4.5 for different (SNR)

rms With @ =0 and
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Figure 4.3 Restored image with a MAP filter 8 pixels
overlap in each section

(A7)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.4 Restored image with a MAP filter 16 pixels

overlap in each section

(a)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.5a

Restored image with a MAP filter at

(A)
(B)
(C)
(D)

(SNR)rmS=/§ and p=0

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.5b Restored image with a MAP filter at
iSNR)rmS=/§ and p=0.95

(a)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.5c

Restored image with a MAP filter at
(SNR)rmS=¢10 and p=0

(A) Original object image

(B) Poisson noisy image

(C) Nonstationary mean image

(D) Restored image by the MAP filter
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Figure 4.5d Restored image with a MAP filter at
ZSNR)rmS=¢1O and p=0.95

(A)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter

69



Figure 4.5e
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Restored image with a MAP filter at

(A)
(B)
(C)
(D)

(SNR)rmS=V20 and p=0

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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Figure 4.5f
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Restored image with a MAP filter at
(SNR;rmS=V20 and p=0.95

(A)
(B)
(C)
(D)

Original object image

Poisson noisy image
Nonstationary mean image
Restored image by the MAP filter
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p=U.95. The restored images are optimal solutions between
the maximum likelihood (ML) solution and the a priori
nonstationary mean solution. The MAP solution smooths out
the Poisson noise degradations and has also extracted some
higher frequency information from the noisy imaggs. The
images restored with the MAP filter have more detail

information particularly at higher (SNR) ...

4.6 Recursive MAP Estimate for the Poisson Noise Model

From Eq. (4.14) and simple algebraic manipulations, we

get
- d
£, = f2+———1—7—4f1—f1)—ii(fl—l) (4.15a)
B(1+p") Br "1
d.
£, . = T, 4L(£.-F)-A(E-1)-(£, _,-F._y), (4.15b)
i+l i#17B i i B E; i-1""i-1"" .
i=3,4,...,N-1
ana
B + VB?-4C
£y = > (4.15c)
where 5
_ A(1+p7) 2 _F 3
B = - *B(L+p%) (£ 1 =fy 4 )*Ey
2
_ {(1+p7)
C = —=—— 4.

1f we can estimate £; and f , then Eq. (4.15) is a
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recursive relation

£, = £3+kg(£,,d,, ) (4.16)

where fi is the previous estimate, di is the observation

data, k 1is a residual gain, f is the estimate of the
nonstationary mean vector and g is a function of fi, di' f.

Because images with Poisson noise have a very low (SNR) .,
the nonstationary mean can only be estimated approximately.
Also, the estimation error is propagated through all the
estimates Ei' Thus, Eg. (4.16) is very unstable and it is
impossible to obtain an accurate recursive solution. Some
simulations have been performed with different estimates of

~

f, and f for different (SNR)

rms* All experimental results

quickly blow up, obliterating all the image information.

4.7 A Local Adaptive Processing Filter

As discussed in Ch. 2, image signals are a
nonstationary random field whose statistical properties
vary in a local region of the image. Bence, a local
adaptive processing filter should have many advantages
compared to global processing filters which are defined
over the entire 1image field. Global processing filters
generally average over detail information in local regions
of the images. The local adaptive filter should be
particularly useful when the image noise is

signal-dependent as with Poisson noise. The sectioned MAP
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filter as described can be made to operate as a 1local
adaptive processor. Because the MAP filter contains an ML
(maximum likelihood) term and an a priori term
(nonstationary mean), the filter can be implemented by
adaptively weighting the terms as a function of local
properties such as the first and second moments of the
image or the nonlinearity of the human eye. The 1local
adaptive MAP filter can be expressed as
Qi * (ML term) + (l—Qi) * (a priori term) = 0

i=1,2,...,L (4.17)
where Q; is the weight of the ith section and L is the
total number of sections in the entire image. The local
adaptive filter can also be extended to space-variant
degradations. For simplicity in the experimental results
that follow, we have simulated the global adaptive
processing filter with Qi=Qj=Q for all sections. The

equations to be solved are:

d

Q% (2-1) = (1-0) # (—E5—) (£,-F ) +(1- 01 +BZ(£,-F,)  (4.182)

1 (1492 -4

d, _ _
o* (-1 - (1~ #BE(£, | -F; 1)~ (1-0) w3 (£;-F))

+(1-0)#BE (£, F; ) = 0

ar (F1)+ (1- Q) 8L (£, )= (1-Q) +—Em

f i-1' 1+1 (1+02)

-F = - (4.18c)
(fN fN) 0

A Newton-Raphson iterative technigue with sectioning was
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used to solve Eq. (4.18). All the Newton-Raphson iterative
techniques are described in Appendix B. The only factor
that changes are some constant coefficients in the

equations.

The resulting pictures of this global adaptive filter
are shown in Figs. 4.6 through 4.8 for different T§§§7;;;
and different weights =0.3, 0.5, and 0.8. The Q=0.5
weights both terms equally. The region of higher ?Eﬁﬁ?;;;
can be given a higher weight and then can extract higher
frequency components from the ML term, while the region of

lower (SNR)

rms €an be weighted more towards the a priori

term. These facts can be seen in Figs. 4.6 through 4.8
_where we can see clearly that detail information 1is more
visible and noise suppression is decreased as the ML term
is increased. However, if Q 1is too 1large, then the

resulting image is the same as the unprocessed data.

4.5 Conclusions

From this chapter, we have found that the estimated
nonstationary mean carries most of the gross information in
MAP estimation, and that the covariance matrix carries
important detail information of an image. Also, the
variance affects the convergence rate of the algorithm.
The variance can act as a weighting factor in sectioned
suboptimal MAP estimation because this method 1is very

dependent on the local nonstationary variance. The
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Figure 4.6 Restored images with an
filter at (SNR) rms=/§
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Figure 4.7
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Figure 4.8

Restored images with an adaptive MAP

filter at (SNR)rmS=¢20
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sectioning method with a Newton-Raphson solution has been
effective at coping with 1large dimension nonlinear MAP

estimation equations and has produced good results.
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CHAPTER 5

RESTORATION OF BLURRED IMAGE WITH POISSON NOISE

5.1 Introduction

This chapter we extend the previous results to the
more general imaging model including blurring degradations
and Poisson noise degradations as discussed in section 2.4.
In many practical situations of interest, the detected
image data arises from a linearly blurred image of the
object. Althoﬁgh the blurring may arise from many
different sources, we simply lump them together as a
blurring matrix H. This system and its block diagram are
shown in Fig. 2.5 and Fig. 2.6 respectively. In
section 5.2, we formulate the MAP estimation equations and
its solution. In section 5.3, we briefly review the
sampled infinite area superposition operator model for
image blur. 1In section 5.4, we discuss sectioning methods
and in section 5.5, we discuss implementation of an MAP
filter with one-dimensional blurring and its experimental
results. In section 5.6, we discuss implementation of the
MAP filter with two-dimensional blurring and present some
experimental results. In the final section, we present

some conclusions of this chapter.
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5.2 MAP Derivation with A Blurring Matrix H

From Bayes' Law we have the posterior density as

follows:

p(d|b)p(b)
p(.kl'g) = P (d) (5.1)

where b=Hf and b.= § H. .f..
- = i 3 iy j

Froh Fig. 2.6, we know that g is the Poisson noise
degraded version  of (HEf) . As before we have the
conditional dénsity

g. —-Ab,
(Ab ) e 1

plg;lb;) = 5] (5.2)

for the measured counts g; as a function of incident
intensity bi' We also assume that counters i and j are

independent for a given b. Hence

p(g|b) = p(g,|b)p(g,|b)...plgy|b) (5.3)

Because each 9, only depends on its corresponding bi'

p(g|b) = pl(gylb)p(g,lb,)...plgylby)
g; ~Aby
(Ab;) Te (5.4)
= I 3.1
1 1

and setting di=agi we have
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d./o -Ab,
(Ab,) e 1
T (5.5)
o (==) 1

p(dlb) =

e =1

5.2.1 The Probability Density of the Blurred Image

The a priori density p(f) is multivariate normal with
nonstationary mean i and stationary covariance matrix Re

given by [5-1]

1 = T,-1
p(f) = kfexp{-f(g-g) Re

(£-9)} . (5.6)
The blurred data b is given by the linear equation,

b=HE (5.7)

p(b) = Kbexp{-%(ng)TR;l(ng)} (5.8)
where
_ T
Ry, = HR.H", | (5.9)
E=HTE (5.10)

Substituting Egs. (5.9) and (5.10) into Eq. (5.8), we get

p(uf) = Koexpl-3(£-D)TR;H(£-D)) (5.11)
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5.2.2 Estimation Equations

From chapter 4, we have the estimation equations as

follows:
2 gnp(d|b)+2=tnp(b) = OT (5.12)
f (PRIGIRITEEiARiR) = Dy
where
b = Hf and b, = 2: H..f. (5.13)
- — i - ij73
J
From Eq. (5.5), we have
d./a -Xb
(Ab, ) e 1
tnp(d|b) = Z Ln 3 (5.14)
i i
Q(T)!
= Z {-d—iﬂ.n(xb )-Ab.-%n -Qn[(d—i)']} (5.15)
- i o i i o a :
d. H
3 - -1 TiK_ :
afolnp(_qlg) = Zl: & B, Mg (5.16)

. x(b_f-HiK) | (5.17)
1
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Thus

aafslnp(dll-lf) = [ZA(B— 1)H11,2A(b——-1)n (5.18)

ZJ\(—-I)H ]

énd from before
(5.19)

Substituting Eqs. (5.18) and (5.19) into Eq. (5.13), we get
d.
1
[EA( 1)Hlllz)\(b i2'...';A(b_;_l)HlN]

(5.20)

T

+[-(£- -1) R = 0

£ 1

- Taking the transpose of Eq. (5.20) and assuming Rf=R¥

then, we get

.

Z M—-l)H
d.
;x(ﬁ-lmiz

Zx(gi-lm
< M g1 Hyy
[ 1 1

We expand the first term of the left side of Eq. (5.21) to

obtain
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d, d, dy -
(E—-l)H11+(B——1)H21+...+(B—-1)HNl
1 2 N
d d d
1 2 N
(z=-L1)H, +(z==1)Hyo+. ..+ (z—1)H
\ b1 12 b2 2 bN N2 (5.22)
4, d d
1 2 N
h(ETFl)HlN+(E__l)H2N+"'+(B—'1)HNN'
1 2 N
- -dl
Hyqp Hyq Hyp .- Hgy b—l—l
d,
Hyp Hyo Hypg »-- Ha2l| 5, ~ 1
= A . . (5.23)
d
N
LHiy Hyo Hy3 - -« Hyy- Lb_N‘ 1
- -T—dl -
Hyj Hy, - -« .« Hyy EI-l
a, .
= H21 H22 . e . HZN E;-l (5.24)
: : a
: : N
— -1
LHNl HN2 e e e e HNN_ L.bN |
T .
= AH" (9-1) ' (5.25)

Here the H matrix is not necessarily a square matrix but
depends on the model of the blurring degradation where

T
q = [quqzn .. qu]

and
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1

U'l Q
= |

da.
—_—
T H..f.
3 1] 3

For the time-being, we assume that H is a square matrix

Hyp Hyp e HlNT
A H H .o H
= 21 22 2N (5.26)
| Hyp Hyp ---  Hgy- .
Therefore, the MAP estimate equations reduce to
AnT (g-1)-RgT(£-E) = O (5.27)

This equation is the key equation of MAP estimation with a

blurring matrix.

The complexity of solving this equation is determined

by the structure of the blurring matrix H as well as the

If the matrix R

covariance matrix of image denoted by Rf. £

is a separable matrix it can be expressed as Rf=RfR@Rfc
where @ denotes the direct product [5-14] and RfR and Rfc
are NxN matrices of the form
- 2 N-1-
1 P P ceee P
N-2
P 1l o] ceee P (5.28)
Rer = | ¢ : .
N-1 N-2 N-3 .
ON lp P cees 1 .
The Markovian covariance matrix Re¢ is an accurate
approximation to the statistics of many images [5-2]. The
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. . 2 2 . . .
H matrix 1is an N xN blurring matrix which may be

nonseparable or separable. If H is a separable matrix,
then H=HR@HC where HR or Hc is an NxN matrix. The detail
of modeling continuous superposition integrals for blurring

by a discrete operator H is discussed in the next section.

Solving the MAP estimation Eq. (5.27) 1is heavily
dependent on the separability of the H matrix and Re
matrix. If we assume that both are separable, then the MAP
estimate Eq. (5.27) <can be obtained by separate row and
column processing. Thus, thel computation time of a
separable two-dimensional MAP filter 1is twice that of a
one-dimensional MAP filter. However, the computation time
of a nonseparable two-dimensional MAP filter is
approximately the square of the time for a one-dimensional
MAP filter. Thus, computing H (g-1) takes approximately
an 4 operations (each operation includes one multiplicatioh
and one addition) for the nonseparable case and 4N3
operations for the separable case where N is the picture
size, e.qg. N=256. The tremendous amount of computing
needed for the MAP estimate makes solution impossible even
with the separable case. Thus, we adopt a suboptimal
solution involving sectioning with a Newton-Raphson
solution technique. This method has been developed in
Chapter 4 for solving nonlinear MAP estimate equations of
larger dimensionality. Using the sectioning method [5-4],
the MAP estimate Eq. (5.27) becomes
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AH (g-1) 7' -R (£-%)

where the superscript m denotes the mth section of the

image. If each section size is Ni, then g (™, £ ™  ang
£ (™ are Ng x1 vectors and H (™ is an Ni xNi matrix. For

clarity, we omit the superscript (m) in the discussion
which follows. The H matrix is constructed from the known
point spread function (PSF) h(x,y). The PSF h(x,y) is

obtained either from a priori knowledge or a posteriori

knowledge. The former assumes that the PSF h(x,y) is known
a priori. The latter assumes that the PSF h(x,y) 1is not
available g priori. It must be estimated from noisy
observation data using techniques such as blind
deconvolution. " References [5-5,5-6,5-7,5-8] describe
several methods for estimating the amplitude response of
h(x,y), and the Knox-Thompson method can be used to
estimate the phase response of h(x,y) [5-9,5-15]. These
methods determine the degradation parameters by a

posteriori methods [5-3]. This thesis assumes that PSF

h(x,y) of the system is given as a priori information. We
must know the detailed structure of the H blurring matrix
in order to implement the MAP estimate Eq. (5.29). Hence,
we now discuss how to construct the H matrix from a given

PSF h(x,y) of the system.
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5.3 Construction of the Blurring Matrix H

All blurring degradation effects are 1lumped together
as a two-dimensional point spread function h(x,y;&,n) as
shown in Fig. 5.1. From linear system theory, we can
describe Fig. 5.1 by the superposition integral

oo}

G(x,y) = Jf F(a,B)h(x,y;a,B)dodB (5.30)

- 00

If this linear system is spatially invariant, then
h(x,y;a,B) = h(x-a;y-B8). (5.31)

In order to discretize the continuous Eq. (5.30), we must
sample G(x,y) over a grid at spacing (A4x,Ay) satisfying the
Nyquist criterion [5-2]. For notational simplicity, the
continuous object function F(¢,B) and the continuous PSF
h(x,y; & n will also be assumed to be sampled over the same
grid spacing. Thus, Eq. (5.30) can be expressed as a
double summation over infinite 1limits by invoking the
sampling theorem and & quadrature formula. 1In order to
express the infinite area superpositon operator as a
lexicographic ordering for vector ©processing, it is
necessary to truncate the PSF to some spatial 1limit, say
(LAx,LAy) and restrict G(x,y) to an area (MAx,MAy). Then

the truncated superposition operator is
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F(a,RB) G(x,v)

—— @ h(x,y:c,B)

Figure 5.1 Two-dimensional linear system
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L+ml—l L+m2—l
G(ml,mz) = z Z F(nl,nz)p(ml—nl+L, (5.32)
n,=m n,=m
171 2 2 My-n,+L; )
27y Thimy .My
where for simplicity, the grid spacing Ax,Ay is dropped and
p, assumed to be zero outside its range of indices,
represents the sampled point-spread function which
incorporates the quadrature integration. The detailed
derivation of Eq. (5.32) is in [5-2]. 1In order to prevent
serious approximate error at the boundaries of G, we must

choose N such that
N > M+L-1 (5.33)

where N is the size of the convolved image signal G

M is the size of the object image signal F

L is the size of PSf P
These boundary problems are important and closely related
to the sectioning method used. In the next section we
discuss the use of an overlap-save sectioning method to

minimize the boundary edge effects.

If the arrays F and G are represented as lexicographic
ordered vectors by f and 'g respectively, then the

superposition operator can be written as

g=HE (5.34)

2xl and N2x1 vectors respectively. H is

where f and g are M
the M?xN°. matrix
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B 7
By, B2 oo Bn 0
~ N b
N N\, RS
H '~ H, . H (5.35)
b o= =22 « —2,L=2,1+1
~ \\ N
0 N N ~
N N
i LITINES RS R EM,N_
where H;4 are MxN matrices with entries
Hmz,nz(ml’nl) = p(ml—nl+L,m2—n2+L) (5.36)
for
1 <m <M, l1<m, <M
(5.37)
my < ny < L+ml-l, m, <n, < L+m2-l

and P is a discretized truncated point spread function

h(x,y). If the PSF is spatially invariant (SIPSF), then
H = H . (5.38)
—m, /Ny —m2+l,n2+l
When the PSF is spatially invariant and orthogonally
separable
H = H, ® Hp (5.39)

and the two-dimensional convolution operation becomes

where ® denotes direct product, G and F are the

T
G = HCFHR

(5.40)

image and

object arrays, respectively, and Hp

of the form

and Hc are MxN matrices
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PR(EL_ ?R(L—l) coe PR(l) 0

R ™~ — =~ ~ o (5.41)

0 ~ ~
PR(L)........PR(l)

[
I

Another .discrete operator models the blurring degradation
by a finite area superposition operator expressed as & D
matrix. The form of this model is

my m,

Q(ml.mz) = Z Z F(nl,nz)p(ml—nl+1,m2-n2+1) (5.42)
nl=l n2=l

where M=N+L-1. Hence the processed array Q is of larger
dimension than object data array F. 1Its vector form is

g=0Df (5.43)

2 2 .
where D is an M xN matrix of the form

Dia .
D1 Ba,o
. N
: P~
D= | Bp,~8r-1,2 - Dyepna,n (5.44)
—er\ .
\\ .
L0 Dy, y

where Eij is an MxN matrix.

All the special cases of the D matrix are the same as
those of the H matrix except for the matrix structure which
has the form of Eq. (5.44). The difference between the H
operator matrix and the D matrix for modeling a continuous
superpositon are that the processed array for the finite

area H computation is equivalent to the processed array for
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the finite aree H computation, surrounded by a boundary of
L-1 superfiuous elements. Conversely, if the processed
array size is the same for two superposition operators, the
L-1 boundary elements for the array obtained by the D
operator will be in error. The resulting implementation of
the MAP filter using the D operator for the blurring matrix
is shown in Fig. 5.2. Figure 5.3 shows the results for the
H operator. We can see the checkerboard noise appearing in
the restorea image of Fig. 5.2. The checkerboard noise
results from using the D operator giving rise to the
erroneous data surrounding each section. Thus, the
two-dimensional MAP filter is implemented with an H
operator matrix for the nonseparable blurring cases rather
than the D operator. We can either add zero elements to
_the rectangular H matrix or truncate the boundary elements
which wrap around, making it a square matrix as discussed
in previous sections. However, the discrete blurring
matrix H should be a rectangular matrix physically. Since
m finite data points are convolved with n finite data

points, the resulting processed data has m+n-1 points.

5.4 Sectioning Method

Due to the large dimensionality and nonlinearity of
the MAP estimate equations, a sectioning method [5-4,5-10]
is used with the Newton-Raphson solution to obtain a

suboptimal solution. There are two sectioning methods:
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Figure 5.2 Restored image with the MAP filter with a

D operator for modeling the blurring
degradation

(A)
(B)
(C)
(D)

Original object image

Degraded image

Nonstationary mean image
Restored image by the MAP filter
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Figure 5.3 Restored image

H operator for modeling the blurring

degradation

(A) Original object image

(B) Degraded image

(C) Nonstationary mean image

(D) Restored image by the MAP filter

with the MAP filter with an
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overlap-add sectioning and overlap-save sectioning. The
sectioning method chosen will give rise to various boundary
edge effects. Hence, we will investigate which method is

the best for MAP estimation. From Eg. (5.29), we have

HT (g-1)-Rg - (£-D) = 0 (5.29)
where
a,
q. = L I3
21 ¥ H.
x KK

In the overlap-add method of sectioning, filtered
outputs of the mth and m+lth section are added together in
the region of overlap to create the final output. This

method is suitable only for linear estimation.

In our case however, the convolution with H is
imbedded inside the function g of Eg. (5.29). Since g is a

nonlinear function of (Hf), we have

: +
a{™ 4q(m*l) a{m™ g m+b)
i i # i + i (5. 45
T H (f(m)+f(m+1)) X H f(m) T H f(m+l) .
K "iK'k k K iK'k K "iK'K
which reduces to
' +
Thus, if g““) belongs to the overlapped portion of a
section m, and ;“W+l) belongs to the overlapped portion of
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an adjacent section m+l, then the overlap-add 'séctioning
method is not valid because of the nonlinear function in
the MAP estimate equation. Fortunately, the overlap-save
method remains valid for the nonlinear case and can be used
in our MAP estimate equation because incorrect boundary
points in the overlap region are discarded, rather than
being corrected by addition. Thus the overlap-save method
can reduce the' boundary edge effects because it discards
the erroneous processed data of the overlapped region.
Since Eg. (5.29) contains two H operators and assumes that
the truncated point spread function matrix is LxL, the
amount of overlap required is 2(L-1)x2(L-1). If we must
correct NXN points of processed data at each section, then
.we must use a working section of [N+2(L-1)]x([N+2(L-1)].
The necessary overlap area constitutes the major overhead
in the sectioned filtering process. It 1is clear thap
smaller sections have a 1larger percentage of overhead
computation., It is also clear that the computation will be
more inefficient for larger point spreéd functions.
However, it should be kept in mind that the number of
arithmetic operations in the Newton-Raphson solution for
each section is the key computing burden of the sectioning
filter. 1In order to find the updated incremental estimate
vector in each iterative step of the Newton-Raphson method,
we must solve a set of linear system equations. The

. . . 2 .
dimension of the linear system equations is Ng where Ng is
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the number of pixels in each section and the structure of
the gradient matrix depends on the structure of the
blurring matrix H when the covariance matrix Re is assumed
first order Markovian. Hence, the number of arithmetic
operations for solving linear system equations 1is heavily
dependent on the form of the blurring matrix H. 1In
general, the number of arithmetic operations in solving. a
set of linear system equations goes up roughly as the cube
of the order of the system when the gradient matrix is a
general sqhare matrix. Thus, the smaller the section size,
the less the computing time of sectioned filtering with the

Newton-Raphson solution.

5.5 Implementation of the MAP Filter with One-dimensional

Blurring Degradation

As stated earlier, two of the most interesting sources
of blur are atmospheric turbulence and 1linear motion
[5-11,5-12]. 1In this section, we assume that the image is
degraded by one dimensional linear motion blur with a
rectangular point-spread function. The rectangular
blurring degradation 1is troublesome because its amplitude
response has a singularity and phase reversals. The
blurring matrix H is the form of Eqg. (5.41), where pR(L) is
the discrete truncated point spread function of h(x,y). We

assume that R is a first order Markovian covariance

f
matrix, and following Eg. (5.29), we can write the
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equations to be solved as

- N . - . ~ B
A ZH. (—3—-1) - (£,-F )+Br(£,-F.) = 0 (5.47a)
| ST 1402 1771 2752
= K “1k'k =
- N -
>y : :
A '_lHji (ﬁ- 1) +Br(fi_l—fi_l)"r(fi-fi)
- 1= K TikTK .
+Br (£, -F, 1) =0 (5.47b)
i=2,3, ,N-1
N
e B e, F o -EoeF (5.470)
"—1 INT T N-1 "N-1" , 2'°N °N )
1= K "NK K P
=0
where
2
1+p 1
r= 1,2 ) 52
P £
(1+p7) (1-07) oF
c. = Br

1= % T PG
N is the number of pixels of each section,
p is the correlation coefficiency between pixel,
c% is the variance of the object,
Hij is the ijth element of the H matrix,
fi is the nonstationary mean of the ith pixel of the

section,

dj is the observation measurement.

Using the overlap-save sectioning method with an
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iterative Newton-Raphson solution, the MAP solution to
Eq. (5.47) 1is obtained. The convergence is very rapid,
generally requiring about two to three iterative steps as
described in detail in Appendix B. The discrete point
spread function of h(x,y) 1is a rectanguler blurring
degradation with a width of 5 pixels. The nonstationary
mean is estimated by a one-dimensional moving average on 1l
pixels of observation data and its variance is obtained
from all the picture data by an unbiased estimate. The
linear system of equations for the gradient function of
Eq. (5.47) which determines the increment value for the
iterations is heavily dependent on the structure of the
blurring matrix H. When the H matrix is symmetrical, the
computing time of Eg. (5.47) with the Newton-Raphson
solution can be reduced. A simulation is done for one
directional 1linear motion blurring (5 pixels) and various
ﬁﬁﬁiT;;;. The sectioned MAP filter has a section size of
36 pixels with 8 pixels of overlap. The restored images of
the MAP filter are shown in Fig. 5.4 for different

(SNR)rms'

From Fig. 5.4, we can see that the ill-conditioning of
the restored image with p=0 is more severe for the higher
TgﬁﬁT;;; image signals. A possible explanation is that the
restoration filter performs more smoothing with a priori

knowledge of high object correlation.
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Figure 5.4c Restored image with a MAP filter for
one-dimensional blurring degradation at
(SNR)rmS=¢10

(A) Original object image

(B) Degraded image

(C) Nonstationary mean image

(D) Restored image with MAP filter
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For a local adaptive MAP filter, the equation to be

solved is

We [AET (g-1) 1+ (I-W) - [-Rg T (=) = O, (5.48)

where W= diag{wi}. Here, W; is the weight of the ith
secton which varies with the nonstationary mean and the
second moment of the local properties of the image. The
local adaptive MAP filter also can be used for the
restoration of images degraded by spatially variant point
spread functions. The point spread function at each photon
detector may not be identical over the whole array. The
image can be divided into sectioned images each with its
own space invariant PSF. For simplicity, we have simulated
a global adaptive MAP sectioning filter in which each W is
fixed. The simulation is performed with p=0.95 for
different section weights and different TgﬁﬁT;;;. The

experimental results are shown in Figs. 5.5 through 5.7

with different (SNR)

rms The W =0.5 gives equal weight to

the (ML) solution and the a priori solution.

From these experimental results, we observe that more
high frequencies are extracted if the weight on the ML term
is increased. Also we see that large weight on the ML
solution results in ill-conditioning of some of the
solutions with the MAP estimate. With a large weight on
the ML part of the solution, the MAP estimate
asymptotically approaches the ML estimate. This is
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Figure 5.5

Restored images with a global adaptive
MAP filter for (SNR)rms=/§

(A)
(B)
(C)
(D)

Degraded
Restored
Restored
Restored

image
image
image
image
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Figure 5.6 Restored images with a global adaptive
MAP filter for (SNR)rmS=V7.5

(A) Degraded image
(B) Restored image with w.=0.3
(C) Restored image with w;=0.5
(D) Restored image with w;=0.8
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consistent with fact that the ML estimate is the inverse
filter for image restoration with blurring degradations.
(For the non blurring case, the inverse solution of image
restoration just is the observation data as discussed 1in
the last chapter). From those observations, we can
conclude that there is an optimal section weight over the
global adaptive filter as "well as the 1local adaptive

filter.

5.6 Implementation of the  MAP Filter with a

Two-dimensional Blurring Degradation

This section 1is divided into two subsections to
separately discuss the assumptions of separability and
non-separability. The blurring degradation is simulated by
a2 3x3 pixel moving window blurring for different 7§ﬁ§7;;;.
The nonstationary mean is estimated by a 7x7 window moving
average over the measured photon counts. This size of
moving wndow was found to give a reasonably good estimate

with a minimum amount of computing.

5.6.1 Separable Case

In this section references to separability means that
the PSF is a separable space-invariant function (SSIPSF) in
the sectioned MAP filter and that the covarance matrix Rg
is Markovian and separable [5-3]. This can be expressed in

vector notation as
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H=H, ® H (5.49)

and Re=RR®Rc, where

pR(Eg pR(L-l) .o pR(l) 0

\
AN
Hy = H_ - . N (5.41)
0 N N
pg (L) pR(l)
1 o 02 ... Nt
N-2
PR = Pc = | ¢ 1 P p: (5.28)
N-1 oN-2 N3

and @ denotes the direct product.

From direct product identities [5-14], we have

- S RS |
R;' = (R, ® R))™T = Ry' 8 R (5.50)

Therefore, the two-dimensional Eg. (5.29) can be
implemented using Eq. (5.47) as a row processor and then
using Eq. (5.47) as a column processor. The solution to
Eq. (5.47) uses the same sectioning method with a
Newton-Raphson iterative solution as before. The
processing time of this two-dimensional MAP filter is twice
that of the one-dimensional case. Without describing the
details of the MAP implementaton, the experimental results

are shown in Fig. 5.8 for different (SNR) yns @nd p=0.95.

From Fig. 5.8, we can see that the restored image with

a two-dimensional separable filter performs considerable
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Figure 5.8a

Restored images with a separable MAP
filter for (SNR)rms=/§

(A)
(B)
(C)

(D)

Original object image

Degraded image

Restored image by one-dimensional
MAP filter

Restored image by two-dimensional
MAP filter
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Figure 5.8b Restored images with a separable MAP
filter for 1SNR)rms=¢7.5

()
(B)
(C)

(D)

Original object image
Degraded image

Restored image by one-dimensional
MAP filter

Restored image by two-dimensional
MAP filter
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Figure 5.8c Restored images with a separable MAP
filter for (SNR)rmS=¢10

(A) Original object image
(B) Degraded image

(C) Restored image by one-dimensional
MAP filter

(D) Restored image by two-dimensional
MAP filter
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smoothing of the Poisson noise. The restored images show
some improvement over the noisy originals. Although the
separable assumption is an accurate first-order
approximation for the system, the image field itself is not
separable. Thus, we implement a two-dimensional

non-separable MAP sectioned filter next.

5.6.2 Non-separable Case

We now assume that the PSF 1is a non-separable
space-invariant function (NSIPSF) and that Rg is an
identity matrix to simplify the simulation. The
two-dimensional non-separable sampled infinite area
superposition model is used to reduce the two-dimensional
blurring degradation to a matrix H. This matrix is an
szN2 matrix, where M is the observed data size and N is
the processed data size for the sectioned MAP filter.
Thus, we need to solve a linear system of equations of
order N2xN2 (Eq. (5.29)) in order to find the updated
increment value of the root in each iterative step. Even
though the sections are small, a large amount of computing
is needed for this sectioned MAP filter. The details of
computing time of the sectioned MAP filter are described in
the last section. Since the sectioned MAP filter wuses a
lexicographic ordered vector representation and the
observed image uses a matrix representation, some

conversion between them is needed. The conversion relation
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from matrix to vector is
D = ((J-1)*M)+I (5.51)
and from vector to matrix they are

I = Mod(P-1,M)+1 (5.52)

J [(P-1)Mod (P-1,M)]/M+1 (5.53)

where P 1is the location of the vector element with

lexicograhic ordering, M is the size of the section to be

processed, (J,I) is the (row, column) location of the image
pixel and Mod 1is the modulo operator. The overlap-save
sectioned MAP filter is used to minimize the boundary edge
effects of sectioning. The simulation is done with section
size 9x9 and an overlap of 4x4. Since the blurring
degradation 1is an uhweighted average over 3x3 pixels, from
the discussion of the previous section, the wrap around
data is 2(L-1)x2(L-1) pixels which 1is 4x4 pixels. The
nonstationary mean is estimated by a rolling window moving
average method which efficiently keeps only the data
required in high speed memory. Becuase of the large
estimated CPU time for this filter on the DEC KL-10 only
the right side of the noisy picture 1is processed. Two
original images with different TgﬁﬁT;;; were filtered and
the experimental results are shown in Fig. 5.9. From

Fig. 5.9, we <can see that the two-dimensional filter has
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Figure 5.9a Restored image with a non-separable two-
dimensional MAP filter for (SNR)rmS=/7.5

(A) Original object image

(B) Degraded image

(C) Nonstationary mean image

(D) Restored image by the MAP filter
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Figure 5.9b Restored image with a non-separable two-
dimensional MAP filter for (SNR)rms=/10

(7)
(B)
(C)
(D)

Original object image

Degraded image

Nonstationary mean image
Restored image by the MAP filter
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produced noticeably better results than the restored images
of Fig. 5.8. However, the CPU time of the general
non-separable filter ié approximately a factor of 100
longer than that for a separable filter with a 256x256
image and section sizes indicated. The results shown in
Fig. 5.9 were done with a preliminary version of the
algorithm to show feasibility only. Processing the entire
256%x256 image would take approximately 100 minutes. It is
likely that considerable savings in computer time would
result from a very carefully written algorithm which would
recursively perform Newton-Raphson solutions between

windows.

5.7 Conclusions

We have developed an MAP filter for ~a Poisson noise
model with blurring degradations. The implementation and
method of solution for the MAP filter are heavily dependent
on the form of the blurring degradation matrix H and the
covariance matrix of the object image. The overlap-save
sectioning method with a Newton-Raphson solution has been
shown to be an effective fast approach to the suboptimal
MAP estimate. The sampled infinite area superposition
model is used for the blurring degradation. Both the
one-dimensional blurring and two-dimensional blurring
situations with different levels of Poisson noise were

simulated.
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From these experimental results, we find fhat the
nonstationary mean carries the most of the structured
background information and that the covariance matrix leads
to a stable Newton-Raphson solution especially for higher
(SNR)_, image signals. It has been found that there is an
optimal weight in the global adaptive MAP filter which
produces the best quality restoration. Too much weight on
the ML term solution will gives rise to ill-conditioning.
From Fig. 5.9, we see that the quality of the restored
image with the MAP filter assuming a non-separable PSF
gives better results than the separable MAP filter.
However, the CPU time for the non-separable filter is much
longer than for the separable filter. The overlap-save
. sectioned MAP filter has been shown to be useful for
overcoming problems of large bdimensionality and

nonlinearity which are inherent in MAP estimation.
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CHAPTER 6

THE QUALITY OF THE MAP ESTIMATE

6.1 Introduction

In this chapter, we investigate the quality of the MAP -
estimate for Poisson noise. The quality of the estimate
depends on the performance criteria chosen. There are two
types of performance criteria [6-1,6-2]: one depends on the
estimator structure and the other depends on the
performance itself. The MAP estimate and ML estimate
belong to the former one because the MAP estimate is the
mode of the posteror probability density and the ML
estimate is the mode of the a priori probability density.
The Bayes estimate belongs to latter because it minimizes
the risk of the estimate. The MMSE (minimum mean square
error) estimate is a special case of the Bayes estimate
when the cost function is proportional to the mean square
error. . However, it is customary to choose the conditional
or unconditional expected squared error as a universal
measure of quality of all estimates. Unfortunately, the
expectation operator leading to this measure |is, in
general, very complicated due to the complexity of variance

estimates. However, it is possible to derive an expression
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for a lower bound on the yariance in terms of only the
statistical properties of the observed signal and
estimation Dbias. This quality measure can be formed for
any estimator without detailed knowledge of its structure
as 1long as the estimate is unbiased. This lower bound for
the estimation error variance is the well known Cramer-Rao

lower bound (CRLB) [6-3,6-15].

There are two measures that are wused together to
determiné the quality of an estimate. These are the
expectation of the estimate and the variance of the
estimation error. The first of these measures the bias
inherent in an estimate, and the second is equivalent to
the mean-squared error between the estimate and the
original data. In general, we ¢try to find unbiased

estimates with small estimation error variance.

In section 6.2 and 6.3, we discuss biased and unbiased
estimates and show that the £MAP estimate for the Poisson
noise model is an unbiased estimate. In sections 6.4, 6.5
and 6.6, we derive the Cramer-Rao lower bound of the
estimate for non-random scalar parameters and random vector
parameters with the Poisson noise model. 1In the final

section, we present the conclusions of this chapter.

6.2 Biased and Unbiased Estimates

A conditional unbiased estimate is one whose expected
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value is equal to the true value of the gquantity being
estimated. An unconditional unbiased estimate is one whose
expected value 1is equal to the expected value of the
quantity being estimated. We denote the estimate by a

A

random variable X which is a function of the observations

~

Y. 1If X is a conditional unbiased estimate, then

E,(X] = JQ(X)P(QX)dX = X. (6.1)

~

and if X is an unconditional unbiased estimate, then

EY[’)\(] = J;((X)P(X)dg = E(X) = X. (6.2)

On the other hand, biased estimates do not possess this
desirable feature; their expected values contain an
additional function B(X) of the parameter to be estimated.

Accordingly, for biased estimates we have
EY[X] = X+B(X), (6.3)

or

EY[§<] = T+B(X). (6.4)

for the conditional biased estimate and the unconditional
biased estimate, respectively [6-3, 6-4, 6-5].

A

6.3 fpyap is an Unconditional Unbiased Estimate Vector

From previous chapters, we have

= EXARH' (g-1) (6.5)
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A

. 2 .
where fy,p is the N x1 estimate vector
= . 2 .
f is the N x1 nonstationary mean vector
Ry is the covariance matrix of the image
- . 2 2 . . .
ana H is the N XN discrete blurring matrix.

Taking the expectation on both sides of Eg. (6.5), we have

p = T
Elfy,p] = E+E[ARH (g-1)]. (6.6)
Since
4.
1
9; T b,
1
_ (6.7)
9i < Abi'
then
agi
Elg;] = E,_ {E (=—)}
1 b; "g;|b; by
6.8
E, {E (gi)} | |
=a —_—
i 931Py by

where Eg-|b denotes conditional expectation over g; for a
il7i

given bi‘ Ep denotes expectation over bi' hence
i

kbi
E[qi] = aEb. ['—b—] = al =1 (6.9)
1l 1
Thus
Elgq] =1 (6.10)

and substituting Eq. (6.10) into Eq. (6.6), we get

Elfyapl = E (6.11)
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"N

Therefore, f,., is an unconditional unbiased estimate

vector.

6.4 Cramer-Rao Lower Bound (CRLB)

For notational and mathematical'simplicity, we first
focus our attention on the CRLB for the case of non-random
scalar parameters, an example is sample mean and sample
variance of the amplitude, phase, and Doppler frequency of
the estimation of the radar signals assuming these
parameters unknown but not random variables. Then, for the
random vector parameters case, the CRLB can be derived by a
straightforward modification of the derivation for the
non-random parameter cases. From the derivation of the
non-random parameter case, we can easily understand the
fundamental concept of the CRLB and the basic relation

between the CRLB and the variance of the estimation error.

6.4.1 CRLB for Non-random Variable Case

First, we assume X is an unknown constant parameter to

be estimated from a sequence of measurements y,,Ygre--/¥g
T . A

as shown in Fig. 6.1 where x=[y1,y2,...,yK] . Assuming X

is an unbiased parameter estimate we have
fo(xlx)dx = X (6.12)

or from Eg. (6.1), we have
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;=T(X)

Figure 6.1 Block diagram of nonrandom
parameter estimate
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IJ ---I T(y)f(y|X)dy = X (6.13)

K-fold
integral

where X=T(y). Differentiating both sides of Eq. (6.13)

with respect to X we have

Af (y |X)
JI...IT(X)_______GX - 1. (6.14)

9 X
K-fold
integral

Now we rewrite Eq. (6.14) as

Af(y]X)
[ frepeimlz_Jar - (6.15
K-fold fyro

integral

or

9enf (y|X)
I...J[T(Z)_——g—i——]f(z|X)dz =1 (6.16)

K-fold
integral

Inspection of Eq. (6.16) shows that it is
32nf (y|X)
E’[T(Z)——B—X—] = 1. (6.17)

Next, we examine the normalized correlation coefficient
R aenf (y|X)
between X=T(y) and —  3§x . From the definition ofp , we

have
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A Y11

denf (y| X) 3enf (y|x)

E{ [(T(y)-E(T(y)) ] [—5g—— -E(——%—)1]

p=
9192

where var

hence

From Egq.

becomes

From Eg.

= (6.18)

/var T(g)=V%ar(3”“f‘llx’)
9X

denotes variance. Now,

3nf (y| x) X
Bl—x | ©~ Blre® 5%

£ (y|X) 1
= [J...f X TR £(y|x)ay

(6.19)

3 = 9 -
= 5% JJ cen Jf(X|X)dX = 3¢ [1] = 0,

El tnf(y|X)] = 0. (6.20)

(6.20) and simple manipulations, Eg. (6.18)

anf (y X)
) - E[T(X)____gi__—] 6. 21)
/varT(X)'Vkar(aznf(xlX))
9 X
(6.17), then
1
> 3InE (y X) (6.22)
. niiy
VvarT(y) AJ;ar(___s_i___)

From the definition of p, we know that p is equal to or

less than

1. Therefore, we obtain
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i 1

var (T(y)) = var X > ATnE(
L y[X) (6.23)
var[_.éx ]
or equivalently
~ Pal l
var X = E[(X-X)] > . (6.24)

oX
Equation (6.24) is called the Cramer-Rao inequality for the
unbiased estimate [6-15]. Note that the CRLB is a bound an
the mean-square error. For a biased estimate, the CRLB is

1+dB(X)

s ax
var X > ——SInf(y[X);2 '
E{I 5K 17}

(6.25)

where B(X) is the bias function of X.

For the non-random variable vector case, we have

directly

var [xg-x;1 > 3, (6.26a)

where Jii is the iith element in the KxK square matrix J_l.

The elements of J are

ne>

3%, : X
i 3

J. .

E[BRHP(Z|§) Blnp(zlz)]
1]

T 6.26b)
X = [xllle---lxN] ’ Yy = [yllY2l°°'lyN] ’

where Xx is a vector of non-random variables, to be
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estimated and y is the measurement data vector.

Equivalently,
A T
g 2 E{(V [enp(y|x)]) (v [anp(y|x)]) "} (6.27)
where v A : 3 5 3 ]T
x T ONIX AR, AR,

The J matrix is commonly called Fisher's information matrix

[6—1’ 6_2' 6-3' 6-4, 6-15] .

6.4.2 CRLB for Random Variable Vector Case [6-1].

For the random variable vector case, the information

matrix J, now consists of two parts
JT JD + JP ’ (6.28)

where

>

5 E({v§[2np(1|§)]}{vimnp(zlgg)1}T), (6.29)

ne>

E ({9, tnp (x) HT_tnp(x)}7). (6.30)

and

>

3 A p|3tnp(y[x) | 3fnp(y[x)
D,. X . dX..
13 1 ]
;b E[B&lnp(gg) : Bﬁnp(}_t_)]

Pij Bxi axj

lic>

The matrix Jp represents information obtained from the data
or from the probability density P(y|x) of the MAP estimate.

The matrix Jp represents infor@ation obtained a priori.
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The correlation matrix of the error is

R 4 E(x xT)

€ e
where x _=(x-x). The diagonal elements
mean-square errors and the off diagonal

cross correlations. The mean-square error

as a function of the information matrix is

2 -1,.ii
E[Xe'] > (JT ) B
i
The diagonal elements in the inverse
information matrix Jp are the 1lower

corresponding mean-square errors, and this

of interest here.

6.5 Derivation of the CRLB for

MAP Estimates

(6.31)

represent the

elements are the

of the estimate
(6.32)

of the total
bounds on the

is the situation

with a

Poisson Noise Model

" The estimate of error covariance is, in general,

complicated

density. However, for the MAP estimate it

derive an expression for a

very

to find due to the complexity of the posterior

is possible to

lower bound on the variance

because we know the a priori density P(Xli) and probability

density p(x) of x. From Eq. (6.28), we have
= (6.28)
Jp = Jp + Jps
where Jp and Jp are defined in Egs. (6.29) and (6.30)

respectively.

From the last chapter, we have
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(Abi) e

pd|f) = 3 ' (6.33)

e =

and

p(£) = K exp{~3(£-D) RN (£-D)) . (6.34)

From Egs. (6.30) and (6.34), we can obtain [6-1, 6-10,

6-11]
Jp = Re ' (6.35)

where R is the covariance matrix of the image. From

Egs. (6.29) and (6.33), we have

Jp = E{[Vglnp(glﬁ)][VERnp(g|£)]}
_ T, _ T, 11T
= E{[AH" (g-1) 1 [AH (g-1)] "} (6.36)
= 2®HTEl(g-1) (g-1) T1H,
where E denotes expectation. From Eq. (6.10) we have
E[qgl=1l, thus,
g, = 2 uTEl(g-g) (g-@) "1H (6.37)
_,2.T
Jp = A°H Rgﬁ e (6.38)
where »
r_ & E{ (g-q) (g_-g)T} .

g
Substituting Egs. (6.38) and (6.35) into Eq. (6.28), we

have
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_ 4 2,T -1
JT = A'H RqH+Rf . (6.39)

This is the total information matrix J for the MAP

T
estimate with the Poisson noise model.

when the J;l exists, from Eq. (6.32) we have

A X 2 -
ELE-£0%) > (a7l (6.40)

where {J;l} are the diagonal elements of J;l and %i is
an estimate of the ith component of the restored image
vector £ . Inspection of Eq. (6.40) indicates that the
error bound depends on four quantities: the Rate function
constant A, the discrete blurring matrix H, the covariance
matrix Rq, and the covariance matrix of the image Rf. To

obtain some physical meaning from this expression, we

assume that

Rg = g 1 and Rf = ofI R
to obtain
1, 2.7 2 2.-1_ -1
JT = [(A"H chI+(of) I)]
(6.41)
2 2 2 2,-1_.-1
= [(o.IIHlloqI)+(of) 1] '
Thus
O2
~ 2, _ £
E[(fi-fi) ]l = . (6.42)

) )
A |M|F0q0f+1

2
From Eq. (6.42), we divide out O¢ on both the numerator and

the denominator of the right hand side of Eq. (6.42) and
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get

z 2 1
E[(£.,-£.,)7) = . (6.43)
1 1 )\2”1_1”202+ 12
94
£
From Eg. (6.43), we observe that

(1) When o% is large, we can drop the term 1/0% from the
denominator. Multiplying both the numerator and
2

denominator of Eqg. (6.43) by the mean intensity Bi' gives

52

i

. (6.44)
— 2 2 2
“‘bi) ”H| Uq

~ 2 ~
E[(fi—fi) ] =

In this situation, Ab;, H, and oé

play more important roles
in the error bound of the Poisson noise model than the
variance of the object o%;

(2) The error boundA decreases with the square of the
ensemble mean rate function (ABi). From the experimental
results of Fig. 6.2, we see that increasing the ensemble
mean rate function of the Poisson process AEi, reduces the

Poisson noise degradation. Consequently, when the (SNR)rms

is greater than or equal to 10 db (AEiZIOO), then

~ 2 —
B((E;-£)°%) > 107¢ (6.45)

and the Poisson noise degradation effects are small in a
practial sense.

(3) The error bound is also inversely proportional to the
squared norm of the point spread function H and the error
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Figure 6.2

i
H
L
Y
'

Images with Poisson noise at different

(SNR)

(A)
(B)

(C)

(D)

rms

Original object image

The Poisson noisy image with
(SNR)rms=/§
The Poisson noisy image with
(SNR)rmS=VlO

The Poisson noisy image with

(SNR)rms=¢20
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due to noise is "amplified" by the point spread function.
This results from the ill-conditioning of the restoration

process.

6.6 Conclusions

We conclude that the MAP estimate for the Poisson
noise model is an unbiased estimate and have found the
Cramer-Rao lower bound (CRLB) for the variance of the
estimation error. The CRLB is the tightest lower bound for
an efficient estimate. When an efficient estimate does not
exist, the lower bound can be improved compared to the
Cramer-Rao inequality. Better lower bounds may be the
Bhattacharyya bound and Barankin bound, but these bounds
are very difficult and tedious computationally. The
Barankin bound does not require the probablity density to
be differentiable and it gives the greatest 1lower bound.
It requires a maximization over a function to obtain the
bound and the procedure for finding this maximum is usually

not straightforward.

Use of the statistical estimation method is
particularly desirable from the viewpoint of error analysis
because known techniques can be applied to compute the
error bound. We have developed the CRLB for MAP estimation
‘with the Poisson noise model and also shown the behavior of
the CRLB approximation. From these facﬁs, we afe able to

find the algoritm whose mean-squared errors is closest to
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the CRLB. It must be remembered that the CRLB is a lower
bound and that the actual restoration error will be
greater. It is possible that a better suboptimal sectioned
MAP algorithm can be found to reduce the actual restoration

error closer to the Cramer-Rao lower bound.
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CHAPTER 7
COMPARISON BETWEEN THE LMMSE RESTORATION FILTER

AND THE MAP RESTORATION FILTER

7.1 1Introduction

The most common goal for restoring a degraded image ig
to reduce the measurement error and to make the information
more visible. A true comparison between filters should
follow some objective criteria. However, the mechanism of
human information extraction is not well understood and
there are no universally agreed upon criteria by which to
judge the quality of a proposed image restoration filter.
There are two simple «criteria which are commonly
accomodated. One is the numerical closeness of the
restored image to the undegraded original object image in
terms of mean square error, and the other is the visual
subjective appearance of the restored image compared to the
original. These two criteria are often in conflict because
of the complex, nonlinear, and adaptive properties in the
psycho-physical processes of human vision [7-1]. Pearlman
has proposed a new compromise criterion [7-2] which is a
weighted mean square error. The amplitude weights are not

constants but are dependent upon the contrast ratio of the
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image and also upon an exponential function of average
intensity. This new weighted.mean square error criterion
reflects some degree of the nonlinearity and complex
propérties of the human visual system, although it is
complicated to evaluate. The numerical closeness criterion
is most often employed because it 1is well defined and
mathematically tractable. There is a fundamental
difference 1in the estimation criterion between the MAP and
the LMMSE image restoration filters. The LMMSE filter |is
based upon minimizing 1linear minimum mean-square error
under perfect a priori knowledge of the object and image,
while the MAP filter is based upon the maximization of the

a posteriori density of the image. Although it is

theoreticaly hard to make any comparison between them
because of this fundamental criterion difference, we will
compare them based upon the first two quality criteria and

computation time.

The structure of the LMMSE filter 1is discussed and
analyzed in the next section. 1In section 7.3 we discuss
the implementation and illustrate additional experimental
results. In section 7.4 we discuss image quality measures
and compute the normalized mean square error of the
restorations. In the final section we make comparisons and

state the conclusions.
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7.2 The Structure of the LMMSE Filter and MAP Filter

7.2.1 sStructure of the LMMSE Restoration Filter

From chapter 3, the LMMSE filter °°transfer function
W(u,v) is derived by minimizing E{ jUrez(x,y)dxdy}. By
Parzeval's theorem, it 1is equivale;: to minimizing
E[j]' | e(u,v)lzdudv], where € is the Fourier transform of
e(;Ty). Use of this minimizing mean-square error criterion

and the orthogonality principle [7-10, 7-11, 7-12] yields

the transfer function of the LMMSE filter as

¢fg(u,v)
"qp(u'V) = W)— ) (7.1)
where Qfg is the cross-spectral density of the detected

image g(x,y) and object f(x,y) while Qgg is the spectral
density of the detected image g(x,y). From a straight

forward substitution into Eq. (7.1) [7-3,7-4], we have

NY* (u,v) L (u,v)

Wp(u'V) ' (7.2)

1+ |[#(u, v)| 20 (1, v)
where N is mean number of photon counts in the detected
image ¥(u,v) is the Fourier transform of the PSF h(x,y) and
¢f(u,v) is the spectral density of the object. The
detailed derivation of Eg. (7.2) is described in [7-3].
For a linear Gaussian additive noise model; the Wiener
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N*(u,v)®f(u,v)

Wy, (u,v) (7.3)

= 2

¥ (u,v)]|“eg(u,v)+0 (a,v)
where ¢n(u,v) is the spectral density of noise which is
statistically independent of the signal, ¢f(u,v) is the
spectral density of the object and ¥(u,v) 1is the Fourier
transform of h(x,y). Rewriting Eg. (7.3), the Wiener

filter takes the most familiar form

¥*(u,v)

W..(u,v) = ’ (7.4)
" [ (a0l 245
where . A ¢f(u,v)
¢N(u,v)

B is called the signal-to-noise (SNR) for the linear

additive Gaussian noise model.

Since the 1linear adadaitive Gaussian model assumes
signal-independent noise, it is reasonable to define B as
the signal-to-noise ratio. Similarly, from Eg. (7.2) for

the Poisson noise model, the LMMSE filter is

N*(u V)
W_(u,v) = : (7.5)
P 1% (w, )] 245
where a=ﬁ¢f(u,v). The function Wp(u,v) is the same as

W{u,v) except that o is defined differently from B. Since
Poisson noise is signal-dependent, the SNR is not well

defined. However o can be called the equivalent
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signal-to-noise ratio (SNR)eq, From Egq. (7.5), when the
value of o is very large, which is the case when the rate

function is high, then Eg. (7.5) becomes

W (u,v) *yL,v) . (7.6)

Thus, the LMMSE filter approaches the inverse filter
in the absence of Poisson noise. Indeed, the larger the
rate function, the lesser is the degradation due to Poisson
noise. 1In this case, the LMMSE filter only needs to remove
the blurring degradation effects. As discussed in
chapter 5, Poisson noise effects are much more pronounced
at low light levels when the value of a is smaller. In
this case, the LMMSE filter wp is dominated by Poisson
noise and image signals will be seriously distorted. Thus
the performance of the LMMSE filter will expected to be
worse at lower equivalent SNR's. Although the LMMSE filter
is based upon the minimum mean-square er:orucriterion, this
estimation error is a minimum under the condition that the
a priori knowledge is perfect. Functions such as the
spectral density of the object b and the mean number of
photon counters N must be perfectly known. In reality, %¢
and N are never perfectly known and must be estimated from
the observation [7-7, 7-18]. Hence, the actual LMMSE error
does not reach the minimum. In short, the LMMSE filter
tries to force the solution toward the inverse solution

with some sort of smoothness controlled by the equivalent
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SNR o.

7.2.2 Structure 3£ the MAP Restoration Filter

It has been noted in preceding chapters that the
fundamental MAP estimate contains maximum likelihood (ML)
and a priori terms in its solution. From previous

chapters, the MAP estimate equation is

AaT (g-1) -Rg*

(E'i) =0 , (7.7)
or equivalenty

= EXARGH (g-1) . (7.8)

=

P

The physical interpretation of the MAP estimate is that
maximizing the probability p(d|f) forces the solution
toward the inverse solution which is the maximum likelihood
solution, while  maximizing the probability p (f) is
equivalent to enforcing a smoothness criterion. Thus, the
MAP filter tries to balance the inverse solution with a
smoothness constraint [7-5]. Another physical
interpretation from Eq. (7.8) is that the MAP estimate
tries to move the solution of the estimate iMAP from the @2
priori nonstationary mean E to a maximum likelihood

~

solution £ .

7.2.3 Conclusions

The LMMSE filter and MAP filter are performing similar
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functions of balancing the inverse solution with a
smoothness constraint.., The LMMSE filter uses the
equivalent SNR to control the balancing, while the MAP
filter uses the covariance matrix R of the object as a

and

Imn)>

measure of the confidence in the nonstationary mean
the maximum likelihood solution iML as a solution to the
restoration filter. The LMMSE filter 1is based on the
assumption that the detected image intensity can be
approximately modeled by a stationary random field. For a
typical image, each part of an image generally differs
sufficiently from other parts so that the stationarity is
not generally valid. Moreover, the LMMSE filtering process
is insensitive to abrupt changes of image signals. This
results in edge smoothing and contrast reduction. The MAP
filter does consider the nonstationary pfoperties of random
image fields because it contains an ML term and an a priori
term, Also it is an adaptive processor which depends on
the local nonstationary properties of image signals. The
MAP filter theoretically needs more a priori knowledge, but
in actual implementation, the MAP filter uses less a priori
knowledge than the LMMSE filter. Both filters require
knowledge of the blurring matrix H and mean number of
photon counts N but the LMMSE filter also requires the
spectral density of the object ¢f. It can be intuitively
concluded that the MAP filter should perform better than

the LMMSE filter for the Poisson noise model.
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7.3 Implementation and Experimental Results of the LMMSE

Filter and the MAP Filter

Our experimental implementation of the LMMSE filter is
based on Eq. (7.5) using a fast Fourier transform
algorithm. The ensemble mean photon counts N and the
object spectral density ¢f are estimated from observed
photon count data. The estimate of Qf can be made by
substituting a similar "prototype" spectral density
suggested by Cannon 1in the blind deconvolution process
[7-6], or estimated by an iteration method suggested by
Limb in a method of image restoration called spectral
subtraction (SSIR) (7-7]. Unfortunately, they assume the
" noise is linear signal-independent additive. Because the
Poisson noise is signal-dependent, the estimation of Qf is

different.

The spectral density of the object ¢f is related to

the spectral density of the detected image = by
=, ;= 2 2
04 (u,v) = N+(N) [l (a, v)|| “2 g (u,v) (7.9)

where N is ensemble mean number of photon counts and ¥(u,v)
is the Fourier transform of the PSF h(x,y). Thus, the
spectral density of the object ?:can be estimated by an.
iterative method, although this involves an inverse filter
with ¥. We do not investigate the estimation of the

spectral density &%. Instead we assume that ins a white
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spectral density in implementating the LMMSE filter. The
white object spectral density assumption extracts more
higher spatial frequency information such as edge and fine
detail of the image because the spatial frequency content

of many images falls rapidly at high spatial frequencies.

For generality, a two-dimensional moving average
blurring point spread function (PSF) 1is chosen for the
simulation rather than a Gaussian blurring PSF because it
has singularities and phase reversals in the frequency
response. Restored images with the LMMSE filter for
diferent egquivalent SNR's are illustrated in Fig. 7.1.
The amount of restoration is controlled by the a. The
serious effects of ill-conditioning can be seen in
Fig. 7.1. The restored image gradually blows up as & goes
to higher values, while it becomes more noisy as & goes to
lower values. Because the Poisson noise degradation is
very pronounced for small values of & and the
ill-conditioning of the inverse filter is worse at larger

~

values of 4, implementation of the LMMSE filter is very

sensitive to the equivalent SNR a.

Figures 7.2 and 7.3 show results with the nonlinear
sectioned MAP filter implemented with Newton-Raphson
iterative techniques as before. Figure 7.2 has results
with no blur, and Figure 7.3 shows results with linear

blur. The experiments for both cases of degradation are
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Figure 7.1 The restored images with the LMMSE
filter for different estimated (SNR)eq [0}

(A) Restored image with the LMMSE filter
for 8=10

(B) Restored image with the LMMSE filter
for 8=20

(C) Restored image with the LMMSe filter
for 8=40

(D) Restored image with the LMMSE filter
for 8=100
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Figure 7.2a

Images restored by the LMMSE filter and
the MAP filter at (SNR)rmS=/2.5

(A)
(B)
(C)
(D)

Original object image

Poisson noisy image

Image restored by the LMMSE filter
Image restored by the MAP filter
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Figure 7.2b

Images restored by the LMMSE filter and
the MAP filter at (SNR) rms=/§

(A)
(B)
(C)
(D)

Original object image

Poisson noisy image

Restored image by the LMMSE filter
Restored image by the MAP filter
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Figure 7.2c

Images restored by the LMMSE filter and
the MAP filter at (SNR)rmS=¢lO

(a)
(B)
(C)
(D)

Original object image

Poisson noisy image

Restored image by the LMMSE filter
Restored image by the MAP filter
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Figure 7.24 1Images restored by the LMMSE filter and
the MAP filter at (SNR)rmS=¢20

(A)
(B)
(C)
(D)

Original object image

Poisson noisy image

Restored image by the LMMSE filter
Restored image by the MAP filter
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Figure 7.3a Images restored by the LMMSE filter and the
MAP filter with two-dimensional linear
blurring degradation at (SNR)rm =v/2.5

(a)
(B)
(C)
(D)

Original
Degraded
Restored
Restored

S

object image

image

image by the LMMSE filter
image by the MAP filter
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Figure 7.3b 1Images restored by the LMMSE filter and
MAP filter with two-dimensional linear
blurring degradation at (SNR)rmS=/§

(A)
(B)
(C)
(D)

Original
Degraded
Restored
Restored

object image

image

image by the LMMSE filter
image by the MAP filter

the
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Figure 7.3c 1Images restored by the LMMSE filter and the
MAP filter with two-dimensional linear
blurring degradation at (SNR)rmS=¢10

(A) Original object image

(B) Degraded image

(C) Restored image by the LMMSE filter
(D) Restored image by the MAP filter
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Figure 7.3d 1Images restored by the LMMSE filter and the
MAP filter with two-dimensional linear
blurring degradation at (SNR)rms=¢20

(a)
(B)
(C)
(D)

Original
Degraded
Restored
Restored

object image

image

image by the LMMSE filter
image by the MAP filter
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performed with different (SNR) _ ..

7.4 Numerical Values of Restored Image Quality Measures

One of the most commonly used numerical quality
measures is the mean square error (MSE). It can be defined

as
N N
MSE = E Z [f(m,n)—f(m,n)]2 . (7.10)

m=1 n=1l

Although this measure is attractive because it is
tractable,'it does not match human evaluation on many types
of images. It is also possible to define a measure based
on the MSE énd energy normalization [7-9]. This normalized
mean square error (NMSE) is defined as

N N A 2
(f(m,n)-£f(m,n)]

. (7.11)

[f(m,n)]2

M-
™M=

The NMSE performs somewhat better than MSE and retains the
analytic tractability. For these reasons, we use it in
this chapter. Other numerical measures such as normalized
error | (NE) , and Laplacian mean square error (LMSE)
{7-8,7-9] etc. will not be used here. Based on
Eq. (7.11), the NMSE of the restored image between the
LMMSE filter and the MAP filter will be computed. The
results are  shown in Table 7.1 and Table 7.2 for

non-blurring and blurring cases respectively.
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7.5 Comparisons and Conclusions

The image quality of the pictures restored by the MAP
filter shown in Figs. 7.2 and 7.3 seems superior to those
processed by the LMMSE filter. Images restored by the
LMMSE filter have an excessive enhancement of Poisson
noise, especially for higher values of &. In addition, the
NMSE of the MAP filter 1is lower than that of the LMMSE
filter. The LMMSE filter strongly depends on perfect a
priori knowledge of the object and it is very sensitive to
parameters in the filter implementation. Table 7.1 and
Table 7.2 show that the MAP filter has advantages over the
LMMSE filter, particularly at lower (SNR)_,.. Furthermore,
the NMSE of- the LMMSE filter does not improve greatly at
increasing (SNR)___ as it does with the MAP filter in the
blurring case. A possible explanation for this is that the
LMMSE filter performs very well for the higher (SNR), but
the MAP filter also works better for the lower (SNR) at
which Poisson noise dominates. The disadvantage 1is that
the MAP filter is a nonlinear spatial estimate which needs
iterative methods for solution. Thus, the computing time
of the MAP filter is longer than that of the LMMSE filter.
The better performance is achieved at the expense of

additional computing time.
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Table 7.1

The NMSE for nonblurring cases

The NMSE for blurring cases

(SNR)rms LMMSE filter MAP filter
V2.5 0.3601287 0.1592%
/5 0.18131 0.11352
/10 0.090158 0.072803
V20 0.0449264 0.04180208

Table 7.2

(SNR)rms LMMSE filter MAP filter
V2.5 0.269397 0.190431
/5 0.1502184 0.0994055
/10 0.1466819 0.054126
V20 0.1433148 0.036138
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this work we have modeled photon resolved image
signals as a Poisson point random process and developed an
optimal spatial restoration filter for the Poisson noise

model.

Poisson noise is an inherent part of any detected
image and is particularly evident in 1low level image
signals. Because it results from the discrete random
nature of quantum limitations, it is signal-dependent. The
optimal spatial filter was based on a criterion of

maximizing the a posteriori probability density. The

formulation and solution of the MAP estimation problem have
been presented. It has been found that the overlap-save
sectioning method with a Newton-Raphson iterative solution
is the most efficient way of coping with the nonlinearity
and large dimensionality of the MAP estimation equations.
The implementation of the MAP filter with the Poisson noise
model was made for both blurring énd non-blurring
degradation cases. It has been demonstrated that the MAP
filter with the Poisson noise model has improved

performance because the MAP filter can be generalized to
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linear or nonlinear image models a&and to noise models
Gifferent from additive Gaussian noise. In addition, the
MAP filter can be a local adaptive processing filter and
can be extended to space-variant blurring. It also has
been shown that modeling images with a nonstationary mean
and stationary variance gives useful a priori information

for the MAP filter.

The Cramer-Rao lower bound (CRLB) on the mean-square
estimation error of the MAP unbiased estimate was derived
for the Poisson noise model. It is likely that the CRLB
may be useful for finding the best suboptimal sectioned MAP
filter. A comparison was made between the LMMSE filter and
the MAP filter with the Poisson noise model. It has been
shown that the quality of the restored image of the MAP
filter is superior to that of the LMMSE filter by simple

subjective evaluation and by numerical closeness criteria.

Boulter [6-1] has shown that even with large amounts
of blurring present in a detected image, a low noise level
permits almost complete restoration. However, photon
resolved image signals have & very low signal-to-noise
ratio, making it impossible to obtain perfect restoration
for image signals suffering from both blurring and Poisson

noise.

The research pursued 1in this dissertation may be

extended in several areas. A more detailed study of an
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optimal local adaptive MAP filter using the local
propertiés of the first and second moment of image signals
would be of considerable interest. Use of these 1local
statistics is interesting because image fields are
inherently nonstationary. Another  area of practical
importance 1is to develop a fast algorithm for the MAP
f&lter or a recursive MAP filter for saving computing time
and memory space. A recursive MAP filter would not only
offer computational advantages over a non-recursive filter
but also could be applied to space-variant and
nonstationary models. However it is expected that the
recursive spatial restoration filter would be very
sensitive to errors in the knowledge of the PSF. Anoﬁher
intereting area is to apply these results to other types of
photon resolved image signals such as nuclear medicine,
medical images, astronomical images and the projection
reconstruction image signals [8-3]. 1In these cases, the
image formation system model and data acquisition system
must be carefully modeled to identify the parameters of the
photon counting system. Another interesting possibility
for the future is to use Lebedev's "composite" image model
to develop a "multicategory" spatial MAP filter [8-4,.8—5].
This model involves multiple categories of random fields in
the image with* each category distinguished by its
covariance. A Gaussian probability density 1is associated

with the occurence of each category in the data. With this
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model, the optimal estimate is obtained by filtering the
measurement data for each category, and forming the
estimate as the weighted sum of all the filter outputs.
The weights are the a posteriori probabilites that the
point is a -member of the respective category. The
composite image model locally decomposes the image signals,
and it should be able to model the 1local nonhomogeneous

information in images.
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APPENDIX A

POISSON RANDOM NOISE GENERATOR [2-25]

For the simulation of photon count observation data,
we need an algorithm for generating a sequence of random
numbers from a population conforming to the Poisson
distribution with mean. The solution is to make use of 2
random number generator which returns a random variable z
having the uniform distribution h(z)=1 for 0<z<1l and h(z)=0
for other values of z. If we form Xy =20rZ1rZ0r+0+ 12 23S
the product of a sequence of k+l such random variables,
then the lowest value of k which first cause X, to be less
than or equal to e™, will be a random variable which has a
Poisson distribution with mean A, A proof of'this property
follows. If v and z are independent random variables with
pdf g(y) and h(z) respectively, it can be shown that [2-17]

x=yz has pdf

£(x) = J g(y)h(gd—} . (A.1)

LetAfk(xk) denote the pdf of Xpe Since f(x0)=h(x0)=1 we

have, for X =Xq2Z
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By induction, it can be shown that x,=x _;2y has pdf

fl(x1

fl(xl

)

) =

I
—
»x

-1)K

_ k
£ (x5 ) = —¢7— 4

Xk

By use of the well known recursive relation

where

Iy

= X znkx—k I

|

k-1

lnkx dx,

4

the probability that x, is less than e-k is

Thus

-A
Using the same method to calculate P (Xp_;<e Yy, we

have

Ay

Pf(xkfe

Pr(xkfg

A
Pr(xkie ) = e

A

N

0

(-1)
k!

e

A
fk(xk)dxk

k
[xlnkx-k I

._)\)‘

kT PP (%

k-1

-A

<e

]e

)

-\

(A.2)

(a.3)

(A.4)

(A.5)

(A.6)

(A.7)

then

(A.8)
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and we conclude that if x <e ) but x, _;>e A, then k obeys
the Poisson distribution with mean A. This algorithm turns
out to be a very accurate and fast way to denerate the
photon counts with given mean image intensities. This

algorithm is also available in the IMSL subroutine peckage

(GGPOSH) [2-28].
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APPENDIX B
NEWTON-RAPHSON ITERATIVE SOLUTION METHOD FOR NONLINEAR

MAP ESTIMATION EQUATIONS

A detailed derivation and procedure for the
Newton-Raphson iterative method is described in [4-4].
Here, we summarize the Newton-Raphson solution of the MAP

estimate equations. From Eq. (4.14), we get N MAP estimate

equations, that is

d
g, (6) = (1) -—L—(£,-F+EE(£,-F)) = 0, (B.1a)
1 (1+p7)
9; () = (7=1)+EE(s )-%(£,-F,)+EE ) (B.1b)
= £ A i-1" %X T a7
=0,
i=2,3,4,...,N-1
dy Br
(£) = (-1)+EE(f )= ——————(f -Ey) = 0,(B.1c)
= £y N-1" N -1 (1+p y NN
o 1+p2 1
where B = 5 , I = 5 5 and
1+p l-p of
Pp is the correlation coefficients between pixels
f is the object vector to be estimated
f is the nonstationary mean vector

Once the problem has been set up as in Egs.(B.la) to
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(B.1lc), the solution procedure is:

Step l: Choose initial guess of object vector

k = = -
£® 2 g0 - (F LT, Ryl (B.2a)

or

a1t (B. 2b)

(k) _ £ (0)
£ = £ greeerdy

[4,,d

ll

where F is the nonstationary mean and d 1is the noisy
observation data vector. The choice of initial values
affects only the convergence rate because the equations
finally converge to a unique set of roots. BHere, the
superscript k denotes the kth iterative step

Step 2: Solve the 1linear system Eq. (B.3) to find the
k
( ))

solution vector §(f

(kYy s ) - _g g

9 (f (B.3)

where
dg

(k) -
Af.
]

(k)
b4 (£ )y,

(k) _ (k) (k) (k)
g(£*™") = lgy (£ Yeg, (£ ) veee0g gy (£ )]

and incremental vector

se™ = s ™ s, s N7

(k) i f(k))

From Eq. (B.l) and Qij(g )=§f;(_ , we obtain
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.a_g_l_ = —d_]; - (B 4a)
P12 awd
99
1l r
e BT (B. 4b)
2
99 .
1 Br
= = (B.4c)
3f;_; A
9g. d.
i i r
e (B. 44d)
af; g2 A
1
ag
N
- (B. 4e)
N-1
g d
N N
- -3 (B.4f)
N fN (14p%)
These equations can be arranged as a matrix
agl Bgl
afl sz 0
8g2 agz\. Bgz\
~N
3 \\sz \\af3 -
~ N N o
N g, 995 TN 9y (B.5)
afi_ afi\ afi+l
N N
0 9y A9y
9fyn-1 st_
we know that the absolute wvalues of

From Eqg.

(B.4),
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larger than that of off diagonal

diagonal entries are
entries. Thus, Eq. (B.3) equations will be converged.

Step 2 for solving the 1linear Eq. (B.3) can be

summar ized as follows:
(k) into Eq. (B.1l) and (B.4)

()} ang g(g(k))

using a linear equation

(a) Substitute f to find the
values of g(f
(b) Solve Egq. (B.3) subroutine to

find the solution g(g(k))
Step 3: Update the approximation to the root for the next
iteration

(B.6)

Step 4: Check for possible convergence to a real root f by

applying the test

(B.7)

for all i.

(k)) < €

Si(£
+
(B.7) is true for all i, then .g(k b

Step 5: If Eq.
I1f Eq. (B.7) fails for any i, theh

taken to Dbe the root.

the process is repeated starting from step 2.

In short, this iterative algorithm converges very

two to three steps 1in our

fast, usually in about

simulation.
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