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PREFPACE

Throughout this document a monochrome image will be
denoted by brightness function I(r,c), where r and c are
discrete row and column coordinates. I(r,c) is assumed
nonzero only for the square region 0 £ r <N and
0 < c <N, although extension to other image shapes and
coordinate systems is trivial. Image windows are
similarly indexed nxn blocks. The image function may be
considered a non-negative matrix. It can tezke either
discrete values called gray levels or continuous values
called luminance, brightness, density, or transmissivity.
Individual image elements will be called pixels. Elements
of texture- feature planes will also be called pixels.
They may take negative values, but will be rescaled to a

positive range for display as images.

This dissertation is the record of a search for fast,
effective texture mezsures. Fortunately, the search was
successful. Details of the search will not be ofr interest
to all readers, however. Chapters 1 and 2 introduce the
problem of texture segmentation and the historical

approaches to texture analysis. Chapter 3 documents our
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method of evaslusting texture models. Chapter 4 applies
this experimentzl paradigm to the co-occurrence method of
texture measurement; this esteblishes & benchmsrk for
evaluating: other texture models. Correlation methods are
investigated in Chapter 5. Chapter 6 traces the fasilures
and partial successes of various ‘“spatiesl-statistical"
models. Chapter 7 presents the "texture energy" approach
to texture measurement, and Chapter 8 develops it into an
image segmentation system. Those interested only in the
final analysis system should read Section 1.2 and Chapter
8. Chepter 9 contains a brief summary and suggestions for
further research. Three appendices document the

techniques used in this study.

Kenneth I. Laws
Los Angeles, Cealifornia

November, 1979
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ABSTRACT

The problem of image texture analysis is introduced, and
existing approaches are surveyed. An empirical evaluation
method is applied to two texture measurement systems,
co-occurrence statistics and augmented correlation
statistics. A "spatial-statistical" class of texture
measures 1is then defined and evaluated. It leads to a
simple class of "texture energy" transforms, which perform
better than any of the preceding methods. These
transforms are very fast, and can be made invariant to
changes in 1luminance, contrast, and rotation without
histogram equalization or other preprocessing.

Texture energy is mezsured by filtering with small masks,
typically 5x5, then with a moving-window average of the

absolute image wvalues. This method, similar to human
visual processing, is appropriate for textures with short
coherence 1length or correlation distance. The filter

masks are integer-valued and separable, and can be
implemented with one-dimensional or 3x3 convolutions. The
averaging operation is also very fast, with computing time
independent of window size.

Texture energy planes may be linearly combined to form a
smaller number of discriminant planes. These principal
component planes seem to represent natural texture
dimensions, and to be more reliable texture measures than
the texture energy planes.

Texture segmentation or classification may be accomplished
using either texture energy or principal component planes
as input. This study classified 15x15 blocks of eight
natural textures. Accuracies of 72% were achieved with
co-occurrence statistics, 65% with augmented correlation
statistics, and 94% with texture energy statistics.



CHAPTER 1
. INTRODUCTION

Many tasks cen be performed better by mechanical
means then by biological systems. Not only are physical
systems faster, more sensitive, 2nd more attentive than
any human, but also more quantitative. Tmage analysis is
a tesk ripe for automation. This study will develop
methods for extracting texture information from aerial

photographs and images of natural scenes.

The goal of image &nalysis is extraction from an
image of &al1 the useful information it contains. Only
through imege analysis does photographic film become a
useful medium for date acquisition. Most 2nalysis is now
accomplished by human interpreters, but mass screening
applications &are growing so fast that automztion is

essential.

Scene analysis is the extraction of region or object
description from a3 given picture. The description may be
numerical or it may be a data structure representing
properties and relationships of the scene components. The
following are important steps in the development of a

scene analysis system:
1. Determine the purpose of the analysis.
2. Model the dsta source.

3. Analyze the model to determine useful features.



4. Preprocess data to remove known effects.

5. Extract features or segment the image.

6. Edit, resegment, or improve features.

7. Code and/or display regions and boundaries.

8. Use extracted information for semantic scene
analysis.

Texture anelysis is fundamentsl to some spplications,
such as metel surfsce analysis and gqeologic fault
identification. Appropriate theories of texture
generation are required. In other applicetions, such as
radiographic diagnosis, texture recognition 1is more
important than knowledge of the physical generating
mechanism. General 1imeage analysis systems, such as the
human visual system, use texture as an aid in segmentation

and interpretation of scenes.

Figure 1-1 illustrates two fundamental texture types.
The first image is a “"macro-texture," or high-resolution
repetitive pattern. Structurel analysis methods are
adequate to describe such textures, although more than one
type of description is possible. The other three images
in Figure 1-1 are scenes which might be of interest in
aerial reconnaisance and vehicle gquidance. The scene
components are differentiated by their textures, but
description in terms of repetitive structural elements is
impossible. This dissertation will develop methods of
isolating and identifying small textured regions in

natural scenes.

This study is not limited to any one application area



(a) A Structurel Texture (b) A LANDSAT Image

(c) An Aerial Imegs () A Nat;.rrel Scene

Figure 1-1. Examples of Textured Scenes



or deta type, although it is biased toward the anzlysis of
aeriel images. Military and security epplications of
scene analysis éare reconnaissance, night vision, mapping
and terrain classification, target detection and tracking,
traffic monitoring, personnel identification, fingerprint
matching, and eirport screening. Industrial ang
scientific eéepplications include thermal =znalysis, perts
inspection, particle counting, automation and robot
vision, crop monitoring, remote sensing, geologicsal
analysis, cell classification, chromosome analysis, 2and
radiological diagnosis. Scene analysis technigues might
also be of use 1in pattern recognition and document

processing.

1.1 Visual Texture Perception

Visual textures arise from many sources. Cellular
textures are composed of repeated similer elements called
primitives. Examples are leaves on 2 tree or bricks in 3
wall. Other texture types include flow patterns, fiber
masses, and stress cracking. A complete anelysis of any
texture would require modeling of the underlying physicel

structure.

The human visual system is capable of discriminating
and classifying all of these textures. It is obvious that
spontaneous discrimination does not require built-in
models of physical texture generators, although such

models may be used by trained observers.

Texture is generally taken to mean whatever structure

exists within a semantic region (one to which a name cén



be assigned). One component of this structure is detail,
small image regions that are identifiable but not
semantically important. A second component is noise,
taken to be any artifact of the imaging and quantizing
process. The third component resembles noise, but is a
property of the imaged object or scene. It arises from
detail just beyond the perceptual resolving power of the
analysis process, and seldom possesses a recognizable
pattern or dominant repetition frequency. We shall cell
this compbnent stochastic texture, micro-texture, or just

texture.

Texture is both structured and random. Tt is common
to speak of a vuniform texture or 2 homogeneous texture,
despite the apparent contradiction. This homogeneity is a
perceptual phenomenon. Somehow the human visual system
analyzes images and measures texture properties. Some
texture fields are seen to be eguivalent, others to differ
in coarseness, linearity, or other texture dimensions.
All, however, are unified by their perception as texture
fields. We generally know & texture field when we see

one.

Perception of related elements as a whole is known s&s
grouping. Grouping is more fundamental than recognition,
as demonstrated by figure-ground reversals and by
ambiguous fiqures that cannot be recognized until parts
are grouped [1]. We use contour, brightness, color, and
texture for grouping, as well as stereopsis and relative

motion.



Texture perception is itself 5 grouvping phenomenon.
Julesz [2] showed that spontaneous texture discrimination
can occur even when recognition is prevented, and that a
smzll amount of noisec can disrupt texture perception if it

destroys connectivity of texture elements. He comments

that
Instead of performing complex statistical analyses
when presented with complex patterns, the visual
system wherever possible detects clusters and
evaluates only a few of their relstively simple
properties. [p. 43]

If true, it does not necessarily follow that the eye
segments an image before evaluating texture. This study
will concentrate on an alternate hypothesis that 1local
segmentation and texture description are performed at each
pixel, with no global agreement on exact region

boundaries.

The chief characteristic of texture is shift-
invarience. Perception of a texture field does not change
as its position on the retina changes. This seems to be
the very definition of a texture field: an image that is
not significantly changed by shifting. A region or

object, on the other hand, is position dependent.

We shall define texture to be that which remains
constant as a window (or fovea) is moved across an image.
This presupposes that the image is a single texture field.

Note that texture may change as 2 function of window size.

There 1is an ambiguity in the common meéning of
texture. Let two texture fields be identical except for a

difference in luminance. Most observers will say that the

6
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texturcs 2re identicel, although the two fields are easily
distinguished. Similar results will be obtsined with
texture fields differing in contrest, color, =size,
rotation, or geometric werp. Texture is perceived to be

invarient to changes in illumination or cemere position.

We shzll consider &11 of these differences to be
differences in texture, &2although ones easily measured or
compensated. Experimentezl work for this study uses
monochrome images gqgusntized to have nearly uniform greay
level histograms. This compensates for any differences in

illumination, sensor type, or film Jdeveloping parameters.

One goal of texture analysis is discovery of texture
measures that correlate well with humran perceﬁtion.
Figure 1-2 illustrates commonly proposed structural
texture dimensions. The illustrated sczles are not
independent: frecuency is much the same &s density, and
coarseness is related to density and to element size (not
shown). Perceptual contrast is correlated with several of
these scales. Linesrity is an attempt to describe element

shape gquantitatively. Direction clearly applies only to

directional textures.

Julesz [2] has shown that the eye uses adaptive level
slicing. It mey group white with gray or grey with black,
but it cannot group white with black. The eye can 2lso
group red with yellow and green with blue, but not red
with green or yellow with blue. Tt seems reasonable that

texture scezles should have the came property.

It is debatable whether direction and phase eare



texture scales, «lthough the texture fields are clearly
discriminable. Using the criterion of shift invariance,
we shall consider direction to be a texture dimension:
phase is excluded. Note that phase discriminability might
be due to distinctive texture properties of the region

interface.

Perceptual sceles such as these are useful for region
description, but may have 1little relation to texture
measures computed in the hﬁman eye or in &an artificial
vision system. Directionality and regqularity mey be high-
level descriptions generated long after texture
segmentation has taken place. The same may be true of
shape descriptions and of color transformations such as

hue and saturation.

1.2 A Practical Texture Analysis System

This dissertation presents a set of "texture energy"
transforms that provide texture measures for each pixel of
a monochrome image. The transforms are fast, requiring
only one-dimensional convolutions and simple
mdving—average technicues. The method is more accurate
than gray 1level co-occurrence methods. Tt is 1local,
operating on small image windows in much the same manner
as the humsn visual system. It can be made invariant to
changes in luminance, contrast, and rotation without

histogram equalization or other preprocessing.

r

Figure 1-3 shows the seguence of images, or image
blocks, used in measuring texture. The original image is

first filtered with a set of small convolution mssks,
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typically 5x5 masks with integer coefficients. Only one-
dimensional convolution is reguire¢, since the masks are
separable. The filtering could also be accomplished with

multistage 3x3 convolutions.

The filtered images are then processed with a2
nonlinear "local texture energy” filter. This is simply 2
moving-window average of the absolute image values. Such
moving-window operstions are very fast even on general-
purpose digital computeré. The best window size depends
on the size of image texture regions. This study has
concentrated on 15x15 windows. Even smaller windows might

be useful if color informstion were available.

Figures 1-3a and 1-3b show & one-to-one mapping
between filtered images and texture energy planes. Twelve
measures per pixel were used in preliminary research.
Experience has shown that either variance or standard
deviation alone is sufficient to extract texture

information from the filtered imsges.

Variance is an average squared deviation from the
mean. For a zero-mean field, it is an energy measure.
The standard deviation is the square root of this local
energy. It may be considered a "texture energy" measure.
A faster energy transform is the average of absolute
values within a window. All of these texture measures

r

give eqguivalent performance.

These statistics are more local than previously
studied fregquency-domain texture measures. Freouency

components are measured with very small convolution masks.

11
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Phase relationships within each window are measured
without regard to any global origin. This methoé, similer
to human visuel processing, 1is appropricte for textures

with a short coherence length or correlstion distance.

The next step 1in Figure ]1-3 shows the linear
combination of texture energy planes into & smaller number
of principal component planes, typically three or four.
This is an optional data compression step. It is tempting
to call the final images "perceptual planes,” but it has
not yet been proven that they relate to human texture
perception. They do seem to represent natural texture
dimensions, and to be more "relizble" than the texture

energy planes.

The final output is a segmented or labeleé image. A
classifier assigning texture labels to the image pixels
can take either texture energy planes or principeal
component planes as input. Classification is simple and
fast if texture classes are known & priori. Clustering or
segmentation algorithms must be used if texture classes

are unknown.

Figure 1-4a2 is a composite of the natural textures
used in this study. The first two rows of 128x128 blocks
are from images of grass, raffia, send, wool, pigskin,
leather, water, &and wood. The Jlower-left aquadrant 1is
composed of 32x32 blocks, and the lower-right auadrant of
16x16 blocks. The 128x128 blocks have been individually
histogram equalized; the other blocks have been equalized

by quadrant. The textures were chosen precisely because

13



they are difficult to discriminate. They are a worst case

dataset.

We have applied a simple set of texture energy
transforms to the texture composite in Figure 1-4. Each
pixel was then classified into one of the eight texture
cetegories. Average classification accuracy is near 87%
for interior regions of the 128x128 blocks. The 32x32
blocks are well separated, and the 16x)6 blocks are
differentiated to an extent. We believe this perfomance
to be unmatched by any other texture classifier or image

segmentation system.

14



CHAPTER 2
REVIEW OF TEXTURE ANALYSIS APPROACHES

Despite its importance, there is no generally
accepted definition of texture. There are many models for:
the generation of particular texture classes [3], [4].
There are numerous ad  hoc texture discrimination
techniques. Yet there is no agreement on how to measure

texture.

The eye must use the same feature extraction methods
on every texture field, regardless of source. We do not
know what these methods are, although there is indirect
evidence that ecdge detection is involved. We do know that
any retinal transform must retain enough information to
distinguish different textures and suppress or ignore
information distinguishing equivalent textures (as

identified by human observers).

If computers could achieve the same processing
results as humeans, it would not matter how low-level data
reduction was accomplished. It is unlikely, however, that
we can ever simulate the activity of the humen cortex

without first learning the type of data it uses as input.

’

Julesz developed a basic test of bhuman texture
perception [5])-(7) in which split images of two‘computer
generated texture fields are displayed. He found that
viewers can spontaneously discriminate between textures

15



differing sufficiently in first- or seconé ~ order
probability densities. They cannot easily discriminate
between stochastic textures differing only in third-order
statistics. - Julesz conjectured that second = order
statistics are sufficient determinants of human texture
perception. - This has led to the widespread belief that
second order moments or spatial frequency spectra are

sufficient measures of perceived texture.

The experiments were persuasive, but not conclusive.
Julesz's texture fields had only four gray levels and were
highly constrained. Because they were generated line by
line there could be no vertical correlation. First—- or
second —order densities held constant for both fields had
to be uniform, and when both were held constant there

could be no spsatial correlation whatever.

Recently Pratt, Faugeras, and Gagalowicz [8] extended
this work to texture fields with multiple gray levels and
controlled correlation in both spatial dimensions. Such
fields can mimic natural textures reasonably well. Their
experiments have supported Julesz's conjecture. Observers
can discriminate such textures differing sufficiently in
first- or second -order densities, but not those differing
only in third order density. Furthermore, discrimineble
textures can be generated having common mean, variance,
and autocorrelation function. Thus first-and second-order
statistics may be sufficient descriptors of texture, but

the mean, variance, and autocorrelation function are not.

Tamura et 2l1. [9]) have developed features correlating

16



well with human perceptions of netural textures. They
have successfully measured coarseness, contrast, and
directionality. It should be understood, howevef, that
human observers do not interpret these words uniformly or
repeatebly. The texture mezsures are not computationally
simple, and the measured concepts themselves cannot be
defined independently of the observer's culture anrd

experience.

Another perceptuezl modeling experiment has been
devised by Zobrist and Thompson [1). Three artificially
generated textures &re displayed. The viewer decides
whether the first and second or the second and third are
more similar. This protocol gets closer to the mechanics
of texture perception, but the quantity being measured is
left uncertain. Even simple changes in the spacing or
shepe of texture elements can alter many statistical

properties of an image.

Many other types of texture measures have been
proposed [10], [11]. The remainder of this section
surveys the commonly used features. Later chapters will

elaborate on the texture measures chosen for this study.

2.1 Statistical Features

The most powerful end azppropriste statistics for @
perticuler type of texture are those estimating parzmeters
of the genercting process. A general vision system,
however, must use features common to many types of
texture. Cne way to find such feestures is to model the

human visual system.

17



Natural texture dimensions can also be discovered by
studying homogeneous texture fields. Each field contains
variation inherent to that texture type. Different fields
have differént types of variation. Discriminant analysis
is an appropriate tool for identifying which are the
significant variations. It is only necessary that we
propose a set of texture measures; the analysis determines
which linear combinations are useful.

The simplest texture properties are those based on
single-point statistics. In monochrome imagery the only
point property is luminance. Color images originate with
an infinite number of degrees of freedom, commonly reduced
to three primary responses by modern sensors. Some sensor

systems record as many as 24 spectral bands.

The three primary responses are by no means the only
way to record and use color data. There is 2 bewildering
array of information-preserving color transformations
[12]. Standard color coordinates systems have
nonremovable singularities that can interfere with
numerical analysis [13]. The human visuzl system seems to
perform & complex mapping from spectral input to perceived
color [14). It is not known whether this transformation

occurs before or after texture recognition.

A multispectrzl image is a vector function of a two-
dimensional domain. Statistical methods may be,used to
classify the pixel vectors to a known set of source
classes, or to «cluster the vectors to determine 2

posteriori classes. Pointwise transformations of the

pixel vectors may be used to reduce complexity of the

18



classifier.

Such pointwise statistical analyses 1lack spatial
context, the essence of texture. It is true that first-
order statistical properties satisfy the criterion of
shift-invariance, but they are oalso inveriant to any
rearrangement of the image pixels. It is not surprising
that such methods have failed to metch the classification

accuracy of trained humans.

Moving-window or convolution methods may be used to
compute texture planes. These are continuously applied
region-to-point transformstions. The texture planes may
be treated as additional spectrsl bands, introducing
spatial dependencies into Ehé analyses. We shall study

these "spatial-statisticel" methods in Chapters 6 and 7.

2.2 Autocorrelation Features

Texture 1is both spatiz]l and statistical. Tt is
spatial since texture is the reletionship of groups of
picture elements. Nothing can be learned about texture
from an isoleted pixel, and little from a histogram of
pixel wvalues. Monotonic trensformations leave texture

largely unchanged.

There is good evidence that the humen visual system
does not respond to spatial dependencies of higher than
second order. The relationship between any two pixels may
be significant, but their 3joint relationship with eany
third pixel in an image field is not. This suggests the
digitel autocorrelation function as a matrix of texture

descriptors.

19



Mathematically this function is defined as

:ézll(r,c) I(r+i,c+3)
r,c

Tt is convenient to restrict r and c, the row 2nd column
indices, to lie within the window; this is equivalent to
assuming that the image function is =zero outside the
window. Note that i and j, the shift indices, may take
negative values; the function is symmetric about the

origin.

The autocorrelation function of an image measures how
well the image matches a shifted version of itself.
Autocorrelastion is nonnegative (for nonnegative images)
and takes its maximum value of 1.0 &at shift (0,0).
Correlation drops off exponentially with increasing shift.
Typical photographs have nearest-neighbor (or single-pixel
shift) correlations above 0.95. Texture blocks used in
this study have nearest-neighbor coefficients neer 0.70,

with coefficients as low as 0.30 for some 15x15 blocks.

The autocorrelation function contains two types of
information. One is texture coarseness, as revealed by
the slope of the central pezk. Autocorrelation of a
coarse texture decays very slowly with increaging pixel
separation. The other type of information concerns
periodicity. &any reqularity in size or spacing of texture
elements will be revealed &s en energy peak within the
sutocorrclstion function. Man-made orchards and fields,

20



for instance, have reguler spzcings appearing as periodic

amplitudes in the auto-correlation function.

The relationship between correlation znd coerseness
in seven ,Arctic zerial photogrephs wzs investigated by
Kaizer [15]. He measured the image distance at which
autocorrelation dropped to 1/e. (Circular symmetry of the
autocorrelation function waes assumed.) Then 20 subjects
ranked the pictures in terms of coarseness. He found
almost perfect agreement between 1/e distance and
perceptual coarseness.

Unfortunately the autocorrelation function of most
natural textures are very similar. Description of the
correlation function by its first few spatisl moments hes
little power unless correlations are measured over very
large windows. This would be inappropriate in image
analysis, since relatively small regions of texture must

be identified.

The autocorrelation function is still. being proposed
as a source of texture features [8), however, and as the
basis for linear-predictive texture synthesis and
segmentation (16]-[18]. Usefulness of autocorrelation

texture features will be explored further in Chepter 5.

A generalized autocorreletion measure is reported by
Haralick (11). It is based on the "mathematical
morphology"” binary filtering theory of Serrz and Matheron
as used in the Leitz texture analysis system [19]).
Instead of summing terms of the form I(r,c)I(r+i,c+j),

texture is measured by summing G(r,c)H(r+i,c+j), where
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G(r,c) end H(r,c) are functions of the neighborhood of

image point (r,c). Another way of producing the same
result is to convolve functions G and H with the image,
then cross-correlate the resulting feature planes. If G
and H are identical, this reduces to autocorrelation of a

single feature plane.

Some textures have regular structure best identified
in the frecguency domain. One could transform the
autocorrelction function and use Fourier coefficients as
texture measures. The autocorreletion function, however,
is usually computed in the frequency domain by Fourier
transforming the image itself. Further, the Fourier
transform can be obtzined optically. For both theoretical
and computational reasons, freguency methods have largely

supplanted correlation methods.

2.3 Spatial Frequency Features

Textures composed of repeated, regularly spaced
elements are well described by their Fourier components.
Natural textures are seldom so regulear, but can also be

descriminated by frequency domain features.

It has been shown [20) that Fourier features provide
useful information for aerial classification and for
identification of texture gradients. Performance of other
transforms has 2lso been investigated. Hademard zand slant
transforms, for instance, have been found [21] to work as

well as the Fourier for serial classification.

Lendaris and Stanley [22] did the pioneering work in

Fourier texture discrimination. They illuminated circular

22



sections of szerial imagery and sempled the Fraunhofer
diffraction patterns cast by a lens. This diffraction
pattern corresponds to the magnitude of the Fourier
transform. (Neither they nor subsequent researchers seem
to have investigated the Fourier phase component as a
texture measure.) They integrated the transform energy
over radial wedges and over concentric rings, a sampling

scheme still used in some commercial systems.

Wedge features measure directionality in the original
image. Linear classifiers using these features have
performed well in recognition experiments, although their
ability to handle rotated texture fields 1is open to
guestion. Annular features have proven to be 1less
valuable; apparently all natural images have similar
spatial frequency spectra. Bajcsy 2and Lieberman (23]
found annular components valuable for measuring element

size in "blob-like" textures.

Other experimenters [24]-[26] have wused digital
techniques to transform texture fields. Special FFT
algorithms and hardware make large transforms practical,
and moving-window techniques [27] reduce the cost of

repeated small transforms.

The chief difficulty with transform methods is that
they must be computed over large windows. Small window
transforms reveal only high-frequency - information,
negating the theoretical justification of the transform.
Further, single freguencies are seldom important or

reliable. The spectrum must usually be reduced to a
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smaller number of features by computing functions of the

spectrum.

2.4 Co-occurrence Features

Frequency-domain measures have 1little theoretical
justification for rendomly spaced texture elements or for
small window sizes. They are also inappropriate for
nonstationary textures or mixed textures within a sampling
window. All of these problems exist in the segmentation
of natural scenes. Correlation techniques are one way to
analyze texture 1in the spatial domain; co-occurrence

techniques are another.

A co-occurrence matrix is an estimate of the joint
probability density function for pixels separated by a
particuler row and column shift. The i,j-th element is
the number of times pixels with the luminance values i and
j occur in a specified spatial relationship. Often this
matrix is normalized by dividing each count by the total

number of pixel pairs.

Transition probabilities are sensitive to contrest
and average luminance of an image. Tt is therefore
necessary to standardize each image or window by sczling
or histogram modification. This will be discussed further

in Section 3.4.

Co-occurrence approaches are an outgrowth of the
Markov model of texture generation [281-130]. Julesz (5]
was the first to use higher order transition metrices for
texture synthesis. These matrices are equivalent to

nearest-horizontal-neighbor co-occurrence matrices,
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although normalization is applied to each row separately
instead of to the matrix as a2 whole. Similar texture
statistics have been used by Darling and Joseph [31]1 and
by other researchers to discriminate cloud types, cell

types, &and textures.

Co-occurrence matrices for asrbitrary row snd column
shift were first proposed by Rosenfeld and Troy [32] and
by Herelick et al. [33], [34]. Many subseguent studies
[35)-[39] have proven the value of these measures for
aerial, X-ray, and microscopic imagery. Comparative
studies (401, [41} have verified the superiority of
co-occurrence statistics over spatial frequency and other

early texture measures.

The number of co-occurrence matrices thast c¢an be
computed is very large. Row shift can very from zero to
2lmost the number of window rows: column shiftAcan vary
over & similar range. Negative shifts oare also
permissible, although there are symmetry considecrations.
Each combination generates an entire co-occurrence matrix.
For texture segmentation by pixel clessification, each
matrix must be computed around each image pixel. Clearly
it 1is necessary to choose some small subset of these
matrices to be computed. The best set is undoubtedly 2

function of the texture discrimination task.

The size of each co-occurrence matrix is also a
problem. Most images are recorded with eight bits per
pixel, or 256 grey levels. A few opticel systems provide

twelve bit resolution, or 4096 gray levels. Joint
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probability matrices, however, are unreasonably large for
images with more than 16 gray levels. Requantization to

this number of levels conceals low contrast textures.

Haralick uses symmetric co-occurrence matrices
(equivalent to averaging the matrix with its trafispose).
In some studies, he has reduced storage further by
assuming rotational isotropy, 1i.e. by averaging 2ll
matrices computed for the same relative pixel shift in
different directions. It has been shown [411, (421 that
even the symmetry assumption is too strong for a simple

Markov model of texture.

There may be an adaptive quantization scheme which
retains the character of low-resolution textures. One
approach is iterative histogram modification ra3].
Bnother is to bypass the co-occurrence matrix itself. The
matrix 1is wusually reduced to a vector of features by
computing two-dimensional moments. Moments that are
linear functions of the matrix elements can be computed
directly from the texture image. Examples are sums of
probability mass along the major and minor diagonals. For
such moments, the co-occurrence matrix is simply a

theoretical intermediary; it need not be computed.

Individual elements of a co-occurrence matrix do not
make good features: matrix elements are subject to large
fluctuations due to sampling variation, the number of
matrix elements is large, and sampling or unraveling of
the matrix ignores the two-dimensional structure of the

data. These objections can be met by using spatial
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moments of the matrix as features.

Many weighted moments have been suggested. HRarelick
et 2a2l. [34] proposed a set of 14 moments, gome later
parameterized to form femilies of moments [11]1. Pressman
[38] suggested seven more moments; none were found useful.
Chang [44] has suggested a principal components approach

to extracting the significant information.

An entropy or conspicuousness transform has also been
proposed by Heralick [45}, ([111. This is one way of
generating a texture plane without computing co-occurrence
matrices for each point. Co-occurrence matrices are
computed for pixels in & large area, possibly the entire
image. Likelihood of each pixel is computed by looking up
its gray level and that of its neighbors in the matrices.
The likelihood, or some relzted function, can then be used
in texture segmentztion. "Common" pixels 2re removed as
one segment, and co-occurrence <ctatistics are then
recomputed for the remaining pixels. The segments are
thus identified without the necessity of <classifying
pixels as to texture type, much in the manner of the
Chlander segmenter [46]. These likelihood measures are
similar to the conspicuousness transform of Winkler and
Vattrodt [47) and the 1linear prediction techniques of

Deguchi and Morishite [18].

2.5 Structural Features
A composite texture is one composed of primitive
elements. A description of such a texture, in terms of

observed primitives and their reletionships, is czlled a
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structural description. The description should be
sufficiently flexible that a class of equivalent textures
can be generated by using similar primitives in similar

relationships.

A texture primitive is a maximal connected set of
pixels having some property. Very complicated primitives
have been used: Lu and Fu (48], [49] derive sets of
primitives from arbitrary image windows. At the other
extreme, 1individual pixels may be considered texture

primitives.

Simple texture fields can be completely characterized
by a set of primitives and a placement rule. Examples are
characters of text or uniformly spaced polka dots.
Sometimes the plecement rule may be stochastic, as with
irregqularly spaced polka dots. Sometimes primitives may
overlap, as with tree leaves; sometimes they add or "show

through."

Primitive elements may also have stochastic
attributes. They may differ in size, shape, orientation,
color, or texture. These attributes mey be independent or
interrelated. They may be correlated with attributes of
nearby primitives, and the relationships may change slowly

across a nonstationary texture field.

Even in uniform texture fields, it is difficult to
infer the primitive types and the placement rhle. Some
textures are ambiguous, with more than one choice of
primitive.” The most zppropriete primitives are those

corresponding tc physical properties of the the image
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source. P general vision system, however, cannot be
strongly linked to a perticuler image source. Universal
primitives must be those occurring in nearly all texture
fields. Examples are mzxima, saddle points, lines, edges,
and regiorts of uniform luminance. Such "sub-primitives"
are also useful in structural analysis of untextured image

regions [50].

It is plausible that these elementary texture
primitives are the correct 1level at which to dJdefine
texture. Many biological visual systems contain spot and
edge detectors. In fact, there is evidence that the human
visual system transmits only edge information to the brzin
[14], [51). Tt seems reasonzble, then, to describe a
texture by relationships of edges within it, or by

relationships of lines, local maximz, etc.

The structural approach to imzge understanding is to
locate primitives and 1link them together into larger

structures. 2 less rigid approach to texture description

D

is often used; it might be called "structurel -
statistical." Texture elements are identified and their
properties measured, then spatiel distribution of the

primitive properties is described statistically.

The simplest texture measures record the observed
mixture of primitives, without regard to their spstial
relationships. These measures are appropriate for
textures generated by randomly placed or randomly selected
texture elements. It is assumed that easach element is

independent of its neighbors; the texture may thus be

29



described by its mixture density.

More complicated texture measures are needed when the
primitives themselves have variable properties. We mey
still assume independence between primitives, but must now
use a more complex probability model. Tt becomes very
difficult to estimate the multidimensional density
function of & texture field unless primitives are very

numerous snd simple.

We may also have to measure the spatial relationships
between primitives. Variables which may be mutually
dependent are the texture element types, properties,
orientations, and relative spacings or relationships. Tt
is believed that only pecirwise relationships are of

importance to human perception [7].

It may be sufficient to reccrd the observed mixture
of element peirs. 2Zucker ([52]) has suggested estimation of
the joint probability distribution for primitive pairs in
a particular spatial relationship, e.g. nearest neighbors.
More powerful methods are required when texture element
properties and spacings are related. Tt is not known how

much power is necded for analysis of natursl textures.

One primitive form is the maximal connected region of
constant gray level. Msleson et al. [53]1 suggest using
ellipsoidal approximations to such regions t; simplify
shape description. Measurable properties =zre size,

elongation, orientation, and tonal statistics.

Galloway [54] described@ coarsely quantized textures
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in terms of gray level run lengths. Runs were measured in
several directions, each generating a matrix of gray level
versus run length counts. This is similer to
co-occurrence techniques. Comparative studies have shown
co-occurrence’ measures to be superior for terrain
classificetion [40] and cheracterization of Markov

textures (41].

Intensity extrema are the basis of several popular
texture measures. An extremum is an image pixel brighter
or darker than any neighboring pixel. Several researchers
[55], [56] have analyzed scan-line extrema. Measurable
qualities include peak height and width, valley depth and
width, inter-peak distances, and density of extrema.
These gquantities are not trivial to measure; several
definitions are in use. The desirability of extracting
features at several resolutions has led to hierarchical

decompositions of scan-line waveforms [57}, [11].

Texture is a two-dimensional phenomenon; it makes
sense to seek two-dimensional extrema. Associated with
each peak is a "mountain" or connected region that may be
reached by 2 monotonically descending path from that peak
alone. Such "reachebility sets". can be computed by
iterative &lgorithms. Texture features which may be
extracted from these mountains include height, area,

circularity, elongation, and direction of elongation [321.

OCne way to record these distributions is with
generalized co-occurrence metrices {58]. Each measurable

property is quantized to a smsll number of levels. Then
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the observed traits are tabulated for 211 pairs of
adjacent texture elements, adjacent texture elements in a
given direction, or elements within a given radius of each

other.

Generalized co-occurrence methods suffer from
computationsl complexity. It is not easy to locaete
texture primitives and to measure their attributes, nor is
it trivial to identify an element's nesrest neighbors.
Another weakness 1is that the co-occurrence matrices are
guite difficult to update if the image window is shifted.
This makes it difficult to compute texture properties

around each image point.

2.6 Texture Segmentation

A texture measure should only be defined over =&
uniformly textured region. Measures computed over a
multi-textured region will often be & weighted average of
componené texture measures, but this is not gquaranteed. A
homogeneity meesure, for instance, will be very different
for & mixed texture than for any of its components.
Texture claessifiers can be tricked into completely

erroneous identificztions by composite textures.

A texture classifier must bhe given regions of uniform
texture over which to compute feazture vectors. A
segmenter must be able to find these regions without 2
priori knowledge of the textures or their context. The
puzzle of how to combine these two has yet to be solved.
A solution must exist, however, since biologiczl vision

systems are able to segment textured images.
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Existing segmentation methods all recquire that region
interiors be smoother than border neighborhoods. They sre
thus unsuitable for locating textured reqions' unless
textures can be transformed to one or more feature planes
with the property of region homogeneity. Chepter 8 will

present & good method of computing such feature plenes.

The constituents of texture are so many and sc varied
that it is difficult to combtine them in a segmentation
algorithm. One method [46] is to segment on the cheapest
or most effective feature first, then on the next best
feature. This can lead to seguence-dependent results, but

is particulerly effective in purposive vision systems.

-

A method particularly suited to texture segmentation
ic pixel «clessification, 1long wused in 2nalysis of
multispectral LANDSAT 1images. Each pixel hes an
associzted vector of spectral luminance responses. This
vector cen be augmented with any number of texture
features computed over the immediate neighborhood of the
pixel. A classification algorithm then assigns a class
label to the pixel. Texture classes are usuzlly known 3
priori, but may also be derived from the image by cluster

analysis.

Suppose that we wish to clessify an 8x8 image window
as one of several texture types. The method of maximum
likelihood could be used if we had enough information
about the texture classes. We would estimete likelihood
of the observed pattern under each hypothesis, then choose

the texture cless with highest 1likelibood. The trouble
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with this oapproach 1is that the required probability
distributions are 64-dimensional. Even for  binary
textures it is nearly impossible to estimate such large

(264 = 1019 coefficients are required for

distributions.
a full histogram.) The same amount of storage is needed

for 4x4 blocks of 16 gray levels.

Nonparametric methods have been proposed for
estimating and storing lgrge distributions; see, for
example, set covering procedures of Read and
Jayaramamur thy [59] and McCormick and Jayarsmamurthy [601.
It seems sensible, however, to assume a porametric form

for the distributions whencver it is possiktle to do so.

fmage gray levels seem to be well characterized by
statisticel moments. Ahuja et al. [61] show that the
first few moments are as useful as the entire distribution
for classifying image regions. Some <clessification
procedures require that a particuler parametric model be
chosen (e.g. Gaussian or Poisson), but nearest-centroid
techniques require only statistical moments. Chapter 8 of
this dissertation will develop a texture analysis method

based on nearest-centroid pixel classification.

2.7 Summary

No one has yet developed a completely adequate theory
of texture analysis. Indeed, no such theory can be
developed independent of the myriad physical processes
producing textures. It is possible, however, to correctly
segment and identify image textures usina ad hoc measures

and simple algorithms.
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Some sets of texture measures are of more interest
than others. The set used by the human visual system is
of paramount importance, but not yet identified.
Theoretically tractable and computationslly simple feature
sets are ‘also important. Any useful set must be
computable and sufficiently complete to characterize
textures found in @& given gapplication area. Qther
desirable properties ere feature independence and the

ability to synthesize 2 texture from its feature values.

Structural methods first locate primitive elements,
then analyze spatial relestionships. The texture must have
identifiable primitives, and the vision system must be
able to determine which primitives zre present. It is
much harder to analyze such textures than it is to
generate them. In natural images, adioining texture
fields may be obscured by noise and blur. FEven with
complete knowledge of texture types, it may be difficult
to locate the primitives. We may have no & priori
knowledge, making it necessary to jointly estimate the
segmentation boundaries and the texture model within each
segment. Such methods are too knowledge-dependent for &

preliminary texture segmentation system.

The other texture models of this chepter are worthy
of investigation as micro-texture measures. We shall test
the efficacy of correlation, co-occurrence, and
statistical methods in Chapters 5 through 6. 7Tn Chapter 7
we shall introduce several sets of texture measures which
may be considered either statistical or an unusuel

frequency-domain zapproach. Chapter 8 will develop the
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best of these texture measures into a texture analysis

system.
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CHAPTER 3
EXPERIMENTAL METHODS

An optimal vision system would have components that
are jointly optimal rather then individually optimal.
Unfortunately texture segmentation is too poorly
understood to allow even componentwise optimization. We
are faced with a chicken-~and-egg puzzle: each step must be
developed in the context of all others. The best we can
do under the circumstances is to fix those components for
which we have & rationale, and to iteratively improve all
other components. Fixed choices are discussed in this
chapter; experimentzlly determined results are given in

following chapters.

3.1 Segmentation

We desire a segmentation method that is fast,
insensitive to noise, and theoretically tractable. Tt
should use 1little storage, work with any texture type,
detect both large and small regions, and adjust for a

priori probabilities or external knowledge.

Any segmentation method might be made to work. We
shall restrict our attention to pixel classification. Tt
satisfies 2all of the above recuirements, provided that

suitable texture measures can be found.

Two cases must be considered: true classification and

blind segmentation. True classification regquires that the
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possible region types be known beforehand; we need simply
assign a region type to each pixel. Blind segmentation is
the grouping of pixels into regions without a priori
knqwledge of region characteristics. The classification
epproach to blind segmentation uses cluster analysis to
determine the region types present, then classifies each
pixel to one of these types. This could be followed by an
editing phase that would ettempt to assign meaningful

labels to the regions.

Either case requires e <classification algorithm.
There are many to choose from, including nearest-neighbor,

k-nearest-peighbor, meximum 1likelihood, and sequential

decision methods. For true classificetion, we shall
choose one of the simplest: nearest centroid
classification. This &lgorithm is fast, easy to

implement, and requires little storage. Tts theoretical

basis is documentéd in Appendix C.

The nearest centroid slgorithm works well providing
that suitable texture dimensions c¢an be found. It is
necessary that texture samples form well-separated
globular <clusters in the feature space. Elongated
clusters, «clssses with multiple <clusters, and dense
clusters within sparse ones would 2ll cause errors
avoidable with more sophisticated techniqgues.
Fortunately, the statistical technigue of d&scriminant
analysis is aveilable to identify good features. We shall
assume that optimization of the feature space is »

sufficient substitute for joint optimization of the

feature space and classificetion algorithm.
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Statistical analyses are of two types: those with 2
known objective function and those analyzing the structure
of data without regard to an objective function. The
former type is characterized by work of Tamura et al. [9],
in which perceptual scales for coarseness, directionality,
and other features are constructed from observers® ranking
of images. These scales are then matched by linear
combinations of measured features. Another example is the
work of 2Zobrist and Thompson [1), in which perceptual
effects of known texture transformations are measured and
modeled. The limitations of these methods 1lie in the
experimenter's ability to invent scales measuring

fundamental textural or perceptual dimensions.

The other statistical approach seeks fundamental
texture dimensions in the correlation structure of the
input data. This study uses discriminant analysis to
identify wuseful features for texture classification.
Discriminant anslysis is =& fairly well developed
statistical method for choosing 1linear combinations of
features which best classify data from a set of source

classes.

Available methods are all linear analyses.
Nonlinearities may be introduced by including products and
quotients of texture measures, but such terms are seldom
fundamental and are difficult to interpre}. Of course,
the analysis can be no better than the data. After
studying one analysis, it is often possible to compute

better features as input to the next.
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Useful texture features may correspond to human
visual measures or to natural texture dimensions. It heas
not been proven that natural texture dimensions exist, but
there is evidence that humans and some lower animels have
very similar perceptions of texture. It scems likely that
natural texture dimensions exist and that naturzl vision

systems heve been selected and trained to use them.

Research presented here incorporates perceptual
factors in three indirect ways. First is the choice of
images to be used. This study uses a number of images
that are visually similer, yet differing in some obvious,
unspecified manner. This comes as close to & controlled
experiment as can be menaged with natural textures. The
purpose of the experiment is to learn what features make

the images visually distinct.

Second 1is the choice of texture measures to be
computed. Some of these may be chosen for theoretical
reasons, but most simply seem plausible. Some measures
attempt to model anztomical processing, such as edge 2nd
spot detectors. Others are chosen to measure hypothesized

differences in the selected texture images.

Third is the analysis of statistical results. Here
the experimenter's subjective knowledge enters.
Statistical analysis will eliminate many bad features, but
may discover chance combinations of features with
significant discriminating power. Tt is up to the
experimenter to decide what is being measured by feature

combinations, which of several correlated features are
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most fundamental, and how to modify features to make them

better.

3.2 Feature Selection

Class%fication accuracy is a function of the number
of features aveilable and the joint information of those
features. It is also a function of the method used to

select or combine features.

The primary tool of this research is discriminant
analysis. Feature vectors computed over image windows are
fed to the discriminant routines of the Subroutine Package
for the Socisl Sciences (SPSS). These descriminant
algorithms are documented in Appendix C. Source textures
are known, so that cluster analysis is unnecessary: The
goal is similer, however: to find linear combinations of

features that separate data vectors into compact groups.

One could search for fundamental texture features by
analyzing differences between pairs of images. Tt is
likely, however, that each pair differ along a comkination
of fundamental dimensions. The analysis might identify
some discriminating features, but would leave unclear the

nature of the true texture dimensions.

Analyzing many textures at once is more 1likely to
discover fundamenteal dimensions, if they exist.
Discriminant routines identify the best axis, then the
best orthogonal axis, end so on. The axes are best in the
sense of a Kerhunen-Loeve or ecigenvector coordinate
transform. It is quite 1likely that the human visusl

system uses correleted feature measures, but the expense
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of such an analysis is not justified by the quality of our

present texture descriptors.

Discriminant functions, computed as eigenvectors of
certain statistical matrices, serve three purposes. They
identify natural data dimensions, permit data reduction
for simpler classification functions, and provide natural
axes for visual display of clusters. A display of data
points in the primary discriminant plene conveys a great
deal of intuitive informafion difficult to discern in

tables of numbers.

A more gquantitative description is provided by the
weights of features used to compute the axis values.
These coefficients are given for input variebles
normalized to zero mean and unit wvariance. The
coefficients thus show relative weight or importance of

each component feature.

Computed texture dimensions must be judged by their
ability to classify the input vectors. Techrically it
would be better to classify an independent set of texture
vectors, but classification of the training set is e
useful experimental tool. More rigorous validation need

be applied only to the final texture model.

Two data clusters in a multivariate space are
maximally separated along a single axis. Three clusters
cen be discriminated in & plane, i.e. along two axés. The
number of possible discriminant axes is one less than the
number of groups. The number of useful discriminent

functions may be even smaller if data clusters tend to
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line up or occupy low-dimensional subspaces.

Classification functions, one for ezch texture group,
cen be derived from the discrimirnant functions. 2 dete
vector may be classified by evaluazsting each function and
assigning the vector to the group with the highest score.
The method assumes multiveriete normal distributions with
identical covariance structure. Prior probebilities for

the classes are usually assumed equal.

3.3 Texture Data

In an experimentsl study, the results can be no
better than the input data. We recuire a set of uniform
texture fields large enough to provide adecuate samples of
each texture. 1Ideally this training set should come from
a target spplication area. For & general vision system,
however, each texture must be a "natural" one, and the set
must include a range of natural texture dimensions. We
avoid artificially generated textures, such 2s sinusoidzl
gratings, because they would favor the Fourier transform

and other fregquency domain measures.

The texture imazges we have chosen are from an album
by Brodatz [62]. High quality prints obtained from the
photographer were scznned anéd digitized at the USC Image
Processing Institute. The images are 510x512 pixels
guantized to 256 gray levels. This iJis sufficient for
extraction of 256 nonoverlepping 31x31 blocks from eech
texture field. tfost of the texture samples in this study
will be 15x15 feature plane blocks computed within 17x17

or 19x19 blocks of image data. The larger image window is
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used only to prevent contamination of the samples by
border effects, and is unnecessary when texture measures

ére computed for every pixel in an image.

Initial date anelyses for this study were cerried out
on the four PErodatz textures in Figure 23-1: Grass,
Raffia, Wool, and €and. Prztt et 2l. used 64x64 blocks of
these same images for visusl discrimination experiments
[8] and for theoretical discriminazbility studies [63].
Ashjari [64] hes investigeted singular value decomposition
as a tool for discriminating 32x32 blocks of these
textures. Additionel texture dimensions have been
introduced with the textures in Figure 3-2: Pigskin,

Leather, Water, and Vood.

The textures have been chosen precisely because they
are difficult to discriminate. They &re 2 worst case
dataset. Raffia, Wool, and €and may be considered
celluler textures with similar cell sizes. GCrass and Sand
have similar statistics, with the main difference being
the c¢xtended edges in Grass. Pigskin has statistics
similar tc those of Sand, but 1lacks the cellular edge
structure. Leather has edge structure similar to Gress,
although the textures are perceptually quite different.
The Wood and Water 1images have much stronger verticel

structure than Grass.

3.4 Preprocessing
The texture 1imeges were not taken under completely
controlled conditions. They differ in illumination,

contrast, znd possibly film type or developing process.
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These differences introduce monotonic transformetions of
the 1image function, 2and we must design our texture
analysis system to be invariant to them. We shsll not
worry, hoyever, about spatial transformstions such s&s
geometric warp and linear filtering. The removal of known
warps 1is well understood, but estimation of spatial
transformations from texture date awaits a  Dbetter

understanding of texture.

There are two approaches to compensating for unknown
monotonic transformations. Cne 1is to alter the entire
image, reducing it to some canonical form. The other is
to develop texture measures invariant to monotonic

trensformations.

We have chosen a compromise technique: histogram
equalization ([65), [66] of the entire image coupled with
texture measures compensating for local mean and standard
deviation. This partially corrects for an effect noted by

Sklansky [67]:

Most images are dominated by low freguencies that
carry little information about the scene. These
low freguencies consume &2 1large range of grey
level quantization cells with little benefit to
the viewer. Bence before any histogram
transformations are carried out it is useful to
suppress (but not eliminate) the low spatial
harmonics... [p. 240]

The texture fields used in this study are sufficiently

uniform that prior filtering would gain little.

There are several rationales for histogram
equalization. Sklansky sees it as &an equalization of
local contrast across an 1image. Other authors heave
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considered it &a maximum entropy transform since it
maximizes the emount of information conveyed by 2 given
number of gray levels. Certsinly the transformation
improves the eppearance of low contrast images, but this
is true even 1if the number of greay levels (hence the
information content) is greatly reduced. Frei ([68] found
histogram hyperbolization even more visuzlly pleasing: it
is believed that this shape is converted to & uniform
histogram by the logsrithmic response of the human eye.
Ashjari [64) uses histogram Gaussienization to prepare
texture data for classifiers based on Gaussiean

assumptions.

It should be noted that such standerdization
sacrifices information. Sklansky (671 reports:

We have found that <certain diagnostically
significant texturel feaztures in xeromammograms
are strongly related to infrequently occurring
gray levels in the tails of certain shapes of
histograms. Because these gray 1levels occur
infrequently, histogram equalization inhibits
rather than enhances the extrection of these
features. {p. 243]

Conners and Harlow ([69] found, however, that histogram
equalization was essential for proper analysis of

tadiographic images.

Images normalized to & common mean éand stsndard
deviation are ezsily discriminated by their skewness 2and
kurtosis measures. We have gpplied histogram ebualization
to remove 3ll first-order differences. This also finesses
the probleh of whether to measure image luminance or
density, since the standsrdization will give the same

result for either.
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Cur histogram eguslization routine 1is given in
Appendix A. It follows Conners' algorithm [41], modified
to fit new guantization levels to a constant percentage of
total pro?ability rather than a percentage of remaining
probability. For neturel images this algorithm works
well, &although it will give slightly different results
when starting frcem one end of a2 histogram than it would if
started from the other end. It is possible to construct
pathological <cases for which the mean sguare error
compared to a true uniform histogram is much greater than
for optimal equalization as found by a search algorithm

(70} .

Global equalization is valid for experimental studies
on reasonably homogeneous texture images. A general
vision system, able to identify textures in scenes with
varying illumination, requires stronger equalization.
Either the computed texture measures must be invariant to
luminance and <contrest changes, or adeptive local

equalization must be used.

This study uses a simple adaptive equalization.
First globel equaliiation is wused, then each sampled
texture window is scsled to habe a constent mean and
standard deviation. The method is not suitable for
moving-window ecqualizaztion around each image point, but
the same effect could be ;chieved with luminance-invariant
and contrast-invariant texture measures. Texture
discrimination results will be reported for both the
globally eqgualized and the adaptively ecualized texture

samples. There should be little difference if the source
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imeges are homogencous.

3.5 First-Order Statistics

A texture field is en extended entity composed of
repetitions of similar 1local primitives. We reaquire,
therefore, global measures of local properties. These
global measures must be statistical since they must be
shift-invariant and insensitive to random texture
variations. They should &lso be eesy to compute since

large windows are involved.

Global features characterize the whole texture rather
than its elements. The computing window must be lerge
enough to enclose a representative sample of the texture,
so that feature values change little as the window is

shifted within & texture region.

The set of statistical moments are particularly qgood
global measures. Consider 2 window placed on an image, or
on any feature plane computed as a transform of the image.
One likely texture measure is the averege velue within the
window. Bnother is the stendard deviation. Skewness and

t

&

kurtosis are also good candidates, a2lthough somewh
harder to explein. Tt is known that the histogram of zn
8-bit feature plene cen be completely cheracterized by 2
set of 256 such statistice. Statiséical moments above the
fourth, however, are likely to be unrelisble and to have
little energy or importance. This study will determine

whether the first four moments are useful.

The basic steztistical moments of & window 2re
k
Mk = B [I (r,c)]
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where E denotes the expectation operator. The moments may

be estimated by

Mk = (1/n%) Y 1%(r,c)
4 r,C
It is convenient to standardize higher moments to remove

the effect of mean and standard deviation. Statistical

moments used in this study ere of the form
AVE = E [I(r,c)]
VAR = E [(I(r,c)-AVE)?]
SKW = E [(I(r,c)-BAVE)3/ var3/?)
KRT = E [(I(r,c)-AVE)?/ var?)

These corrected moments may be estimated by

AVE = M1 (3-1)

VAR = M2-M1° (3-2)

SKW = (M3-3(M1) (M2)+2M13) / vaRr3/2 (3-3)

KRT = (M4-4(M1) (M3)+6(M1%) (M2)-3m1%) / vaR®? (3-4)

The following trensformations and block statistics

will also be used as first-order statistics:

SDV = {/VAR (3-5)

ACV = SDV / |AVE| (3-6)

ASK = |SKWI (3-7)

AKR = |KRT-3.0] (3-8)

MIN = min I(r,c) ({2-9)
r,c

MAX = max I(r,c) (3-10)
r,c

RNG = MAX-MIN (3-11)
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MID (MAX+MIN) / 2 (3-12)

The most fundamental first-order statistic is the
average. Histogram-equalization renders it useless on the
original image, but it 1is wuseful on feature planes
computed from the image. Computing the moving-window
average is equivalent to blurring or lowpass filtering the

feature plane.

Veriance and standard devistion measure the
irregularity in & feature plane. These are importent
features, and it is not known & priori which form is more
fundamental. Using both forms permits s linear analysis
to approximate nonlinear functions of the standard
deviation. Absolute coefficient of variation (ACV) is
also provided; for nonnegative distributions it is often a

better dispersion measure then the standard deviation.

Other moments may 21so be useful. Skewness measures
the extent to which outliers favor one side of the main
distribution. Kurtosis measures peakedness or the
presence of outliers: the kurtosis of 2 uniform
distribution is 1.8, that of a Gaussiasn is 2.0. Absolute
skewness and the absolute deviation of kurtosis from the
Gaussian value (sometimes known 28 the "excess") are also
computed. Care has been taken to prevent computational
problems when the standerd devistion 1is near zero:
skewness is set to zero and kurtosis to three: Large
values are also prevented by clipping both measures at

plus and minus six.

The last four first-order features are the minimum,
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meximum, renge, é&nd midrenge of the window. Although
common descriptors of uniform distributions, these
statistics are included ©primarily because ‘of their

computational simplicity.

Computstion of the twelve steatistics at every picture
point cen be done in & single pass. Gn a PDP KL/10 this
takes two minutes for & 512x512 image, regerdless of the
moving windéow size. The number of image rows kept in core
is equal to the number of rows in the window. Fach pixel
is examined only twice. 2 similar a2lgorithm for computing

moving absolute averages is documented in Appendix B.

3.6 The F-Ratio Feature Strength Measure

Throughout this dissertation, it will be necessary to
compare the discrimineting powers of different festures.
We could compare clessification @accuracies for the
individuel feotures, but en impractical amount of
computing timec would be needed. A simpler compsrison
statistic is the F-ratio. It is the ratio of inter-cless

variance to intra-class variance.

A good feature will have & cluster of values for
samples from one tcxture field, and e different cluster of
values for another texture field. Good features therefore
have high F-ratios. Actual values will not be importent
here, but ratios with the sazme dJdegrecs of freedom (j.e.

sampled populaton sizes) may be compared.

F-ratios listed in this and following chapters are
for 256 15x15 samples from each of the eight textures.

The F-ratios hzve degrees of freedom 7 and 2040, meking
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the probability less then 0.00]1 that & feature with no
discriminating power will have & ratio above 3.47. In
practice we find that ratios below 100 are of 1little
value. All discriminent functions &nd classification
accurecies cited in this study will be based on varisbles
with F-ratios of at least 40 2fter adjusting for 2all otber

variakles in the model. The probability of a varieble

having 2 ratio this large by chence is less than 10_50.
3.7 Image Block Statistics
Table 3-1 shows the effects of various

standardization procedures on first-order informetion.
The table lists the F-ratio for each statistic, 2 measure
of its discriminating power for this set of textures. F-
ratios in the first column are for the original images,
before eny type of standardization. Tt is apparent theat
the texture fields are essily discriminaeated by their
means, variences, ranges -- in fact, by any of the first-

order statistics.

The 1last entry in the column shows that all twelve
features used together provide 85% classification
accurecy. It cen be seen that even F-ratios above 2000 do
not guarantee perfect classification. A high ratio shows
that class means oare sepereted &along the feature
dimension. Tt does not mean thet all classes 2re
separated, however. Classificetion eccuracy is & better

indication of multiclass separation.

The second column 1is for adaptively standerdized

imeges. The pixels in each window were adjusted to have
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TABLE 3-1. TMAGE STATISTIC F-RATTQS

Criginel

Feature Originel Adaptive Clobel Adeptive
IMGAVE 651 593 0 3
IMGVAR * 1555 497 42 58
IMGSKW 625 595 6 9
IMGKRT 439 376 57 63
IMGSDV 1882 477 47 57
IMGACV 1593 554 5 54
IMGASK 502 461 40 30
IMGAKR 152 186 28 66
IMGMIN 1449 400 12 2
IMGMAX 386 619 59 10
IMGRNG 2004 473 68 7
IMGMID 575 637 34 7
Accuracy 84.81% 50.39% 19.82% 22.27%

mean 127.5 and stendard deviation 73.9, then were clipped
to the range 0.0 - 255.0. The table shows thst this
standardization reduces discriminability of the textures,
although the power of some first-order features is
increased. Joint classification accuracy is reduced to
50%. This a&daptive algorithm apperently cdoes not work
well for grossly different first-order distributions. The
clipping step emphasizes differences in skewness and
kurtosis; it also trenslaztes them 1into dJifferences in

mean, variance, and other first-order feestures.

The third column shows results of  histogrem

egualization on the originegl images. The procedure hées
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little effect on perceived texturel, but reduces first-

order discriminebility. Classification accuracy for the
set of 12 features drops to 20%. Eagualization has removed
nearly all first-order differences among the images.
Texture information is evidently contained in second-order

statistics of the equalized images.

The fourth column corresponds to histogram
equalization followed by adeptive standardization. This
is & form of oadaptive histogram equalization. The
discriminating power of several features increases
slightly, apparently because of the nonlinear clipping
effect. Joint classification accuracy remains nearly the

seme, 22%.

The above statistics show that histogram equalization
is & useful preprocessing technigue for removing first-
order 1imeage differences. Such processing may not be
needed in 2 calibrateé@ texture recognition system, but is
essential for texture research with uncalibrated images.
All images used 1in this study have been histogram
equalized. Texture measures have also been computed for
the adsptively equalized case since this additional
standardization is likely to be needed when classifying
small texture patches within natural scenes. Here the
edaptive standardization has been performed by brute force

scaling of the imege windows. It could also be

1All pictures in this document have been equalized. The
only perceptual changes are an increase in contrast and
possibly a change in average brightness.
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accomplished by algebraic adjustment of computed texture

mecsures.

Note thet the minimum classificetion accuracy under
this expefimental paradigm is about 20%. Random
clessification of eight textures would produce 12.5%
eccuracy, but classification using random features may do
better. This is because the best combination of features
is chosen a posteriori. These features must give at least
12.5% @&ccuracy, end will do significently better if
training images have exploitable differences. Even
identically distributed random fields can appear
statistically discriminable if the number of samples per
texture field 1is 1less than three times the number of
independent features. This study quards against false
significance by using 256 samples per texture and a

minimum F~-ratio of 40.

3.8 Comparative Measures

To Jjudge the aquality of newly developed texture
measures, it is desirable to apply them to the same data
used by other investigators. Unfortunately no common
database exists. We have implemented co-occurrence and
correlation texture measures and ‘have spplied them to the
Brodatz textures, each technique using the same 15x15
window size. Each algorithm has been optimized to a
reasonable extent, but there can be no guarantee thet 2

faster or more powerful version could not be found.

57



CHAPTER 4
CO-CCCURRENCE METHODS

This chapter investigates co-occurrence texture
measures, seemingly the most effective and widely used of
existing texture analysis technigques. The relative
discriminating power of individusal co-occurrence features
will be measured, which is itself an important
contribution. We will also determine joint classification
accurecy on our dataset using all of the co-occurrence
features; this will establish a lower bound for acceptable

performance of other approaches.

4.1 Co-occurrence Measures

Co-eccurrence matrices are & popular 'source of
texture features. For this study we generste each co-
occurrence matrix from a 15x15 source window requantized
to 32 gray levels. Each metrix is thus 32x32. Nine of
these matrices are used, corresponding to horizontal and
vertical spacings of zero, one, and seven pixels. The
chosen spacings correspond to horizontal, verticsl, ané
top-left to bottom-right diagonal directions. The POO
matrix records first-order informetion: 2all the, entries
are on the diagonal. The other eight matrices record
second-order information. The matrices are not symmetric,
nor is there any averaging across different co-occurrence

angles.
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Meny ways have been proposed for extracting texture
informztion from co-occurrence matrices. The commonly
studieé mcments are called contrastz, inverse difference
moment, engular second moment, entropy, and cerrelation.

The formulas are
CON = Z (r-c) 2 P(r,c) (4-1)

IDM = ), ———-llo (4-2)

asM = Y. P2(r,c) (4-3)
r,c
ENT = - ) P(r,c) log P(r,c) " (4-4)
r,C

(r—AVEr)(C—AVEC)P(r,C)

COR = 3" —mmm——fe————eofo (4-5)

where

AVE, = ) (r)P(r,c)

r,c
_ ~ 2
SOV, -J(Z (x-AVE ) “P(r,c)
r,c

Rectilinear 2nd diagonzl moments of the matrices will

be used &s texture measures, 3s well &s the 28 hoc moments
of Equations 4-1 through 4-5. The rectilinear (horizontal

and verticzl) moments of & matrix are

2Tamura et e2l. (9] found no correlztion between
Haralick's CCN moment and perceptual contrast. The
aecsignétion hes become stendard, however.
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Mij = (1/n?) D ! &I prr,e) (4-6)
r,c

where P is the co-occurrence matrix and row ard column

indices are computed reletive to the matrix center.

Co-occurrence matrices have diagonal structure. Tt
makes sense to measure cnerqgy distribution relative to the
diagonals. Spatial moments 1in this orientation can be

measured by

Dij = (1/n?%) Z (t + ¢} (r - c)d p(r,c) (4-7)
r,c
Diagonal moments may alsc be computed from the rectilinear

moments. For instance:

D22 = M40 - 2(M20) (M02) + MO4

Both rectilinear aznd diagonal moments will be tested
as texture features. Each spatial power will take values
from zero to two. Since the MO0 and D00 moments are
identical, there are 17 moment features. The Harzlick,
rectilinear, and diagonal moments computed for each of
nine <co-occurrence metrices generate 172 independent

features.

4.2 Co-occurrence Results

Table 4-1 lists F-ratios for the common Heralick
moments of FEguations 4-1 to 4-5. Only éangular second
moment and entropy features are listed for the P00 matrix,
since the others are identicelly zero. Tt is intérestinq
that P70 features have much more discriminating power than
P07 features. Evidently this texture set differs more in

its vertical statistics than in its horizontal stetistics.
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TABLE 4-1. HARALICK STATISTIC F-RATIOS

Feature Global Adaptive Feature Global - Adeptive
POOASM 60 46 POOENT 102 6%
PO1ASM 17 30 P10ASM 55 99
PO1CON 168 275 P1O0CON 744 681. .
PO1COR 297 297 P1OCOR 644 632
PO1IDM 290 326 P101IDM 687 292
PO1ENT 71 71 P10ENT 278 239
P11ASM 15 17 P77ASM 45 43
P11CON 38 32 P77CON 12 5
P11COR 34 36 P77COR 6 6
P11IDM 31 41 P77IDM 10 3
P11ENT 62 44 P77ENT 68 62
PO7ASM 65 68 P70ASM 65 101
PO7CON 24 15 P70CON 241 304
PO7COR 14 14 P70COR 267 264
P071IDM 16 6 P70IDM 355 213
PO7ENT 123 105 P70ENT 157 143
P17ASM 64 64 P71ASM 4] 43
P17CON 23 11 P71CON 82 80
P17COR 8 8 P71COR 57 58
P171IDM 16 4 P711IDM 64 35
P17ENT 117 97 P71ENT 83 65

This may be due to verticel structure of the Leather,
Wood, and Water images. P77 moments are also weak,
probably because this trezining set has no diagonally
streaked textures. Note the power of POl &and P10
features. Weszka et al. [40] also reported the dominance.
of local co-occurrence features, and of locsl features in
general. They found that large-1lz2g co-occurrence features
work best if computed on blurred images, but we have not

used blurred images in this study.
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Table 4-2 shows classification accuracies available
with various feature sets. The first analysis uses only
the ad hoc Haralick moments. Together, the 32 features
perform better than the best combination of the last
chapter. The globally equalized textures have two
dominant discriminant functions using P10CON, POl1IDM,
P70IDM, PI1I1CON, PO1CON, Pl0OIDM, PlOCOR; and P11COR.
Discriminant functions for the adaptively equalizgd
textures use Pl10CON, PO1IDM, P70CON, P1l1CON, POICON, and
P71COR. Angular second moment, correlation, and entropy

features apparently carry little texture information.

TABLE 4-2. CO~OCCURRENCE CLASSIFICATICN ACCURACY

Feature Set Global Adaptive
Haralick Moments 70.85 67.58
Rectilinear Moments 63.04 65.92
Diagonal Moments 56.60 63.04
Combined Moments 72.07 68.16

The second and third analyses in Table 4-2 use the
rectilinear and diagonal moments, respectively. These are
the same moments computed on the autocorrelation matrices
of the previous section. Neither set is as powerful as
the Haralick moments. The first set of discriminant
functions are built primerily of M1l and M22 moments, the
second uses only D22, D02, and D20 moments. These facts

apparently reflect the diagonel symmetry of the co-
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TABLE 4-3. CC-CCCURRENCE MOMENT F-RATIOS

Feature Global Adaptive Feature Globel Adaptive
POOMO2 1 59 POODO2 2 1
POOM11 1 59 POOD11 0 0
POOM20 1 59 POOD20 1 59
PO1MO2 1 45 P10MO2 1 50
PO1M11 30 281 P10M11 20 238
PO1M20 1 43 P10M20 1 49
PO1M22 8 202 P10M22 8 148
P11M02 1 40 P77M02 6
P11M11 10 41 P77M11 13 8
P11M12 1 41 P77M12 3
P11M22 1 51 P77M22 1 14
BO7MO2 1 4t P70M02 1 14
PO7M11 25 281 P70M11 187 257
PO07M22 1 40 P70M22 19 a7
P17M11 24 8 P71M11 71 65
PO1DO2 168 275 P10D02 744 681
PO1D12 34 40 P10D12 33 : 50
PO1D20 8 195 P10D20 7 92
P01D22 151 287 P10D22 719 552
P11D20 3 47 P77D20 7 13
P07D02 24 15 P70D02 241 304
PO07D20 12 21 P70D20 73 187
PO07D22 6 18 P70D22 185 138
P17D02 23 11 P71D02 82 80
P17D20 12 11 P71D20 29 48
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occurrence matrices. Note that D02 moments sre identical
to the Haralick CON moments. Table 4-3 shows the
discriminating power of individual rectilinezr and
diagonal moments computed on the co-occurrence matrices.
Only those moments with ratios above 40 are listed. It is
possible, but rare, for features with lower individual
F-ratios to enter the discriminant model after the first

step.

The fourth analysis uses all of the co-occurrence

8
features together3. Classification accuracy is improved
slightly. The strongest of the globally equalized
featurés, P10CON, is later dropped from the model. The
remaining features are PO1IDM, P70IDM, P11CON, PO1CON,
P10COR, P10D22, and PO1COR. The adaptively equalized
features are Pl10OCON, PO1IDM, P70CON, Pl11CON, PO1CON, and
P71M11. Both sets identify two dominant texture
dimensions. Scatter diagrams of sample points against the
first two principal exes look very similar to plots for
the different moment types individually. The patterns are
also similar to those found with Lsplacian and Sobel
features, &lthough clusters are better separated. The
first discriminant function separates the directional
textures, Wood and Water, from the rest. The second

function separates Raffia from Wool and Leather. Least

r

3Some features had to be omitted from the analysis
because of an SPSS limit of 100 variables. All features
with F-ratios above 40 and all features appearing in
previous discriminant functions were made available, as
well as the maximum 2lloweble number of less important
features.
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separated textures 2re Grass, Send, and Pigskin.

4.3 Summary

Joint classificetion accuracy for these measures is
68%, or 72% for globally equalized textures. This is far
better than the 33% achieved with the correlation and
Markov statistics of the last chapter, and somewhat better

than the 65% possible with Laplacian and Sobel statistics.

The features of greatest use are the Haralick CON,
IDM, and COR moments. The strength of these measures is
not surprising, considering their evolution over nearly a
decade. It is surgrising that the full set of 172 co-
occurrence feetures has no more power than the 42 Haralick
moments. Evidently there is nothing to be gained by
studying new ways of extracting texture from co-occurrence

matrices.
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CHAPTER 5
CORRELATION METHODS

This chapter presents 2 particular method of texture
measurement based on autocorrelation statistics. The
model will be developed only as fer as seems necessary to
determine the efficacy of correlation statistics es
texture measures. Classification accuracies achieved with
correlation methods will be cited in later chapters as
standards of comparison. The best individval features
will be carried forward into the texture models of Chapter

6.

5.1 Correlation Measures

It - was mentioned in Section 2.2 that the
autocorrelation function is not & sufficient texture
descriptor. Discriminable textures can be constructed
with identical first-order statistics and autocorrelation

functions.

Faugeras and Pratt [63] have devcloped 2 new class of
texture measures that go beyond autocorrelation
information. They apply @ whitening filter to the texture
field, then measure the first-order statistics’ of the
decorrelated image field. These statisticzl moments and
moments of the original autocorrelation function form &
set of texture features. It is possible to mimic the

original texture by generating a random field with the
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same moments and applying the inverse of the whitening
filter. The features extracted from several natural
textures have been compared using a Bhattacharyys measure;
results imply good classifying power with 2 very smsll

number of ‘festures.

The full whitening operation is very expensive to
compute. Faugeras and Preatt suggest that the image be

convolved with the Merkov process whitening mask (MKV):

- -

RC —C(1+R%) RC
1
——mmgm——mms- |-R(1+C%)  (1+R%) (14c?)  -R(1+C?) (5-1)
(1-r%) (1-c?) )
| re —C(14R%) RC

where R and C are the horizontal and vertical nearest-
neighbor correlation coefficients. This operator will
completely decorrelate a Markov field for 3ll1 lags greater
than one. Nearest-neighbor coefficients are sczled by
-0.5 and diegonal-neighbor correlztions are scaled by

0.25.

.The R and C coefficients for 15x15 blocks of the
Brodatz textures range from 0.30 to 0.95, with the average
near 0.70. As the correlation coefficients approach
unity, the numerator of the whitening operator approaches

a Laplacian operator:

1 -2 1
LPL = | -2 4 -2 (5-2)
1 -2 1

Figure 5-la is the convolution of this mask with the
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composite texture image of Figure 1-4b. Figure 5-1b is
the result of computing the stzndard deviation in a 15x15
window around each pixel in the Laplacian image. This and
other feaﬁure planes will be evaluated in the next

section.

Another 3x3 operation suggested by Faugeras and Pratt
is the Sobel gradient magnitude. It is considered an edge
detector rather than a wh?tening operator, but empiricel
evidence supports its use in texture discrimination. The
Sobel gradient is & 3x3 nonlinear operator weighted toward
the window center but omitting the actual center pixel.

The Sobel masks are

-1 0 1 : -1 -2 -11
x =|-2 0 2 Yy =|0 0 0
-1 0 1] 1 2 1

For each image position the Sobel magnitude is computed as

the root-mean-mean-sguare of the two weighted pixel sums:
SBL = Vx2+ y2 (5-3)

This measure has been shown [71] to locate gray level step

edges about as well as any other popular edge detector.

Figure 5-1c shows the Sobel gradient magnitude for
the composite imege. Tﬁié' operator emphasizes edge
structures in the texture fields. The 15x15  standard
deviation, shown in Figure 5-1d, is obviously less useful

than the Laplacian standard deviation.
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5.2 Correlation Results

The texture feature set we shell use consists of
moments of the autocorrelation function plus first-order
statistics of the Markov whitened image. Leplzcian and
Sobel grédient megnitude operstors will 2lso be tried in
place of the Merkov decorrelation operator. Texture
features based on these 3Ix3 operators should be less

power ful then the adeptive Markov features.

We shell extract texture informetion from the
correlation matrices by computing spatial moments. The
rectilinesr &nd cdieagonal moments are of the ssme form es
in Eguations 4-6 znd 4-7. Since the M00 2nd D00 moments
are Jjdentical, there are 17 correlation features. The
twelve first-order stastistics will &lso be computed for
each texture block "whitened" with the Markov, Leplacien,
or Sobel operators, for & total of 52 independent features

per texture block.

Table 5-1 shows the discriminating power of
individual features. It can be seen that moments of the
correlation function are very weak texture measures. The
Laplacian operator generates some very powerful texture
measures. Statistics of Markov whitened fields have much
less discriminating power, although kurtosis and absolute

kurtosis features are moderately good.

Table &-2 shows classificetion accuracies achieved
with various subsets of these texture features. The first
three rows correspond to features extracted from

autocorrelation matrices of the 15x15 windows. Fach
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TABLE 5-1. CCRRELATION STATISTIC F-RATTOS

Feature Global Adaptive Feature Global Adaptive
CORMOO 15 15 CORDOO 15 15
CORMO1 15 17 CORDO1 10 11
CORMO02 22 21 CORD02 . 6 6
CORM10 16 14 CORD10 18 17
CORM11 23 23 CORD11 47 46
CORM12 7 10 CORD12 7 5
CORM20 14 14 CORD20 24 24
CORM21 9 -9 CORD21 5 4
CORM22 17 17 CORD22 15 15
MRVAVE 65 74 LPLAVE 1 ]
MKVVAR 24 31 LPLVAR 707 609
MEKVSKW 23 17 LPLSKW 22 16
MKVKRT 240 242 LPLKRT 251 250
MRVSDV 51 70 LPLSDV 851 700
MKVACV 1 1 LPLACV 1 1
MKVASK 29 29 LPLASK 48 46
MKVAKR 248 253 LPLAKR 261 263
MKVMIN 44 60 LPLMIN 429 374
MERVMAX 38 53 LPLMAX 512 444
MKVRNG 42 58 LPLRNG 571 488
MKVMID 6 7 LPLMID 13 11
SBLAVE 84 64 IMGAVE 0 3
SBLVAR 53 156 IMGVAR 42 58
SBLSKW 79 77 IMGSKW 6 9
SBLKRT 54 49 IMGKRT 57 63
SBLSDV 55 159 IMGSDV 47 57
SBLACV 112 105 IMGACV S 54
SBLASK 79 77 IMGASK 40 30
SBLAKR 20 34 IMGAKR 28 66
SBLMIN 14 9 IMGMIN 12 2
SBLMAX 50 29 IMGMAX 59 10
SBLRNG 48 33 IMGRNG 68 7
SBLMID 50 25 IMGMID 34 7
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correlation matrix is computed for horizontzl and verticeal
lags ranging from minus seven to plus seven. Tt is thus 2
15x15 matrix, elthough symmetry reduces the number of
independent elements to 113. Correlation coefficients for
larger lags would be based on too few pixel pzirs for

reliability.

TABLE 5-2. CORRELATION CLASSIFICATICN ACCURACY

Feature Set Global Adaptive
COR (Rectilineoar) - -
COR (Diagonal) 19.63 19.92
COR 19.63 19.92
COR+MKV 31.71 33.11
COR+LPL 54.83 47 .80
COR+SBL 22.47 38.67
COR+MKV+LPL+SBL+IMG 63.62 65.23
MKV+LPL+SBL+IMG 63.62 65.23

‘The first row of Table 5-2 ics based on rectilinear
moments of the correlation matrix, as described in
Equation 4-6. Discriminant functions could not be
computed because none of these feztures have an F-ratio
above 40. The second row uses diagonzl moments es given
in Eqguation 4-7. These @are 1little better than the
rectilinear moments, &although CORD1ll has sufficient power
to generate a classification function. The third analysis

combines both sets of moments; again only CORD1ll is
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useable. It is ~clear that moments of smell-window
correlation functions have little discriminating power on
this texture set. They might perform better on
directional textures or textures differing strongly in

coarseness.

The next analysis combines autocorrelation features
with first-order statistics of the whitened block. The
plus sign represents the union of texture feature sets
rather than addition. Each block was whitened with the
Markov decorrelation operator of Eguation 5-1. The
operator 1is adaptive since it uses the nearest-neighbor
correlation coefficients of eech window in decorrelating
that window. Two discriminant functions were found, with
joint <classificaticen accuracy of almost 22%. The
principel component is essentially MKVAKR. No

autocorrelation feature is strong enough to contribute.

The next two analyses use nonadaptive 3x3 operations
in place of the whitening filter. The Leplacian of
Equation 5-2 works very well, identifying three texture
dimensions related to LPLSDV, either LPLKRT or LPLAKR, and
LPLVAR. The strong discriminating power of these features
contradicts the theoretical basis of this secticon, which

predicts superiority of the MKV features.

Faugeras and Pratt (63] proposed the ESobel gradient
magnitude, an edge detector, as an ad hoc replacement for
the decorrelation operation. As a texture detector, it
works little better than the Markov whitening filter. For

the globally egualized texture set, it identifies three
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texture dimensions related to SBLACV, SBLAVE, and SBLRNG.
For the adaptively ecualized set it identifies four

dimensions besed on SBLSDV, SBLASK, SBLVAR, and CORD11l.

The final two enalyses mede all of the preceding
features eavailable, with and without the correlation
moments. The IMG features of the last section are also
included: by themselves they have 1little discriminating
power, but they could be important in combination with
other feetures. Results of both analyses are identical
since the correlation moments are not strong enough to
enter into the model. The globally equalized textures
produce six discriminant functions using LPLSDV, LPLAKR,
LPLVAR, SBLAVE, and SBLVAR. The =2daptively equalized
textures generaté seven functions using LPLSDV, LPLAKR,
LPLVAR, SBLSDV, IMGAKR, MKVSDV, SBLSKW, and SBLVAR. In
each case, the first three texture dimensions are wmuch
stronger than the rest. They are based almost entirely on
standard Gdeviations and variances of Laplacian and Sobel
features. Scatter diegrems, psirwise F-ratio tables, and
clessification (or confusion) matrices show that texture
dimensions computed for the two cases are similar. The
least separated textures are Sand, Pigskin, and Leather.
The chief texture dimensions seem to be Wool versus Raffia

and Wood, and Water versus Raffia snd Wool.

5.3 Summary

It is cleer that the local autocorrelation function
does not discriminate these eight textures, although it
may measure texture dJdimensions not represented in this

treining set. This cests doubt upon the zutocorrelation
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texture model, and on the «correlation-based 1linesar
predictive methods of texture segmentation [181. The
success of Laplacian and Sobel texture transforms will be

explored further in Chapter 6.

75



CHAPTER 6
. EPATIAL-STATISTICAL METHODS

Structural texture measures share ¢ common weaskness:
discrete texture clements must be located, classified, and
studied before texture itself can be measured. This is 2
severe computational problem even for simple artificial
textures, and is nearly impossible for noisy, blurred,
unduleting, or stochastic textures. It would be
difficult, for instance, to identify a reasonable texture
primitive for the Pigskin image. Further, struc%ural
methods inherently classify a texture field as a whole, or
at best classify discrete texture elements. They oare

unsuited to the tesk of segmenting an imege by clsssifying

each pixel.

We now introduce & more suitable cless of texture
features, called "spatial-statistical." The neme is new,
bit many of the techniques &re well known. Indeed, they
would be clsimed by researchers in both the statistical

and structural camps.

The basic approach 1is to compute statistics of
various locel image functions. These measures are spatiel
bececuse they depend upon locezl window functions rather
than single pixels. They are statistical in the sence
that statisticel moments of an image window are invariant

to relative pixel positions: pixels of the intermediate
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functions could be shuffled without changing the composite

texture measure.

To recapitulate: we compute functions of ean imege,
e.g9. by convolving with 3x3 masks, then compute the mean
and other statistice in a window around each pixel. The
number of texture features measured at each point is the

number of image functions times the number of statistics.

Two window sizes are. actually used. The “"micro"
window, used to compute spatial functions, is typicelly
3x3 or 5x5 pixels. The "macro" window for computing
statistical moments is typically 15x15 pixels, possibly
31x31 or larger. O04dd window sizes are convenient because

they have well-defined center pixels.

The simplest micro-feature is the pixel value itself.
One may regard this as the average luminance over a 1x1]
region of the original image source. In calibrated
imagery the pixel value has quantitative meaning, but
pixels in typical images have only a relative meaning.
This can invalidate some macro-statistics. OCne "cure" for
this is to standardize each input image to & perticuler
mean and contrast. The images used in this study have all

been requantized to have uniform first-order statistics.

Two popular measures of texture cozrseness are edge
per unit area ([32] &nd extrema per unit area [72]. Each
is found by convolving a spatial operator with thé image.
The resulting feature plane mey or may not be subjected to
thresholding (hard 1limiting), thinning, or adaptive

binarization. Then the response around each point s
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integrated and assigned to that point as & texture
measure. This last operation is equivalent to blurring of

the feature plene.

A measure similar to & local standard deviation has
been used by Hsu [73). He computed the average deviation
of neighborhood pixels from the neighborhood average and
also from the intensity of the central pixel. These
operations will locate image edges, but will z2lso locate

areas of high ncise or high-frequency texture variations.

Recent evidence indicates that spot information is
the only deta transmitted to the brain by the optic nerve.
The visual cortex then locates edge and line features from
the spot response plane [74]). These edge features seem to
be the principal determinants of perception [511, [14]1.
It 1is possible that &a single type of primitive Iis
sufficient to explain the myriad verieties of perceived
texture, but it seems more sensible to use a larger set of
texture primitives. One set, borrowed from terrain
description, consists of peaks, pits, ravines, hillsides,
passes and saddles [75], [76]). Measures csimiler to these

will be investigated in this chapter.

Edge per unit area is generally considered a
structural-statistical texture measure. Indeed it is, if
the feature is computed by finding and counting discrete
edge elements. The spatial-statistical paredigm includes
this zapproach, but permits another: to compute the average
(and other statistics) of an "edgeness" measure computed

at each pixel. This seves having to determine a suitable
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threshold level. It is not known which method is more
powerful. Throughout this study the term spatial-

statistical will refer to the second approach.

In a sense, the micro-windows themselves are used as
primitive elements, but we shell reserve the terms texture
primitive and texture element for structures inherent to
the source texture. Properties related to these
primitives, such as edge per unit area, can be measured
without identifying the primitives themselves. The
methods are thus purely statistical despite any

theoretical dependence on structural elements.

Spatial-statisticel methods are particularly
appropriate for noisy or blurred imagery where texture
elements cannot be identified with certainty. Very little
work has been done on the identification of structurel
textures in the presence of noise, but effects of noise
and blur on spatial-statistical features are relatively
easy to model. A particulerly tractable set of micro-
features, spatial moments, will be discussed later in this

chapter.

6.1 Window Size

This research uses micro-texture and macro-texture
measures. Micro-texture measures are computed within very
small overlapping windows. The windows are typically 3x3
or 5x5, smzll enough to meke it unlikely that more than a
single texture region exists within the window. Macro-
texture measures are lerge-window summaries of the micro-

features. Macro-windows must be large enough to include a
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representative ssmple of the imege texture. A method for
dealing with windows overlsping more than one texture

region has been suggested by Laws [77]).

There 1is no theoretical reason for 1limiting the
micro-window to 5x5; it could even be larger than the
macro-window. The micro-window is typically small

because:

- Micro-festures are often veyy expensive to
compute, taking time O(n“log n“) or greater for
a window of size nxn. The macro-statistics we
propose are less costly and can be applied to

larger windows. They can be computed in
constant time regardless of the macro-window
size.

- Micro-texture features are designed to measure
local texture properties, while the macro-
statistics measure properties of the texture
field as a whole. The contrast between their
sizes 1is essential for cheracterizing 211 but
the simplest textures.

- There is no guarantee that any particular
resolution or window size will be optimal for »
given anslysis. Still, there is a tendency for
humans to request analyses requiring the finest
resolution available from an image, and to
obtain imagery with resolution just sufficient
for the desired eonelysis. We may thus assume
that very smzll windows cen produce texture
features as powerful as the highest resolution
features used by the human retina.

- Small window features work very well. Rosenfeld
and his co-workers [32], [78] eachieved good
results computing edge per unit aree with the
2x2 Roberts gradient. This study will further
support the power of such local operators.
It could be argued that micro-textures should be
computed over several window sizes. This is not 2z greet

computational protlem, but multiple window sizes gquickly
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create a large number of features. Five micro-features at
five resolutions described by five macro-statistics would
be 125 features to be computed, stored, éend anslyzed for

each of perhaps 250,000 image pixels.

Further resesrch may prove that meny window sizes
must be used simultaneously for proper texture
identificaetion. This approach has been used (791, [91 in
edge detection and measurement of texture coarseness. It
seems plausible, however, that a macro-scele
characterization of micro-features is sufficient for
preliminary texture <clsssification, with syntectic,
semantic, and special-purpose detectors invoked for

detzailed analysis of interesting regions.

The cize of the optimal mecro-window clearly depends
on texture coarseness or regularity, as well &s the
guality of the savaileble micro-features. Tt is to be
hoped that one size will be found =zdequate within oany
given application. Multiple or adaptive window sizes

could be implemented only at much greater expensc.

6.2 Window Shape

When using Fourier descriptors, it is common practice
to multiply window elements by & shaping function. This
gives the most weight to center elemente, progressively
less to pixels near window edges. Such' weighting
functions have also founé implicit wuse 1in the more
sophisticaged cdge detection operations, as in the Hueckel
operator [80]1, and even in simple operators such as the

Sobel gradient function. The techniaque deserves
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examination.

Weighted windows are used with transform methods
because digital transforms eare inherently cyclic. Each
image blogck "wreps around"” so that its left and right
sides are adjacent, as are its top and bottom. One way of
visualizing this is to imagine that the image block is
surrounded by replicas of itself. Weighting functions
which fall off toward the block edges reduce the sharp

trensitions, or aperture effects, that may occur there.

The other rezson for using weighted windows 1is to
reduce the effect of boundary overlap. A window covering
more than one texture region will produce hybrid or even
unpredictasble texture measures. Window shaping reduces

the effect of contrasting regions near the window edges.

For non-transform applications, the best weighting
function depends on the &verage region size and shape
relative to the window size,. Exact criteria are in the
realm of estimation theory. If it is known ¢thst the
window covers 2 single texture, there 1is no reason to
reduce the weight .o0f eny data. The most accurate
classification will be possible if the largest computable
window 1is wused. Window shaping reduces the effective
window size and hence the classification accuracy. It
also adds to the computational burden, particularly since
moving-window update technigues cannot be used. This

study will not use weighted windows.
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6.3 Statistical Moments

The first-order statistics of Section 2.5 may also be
used as micro-features. We can, for instance, compute the
standard deviations within moving 3x3 windows and then
compute macro-window statistics within this feature plane.
Resulting texture measures would be called SDVAVE, SDVSDV,
etc. The name of a texture measure is composed of the

micro-statistic name followed by the macro-statistic name.

This section comperes the local statistical features
with the IMG, Laplacian, and Sobel features discussed in
Sections 3.7 and 5.2. The AVE, SDV, SKW, and KRT micro-
features are simply small, continuously shifted versions
of the corresponding macro-features. They are computed
for eech 3x3 or 5x5 window in the image, with the computed
value assigned to the center pixel. Macro-features are

then computed for 15x15 windows in the feature planes.

Individual features with F-ratios above 100 are
listed in Table 6-1. The micro-window AVE features have
little power. SDV, SKW, and KRT do better, zbout zs well
as SBL micro-features. None of these methods apprroaches
the Laplacian in power, although Jjointly the 3x3
statistical features have about the same power zs the IMG,
LPL, and SBL sets together. The 5x5 measures perform less
well, presumably because they contrast less with the 15x15

r

macro-statistics.

Joint classification accuracies are listed in Table
6-2. The largest feature set, using Laplacien, Sobel, and

3x3 statistical features together, performs far better
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TABLE 6-1. LOCAL STATISTIC F-RATIOS

3x3 5x5 Ix3 5x5
Feature Global Globel Adaptive Adaptive
LPLVAR 707 - 609 -
LPLKRT 251 - 250 -
LPLSDV 851 - 700 -
LPLAKR 261 - 263 -
LPLMIN 429 - 374 -
LPLMAX 512 - 444 -
LPLRNG 571 - 488 -
SBLVAR 53 - 156 -
SBLACV 112 - 105 -
SDVVAR 50 73 166 193
SDVSKW 97 37 105 34
SDVSDV 52 74 166 195
SDVACV 158 134 179 . 136
SKWVAR 207 81 125 77
SKWSDV 245 99 164 94
SKWMAX 134 56 25 68
SKWRNG 244 151 49 130
KRTAVE 497 117 474 130
KRTVAR 181 54 178 58
KRTSKW 118 35 134 39
KRTSDV 234 67 228 69
KRTACV 150 57 144 52
KRTASK 118 35 134 39
KRTMIN 6 100 16 80
KRTMAX 184 83 157 90
KRTRNG 117 75 92 78
KRTMID 130 92 84 102
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than any previous texture measures. Neither type of

measure alone approaches this accuracy of 84%.

TABLE 6-2. LOCAL STATISTIC CLASSIFICATION ACCURACY

Micro- 3x3 5x5 3x3 5x5
Feature Set Global Global Adaptive Adzptive
LPL 54.83 . - 47 .80 -
SBL 32.47 - 35.84 -
IMG+LPL+SBL 63.62 - 64.16 -
AVE 19.82 19.73 19.43 21.88
Sbv 39.94 29.54 28.66 34.62
SKW 31.59 23.68 29.20 21.92
KRT 39.50 33.89 37.26 32,45
AVE+SDV+SKW+KRT 59.81 48.44 61.62 46.88
IMG+LPL+SBL+AVE

+SDV+SKW+KRT 84.57 65.63 82.52 67.82

It is spparent from the scatter diagrams (not shown)
that the two combined 3x3 feature sets, IMG+LPL+SBL and
AVE+SDV+SKW+KRT, are measuring slightly different texture
dimensions. This is confirmed by the much greater
classification accuracy when both sets are combined.
Principal components of the globslly eqgualized textures
are based on LPLSDV, KRTAVE, LPLAKR, (SBLACV), LPLVAR,
SDVAVE, SBLAVE, SDVSDV, (IMGASK), IMGMAX, SKWAVE, IMGAVE,
AQEACV, SKWVAR, and SBLVAR. Terms in pacenthe;es were
dropped from the model as other terms were found to be
jointly more powerful. The adaptively eaualized textures

generste principel components using LPLSDV, KRTAVE,
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LPLAKR, SBLAVE, SDVAVE, LPLVAR, SDVSDV, (IMGRNG), SBLSDV,
SKWAVE, IMGMAX, and IMGVAR.

Surprisingly, the joint classification accuracy is
lower when the 5x5 statistical moments 2re combined with
the 3x3 Lép]acian and Sobel. Principal components for
both texture sets recuire LPLSDV, LPLAKR, and LPLVAR. The
globslly egualized set &sdds KRTAVE, SBLACV, and SKWRNG;
the adaptive set requires SKWSDV, SBLACV, SDVAVE, and
IMGRNG. The 5x5 statistical moments a2dd 2lmost nothing to

the information in the 3x3 Laplecian and Sobel.

It is difficult to draw conclusions from the decte
presented here. A set of simple 3x23 texture measures
evaluated over 15x15 blocks has been found to have
extracrdinary discriminating power. The first two texture
dimensions are slightly rotated versions of those found
with co-occurrence methods. The least separated textures
are still Grass, Sand, and Pigskin. The first principel
component separates Wood from Wool, the csecond separates
Raffia from the other seven textures. The number of
terms, however, makes it difficult to say ijust what is
being measured. We shall continue our search for a set of

fast, effective texture measures.

6.4 Spatial Moment Masks

Since texture 1is & 1locelly spatial phenomenon, we
must use local spatial operators to generste our feature
planes. Computation of spatial moments is eguivalent to
multiplying an image window by a2 mask a2nd then summing.

This is exectly what is done in convolution. It seems
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reasonable to convolve smell spatial moment masks with an

image to produce 2 set of feature planes.

11 -1 0 1 10 1T
1 1] 10 1 0 1
1 11 -1 0 1] L1 0 )
M0O Mol M02
SR 1 0 - -1 0 -]
0 6 0 6 0 0 0 0 o0
11 1] -1 0 1 1 0 1]
M10 M11 M12
111 EREEE 1 0
c 0 0 6 0 0 o 0 o
11 1] -1 0 1] 1 0 1
420 M21 M22

Figure 6-1. 3x3 Spatiel Moment Masks

The spatial moments of 2 loceal window are

Mij = (1/n%) Z rt ¢d 1(r,c) ’ (6-1)
r,c
It is assumed that row and column indices are relative to

the window center, &nd thet the computed moments are

gssigred to thic centsr point as & feature vector. The
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3x3 and 5x5 spetial moment masks are shown in Figures 6-1

and b6-2.

When spatial moments are computed over a probability
density, such as a co-occurrence matrix, it is often
desirable to relate higher moments to the center of the

probability mass, (M10/M00,M01/M00). For instance,

M20' = (1/n%) (r - M10/M00)2 I(r,c)

r,c
or

M20' = M20 - M102 /MO0

The same normalization 1is often used in character
recognition systems to achieve shift invariance. For
small texture windows, however, such standardizstion makes
little difference. It is not worth the extra computation,

and may not even be appropriate.

Table 6-3 lists locel moment features with F-ratios
above 150. M10SDV, M11SDV, ané M12SDV feastures are seen
to be extremely powerful. Several RNG features are also
outstanding, but will be found less importent in
conjunction with the other texture measures. MO0, MO02,
M20, and M22 features are seen to have very little power.
Note that the MO0 moment is identical to the AVE micro-

feature.
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Figure 6-2.
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TABLE 6-3. LOCAL MOMENT F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive
MO1VAR 258 177 587 427
MO1SKW 221 52 229 5S4
MO1KRT 183 21 249 38
MO1SDV 274 183 618 424
MO1ASK 198 24 208 26
MO1MAX 153 122 248 203
MO1RNG 136 148 249 292
M10OVAR 797 601 909 797
M10SDV 1490 1038 1486 1195
M10OMIN 944 698 956 725
M10MAX 765 594 722 579
M10RNG 1388 1062 1407 1144
M11VAR 837 609 713 603
M11KRT 185 61 196 69
M11SDV 1245 892 977 804
M11AKR 183 22 194 25
M11MIN 543 491 434 408
M11MAX 506 429 418 363
M11RNG 773 678 628 581
M12VAR 769 584 865 746
M12SDV 1428 1003 1396 1120
M12MIN 883 633 885 634
M12MAX 704 541 644 506
M12RNG 1270 952 1259 982
M21VAR 266 177 621 431
M21SKW 206 49 212 51
M21KRT 167 27 229 47
M21SDV 284 182 . 652 429
M21ASK 180 24 188 25
M21MAX 154 103 249 178
M21RNG 141 119 263 244

TABLE 6-4. MOMENT CLASSIFICATION ACCURACY

3x3 S¥X5
Feature Set G1oba1 Glogal gdaggigg Adggﬁive
Mij 81.05 65.67 77.00 67.72
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Table 6-4 shows classification accuracies on each of
the texture sets. The first @analysis, with 81%
classification accuracy, uses M10SDV, MI11SDV, M10VAR,
M12VAR, MO1SDV, M21SDV, MO1SKW, and MI11KRT. Scatter
diagrams for the first two texture dimensions are visually
different from those of previous texture sets, but the
pattern of group centroids is much the same. The first
dimension separates Wood and Water from the rest; the
second separates Raffia from Wool and Leather. The 3x3
adaptive case gives very similazr results with M10SDV,
Mllsbv, M12SDv, MI10VAR, M01SDV, M21SDV, MO1SKW, and
M11KRT. The dominance of SDV and VAR macro-statistics is
obvious. micro-window moments contszining odd powers are

also dominant; they are the ones with zero-sum masks.

Model features for 5x5 moments are similar to those
for 3x3 moments. A large decresse 1in classificetion
accuracy. occurs with the 1larger micro~features. This
trend has been noted before. 1Tt may be an artifact of the
texture set, or an interaction of micro-window and macro-
window sizes. It may also indicate that the perimeter-
weighted moments are not as appropriate as center-weighted

statistics such as the Laplacian. The larger micro-window

brings out the perimeter weighting of the spatizl moments.

6.5 Rotation-Invariant Moments

Most investigators have chosen texture meaeres that
sre invariant to rotation of the texture field. This is
partly because perceived texture, particularly perceived
coarseness, is little changed by rotaetion. The assumption

of rotational isotropy hss also been used to reduced the
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number of measured texture features and to increase
statistical reliability of texture features by averaging

measurements in different directions.

There 1is 2 need for directional texture feztures.
Humans are able to distinguish horizontzl 1line textures
from wverticel ones, &nd left gradients from right
gradients. Cne applicstion of directionsal texture
measures 1is the segmentstion and interpretation of rock
streta in seismic imeges. There 1is @2lso a need for
nondirectional texture measures, such as the Laplacian.
This section describes two methods of generating
nondirectional features from the directional spetial

moments of the previous section.

Assume that the image texture has e dominant
direction, such as a global gradient or 2 major Fourier
component, Let the camera or texture field be rotated
through an angle A, and let a = cos(A), b = sin(dA). The

new moments can be computed from the original window as

Mij(RA) = (l/nz) Z {(ar + bc)1 (ac - br)? I(r,c)
r,C
Haralick computes severel features of this form to measure

energy along co-occurrence matrix diagonals. Using the
binomial expansion it can be seen thzt these moments are

linear combinations of the Mij. For instance,
M11(A) = -abM20 + (a’ - b2)M1l + abM02
A better method of normslization has been developed

by Hu [81]. He derives the following orthogonal set of

rotation-inveriant moments:

RI1 = M20+MO2 92



RI2 = (M20-M02)2+4M11°2
RI3 = (M30-3M12)2+(3M21-M03) 2
RI4 = (M30+M12)2+(M21+M03) 2

RIS = (M30-3M12) (M30+M12) [ (M30+M12) 2-3 (M21+M03) 2]
+(3M21-M03) (M214M03) [ 3 (M30+M12) 2= (M21+M03) 2]

RI6

(M20-M02) [ (M30+M12) 2= (M21+M03) %)

+4M11 (M30+M12) (M21+M03)

RI7 = (3M21-MO03) (M30+M12) [ (M30+M12)2-3 (M21+M03) %]

—(M30-3M12) (M21+M03) [3 (M30+M12) 2— (M21+M03) 2]

Maitra [82]) suggests a set of ratios of these
functions which are 1invariant to contrast and scele
changes oas well &s rotation. We will call them "full
invariants," although they are not invarient to changes in
luminance level. In theory, they are also invariant to
scale changes, but this may not hold when the sampling
rate and window size remain constant. The moments,

modified to avoid negative roots, are:

FI1 = Q|R12| / RIl

FI2 = (RI3 * M0O) / (RI2 * RIl)

FI3 = RI4 / RI3

FI4 = VIRISI / RI3

FIS = RI6 / (RI4 * RI1)

FI16 = RI7 / RIS

Both sets of inveriant moments present computationel

difficulties. Rotation-invariants RIS &and RI7 tend tc
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"blow up" becsuse of the high powers involved. We have
corrected for this by scaling the Mij terms by 1/25%5, in
effect sceling the input dets to the renge zero to one.
Full-invariants give trouble beczuse the denominatore can
approach zero. We have sect the auotient to zero if the

magnitude of the denominator is less then 0.001.

Note that these inveriznt moments, like the spatial
moments of the 1lasst section, are used only as micro-
features. They are computed on 3x3 or 5x5 windows, not on
the 1larger macro-windows. Application of the twelve
mécro-statistics generates 84 rotation-invarient texture

features and 72 full-inveriant fezstures.

The invsriaents are nonlinear trensformations of the
moment feature plsnes. They are rotection invariant in the
same sense ac the statistics]l moments of the lzst section:
the output of each micre-window is theoretically
unaffected by rotastion of the texture field around the
center of that micro-window. In practice, this is only
approximately true becazuse of discretization and aperture
effects. Global effects cf rotation are removed by the
macro-statistic computetion, which is invarisnt to the

rotation or translation of the micro-windows.

Tables 6-5 and 6-6 show the individuzl powers of the
rotation-invariant moments &nd full-inveriant moment
ratios. The tables show that RI2, RIS5, FI3, 2and FI4
micro-features are the most useful for texture

description.

Table 6-7 shows thet discriminating power 2always
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TABLE 6-5. ROTATION-INVARTANT MOMENT F-RATIOS

3x3 - 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive
RI2VAR 837 603 713 596
RI2KRT 187 59 198 66
RI2SDV 1244 875 976 789
RI2AKR 185 21 197 22
RI2MIN 547 501 437 419
RI2MAX 502 412 412 344
RI2RNG 773 - 673 627 575
RI3VAR 42 33 134 70
RI3SDV 30 29 124 65
RI3ACV 140 147 135 128
RI4AVE 62 64 o1 132
RI4VAR 66 62 200 208
RI4SDV 65 63 204 225
RI4ACV 120 149 120 157
RISAVE 193 153 481 368
RISVAR 69 60 173 145
RIS5SDV 74 70 199 202
RISACV 118 6 122 7
RISMAX 376 278 283 244
RI5SMID 85 99 144 172
RI6MAX 114 101 80 75
RI6RNG 128 103 99 94
RI7SDV 82 86 41 107
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TABLE 6-6. FULL-INVARIANT MOMENT F-RATICS

3x3 5x5 3x3 5x5
Feature , Global Global Adeptive Rdaptive
FI1AVE 53 63 379 772
FI2SDV 69 24 114 23
FI3AVE 247 46 177 42
FI3VAR 234 9 250 11
FI3SKW 197 12 147 8
FI3KRT 159 0 89 1
FI3SDV 386 29 381 27
FI3ACV 319 36 378 32
FI3ASK 180 12 137 8
FI3AKR 149 0 86 1
FI3MAX 159 21 153 19
FI3RNG 159 21 153 19
FI3MID 159 21 153 19
FI4VAR 245 18 264 1¢
FI4SKW 258 19 220 12
FI4KRT 272 6 176 5
FI4SDV 314 41 331 36
FI4ACV 202 56 306 48
FI4ASK 187 1¢ 168 12
FISAKR 184 6 140 5
FI4MAX 147 24 133 20
FI4RNG 147 24 133 20
FI4MID 147 24 133 20
FISVAR 173 65 . 196 184
FISSDV 227 81 240 204
FISMIN 175 48 99 58
FISMAX 186 102 111 113
FISRNG 265 124 140 121
FI6SDV 151 8 106 5
FI6RNG 106 8 67 5
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decreases as more invariance is added. The 3x3 rotation-
invariant features still perform very well, better than
co-occurrence measures. Adeptive ccqualization hes little
effect on the classificetion accuracies; surprisingly, it
hes less effect on rotation-inverisnts than on full-
invariants. Globally equalized textures use RI2SDV,
RI2VAR, RI4AVE, RI3AVE, RI2AKR, RIS5AVE, RI6ACV, and
RIGAVE. AVE macro-features arc epparently of use because
of the nonlinear product terms involved in computing these
moments. Discriminant functions for the adaptively
equalized textures use RI2SDV, RISAVE, RI4SDV, RI3SDV,
‘RI2KRT, RI2VAR, RI4AVE, RI6SDV, RI6AVE, and RI1VAR.

TABLE 6-7. INVARIANT CLASSIFICATICGN ACCURACY

3x3 5x5 3x2 5x5
Feature Set Global Global Rdeptive Adaptive
RI 74.17 54.25 74.17 57.37
FI 53.27 30.47 56.69 37.26

Full-invariants are necarly invariant to texture as
well as to rotation &and contrast. Tt must be concluded
that contrast invarisnce is better achieved by'qlobal or
macro-window equalization than by micro-window
equalizatiqn. Rotation invsriance, when recquired by &
particular applicztion, can be obtaineéd at 1little cost

with the RI features or the locsl statistical measures of
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the last section.

6.6 Joint Moments
Nonlinear functions c3an be introduced by squaring or
otherwise transforming window elements prior to computing

4

moments. Let

Mijk = (1/n%) Y ¢! &I 1¥(r,o (6-2)

r,c
This reduces to the spatial moments when k = 1 and to the
statistical moments when i = j = 0. It is possible that

the joint moments are more powerful descriptors than the

spatial and statistical features together.

Preliminary trials proved that the texture features
of Equation 6-2 are of no use for k # 1. This prompted
the correction of higher moments for the k =1 and k = 2
moments. The correction formules are exactly analogous to
Equations 3-1 through 3-4. This section will investigate
the 432 features generated by the twelve macro-statistics
applied to the corrected Mijk for i and j ranging from

zero to two and k ranging from one to four.

Table 6-8 shows that only the AVE, VAR, and SDV
macro-features are very strong, and then only for 3x23
micro-features. The only class of micro-features worth
computing is the Mijl set, which is identical to the Mij
set of Section 6.4. It 1is surprising that better
classificetion accuracies are not achieved, considering
the enormous computational resources thrown at the

problem.
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TABLE 6-8. JOINT MCMENT CLASSIFICATTION ACCURACY

3x3 5x5 Ix3 S5Sx5
Feature Set Global Global Adaptive Adaptive
MOOk 56.05 48. 44 62.30 46 .88
MO1lk 54.30 36.43 48.19 38.43
M0O2k 56.79 19.63 53.27 -
M10k 48.54 44.19 47.41 45.4)
M11lk 45.85 39.01 41.65 36.23
M12k 48.10 43.31 46 .39 45.17
M20k 36.77 24.71 45.17 20.75
M21k 52.20 36.91 49.02 36.91
M22k 48.10 21.53 4] .31 -
Mijl 81.05 65.67 77.00 67.72
Mij2 66.75 57.52 70.26 58.64
Mij3 62.50 45.75 58.20 48.05
Mij4 62.40 57.86 63.33 55.18
MijkAVE 83.01 65.14 69.63 56.88
MijkVAR 76.03 64.26 80.37 68.99
MijkSKW 54.98 42.04 57.86 40.92
MijkKRT 53.56 41.85 54.69 38.96
MijkSDV 80.96 67.14 83.54 69.48
MijkACV 54.20 . 42.77 61.52 42,41
MijkASK 42.92 33.25 58.11 32.47
MijkAKR . 37.89 38.38 38.57 29.06
MijkMIN 62.06 57.23 54.74 56.64
MijkMAX 52.54 50.54 53.27 49, 27
MijkRNG 60.79 60.06 59.42 59.91
MijkMID 60.01 47.75 55.57 41.02

6.7 Combined Moments

This section comkines the IMG, LPL, and SPL micro-
features with the 3x3 and Sx5 AVE, SDV, SKW, KRT, 2nd Mij
micro-features. Twelve macro-statistics are computed for
each of the 29 micro-feature planes, generating 348

texture measures.

The first section of Table 6-9 shows th2t 3x3 moments
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TABLE 6-9. CCMBINED MOMENT CLASSIFICATION ACCURACY

Feature Set Adaptive
3Ix3 88.67
5x5 73.73
3x3+5x5 85.25
3x3 VAR+SDV 84.08
3x3 VAR 82.37
3x3 SDv 86.04
contain more texture information than 5x5 moments. In

fact, when both are used none of the 5x5 measures enter
the discriminant functions. They contein no information
which is not more easily extracted from 3x3 measures.
This does not mean that a particular 5x5 fezture mesasures
exactly the same thing as the corresponding 3x3 feature,
but that the set of 5x5 features contsins the same texture

information as the set of 3x3 features.

The second section shows that standard deviation
macro-statistics of the 3x3 moment planes contain nearly
as much information as all twelve mecro-statistics.
Variables required for 86% clessification accuracy are
Mlosbv, LPLSDV, M11SDvV, MO01SDV, M12SDV, M20SDV, KRTSDV,
SDVSDV, &and M02SDV. If some of these variables were
unavailable it is ouite likely that others smong the 348
could be found to provide the same information. A scatter
plot of the eight texture classes &agoainst the first two
principal axes looks very similar to those produced with

co-occurrence and other texture features.
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6.8 Ad Hoc Masks

Many researchers have suggested texture measures
based on edge per unit areaz or average Laplacian. Cur
experimentél results, documented in the next chapter, show
that these are wise choices. Standard deviations of 3x3
spot and edge measures are very powerful features.
Averages computed within thresholded feature planes would

be very similar.

The quality of these measures suggests further
experimentation. The following convolution masks have

been chosen as spot and ring detectors:

"1 -2 17 0 -1 0]
SPT1 = |-2 4 =2 SPT2 = |-1 4 -1
L1 -2 1] L0 -1 o
(-1 -1 -17 -1 0 -17
SPT3 = [-1 8 -1 SPT4 = | 0 4 0
-1 -1 -1 -1 0 -1
-2 1 -2 -1 1 -1
SPT5 = | 1 4 1 SPT6 = |1 o0 1
-2 1 -2 -1 1 -1

Note that the SPT1 mesk is the Laplacian of previous
sections. The coefficients of these masks sum to =zero,
making computed texture measures invariant to luminance
shifts. Otherwise there was no particuler theory behind

the selection of these masks.
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Elongated spots can &sppesar as thin lines. These may

be detected with the following masks:

-1 2 -1 —1 <1 -1

LNE1 = |-1 2 -1 INE2 = | 2 2 2
a2 4 -1 -1 -1,

[0 1 o0 "1 0 -1

LNE3 = }|-1 0 -1 LNE4 = 0 0 0
Lo 1 o -1 0 1

LNE4 texture mezsures are the csame a2s the M1l measures

suggested in Section 6.4.

Large spots, lines, and regions may be sensed by edge

detectors. We shall use

-1 0 1} -1 -1 =17
EDGl = |-1 0 1 EDG2 = | 0 0 O
-1 0 1] L1 1. 1]
-1 0 17 -1 -2 -1]]
EDG3 = | -2 0 2 EDG4 = 0 0 0
-1 0 1. 1 2 1

The first two masks are identicel to the M0l and M10

spatial moment masks.

There is anatomical evidence that the eye contzins
separate detectors for bright spots and for dark spots.
There may also be neurons which respond cimilarly to both

positive and negative spots. We c¢an test such texture
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features by measuring response magnitude. Using magnitudes
is @2lso a way of introducing nonlinearities in the
discriminant functions. Absolute wvalues of the micro-

features will be denoted by

ASPi = |SPTi|
ALNi = |LNEi|
AEDi = |EDGil|

The notation is meent to indicate absolute response to a
mask rather than response to an absolute mask. Micro-

feeture ALN4 has not been computed.

Edge detectors in common use respond equally to edges
in different directions. Rotation-inveriant micro-

features used for this study will be

TNl = V(LNEL) 2 + (LNE2) 2

ILN2 = ALN3

IED1 = Y (EDGL) 2 + (EDG2) >

18p2 = Y (E063) 2 + (EDGA) 2

Again, the notation represents feature plane operations
rather than operations on the convolution masks. IED1l and
IED2 are commonly known as the Prewitt and Sobel edge

detectors.

It turns out that these local moments provide
exceptionally strong texture messures. When run with the
combined moments of the previous section, these features
are the only ones entering the discriminant functions.

(Of course, some of these features are duplicates:of the
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LPL, SBL, MO01l, M10, and M1l feetures.) The statigticel
moments of Section 6.2 were not made availzble, but they
have been shown less powerful then the scspaticl moment

features.

.

TABLE 6-10. AD HCC MOMENT CLASSIFICATICON ACCURACY

3x3 3Ix2
Feature Set Global Adaptive
SPT 76.81 74.07
LNE 75.68 67.82
EDG 68.46 64.60
ASP 74.51 72.17
ALN 71.68 68.85
AED 69.58 67.53
ILN 47.61 54.64
IED 56.15 £5.18
SPT+ASP 75.83 72.46
LNE+ALN+ILN 73.78 74.61
EDG+AED+IED 66.50 69.29
AVE+VAR+SDV+ACV - 86.52
AVE+VAR+SDV 87.16 87.16
AVE+VAR - 86.28
AVE+SDV - 87.50
VAR+SDV 88.92 84.77
VAR 80.42 82.14
SDV 87.45 85.79

Table 6-10 shows the <classification results with
various subsets of the ad hcc texture measures. NMone of
the single-type subsets perform well. Even the combined

subsets, such as SPT+ASP, do not perform well. Cther
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experiments (not shown) indicate that several Spot and
Line features are needed. Fdge features 2re also useful.
2bsolute features are important, but rotation-invarient

line and edge features arc of little use.

The final section of Table 6-10 is based on the
combined set of 20 micro~features, but with wvarious
subsets of the macro-statistics. The first 1line,
AVE+VAR+SDV+ACV, is essentially eguivelent to the entire
set of macro-statistics. The following lines show that
very little discriminant power is lost by usinag only the
SDV statistics. The differences between p2irs of very
similar features, such &s (EDG1SDV - EDG3SDV), are of
great importance, cepperently Lecsuse the difference forms
2 feature nearly orthogonal to the originals. Tables 6-11
through 6-13 show the discriminating powers of individual
features. Lines with no F-ratios above 200 have been
omitted. Interestingly, none of the SPT3, SPT4, SPT5, or
SPT6 features were of this strength, nor were the absolute
versions of the seme features. Only the SPT3 features
even cazme close. It is difficult see why this should be

So.

Also missing zre the rotation-invaerient Line features
end most of the rotation-inveriant Fdge features. Cnly
the Prewitt cperator, IEDl, hes a retio above 200.
Evidently, edge per unit area texture measures should be
based on directionsl gredients rather than gradient

magnitude.

The difference in strength between LNE3 ané LNE4
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AC HOC SPOT F~RATICGS

TABLE 6-11.
Feature Global Adaptive
SPT1VAR 707 60S
SPT1KRT , 251 250
SPT1SDV 851 700
SPT1AKR 261 263
SPT1MIN 429 374
SPT1MAX 512 444
SPT1RNG 571 488
ASPl1AVE 849 690
ASP1VAR 665 607
ASP1SKW 216 225
ASP1SDV 784 671
ASP1ACYV 318 354
ASP1ASK 216 225
ASP1MAX 519 449
ASP1RNG 518 499
ASP1MID 519 450

Feature Global Adzaptive
SPT2VAR 280 268
SPT2KRT 144 178
SPT2SDV 293 274
SPT2AKR 41 47
SPT2MIN 192 182
SPT2MAX 316 285
SPT2RNG 376 336
ASP2AVE 252 233
ASP2VAR 364 382
ASP2SKW 128 156
ASP2SDV 359 355
ASP2ACV 172 219
ASP2ASK 128 156
ASP2MAX 327 291
ASP2RNG 327 291
ASP2MID 327 291
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TABLE 6-12.

AC HOC LINE F-RATICS

Feature Global Adaptive Feature Glokal Adsptive
LNE1VAR 182 292 LNE2VAR 581 499
LNE1KRT 387 455 LNE2KRT 31 30
LNE1SDV 231 364 LNE2SDV 1068 810
LNE1AKR 271 29¢ LNE2AKR 25 25
LNE1MIN 52 82 LNE2MIN 599 515
LNE1MAX 122 163 LNE2MAX 501 438
LNE1RNG 94 144 LNE2RNG 766 650
LNE3VAR 40 96 LNE4VAR 837 713
LNE3SDV 44 96 LNE4SDV 1245 977
LNE3MIN 58 68 LNE4MIN 543 434
LNE3MAX 49 51 LNE4MAX 506 418
LNE 3RNG 66 74 LNE4RNG 773 628
ALN1AVE 285 432 ALN2AVE 1009 730
ALN1VAR 132 222 ALN2VAR 502 475
ALN1SKW 2865 328 ALN2SKW 20 17
ALN1KRT 201 219 ALN2KRT 10 7
ALN1SDV 147 240 ALN2SDV 980 81¢
ALN1ACV 573 661 ALN2ACV 82 91
ALN1ASK 285 328 ALN2ASK 20 17
ALN1MAX 77 117 ALN2MAX 616 S30
ALN1RNG 76 116 ALN2RNG 615 529
ALN1MID . 77 117 ALN2MID 617 530
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TABLE 6-13.

AD BOC EDGE F-RATICS

Feature Globel Adaptive
EDG1VAR 258 587
EDG1SKW 221 22¢
EDG1KRT 183 249
EDG1SDV  ° 274 618
EDG1ASK leg 208
EDG1MIN 1060 125
EDG1MAX 153 248
EDG1RNG 136 249
EDG3VAR 2432 545
EDG3SKW 237 247
EDG3KRT 202 276
EDG3SDV 256 573
EDG3ASK 217 230
EDG3MIN al 108
EDG3MAX 147 242
EDG3RNG 123 222
AED1AVE 289 586
AED1VAR 200 534
AED1SKW 168 226
AED1SDV 202 527
AED1ASK 167 226
AED1MAX 92 159
AED1RNG 91 158
AED1MID 92 160
AED3AVE 276 551
AED3VAR 180 480
AED3SKW 182 246
AED3SDV 180 475
AED3ASK 182 247
AED3MAX 82 140
AED3RNG 81 138
AED3MID 83 141
IED1VAR 63 214
IED1SDV 64 218

Feature Global Adaptive
EDG2VAR 797 909
EDG2SKW 62 62
EDG2KRT 16 24
EDG2SDV 1490 1486
EDG2ASK 23 22
EDG2MIN 944 956
EDG2MAX 765 72?2
EDG2RNG 1388 1407
EDG4VAR 810 917
EDG4SKW 61 61
EDG4KRT 31 46
EDG4SDV 1510 1492
EDG4ASK 26 26
EDG4MIN 945 967
EDG4MAX 776 730
EDG4RNG 1396 1415
AED2AVE 1243 1245
AED2VAR 788 1058
AED2SKW 21 29
AED2SDV 1430 1664
AED2ASK 2] 29
AED2MAX 1206 1252
AED2RNG 1202 1250
AED2MID 1209 1254
AED4AVE 1356 1222
AED4VAR 804 1101
AED4SKW 36 50
AED4SDV 1452 1714
AED4ASK 36 50
AED4MAX 1205 1254
AED4RNG 1202 1252
AED4MID 1208 1255
IED2VAR 53 156
IED2SDV g5 159
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features should be noted. The two micro-operators are
similar, being essentially rotated versions of each other.
For some reason the diagonal line detector is much more
power ful. "This could be duve to anisotropy of the data
set, but results to be presented in the next chapter show
much stronger discrimination for vertical and horizontal
features than for any diagonal feature. The only other
explanation which presents itself is the separable nature
of the LNE4 mask. All of -the masks which work well can
easily be expressed as the product (or convolution) of a
vertical vector and a horizontal vector. None of the

masks which work poorly have this property.

Separability into vertical and horizontal features
might well be of importance in biologicel vision systems.
Octopi and rets have great difficulty discriminating
diagonals in different directions. Rabbits, cats, and
humans are known to discriminate stimuli near the vertical
and horizontal more accurately than those which zre nearly
diagonal. The apparent diagonal structure of the LNE4
mask could thus be less important than its horizontal and
vertical decomposition. It is difficult to see, however,
how this separable structure could be important in a

mathematical discriminant anslysis.

6.9 Summary

This chapter presented many sets of texture measures,
all fitting the spatisl-stetistical paradigm. °~ Tocal
statistical moments were found useful only when combined
with spatial moments such @&s the Laplacian. Spetial

moments éalone are also lscking, although more powerful
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than co-occurrence texture measures.

moments are somewhat weaker, but possibly useful.

Rotetion-invariant

Full-

invariants and joint spatizl moments are nearly invariant

to texture differences.

-

work well, others do not.

Vie

A few other lessons have been learned:

Texture can be measured with very locel
operators.

The 5x5 spatial moments are Jjointly less
power ful than the 3x3 moments, and contein no
additional texture information; this may be an
inherent fault of perimeter-weighted masks.

Convolution masks which are- zero-sum and
separable seem to work best.

Statistics of rotation-inveriant measures work
less well than linear combinations of
directional statistics.

The only macro-statistic needed is the standard
deviation.

even better texture analysis methods.

Some of the a2d hoc 3x3 operators

shall use these lessons in the next chapter to develop
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CHAPTER 7
TEXTURE ENERGY MEASURES

This chepter develops our final spattal-statistical
texture model, one incorporating the best of our previous
models. We shall measure texture in much the same way as
in the previous chaptef, convolving sm2ll]l center-weighted
filter maesks across the 1image and then computing
statistics within a window around each pixel. The
responses to several such transforms will then be combined
in discriminant and classification functions for a set of

known textures.

7.1 Center-Weighted Filter Masks

Figure 7-1 shows three sets of one-dimensional
convolution masks. We suggest that these be called the
Lattice Aperture Waveform Sets of orders three, five, and
seven. The names of the vectors are mnemonics for Level,
Edge, Spot, Wave, Ripple, Undulation, and OCscillation.
Vectors in each set are ordered by seouency4. The vectors
are weighted toward the center, @&ll are symmetric or
antisymmetric, and 2ll but the Level vectors are zero-sum.
The vectors in each set are independent, but not

orthogonal. .

4Number of zcro crossings: zero for L7, six for 07.
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T PROLSZTAL S PR - T

3= [1 2 1]

E3= [-1 o 1]

s3 = |-1 2 -1]
L5 = [ 1 4 6 4 1]
5= [-1 -2 o 2 1]
ss= [1 0o 2 o -]
ws = -1 2 0 -2 1]
R5 = :1 -4 6 -4 1]

7= [1 6 15 20 15 6 1]
E7= [-1 -4 -5 0 5 4 1]
s1= [-1 -2 1 4 1 -2 4]
wr1= [-1 0 3 0 -3 o 1]
R7= [1 -2 -1 4.1 2 1]

Figure 7-1. Center-Weighted Vector Masks
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The 1x3 vectors form a basis for the larger vector
setss. Each 1x5 vector may be generated by convolving two
1x3 wvectors. s5, for instance, can be generated as
(L3)*(S3), (S3)*(L3), or (E3)*(E3). The 1x7 vectors can
be generated by convolving 1x3 and 1x5 vectors, or by
twice convolving 1x3 vectors. The secquency of a generated
vector is the sum of the component sequencies.

Figure 7-2 shows the nire masks generated by
convolving @ vertical 3-vector with & horizontal 3-vector.
This may be considered a <cross-product or wvector
multiplication operation, but convolution has special
significance here. We shall extract texture information
from image data by convolving with the 2x3 masks, just as
we did with spetial moment and ad hoc masks. Convolution
with the component one-dimensional masks gives exactly the
same result as convolution with 2 separable 3x3 mask.

The nine independent 3x3 masks form a complete set.
Any 3x3 matrix can be expressed as a unigue 1linear
combination of the masks. This was also true of the
perimeter-weighted spatiszl moment masks, but the center-
weighted set contains the edge, line, and spot masks which
were shown in Section 6.8 to be more powerful. Eight of
the center-weighted masks are zero-sum, & property shown

in Section 6.4 to be important.

The 5x5 masks znd 7x7 masks (not shown) are similar,

Sthe 1x3 vector elements can be derived from

coefficients of the polynomials (a+b)(2+b), (a+b)(a-b),
and (a-b) (a-b). Indeed, any of the vector sets may be
generated from coefficients of the binomial expansion.
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1 2 l1 -1 0 1 -1 2 -1
2 4 2 -2 0 2 -2 4 -2
[ 1 2 1 -1 0 1, -1 2 -1
L3L3 L3E3 L3S3
- T = ] " T
-1 -2 -1 1 0 -1 1 -2 ]
0 0 0 0 0 0 0 0 0
1 2 1] -1 0 1. -1 2 -1
E3L3 E3E3 E3S3
_ _ - = 7]
-1 -2 <1 ] 1 0 -1 1 =2 L
2 4 2 -2 0 2 -2 4 =2
-l -2 -l |1 0 -1 | 1 -2 1
S3L3 S3E3 S3S3

Figure 7-2. 3x3 Center-Weighted Masks

with even stronger weighting toward the center. The
separable structure of these mésks makes it feasible to
apply them as spatial-domzin filters. A 5x5 convolution,
for instance, can be implemented as two 3x3 convolutions,
a 5x1 and & 1x5 convolution, or two 3xl1 and two 1x3

convolutions.

We have also investigated the discriminating power of

one-dimensional masks. Previous experiments have shown
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that rotetion-invariant filters, such @&s the Sobel
gradient megnitude, éere only fair as texture measures.
Better results are obtained by using directional masks
separately and then combining the texture measurcs. We
have applied horizontal ané vertical masks 1in peirs,
although the discriminent anslyses have not been
constrained to assign egual weights. Sets of 23x5, 23x7,

and similar rectanguler mesks have not been tried.

7.2 Macro-Statistic Selection

It is time to re-examine our set of macro-window
texture statistics. In the last chapter we used twelve
measures. Experience has shown that either the variance
or standard deviation alone is sufficient to extract

texture information from the filtered images.

Varisance 1is an average sgquared deviation from the
mean. For a zero mean field, as produced by convolution
with & zero-sum mask, variance is the everage of sauared
signal values. It is thus &n energy measure, in the
formal sense of the word. Tt measures the totel enerqy
within & window. If the image has been filtered, it
measures local energy within the pass bend. The SDV
macro-statistic is the scuare root of this locel energy.

It may be considered a "texture energy" measure.

These statistics are more 1local than previously
studied frequency-domein texture measures. Freauency
components are measured with very sma2ll convolution masks.
Each micro-window is treated independently, without regeard

to its phase relationships with other micro-windows. This

115



is eppropriate for textures with short coherence length or
correlation distance. It is less powerful than Fourier
methods for man-made textures with inherent

synchronization of texture element spacings.

+

Energy and variance are both defined as sums of
squares because such sums are analytically tractable.” The
physical world is under no constraint to be tractable. It
is probable that the human visual system avoids root-mean-
square computations, and gquite possible that simpler

statistics are more appropriate for texture snalysis.

Tables 7-1 and 7-2 present three alternatives to the
standard deviation. The first, ABSAVE, ics computed as the
average absolute value within & macro-window. For é zero
mean field, it may be considered a fest approximation to
the standard deviation. The table of F-ratios shows that
it performs poorly only with L3L3, the 3x3 operator which
is not zero-sum. The table of classification accuracies,
which was computed for the adaptively equalized texture
set using fifty 3-vector, 5-vector, 3x3, and 5x5 feature
sets, shows that ABSAVE features are jointly more power ful

than SDV features, 2and nearly as powerful as both sets

together.

The SDV and ABSAVE macro-statistics share a common
weakness. Neither can distinguish between a dark field
with bright spots and a bright field with dark spots. 1In
statistical terms, the two fields differ in skewness. In
frequency terms, they differ 1in phase rather than in

energy. A method of measuring local phase relationships
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TABLE 7-1. MACRO-STATISTIC F-RATIOS

Micro-

Feature _ SDV ABSAVE PCSAVE NEGAVE
L3L3 63 2 2 2
L3E3 573 551 293 291
L3S3 345 415 378 392
E3L3 1492 1232 648 625
E3E3 977 933 887 880
E3S3 655 677 671 677
S3L3 811 727 666 672
S3E3 724 690 688 685
S3S83 700 690 688 621

TABLE 7-2. MACRO-STATISTIC CLASSIFICATION ACCURACIES

Feature Set Global Adaptive
Sbv 85.59 85.60
ABSAVE 88.09 87.11
SDV+ABSAVE 89.16 87.55
POSAVE 85.79 87.06
NEGAVE 87.01 85.94
POSAVE+NEGAVE 85.79 87.21

is needed. One solution is to take averages of positive
values instead of absolute values. We will call this the
POSAVE statistic. It is reasonable that neurons in the
visual cortex might perform such & clipping function.
There might also be a bslancing set of neurons responding
only to luminances below average. We will compute NEGAVE

as the negative average of macro-window values below zero.
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Tables 7-1 and 7-2 show that the two one-sided
measures perform slightly less well then the SDV and
ABSAVE measures, although much better than the co-
occurrence statistics of Section 4.2. For the present
deteset th;re is no compelling reeson to use these less
powerful statistics. We shell restrict our zttention to
the ABSAVE stetistic, keeping ir mind thet there will be
some textures not discriminable by these measures. ABSAVE
featurcs are preferred to SDV features only becazuse of
their computetional simplicity6. Both appezr to be

equivalent measures of texture energy for this dateset.

7.3 Micro-Feature Selection
It is desireble to reduce the feature set as much as
possible. We sha2ll begin by studying the one-dimensional

features.

Table 7-3 presents individual F-retios for the
horizontal (H) and vertical (V) mesks. The most striking
pattern 1is the exceptional strength of the vertical
measures contrasteé¢ with the moderate strength of
corresponding horizontezl measures. This reflects the
presence of directional textures in the dataset. A more
significant pattern is that Spot features are always the
most powerful, with power gradusally decrecsing as the mask
seguency increases. This despite the fact that Spot
filters of different 1lengths pess different spatiel

frequency bends. Edge features are zlso strong texture

6An algorithm for computing ABSAVE statistics across a
feature plane is documented in Appendix R.
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discriminators. Level features 2re of no use becasuse of

the histogram equalization.

TABLE 7-3. 1-DIMENSIONAL ABSAVE F-RATIOS

Feature Global Adaptive Feature Global Adaptive
HL3 . 0 2 VL3 e 2
HE3 220 402 VE3 1335 107¢
HS3 272 367 VS3 935 658
HLS 0 2 VL5 0 2
HES 151 304 VES 1210 1152
HS5 258 415 VSS 1385 1J13
HWS 217 302 VW5 1032 737
HRS 282 337 VRS 742 543
HL7 0 2 VL7 0 3
HE?7 94 178 VE7 1048 1076
HS7? 240 412 VSs7 1438 1292
HW?7 245 356 VW7 1297 378
HR7 197 272 VR7?7 1044 760
HU7 205 271 vu7 847 608
HO7 291 336 Vo7 695 527

Neurological studies [74) show that the visual cortex
computes edge measures in epproximately ten-degree
increments. We have investigested diagonal one-dimensional
features, &lthough they are not properly members of the
separable feature sets.

Table 7-4 lists F-ratios for one-dimensional features
along the forward diagonal (F) &nd backward dizgonal (B).
The forwerd diagorel is from top left to bottom right.

These featurcs show far 1less power than corresponding
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TABLE 7-4. TUIACGONPL FEATUFE ABSAVF F-RATICS

Feature Globel Adaptive Fcature Globe) rdaptive
FL3 0 ? BL3 e ?
FE3 64 95 BE3 49 62
FS3 . 68 70 BS3 12¢ 13]
FLS 0 2 BL5 0 2
FES 73 119 BES 48 70
FS5 75 107 BSS 59 67
FW5 48 46 BW5 70 67
FR5 133 121 BR5 219 127
FL7 0 2 BL7 0 2
FE7 71 102 BE?7 41 69
FS7 88 144 BS? 64 92
FW?7 74 98 BW?7 55 58
FR7 45 45 BR7 60 5€
FO7 71 65 BU7 121 115
FO7 164 144 BO7 254 224

horizontal and vertical meesures. This was unexpected,
even given that element spacing is somewhat wider for
diagonal measures. The discriminating strengths do not
even follow the same sequency pattern. The remarkeble
differences between rectilinesr =zn@ diagonal responses
must be taken as 2 warning that discriminating power of
the separable mesks may depend strongly on orientation of
the treining textures. Indeed, 311 results in  thig
dissertetion are derived from & perticuvlar dateset, 2néd

should be extrapolated with care.

Figure 7-3 presents F-ratios for two-dimensional
feztures, rounded to the nearest hundred. The extreme
discriminating power of vertical Edge end Spot features is
apparent. The matrices would be symmetric if the textufes
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Figure 7-3. Square Mask F-Ratios, in Hundreds
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were non-directional or rendomly directioneal. EFvidently
the F-ratios would then be largest &along the diegonal,
especielly in the middle sequencies. The other important
fact is the great discrimineting power of even the weakest
of thesé texture measures (excluding Level features).
Very few of the co-occurrence E-ratios were as high es

200.

Joint classification sccuracies for verious feature
subsets are given in Table 7-5. The first and second
columns represent classification over globeslly ecualized
and adaptively equzlized images, as 1in the previous
chapter. The third end fourth c¢olumns ere similar, but
with discriminant and clessification functions computed
directly on the entire feature set instead of 2 selected
subset. Stepwise znalysis with the F-ratio threshold of
40.0 typically selects nine to twelve features. A lower
threshold would incresse the number of features, and
slightly increase classification accuracy. Direct
analysis usuelly achieves the highest possible
clossification accuracy, but at the cost of eveluating as

meny as 100 features for each pixel to be classified.

The first five rows of. Table 7-5 are based or
horizontal ond verticel one-dimensional) convolution masks,
The six 3-vectors elone perform slightly better than the
elaborate co-occurrence features of Chapter 4. This is
amazing considering the simplicity of the texture energy
method 2nd the many experimenteal vindications of
Reralick's co-occurrence statistics. The 5-vector
statistics perform even better. Using 7-vectors or
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TABLE 7-5. ABSAVE CLASSIFICATION ACCURBCIES
Direct Direct

Feature Set Global Adaptive Globeal ddaptive
H3+V3 76.51 74.76 76.90 75.34
H5+V5 82.42 81.45 83.11 81.69
H7+V7 82.57 81.54 83.98 82.28
H3+V3+HS5+V5S 82.08 81.59 85.4S 84.28
H3+V3+HS+VS

+H74V7 82.7] 81.98 87.21 85.99
H3+V3+F3+B3 82.137 80.76 §2.67 20.71
H5+V5+F5+B5 86.23 85.11 87.65 86.22
H74+V7+F74B7 84.28 85.16 88.77 87.65
H3+V3+F3+B3

+HS5+V5+F5+B5 86.62 86.43 90.48 87.94
H3+V3+F3+B3

+H5+V5+F5+BS

+H7+V7+F7+B7 85.64 86.52 84. 28 9¢.09
3x3 84.67 82.67 84,33 83.15
5x5 86.77 86.18 88.96 87.84
%7 . 87.65 86.67 89.65 88.42
3x3+5x5 88.43 87.40 90.53 89.50
3x3+5x5+7x7 88.33 86.62 92.77 92.52
H3+V3+3x3 g4.91 83.06 86.47 85.25
H5+V5+5x5 86.62 85.89 90.0¢ 88.¢92
H7+V7+7x7 87.70 86.91 90.87 20.27?
H3+V3+3x3

+H5+V5+5x5 88.09 87.11 92.48 91.5%
H5+V5+5x5

+H7+V7+7x7 88.04 86.57 93.80 93. 21
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combining more than one vector size gives no significent

improvement.

The next five rows incorporate forward and backward
diagonal <steatistics. Clessification accuracies improve
significently. The 5-vector stztistics =zlone are
sufficient to achieve 86% classificetion eccurecy, close
to the meximum reached in this study. The combined
feature sets have little more power, but provide insight
into the selection process. Ciscriminent functions are
bezsed on vectors of all directions and sizes. Different
subsets are selected in the globelly equalized ané
acaptively equalized cases, yet ell selected features are
either Edge stetistics or the symmetric Spot, Ripple, and
Cscilletion stetistics. Mone of the azntisymmetric Wave or

Undulction features were found useful.

The thiréd section of Table 7-5 shows the two-
dimensional mesks to be just as powerful. Length five
masks are &again best, although the evidence 1is less
conclusive. The adeptively eguszlized 3x3+5x5 feature
subset differs from the 5x5 feature subset only by
inclusicn of L3S3, the ninth and lezst feature to be 2dded.
The fifth enalysis favors 5x5 and 7x7 features about
ecgually. Selected statistics agein differ from one
eanalysis to another, but Wave features ere rere éond
Undulation features &re zbsent. The corsistent inclusion
of R5R5 1is somewhat surprising since matching image

structures must be guite rare. This mask resembles a two-
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dimensional sinc7 or Bessel function. The similar S§5€5
feature is individually very strong, but has little power

when combined with other features.

The final section combines one-dimensionz2l 2nd two-
dimensional features. Tt can be seen that clessificetion
accuracies improve very little. Two-dimensional features
enter the models first, followed by 2 few of the longer
vector features. Again . there oare few Wave and no
Undulaticn features, despite their high individual
F-ratios. Otherwise the selection seems somewhat
arbitrary. Scatter diagrams show that the discriminant
dimensions are the same ones found with co-occurrence
features and with every other texture set we have tried.
The chief difference 1is that there 1is slightly 1less
discriminating power in the first two principzl components

and correspondingly more in the third component.

7.4 Summary

We have seen that one-dimensional and two-dimernsional
convolution masks generate powerful texture measures.
Principal components analysis shows that all of the
feature subsets are measuring the same texture dimensions.
Several simple statistics ere eqgually good at extracting
the texture information. Further development of these

methods would recuire a more extensive dataset.

’Sin(x)/x, an important function 1in image processing.
It is the spaticl-domain representation of 2 scuere low-
pass filter. Tt approximates the circulerly symmetric
Airy pottern or PBessel function important in Fourier
optics.
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Perceptuel studies end comperisons with known features of
biologiczl vicsion systems might 2lso 1lead to new

understanding.

In the next chepter, we will develop one set of
texture energy measures into & working texture analysis
system. Fquivalent performance could probeably be achieved

with any of the feature sets presented in this chapter.
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CHAPTER 8
SEGMENTATION AND CLASSIFICATION

This chapter develops a particular texture energy
model into ¢ useful texture anzlysis system. Coefficients
are given for four principal component texture planes:
these can ke uscd cs texture measures for eny dataset.
Clessification <coefficients for the eight training
textures are &lso given. Segmentation examples show that
the classifier can be used for blind segmentation of
natural textures, 2lthough better coefficients for
particular applicetions could be derived from appropriate

training data or from the principal component planes.

8.1 Texture Energy Measures

Figure 1-3 shows the seguence of images used in
measuring texture. The original image is first filtered
with a set of smell convolution masks. The filtered
images are then processed with & nonlineer "local texure
energy" filter. This is the ABSAVE moving-window average
of absolute image velues. Such moving-window operations

are very fast even on general-purpose digital computers.

The next step 1in Figure 1-2 <shows the 1linear
combination of texture energy plenes into 2 smeller number
of principal componen* plénes, typically four. This is an
optional dats compression step. The component images seem

to represent neturz2l texture dimensions, znd to be more
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"reliabie” than the texture enerqy plznes.

The finel output is 3 segmented image or
classification mep. <Classification is simple and fast if
the texture clesses are known @ priori. Fither texture
energy plghes or principal component planes may be used as
input to the pixel classifier. Clustering or segmentation

algorithms must be used if texture classes are unknown.

We ssw in the lest chepter that zlmost any set of
texture energy transforms could be used to discriminste
the eight textures of our Qdetaset. 5x5 convolution masks
are more powerful than 3x3 masks, and simpler then 7x7
mesks. Separable sguare mesks are essier to implement on
a digitsl computer than rectilinear and diagonal masks.

We shall therefore proceed with the 5x5 measures.

TABLE 8-1. TEXTURE ENERCY CLASSIFICATICN ACCURACY

Macro-wWindow Size

Feature *§x3 7x7 15x15 2]1x2]
LESWR 43 .55 67.24 - 86.77 97.95
LESR 41 .65 66.80 86.77 97.71
LSR - - 86.57 95. 85
LER - - 86.57 -

ILESWR 35.99 58.06 85.11 97.17
ILESR 34.28 58.06 - 85.11 96.96
ILSR - ~ 83.89 94,97
ILER - -~ 84.30 -

128



Table 8-1 shows the <classification accuracies
achieved with different 5%5 micro-features and
macro-window sizes. The letters in the feature set names
stand for the vector masks of the last chapter. LESWR,
for instance, is the set containing all1 two-dimensional
masks made of Level, Edge, Spot, Wave, and Ripple
convolutions. The letter I stands for contreast
invariance. Features were made invariant by dividing
pixel values in the texture energy plane by corresponding

values in the LSL5SDV plane. L5LS features are otherwise

excluded from all feature sets in the table. Cther
feature planes were computed with the ABSAVE
macro-statistic. Tabulated values are bzsed on 23025

samples per texture, except that 21x21 features are based
on 1056 samples per texture. The table shows that
classification accuracy drops rapidly as the macro-window
size is reduced below 15x15. Nesrly perfect
classification of 21x31 blocks is possible, but we will
see later that segmentation gquelity 1is poor at this

resolution.

Contrast invarience has & wvery small effect on
clessification accuracy, but permits 2 big savings in
computational cost. This is because histogram
equalizetion 1is wunnccessary. We shall wuse contrast-

invariant feastures throughout the rest of this chapter.

All of the 15x15 feature sets perform well, even the
eight-member ILSR and ILER sets. The antisymmetric Weve
features &sre of 1little use. We shall confine our

attention to the vector masks
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r- -

L5 | 1 4 6 4 1

ES = [-1 -2 0 2 1

S5

f-l 0 2 0 -1

RS = [ 1 -4 6 -4 1

Sixteen two-dimensional masks can be formed from
these vectors. The number of masks could be reduced to
nine or even six with little penalty, but we shall present
coefficients and classification results for the full set
of 15 zero-sum mesks. The four most important mesks for

our experimental dataset sre shown in Figure 8-1.

TABLE 8-2. CSTANDARDTZED COEFFICIENTS

Feature Cmp 1 Cmp 2 Cmp ? Cmp 4
IL5ES -0.277 0.238 0.092 0.239
IL5S5 -0.105 -0.055 -0.065 -1.218
IL5RS -0.269 C.284 0.179 1.210
IESLS 0.204 0.331 -0.570 ~0.412
IESES 0.01) ~-0.248 0.318 -1.264
IES5S5 G.188 -0.084 0.166 -0.122
IES5RS 0.122 -0.147 0.242 0.043
ISS5L5 0.177 0.359 0.482 0.508
ISS5ES 0.215 -0.185 0.161 lJ.o1
IS5S5 0.026 -0.087. 0.622 0.437
IS5RS 0.053 -0.212 -0.054 0.011
IRS5LS 0.006 0.291 -0.371 -0.160
IRSES ¢.081 0.196 -0.265 -0.020
IR5SS -0.168 -0.270 -0.215 -0.127
IR5RS -0.171 -0.439 -0.693 -0.252

Relative strengths of the features may be estimeted
from Teble 8-2. The principal component coefficients eéere
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given for features reduced to zero mean and unit standard
devieation. Table 8-3 gives the same coefficients for
unstandardized features. These 2are more useful for
actuslly computing the principel component images,
Different sets of coefficients must be used for different

sets of features or for different window sizes.

TABLE 8-3. UNSTANDARDIZED COEFFICTIENTS

Feature Cmp 1 Cmp 2 Crp 3 Cmp 4
ILSES -4.26¢ 3.658 1.41¢ 5.214
IL5SS -2.127 -1.110 -1.227 -24.721
IL5RS -3.070 3.239 2.046 “12.798
IESLS 3.578 5.801 -9.98¢ ~-7.24)
IESES 0.743 -17.515 22.427 -89,249
IESSS 21.520 -9.€50 18.975 -13.926
IE5RS 6.156 -7.398 12.193 2.168
ISSL5 5.466 11.079 14,890] 15.721
ISSES 25.569 -22.01% 19.150 119.984
IS5SS 4.813 -16.232 117.267 82.408
IS5RS 3.936 -23.431 -4.057 0.834
IRSL5 0.128 6.609 -8.427 -3.632
IRS5ES 5.995 14.112 -19.662 -1.464
IRS5SS -17.690 -28.349 -33.155 -13.345
IR5RS -5.469 -14.050 -22.192 -8.069
Constant -0.265 -0.148 -0.069 0.815

8.2 Pictorial Examples

Figure 8-2 shows two images which will be used to
illustrate the texture energy transform. The first is 2
composite of the Prodetz textures. The first two rows of
128x128 klocks were tezken from the centers of the CGress,

Raffia, Send, Wool, Pigskin, Leather, Water, and Wood
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Figure 8-2.
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images. Histogram equalization was applied to each block
separately. The bottom-left quadrant is composed of 32x32
blocks of histogram-equalized images; the bottom-right
guadrant of 16x16 blocks. The resolution is such that
even trained observers would have difficulty identifying

the 16x16 blocks.

The second image is & street scene that hss been used
by other segmentation researchers. It is available in
color, but this study is confined to monochrome
segmentation. The luminance image has been subjected to
histogram equzlization for display. all texture

transforms were computed on the unequalized version.

Figure 8-3 shows the result of convolving the
original images with the L5L5 mesk. The AVE plenes are
just blurfed versions of the originals. These images qgive
some idez of the resolution actuelly available to =&
texture segmenter, since texture must be meaéured over &

region around each pixel.

The SDV planes are more useful as texture feature
planes. They measure local contrast. By itself this is
not a good segmentation feature: it tends to locate edges
rather than regions. Note how little difference there is
in the SDV values of the different Brodatz textures. The
importance of these feature planes is that they can be
used to remove contrast and edge effects from other
feature planes. We simply take the ratio'of each feature
value to the <corresponding SDV value. This removes

effects of variable scene illumination as well &s reducing
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the effect of edges. Even stronger normalizztion could be

devised using the AVE image as well.

Figures 8-4 and 8-5 show the results of filtering
each image with the four most importent center-weighted
masks. ES5LS is s horizontal edge mask. Tt enhances the
horizontal structure in Raffia, while hardly responding to
the vertical edges in Wood. RSR5 is a high-frequency spot
detector: it produces a2 grainy feature plazne which is very
difficult to reproduce. ESS5 is a peculiar V-shaped mesk
which responds best to textures with low correlation. Tn
the House image it seems to enhance éiagonal edges. L5S5
is a vertical line detector. Tt enhances vertical edges,

particularly repetitive ones such as in Water and Wood.

Figures 8-6 and 8-7 show the effect of the ABRSAVE
texture energy transform prior to normalization with the
SDV plane. The seperation of textures in the Composite
image is obvious. Careful examination of the House images
shows that different parts of the scene &lso have
different relative brightnesses in the different texture
energy planes. Tt should be remembered thet only four of

15 texture planes are illustrated.

Figures 8-8 and 8-9 are perticuler linear
combinations of the 15 texture energy plenes (after
normalization). The 1linear combinations &are principal
component transformations for the eight Brodatz textures.
The Composite imeges look very similar to texture energy

planes, but the bright and dark ereas are more uniform.

The House images do not strongly resemble the texture
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(a) ESL5S (b) RS5R5

(c) ESS5 (d) LSS5

Figure 8-6. Texture Energy Planes, Composite
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(a) ES5LS (b) R5RS

(c) ES585 (d) L5S85

Figqure 8-7. Texture Energy Planes, House
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(a) First Component (b) Second Component

(c) Third Component (d) Fourth Component

Figure 8-8. Principal Components, Composite

141



(¢) First Component (b) Second Component

(c) Third Component (éd) Fourth Component

Figure 8-9. Principel Components, House
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energy planes, perhaps because of contrast reversals. The
discriminant planes are not necessarily principal
component planes for the House textures, but their

discriminating power is obvious.

8.3 Segmeétation and Classification

This section will illustrate the quality of image
segmentation which can be obtained with texture energy
measures. Two approaches will be shown, blind
segmentation and classification with 2 priori knowledge of
the texture class statistics. We will use 2 nearest-
centroid or maximum-likelihood 1linear <classifier as

described in Appendix C.

Blind segmentation reguires clustering of the image
data to determine the number and types of regions present.
There are many multivariate clustering algorithms, but few
designed to segment images. Cne of the best 1is the
"Ohlander segmenter" now mzintained by Dr. Keith Price
[46] . We have wused this computer program without
modification, despite the compromises reguired. The first
three principal component planes were used as red, green,
and blue color Fplanes. The fourth principal component
plane was not used. The segmenter thus had no way to
distinguish between Water and Wood. Further, the
principal component planes are unimodal and quite unlike
natural color planes for which the segmenter was designed.
Color transformations (Y-I-0 and Saturation-Hue-Intensity)

had to be used to aid the segmenter.

The first image in Figure 8-10 shows the result of
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(a) 15x15 Segmentation (b) 31x31 Classification

(c) 15x15 Classification (d) Partial Classification

Figure 8-10. Segmentation, Composite
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segmenting the Composite picture. The 128x128 blocks are
ressonably well separsted into seven texture classes. The

32x%x32 ané 16x16 blocks are not resolved.

The gecond image shows classification results using
31x31 macro-window statistics for the eight texture
classes. Large regions are almost perfectly clessified,
but 32x32 regions are only partizlly separated. The 16x16

regions ere not resolved.

The third image, clessified with 15x%15 features, is 2
better segmentation of the scene. The Wool, Water, and
Wood textures are- zlmost perfectly identified; other
textures have at least 78% accurecy across the original
512x512 imsges. Errors tend to occur in patches. Neither
the clsssification nor the principal component measures
tené to "go wild" near region bounderies. Table 8-4 gives
the coefficients wused to compute the discriminant
functions. Fach pixel is assigned to the clsss with the

highest function value.

The fourth image is identicel to the third, but with
doubtful classifications suppressed (shown as black).
Classification was skipped unless the highest
classification function exceeded the second highest by at
least 20%. It can be seen that some texture types are

less "certsin” then others.

Figure 8-1]1 repeats the classification secuence for
the House image. Blind segmentation performed very badly
on this image. The results of texture classification are

surprisingly good «considering that pixels are being

145



TABLE 8-4. CLASSIFICATICN CCEFFICIENTS

———— . P T  ——————————— . ———— - - - ———— - > w——————— - > = —————

Actual Grass Raffia Sand Wool Pigskn Lthr Waster Wood
IESLS 177 216 176 180 169 202 221 273
ILSSS -153 -190 -162 -188 -156 -178 -57 -1@s
ILSRS 5 18 4 5 4 1 0 98
IESLS 253 353 282 285 278 215 274 202
IESES -411 -739 -368 -700 -402 -354 -270 -691
IESSS 515 591 232 441 337 757 147 46
IE5RS 65 =22 12 12 -71 62 -95 -9€
ISSLS -207 -138 -227 -333 =316 -222 -391 -254
ISSES 957 411 846 871 940 547 65 65R
1IS5S5 222 -895 -333 -655 -798 -519 -876 -256
ISS5R5 -64 -~10°5 -22 135 =136 103 =71 -182
IRSLS -17 71 -13 2 78 -14 33 16
IR5ES 4 166 79 38 175 ~-88 22 ~12
IRS5SS -240 =372 -15 140 34 -~112 245 71
IRSRS -125 -58 -19 151 -10 35 120 -8
Constant -32 -37 -29 -30 =27 -29 -34 =23

—— - ——————————————— T — ————— —————————— - - " —— — = - —— b > T S —————
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(a) 15x15 Segmentation (b) 21x31 Clascification

(c) 15x15 Classification (d) Pertial Classification

Figure 8-11. Segmentation, House
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classed as Raffia, Leather, etc. Major semantic regions
are isolated in all three versions, except that the car
and 1lawn eéare not separated. Note that the piece of
cellophane tape in the lower-right corner is

differenti2ted from its white background.

TABLE 8-5. CLRSS CCNFUSTON, PERCENT

Predicted
Actual Grass Raffis Sand Wool Pigskn Lthr Water Wood
Grass 77.8 0.7 9.9 0.4 0.9 10.23 0.0 0.1
Raffia 0.5 91.8 3.1 0.0 4.5 0.1 0.0 0.0
Send 4.4 c.6 §0.8 0.4 S.7 4.1 0.0 6.0
Wool 0.2 ¢.0 6.2 86.9 4.1 2.6 0.0 6.0
Pigskin 0.4 2.0 15.2 1.1 81.2 0.2 0.0 0.0
Leather 2.3 0.0 4.0 0.9 0.1 92.5 0.3 0.0
Viater 6.0 0.0 0.0 2.8 0.3 0.1 91.2 5.6
wood 0.0 0.0 0.0 0.0 0.0 0.4 2.7 96.9

Tables 8-5 &end 8-6 show the relative separation of
the, eight texture <classes in the principel component
space. Pigskin and Send are often confused, 2lthough it
is difficult to say why. Grass 1is often clessified as
Sand or Leather: the errors &re nearly ell1 in the upper
third of the Grass image, which is in much sharper focus

then the rest.
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TABLE 8-6. PAIRWISE F-RATTOS

-

Grass Raffia Sand Wocl Pigskn Lthr Water Wood

Grass - 2639 €23 3187 1649 1013 4581 5087
Reffie 2639 - 1746 4193 1567 3780 4814 5378
Sand 523 1746 - 1437 495 1005 3635 4796
Wool 3187 4193 1437 - 1647 1572 3570 5024
Pigskin 1649 1567 495 1647 - 1998 3500 4885
Leather 1013 3780 1005 1572 1998 - 25€2 3700
Water 4581 4814 3635 3570 3500 2562 - 1624
Wood 5087 5378 -4796 5034 4885 2700 1934 -

15 and 24,178 degrees of freedom

8.4 Timing Estimates

Table 2-7 shows the ameocunt of computing time reauired
for verious operetions. The totzl time required to
cegment a2n image depends on the options chosen. It cen
vary from 30 to 50 minutes with the present

implementation.

Most of the rurn time is consumed by convolutions and
matrix cumulations. The convolutions are guite fast, but
could be speeded with specizl herdware or optimized code
for each mesk. The number of filtered images, 2nd hence
the number of texture energy planes, could 2lso be cut in

half with very little ill effect.

Cumulation of matrices tzkes only six seconds per
512x512 planec, bkut there are 2 lerge number of such
opera2ticns. The operation itself could be reduced to half
the time by using optimal technicques. The number of

cumulations could elso be reduced by computing
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TABLE 8-7. TIMING FCR 15X15 CLASSTFICATION

i Total
Cperation Seconds ¥inutes
Image, Input 21 . 25
L5L5 Convolution 57 . 95
AVE, SDV Computstion 4] .68
AVE, SDV Qutput 34 l.12
Convolutions (15) 57 14.18
Feature Plane OQutput (4) 34 2,23
Energy Measurement (15) 15 3.78
Energy Plane Cutput (4) 34 2.23
Component Initialization (4) 0 .02
Component Cumulation (15x4) 6 6.20
Component Output (4) 34 2.23
Class Initialization (8) 3 .38
Class Cumulation (15x8) 6 12.38
Clessification 45 .75
Classification Output 34 .57

48.05

clessifications from the principal component planes
instead of the texture energy plaznes. This savings grows
linearly with the number of texture classes and with the

number of feature plenes.

Real -time implementetion of texture description is
quite possible. Digital herdwere for 2x3 convolution is
already =&available. The additionel eccuracy of 5x5
processing could be obtained with two 3x3 stages or with 2
1x5 and & 5x1 stage. Cnly the mecro-}|window enerqy

transform remains to be developed. The chief problem is
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the number of imege rows which must be held in memovy.
This could be reduced to zero by using 2 "fading memory"
energy transform instead of an accurately updated moving

window transform.
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CHAPTER 9
CONCLUSIONS

ﬁe have surveyed the literature of texture analysis,
-developed an experimental method of comparing texture
measures, evaluated co-occurrence and correletion
statistics, tested hundreds of spatial-statistical
operators, documented & new texture energy approach, and
implemented a texture classification system. Tt is time
to review these accomplishments and to suggest further

research.

9.1 Summary

Attempts &t quentitative texture measurement began at
least two decades ago. Most of the tools of engineers and
computer scientists have been tried, including
classification, correlztion, linear prediction, Fourier
analysis, joint density estimation, cluster anzlysis, and

syntactic analysis. Few methods have proven useable.

We have chosen to study  high-resolution natural
textures. These have been modified to have identical
histograms, making texture analysis the only way to tell
them zpart. Any procedure which can accurately classify
the image pixels must therefore be measuring texture.
Relative classification accuracy for a particuler datacset

cen be used as & quality measure.

The class of co-occurrence statistics was
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investigated. Several methods of infermation extrection
were tried, with little improvement over the Eeralick
messures. Clessification accuracy could nrot be reaised

above 72% for our experimental dataset.

rugmented autocorrelation stetistics were also
eveluated. Classification accuracy was limited to 6€5%,
and this wes achievable without using eautocorrelation
measures. The Laplacien operator was fournd to extract
more texture informetion than the fobel gradient magnitude

or Merkov whitening operators.

The Laplacian method led to 2 more gener2l class of
spatial-statistical trasnsforms. Bundreds of operators
were tried, including statisticel moments, spatiel
moments, totation-inveriant and contrzst-invariant
moments, joint spetial-statistical moments, combined 3x3
and 5x5 moments, and e large class of ad hoc convolution
operators. Classification accuracies above 88% were

achieved, but no one system was satisfactory.

Texture energy transforms were then developed. The
are & class of cspatisl-statistical transforms, andé
incorporate &1l of the lessons learneé in carlier work.
The essence of this &approech is local measurement of the
energy pessed by & set of symmetric »~nd ontisymetric
filters. Classification c&ccuracies &s high »as 94% were

echieved, cdespite the simplicity of the algorithm.

A particuler set of 5x5 masks wss chosen for the
final analysis system. The outputs of 15 filters,

normalized by local contrast, were used to build principal
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component planes and classification maps. Averzge
classification accuracy within large areas was 87%, with
sufficient resolution to identify elements in a mosaic of
16x16 texture blocks. The ability to trade resolution for

higher acduracy wss zlso demonstrated.

9.2 Iterative Improvement

Texture segmentsation, as discussed so far, is &
preprocessing technigue for 1locating uniformly textured
regions. The next step is to apply more specific
knowledge SOUrces to improve the segmentation or

clessification.

Initiezl seyiientztion of =z texture imege may be done
with known prototypes (such as wheat, corn, forest, etc.)
or with cluster centers extracted from the image data. TIn
either cese it is desirable to re-examine regions to
compute more accurate texture statistics than were used in

the initizl segmentation.

The improved statistics may be used for reclassifying
pixels along the region borders. This amounts to
hypothesis testing, since the pixel is to be ezssigned to
one texture firld or the other, or to & third region such
&5 2 river or road seperating the first two. The linear
prediction technique of Deguchi zand Morishite [18] could
te adepted to this purpose, as could the relaxation

methocs of other reseerchers [631, [B41.
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9.3 Modeling of Natural Textures

A major application' of texture perception is the
interpretation of acrial photogrephs. Tf textured aress
are to be identified, we must start with & training sot of
known textures. The peremeters of these textures cfn be
used as prototyves or design constraints in the

development of classifiers.

Tmage textures a2re dependent on the ima2aging system
with which they were créatod. Bumans are &ble fo
compensate for changing imaging conditicns, but &srtificial
vision systems have not yet mestered this trick. Tt is
~therefore necessery to study the effect on texture
feztures of changes in scsle, illuminstion, rotztion,
geometric warp, atmospheric blur, opticel aberrationsg,
film or detector noise, and method of aquantization.
Texture energy features are particularly well suited for

this type of modeling.

9.4 Perceptual Modeling

Texture description must ultimately be done in human
terms. Tt would be useful to know how texture enetrgy
measures correlste with humen texture perception. Texture
energy processing seems similer to known functions of the

visual cortex, but such clzims need to be substantiated.

Cne cre2 needing research is the processina of
texture 1in color imegery. Tt is doubtful thet .natura?
vision systems determine texture seperately in ezch celor
plere, but such methods heve been suvqgested for digital

systems. Ferhcps suck methods cen  extrsct more
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information from multispectral imagery than is now
possible. For perceptual modeling, it is more likely that
texture is computed only in an adoptively. processed

luminasnce plane.

9.5 Texture Synthesis

Image synthesis is the oprosite of image
understanding, just as reconstruction is the opposite of
compression. BRoth zre zttempts to display data in & form

which humans can rezdily understend.

Texture synthesis is most useful for background
regions. These can be transmitted or stored as sets of
shape and texture parameters, then synthesized for visus)
display. For large beckground regions this permits

tremendous date compression.

Some texture meassures are well suited to synthesis.
Haralick's co-occurrence statistics cen be directly
implemented as pixel-generating probsbilities, and Pratt's
method [8) cen be used to generate texture fields from
correlation statistics. The whitening method of Faugeras
and Pratt [63] can 21so be reverced to generate textures.
It has not yet been determined whether texture enerqgy

measures cen be used for synthesis.

9.6 Conclusions

In retrospect, texture enelysis does not seem such 2
difficult problem. A fast and elegant solution has been
found. We have shown that texture enerqy measures
effectively discriminate texture fields, 2nd that they can

be used for segmentation of natural imeges.
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Texture energy measures have much in common with the
Fourier staztistics of Lendaris and Stanley, and with the
spot density, edge density, and variesnce statistics of
other researchers. No coubt other descriptions for this
gnalysis method will be found, but the concept of local

pattern energy is firmly established.
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APPENDIX A
HISTOGRAM EQUALIZATION

Each image used 2s input to the a2nelysis routines was
first equalized to compensate for differences in
illumination and processing. Fach image or feature plane
printed in this document was equalized to make meximum use

of the limited dynemic range of the printing process.

The following progrzm is the core of the histogrem
equzlization procedure used in this study. Tt is part of
the VCTLIB segment of the SAILIB library of imege
processing routines written and meintained by the author.

The subroutine is written in SATL.
INTERNAL PROCEDURE EQLCUT

(INTEGER ARRAY TIMG!HST:

REFERENCE INTEGER ARRRY CUT!PNT);

COMMENT
Purpose:
Segments a histogram vector into ecual portions.
Author:
Kenneth I. Laws.
Last Revision:
March S, 1979.
Input:
IMG!HST is the original histogrem. Tt should bave
increasing indexing a2né non-negative elements.

Cutput: ,
CUT!PNT should be indexed from 1 through the number of
probability bins desired. FEach element of CUT!PNT
will be set to the highest index of the original
histogram which should be assigned to that bin. The
last cutpoint will eslways be the highest index of
IMG!HET.
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Remarks:

The cutpoints are similar to percentiles or quantiles.
Each cutpoint is chosen to minimize the error in the
cumuletive probability up to and including that bin.
Slightly different results might be obtained by
starting at the other end, and there ere a few
histogrems for which this algorithm will not yield
good results. For an optimal equalization algorithm
see S.-K. Chang and Y.-W. Wong, Communications of the
ACM, Oct. 1978. The algorithm used here is similar to
the EPQ method of Richard Conners (which is similar to
that of Hareslick), except that cutpoints are matched
to percentage of total probability rather than
percentage of remaining probability.

END COMMENT;

BEGIN "EQLCUT"
INTEGER MIN!IMG!VAL,MAX!IMG!VAL,N!BINS;

“Determine the 0ld and new histogram limits."
MIN!IMG!VAL := ARRINFQ(IMG!HST,1):
MAX!IMG!VAL := ARRINFO(IMG!HST,2);

N!BINS := ARRINFG (CUT!PNT, 2);

"Allocate a vector for the cumulative histogram."
BEGIN "ALLOCATE"

INTEGER NOW!VAL,TTL!CNT,LST!CUT,NOW!CUT;
INTEGER ARRAY HST!SUMIMIN!IMG!VAL:MAX!IMG!VAL];

"Form the cumulative histogram."
TTLI!CNT := 0;
FOR NOW!VAL := MIN!IMG!VAL STEP 1 UNTIL MAX!IMG!VAL DO
HST! SUM[NOW!VAL]
t= (TTL!CNT := TTL!CNT+IMG!HST [NOW!VALl);

"Determine the reguantization cutpoints.”
LST!CUT := MIN!IMG!VAL;
FOCR NOW!CUT := 1 STEF 1 UNTIL N!BINS DO BEGIN "CUTENT"

INTEGER NOW!VAL,NCW!TTL;
REAL EQL!TTL,CLD!ERR;

"Compute the threshold for this bim."

ECL!TTL := TTL!CNT*NOW!CUT/N!RBINS;
OLD!ERR := TTLICNT+1;
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“Find the highest cutpoint for which
the error is minimum."

FOR NCW!VAL := LST!CUT STEP 1 UNTIL MAX!TIMG!VAL DO
BEGIN "FNDCOT"

REAL NOW!ERR;

NOW!TTL := HST!SUM[NOW!VAL];
NOW!ERR := APS (ECL!TTL-NOW!TTL) ;
IF OLD!ERR < NOW!ERR THEN DONE "FNDCUT";
OLD!ERR := NOW!ERR;
CUT!PNT [NOW!CUT] := NCW!VAL;
END "FNDCUT";

LST!CUT := CUT!PNT[NOW!CUT]:;
END "CUTPNT";
END "ALLOCATE";
END "EQLCUT";
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APPENDIX B
MACRO WINDOW STATISTICAL TRANSFORM

This section documents the &slgorithm used to compute
the ABSAVE macro feature plsne from 2 micro feature plane.
The computation of the macro window statistic is done
block by block to save storage. This block size has no
relation to the window size. Within each block, the
transformation is done by & moving-window algorithm. The

code to compute statisticel moments is similar, but much

more complicated.

INTERNRAL EFROCEDURE ABSAVE
(SAFE REAL ARRAY IMG!MTX;
INTEGER MIN!PLK!ROW,MIN!BLK!CCL;
REFERENCE SAFE REAL ARRAY AVE!MTX:
INTEGER WDW! EZE) ;

COMMENT
Furpose:
Computes the mezn ebsolute level around each pixel.
Author:
Kenneth J1. Laws.
Last Revision:
August 26, 1979.

Input:
IMG!MTX must be a matrix with at least WDW!SZE$%2 rows
and columns surrounding the desired subk-block. The
date block will be z submetrix the same size as
AVE!MTX. The sguare window size must be an odd
integer. Tt may be larger or smaller than the block
size. The non-spatial moments will be computed within
a window of this size around each pixel of the data
block.,
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Output:
The output matrix must not be the same 2s the input
metrix. Each element of OUT!MTX will be assigned the
average of absolute vzlues in the corresponding data
window.

Remarks:
The 2lgorithm is linear in the block size (saquared),
and constant in the window size!
Note that the arguments are real errsys. This is moce
general than using integer arithmetic, but slower on
some machines.
END COMMENT;

BEGIN “ABSAVE"

! Require SUBLIB procedures:
EXTERNAL PROCEDURE ADDFLT (REAL NEW!VAL;
KEFERENCE REAL FLT!VAL);

INTEGER MIN!QUT!ROW,MAX!OUT!ROW,BLK!ROWS, MIN!CGUT!CCL,
MAX!OUT!COL,BLK!COLS,ELF!WDW!EZE,MIN! TMG!RCW,
MAX!IMG!ROW,MIN!IMG!COL,MAX!TMC!COL;

REAL SZE!FCTR;

“"Check validity of the input arguments."
BLF!WDW! SZE := WDW!SZE%2;
IF NOT (3 <= WDW!SZE < 512) OR WDW!8ZFE = 2*HLF!WDW! SZF
THEN USERERR(O0,1,
"ABSAVE: WDW!SZE must be 2 small odd integer."):

"Determine the data and output block dimensions.”
MIN!OUT!ROW := ARRINFGC(AVE!MTX,1):

MAX!OUT!ROW := ARRINFQ(AVE!MTX,2):

BLK!RCWS := MAX!OUT!RCW+1-MIN!OUT!RCW;
MIN!QUT!COL := ARRINFC(2VE!MTX,2):

MAX!QUT!COL := ARRINFC (AVE!NMTX,4);

RLK!CCLS := MAX!OQUT!COL+1-MIN!CUT!CCL;

“"Set dimensions for the augmented image block."
MIN!IMG!ROW := MIN!BLK!RCW-HLF!WDW!SZF;
MAX!TMG!ROW := MIN!BLK!ROW+BLK!ROWS+HLF!WDW!ESZE-1;
MIN!IMG!CCL := MIN!BLK!COL-HLF!WDW!SZE;
MAX!IMGICOL := MIN!BLK!COL+ELK!CCLS+HLF!WDW!SZF~17

"precompute the window size factor."
SZE!FCTR := 1.0/WDW!SZE"2;

"Use block structure to 2llocate working vectors."
BEGIN "ALLOCATE"
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TNTEGER MT¥!WDW!ROW,MAX!WDW! ROW, TMG! CCL, TMG ! ROV,
OUT ! ROW ;

REAL WDW!SUM; ‘

SAFE REAL ARRAY COL!SUM[MIN!IMG!CCL:MAX!TMG!ICOL];

"Set pointers to the top and bottom window rows."
MIN!WDW! RCW MIN!IMGIROW;
MA X! WDW! ROW MIN!WDW! ROV+WDW! SZE-1;

"Load the eaccumulator vector."
ARRCLR (COL ! SUM) ;
FCR IMG!COL := MIN!TIMG!CCL STEF 1 UNTIL MAX!IMG!ICCL DO
FCR IMC!ROW := MIN!WDW!ROW STEP 1 UNTJIL MAX!WDW!RCW
DC ADDFLT (ARS (TMG!MTX([IMG!ROW,IMGCICOL) ,
CCL!SUM[IMG!ICCL]) ;

"Compute and store the local aversage plane."
FCR QUT!ROW := MIN!CUT!RCW STEP 1 UNTIL MAX!IQUT!ROW DO
BEGIN "CNEROW"

INTEGER MIN!WDW!CCL,MAX!WDW!CGL,QUT!CCL:

"Update the column sum except on the first time."
IF CUT!ROW > MIN!QUT!ROW THEN BECTN "UPDATE"
MAX!WDW!ROW := MAX!WDW!ROW+];
FCR IMGICCL := MIN!TMG!CQL STEF 1 UNTTL
MAX!TIMG!CCL DG
ADDFLT (ABS (IMG!MTX [MAXIWDW! ROW, TMGICCL1)
-ABS (IMG!MTX [MIN!WDW! ROW, IMC!COL}) ,
COL!SUM[TIMG!CCL]) ;
MIN!WECW!ROW := MIN!WDW!ROW+]1;
END "UPDATE";

"Set pointers to the left and right window columns."
MIN!WDW!CCL := MIN!IMG!CCL;
MAXIKDW!COL := MIN!WDW!CCL+WDW!SZE~];

"Load the cumulative total for the 'zeroth' block."

WDWISUM := 0.0;

FCR IMGICCL := MIN!WDW!CCL STEP 1 UNTIL MAX!WDW!CCL
DO WDW!SUM := WDW!SUM + CCL!SUM[IIMG!CCL1;

"Compute the sums for this row. Use trick
initieglization of MINIWDW!CCIL to stert the loop."

MIN!WDW!COL := MAX!WDW!COL; !

MAX!WDWICOL := MAX!WDW!CCL-1;

FCR CQUT!COL := MIN!GUT!COL STEP ] UNTIL MAX!OQUT!COL
DO BEGIN "WDWSUM"
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"Center the block total on the new column."
MAXIWDW!CCL := MAX!WDW!COL+]);
WDW!SUM := WDW! SUM

+ CCGL!SUMMAX!WDW!CCL]-COL!SUM[MTNIWDW!COL1 ;
MIN!WDW!ICOL := MAX!WDW!COQL+1-WDW!SZE;

"Ctore the average of zbsolute values."
AVE!MTX[OUT!ROW,CUT!CCL] := WDW!SUM*SZE!FCTR;
END "WDWSUM";
END “ONEROW";
ENDC "ALLCCATE";
END "ABSAVE";
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APPENDIX C
DISCRIMINANT ANALYSIS

Al]l discriminant analyses used 1in this study were
done with the SPSS statistical 2nelysis system. This
package is available from SPSS, 1Inc., Suite 33300, 444

N. Michigan Ave., Chicago, IL 60611.

The mathematical basis of the SPSS algorithms [85] is
given below. The formulas have been simplified by the
assumptions that the texture classes are ecqually likely
and that the same number of samples have been taken from
each class, conditions that were sztisfied throughout this

study.

C.1 Notation

fklm the value of feature 1 = 1,...,L
for sample m = 1,...,M
within texture class k = 3,...,K.
N the total number of texture samples.

Within-Group Sums of Cross-Products Matrix

K M

K M M

- -3 2O )

Wis = fimfkim ~ ( frim! ¢ fesm)
k=1 m=1 k=1 m=1 m=]

14
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Total Sums of Cross-Products Matrix

Tolerance

0 if w =0

11
TGL1 = w*l/w11 variable 1 not in the model

l/w11 11 otherwise

F-to-remove

1 *
£,/ (N+1-K-q)
F-to-enter
S Dt S LA Ll
1
wll/ (N‘K"Q)

Wilks' Lambda

LAMBDA = W, 1/1T;,1
with degrees of freedom gq, K-1, and N-K.
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C.2 Variable Selection

SPSS permits either direct or stepwise entry of

variables into the model. This study used stepwise entry

with the threshold constants given below. At each step:

- Each veriable in the model 1is considered for
removal. A variable is eligible for removal if
its F-to-remove is less than FCUT=40. If more
than one is eligible, that variable is removed
which leaves the lowest Wilks' lambda for the
remaining model . Variables are then
re-evaluated and removal continues until no more
variables are eligible.

- The best wveriable not in the model 1is then
selected. A variable is not considered if its
inclusion would cause the tolerance of any
included variable (or its own tolerance) to drop
below TOLERANCE=0.0001. Neither is it
considered if its F-to-enter 1is less than
FIN=40. The eligible variable with the highest
F-to-enter is then included in the model.

- Processing stops when no more varisbles are
eligible for inclusion.

During vasrieble selection, the matrix W is replaced

*
at each step by metrix W . If the first g variables have

been included, we partition W to be

W W
W o= =11 <12
"1 ¥
where Ell is gxg. Then
-1 -1
W o | T H11%2
- 1 1

W% Foom ¥o¥10¥0

or, by definition,

w.ow
* W11 %y,
w = * *
Wa1 9y
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*
T is similarly replaced by T .
C.3 Fischer's Linear Discriminant Functions

* .
bik = (N-K) ;z; wilfki 1=1,...,9

i
3 E bykEyy
=1

M

B
[ Z fim

m=1
C.4 Canonical Discriminant Functions

o
*

n
()
0

[Te]
DR
|

where

The cenonicel discriminant function coefficients are

determined by solving the general eigenvzlue problem
(I-W)V = DWV

where V is the unscsled metrix of discriminant function
coefficients 2nd D is 2 diagonal metrix of eigenvalues.

The eigensystem is solved as follows:

W =LU

is formed (Cholesky decomposition), where L is 2 lower

triangulsr matrix and U = L°'.

The symmetric metrix E_lgg_l is formed &ené the system

wr-wu! - pov =0

is solved using tridizgoneclization and the QL method. The
result is r = min(g,K-1) eigenvalues and corresponding
orthonormsl eigenvectors UV. The eigenvectors of the

original system are

v =u v
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ordered by decreasing magnitude of eigenvalue. The
standardized canonical discriminant coefficient matrix is

. 1/2 1/2 1/2
dlag(w11 ‘ w22 ¢ e 2 wqq

is the matrix of eigenvectors such that

)Y

where Yl

Vivnhly, =1

C.5 Classification
Let f be the 1lxg vector of discriminating veriables
for a perticuler texture sample. The 1xr vector of

canonicel discriminent function values is

d = fB + a

A chi-square distance from each centroid is computed

as
X, = (d - gk)(g - Qk)'
where gk is the mean vector for class k. The distribution

of X is chi-square with r degrees of freedom if the

texture sample is a member of classs k.

The classification, or posterior, probability is
e-x/2
P(kld) = —-—-oceueen

This takes into account the eguazl prior probabilities and
that the pooled within groups covarienge metrix of the
discriminant functions is an identity matrix. Eech cease
is classified intc the class for which P(kld) is highest.

The calculation actuzlly used by SPSS is
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0 9%~ Imax
P, = exp(g,- g_.__)
k ek _max’ otherwise
K
ZE: exp(g - g )]
i=1 i max

where

L

-46
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