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ABETRACT

This dissertation describes 2 special-purpose signal
processor for performing two-dimencional convolution with a
minimum amount of hardware using the concepts of singular
value decomposition (SVD) and smsll generating kernel (SGK)
convolution. The SVD of an impulse response of a
two-dimensional finite impulse response (FIR) filter is
employed to decompose 2 filter into a sum of
two-dimensional separable linear operators. These lineer
operators are themselves decomposed into a seguence of emall
kernel convoclution operetors. The SVD expansion can be

truncated to a relatively few terms without significantly

affecting the filter output.

A statistical analysis of finite word-length effects
in SVD/SGK convolution is presented. Two important issues,
related to the implementation of the filters 1in cascade

form, scaling and section ordering, 2re also considered.

Computer simulation of imege convolution indicates
that 12 bits ere required for the SGK/SVD accumulator
memory and 16 bits are reguired for quantization of filter

.
coefficients to obtain results visually indistinquisheble

from full precision computation. A normalized mean souare
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error between the SVD/SGK processed output and the direct
processed output is chosen as an objective criterion
function. Tt is shown that 2 subjective visuasl improvement
is obtained by resetting the output mean to be ecqual to the

input meen.

The tranéformation technigue developed for the
one-dimensional case is used to parametrically modify the
cutoff frecuency of & baseline SVD/SCGK convolution filter.
3 detailed discussion of the one-dimensional case is
presented, and its applicability to SVD/SGK convolution

filters is described.
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CHAPTER 1

INTRODUCTION

During the last decade, the field of digital signal
processing has been- extremely dynamic and active. There
have been many applications of digital signal processing
techniques in digital communication, seismic processing,
radar processing, sonar processing, speech processing, and

image processing.

One of the important areas in digital signal
processing is digital filtering. The term "digital
filtering" can be viewed as a computational process or
algorithm by which a sampled signal or 2 sequence of
numbers, acting as an input signal, is transformed into a
second seguence of numbers called the output. There are
two major types of aigital filters: infinite impulse
response (IIR) filters and finite impulse response (FIR)
filters. Digitel filtering is meinly concerned with filter

cesign and its implementetion.

If the present output of a system is <calculated from
the past, present, and, in the noncausal case, future

inputs, the system is called nonrecursive. TIf the present

1



output of a system is calculated from the past anéd present
inputs and outputs, the system 1is called@ recursive. In
both recursive end nonrecursive systems, the “~releation
tetween an input sequence x(n) &nd an output seguence y(n)

can be characterized by a difference ecuation of the form

M N
y(n) = }E:akf(n—k)-ji:bky(n-k) (1-1)
k=0 k=0

Conceptuelly, M and N can be finite or infinite. A system

in which by = 0, for k 1,...,M, is nonrecursive, and can
be implemented by an FIR filter. The system in which M2
and by is not zero is recursive, and it can be implemented
by an IIR filter. Choosing between an FIR filter and eén

IIR filter depends upon the relative advantages and

disadvantages the filter offers for 2 specific problem.

Signal ©processing 1is, of <course, not 1limited to
one-dimension. Many signals are inherently
two-dimensional; thus, two-dimensionel signzl processing
technigues ere required. Image date 1is & typicel
two-dimensionzl signal. Digital filtering with FIR filters
has many applications in image processing. For instance,
image restoration to remove blur and to suppress noice
generally requires digitsl filtering. In most ceses,
digitel filtering reqguires implementation of e

two-dimensional convolution.



The term "implementation" means that the slgorithm is
either written in a computer language for a general-purpose
computer or is reslized with special-purpose hardware. In
éeneral, the implementation of two-dimensional convolution
in image processing has been confined primarily to computer
programs with a generzl-purpose computer, where virtually
unlimited memory, processing capability, and time, are
readily avaiiable. .But the required processing time is
often quite enormous because of the huge amounts of data to
be processed and the restricted input-output transfer rate
between the computer and display. &an image size of 512x512
pixels is common in image processing. An aslternative to
the use of a general-purpose computer 1is to utilize
Integrated Circuit (IC) technology. Recent advances in 1IC
technology now make the realization of a real-time signal
processor capable of performing two-dimensional convolution
practicel. High speed digital multipliers, memory and
display circuitry are now commercially available. As a
result, significantly more sophisticated algorithms can now
be chosen for problem solving. The trend is to develop
special-purpose signal processors to take advantage of
recent developments in digital circuits [1-1 to 1-2). 1In
the design of such & special-purpose signal processor,
speed, complexity, power consumption, computing capability,

and cost, are all factors to be considered.



Recently, a technique called small generating kernel
(SGK) convolution has been proposed [1-4]. SGK convolution
is a processing technique for performing convoluti&n on a
two-dimensional data array by seguentially convolving the
array with a small size convolution kernel, say 2x3. This
idea was first suggested by Mersereau et al. [1-5] and
generalized later by Abramatic and Faugeras [1-4]. Since a
large size kernel convolution is performed by a seqguential
small size kernel convolution, and the implementation is
highly modular, the SCK approach makes the hardware
implementation quite appealing if & proper design procedure

to specify the small size kernel operators is found.

In the one-dimensional case, any impulse response can
be decomposed into small size convolution operators,
typically 3x1. This property can be seen in the cascade
form for FIR filters. But, theoretically, exact
decomposition of a large size convolution operator into
small size convolution operators is iméossible 'in the
two-dimensional case. This is the reason why the design
procedure for SGK convolution leads to s complicated and
time-consuming optimization problem. The inherent
difficulty in finding small size convolution operators
motivates the development of & new algorithm for the
two-dimensional convolution. The proposed SVD/SGK
convolution method also makes use of SGK convolution,

however, the size of small size convolution operators is
4



3xl, rather than 3x3.

This cdissertation describes a2 special-purpose signal
processor with & minimum amount of hardware for performing
two-dimensional convolution using the concepts of singular
value decomposition (SVD) and SGK convolution. To extend
the usefulness of SGK convolution, two-dimensional FIR
filters of size N,xN, are decomposed into & sum of
two-dimensional separable filters by means of the SVD of
their impulse response matrix H. The SVD expansion can be
truncated to K terms (K<R, where R is a rank of BH),
without significantly affecting the output of the filter.
Whenever the two-dimensional FIR filter is separable, the
convolution can be performed by one-dimensional processing.
This is a reason why the SVD expansion can be very useful
for imglementing two-dimensional nonseparable filters. Tt
was noted that each one-dimensional FIR filter can be
realized as a cascade of second-order SGK filters. Thus,
it is possible to implement a two-dimensional convolution
by  a seqguential convolution with one-dimensional
second-order SGK filters. As an example, one can think of
using such a convolution technigue for convolving images at

real-time rates on an image display system.

When & digital signal processing algorithm is
implemented with & special-purpose signal processor,

account must be taken of the errors caused by finite

5



word-length 1in representing filter coefficients and signel
values. Implementation with finite word-length can be
modeled by  injecting white noise into signals whenever 2
rounding operation is performed. The goal of this error
analysis is to minimize the required word-length subject to
some reasonable error tolerance. The problem is to
determine the best ordering and scaling procedure in order
to minimize the reguired word-length. To solve these two
problems, we show that how the theory, for the
one-dimensional case, can be modified to the

two-dimensional case.

The second issue investigated in this dissertation is
parametric design. The concept of parametric design is to
generate a class of two-dimensional FIR filters with o
variable cutoff frequency from previously designed baseline
SVD/SGK convolution filters. In the case of
one-dimensional FIR filters, Oppenheim et al. f1-6] have
proposed a transformation for designing a variable cutoff
digital filter. But, very little work has been reported in
the two-dimensional case. It is shown that the cutoff
frequency of a SVD/SGK convolution filter can be varied by
the use of a one-dimensional transformation. Tt is
believed that such a variable cutoff SVD/SGK convolution
filter has numerous zpplications in image processing.
Adaptive filtering will be very useful in 1image

restoration. For example, the cutoff frequency of a Wiener
6



filter could be changed, and an observer could effectively

examine the processed image in real-time.

This dissertation consists of seven chapters. A
review of SCK and SVD/SGK convolution is presented in
Chapter 2. Chapter 3 discusses the effect of using
fixed-point arithmetic. This chapter includes a derivation
of the noise formule to predict total roundoff noise.
€caling and section ordering for SVD/SGK convolution are
described in Chapter 4. In Chepter S, a series of
experimental results based on computer simulation is
presented. 2Among these results is the confirmation of the
derived noise formula wusing a random number array as an
input. R simple technigue to reduce the normalized mean
square error (NMSE) between the SVD/SGK processed output
ané the direct processed output is 2also given, The
effectiveness of this technique is demonstrated visually.
Chapter 6 deals with the parsmetric design of SVD/SGK
convolution filters. 3 detailed discussion of the
one-dimensional case is presented, and its applicability to
SVD/SGK convolution filters is described. Several design
examples for two-dimensional, as well as one-dimensional
cases, e2re shown in this chapter. Finally, Chapter 7
discusses the conclusion and possible extension of this

work.



CHAPTER 2

SEQUENTIAL CONVOLUTION TECHNIQUES

2.1 Introduction

Two-dimensional convolution has found numerous
applications within the field of two-dimensional signel
processing ([2-1,2-2]. For example, 1imsge enhancement,
image restoration, and digital filtering generally reguire
two-dimensional convolution. Referring to Fig. 2-1, an
output array G(j,k) 1is obtained by convolving the input
array F(j,k) with the impulse response of the system
B(3,k). The two-dimensional direct convolution algorithm

can be expressed by the double sum

k

J
G(j,k)=F(j,k)®0H(j,k)=Z ZF(m,n)H(j-m+l,k-n+l) (2-1)
m=1 n=1

where G(j,k) is the M} xM, output array, F(j,k) is the Ny xN,

input array, and H(j,k) 1is the leL convolution kernel

2
array, called an impulse response. The input and output
dimensions are related by Mj= Nj+Lj-1 for i=1,2. 1In Eq.
(2-1), the symbol ®® denotes a two-dimensionszl

convolution. The symbol ® will be used to represent a

8
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one-dimensional convolution throughout this dissertation.

In the direct convolution algorithm, the. output,
G(j,k), 1is the weighted sum of all vslues of the input
array. The drawback of wusing the direct convolution
algorithm of Eg. (2-1) is that it requires many arithmetic
operations. The number of additions and multiplications

for direct convolution is NlNleLz.

In 1965, Turkey and Cooley [2-3] opened @ new era in
digital signal processing. They discovered a fast Fourier
transform (FFT) algorithm, which is an efficient method for
computing a discrete version of the Fourier transform
(DFT). The two-dimensional DFT pair of a finite array

X(j,k)y for j,k = 0,1,...,N-1 can be written in the form
N-1 N-1

1 . 21i .
Z(u,v)= L qu,k)exp{- 211 devk)
szz=:0 s N }

(2-2)
N-1 N-1

X(3,k)= Z E x(u,v)exp{z—;i(ujﬂrk)}

u=0 v=0

where 1 =‘V-1, uv,v are spatial frequency variables, and
Z (u,v) denotes the Fourier trensform. Both g (u,v) and
X(j.,k) are, 1in general, complex series. Consider the

following relation in the frequency domain

Llu,v) = F(u,vI¥(u,v) (2-3)
' 10



where % (u,v), % (u,v) and ¥ (u,v) eare discrete Fourier
" transform of the earray G(j,k), F(j,k), and H(j,k),
respectively. By the definition of the DFT, G(j,k) can be

expressed as

N;-1 Ny-1
_ . Uj k
G(j,k)= [a(u.v)%(u,V)]exp 2mi (gl + X (2-4)
& & sl )

Thus, computation of the discrete convolution of two arrays
can be obtained indirectly using the DFT. Considerable
computational efficiency can be gained by the FFT
convolution technigue. In general, computation requires

2 2
N +4N log, N operations when N1=N2=N [2-4].

Fourier domain processing is more computationally
efficient than the direct convolution of Eq. (2-1) if the
size of the impulse response is sufficiently large. The
cross over point for the two implementations occurs for a
10x10 impulse response with large input arrays [2-5].
Because, in many practical applications, the size of an
impulse response is larger than 10x10, then Fourier domzin
processing is an efficient computation technique.
Furthermore, the efficiency of Fourier domain processing
can be increased by overlap-add or overlap-save technigues

[2-6].

Several other technigues, for example, number

theoretic transforms, have been reported concerning

11



convolution computation [2-7,2-8]. So far, the technigues
we have discussed can be implemented by progrems for a
general-purpose computer or special-purpose hardware.
Recently, due to the dramatic development in Large Scale
Integrated (LSI) circuit technology, real-time 1low cost
hardware implementation of a two-dimensional convolution is
of great interest. Low cost hardware implementation is
possible if the size of the convolution kernels is kept
small because the cost of hardware is proportional to the
size of the convolution kernel. The technigue, commonly
referred to as SGK convolution, mzkes this task possible.
A review of these methods is given in Section 2-2. The
basic concepts of the SVD technique dealing with
nonseparable impulse response and application to sequential
convolution is discussed in Section 2-3. A new convolution
technique is proposed in Section 2-4. Tts application to
an image processing display system is described in Section

2-5.

2.2 Review of Small Generating Kernel Convolution

SGK convolution is a2 processing technigue for
performing convolution on two-dimensional data arrays by
sequentially convolving the arrays with smasll size
convolution kernels. The output of the SGK convolution
operation closely approximates the output obtained by

convolution with a large kernel prototype filter. The

12



motivation behind SGK convolution is that it can be used to
approximate any impulse response of an FIR filter, and that
its structure permits implementation of the convolution by

sequential convolution with small size kernels.

McClellan [2-9] was the first to propose &a technique
for designing such a <class of filters by transforming
one-dimensional linear phase filters* into two-dimensional
linear phase filters. By assuming that the prototype
filter is a linear phase filter, his algorithm transforms a
one-dimensional filter h(u) into a two-dimensional filter

¥ (u,v) by means of transformation given by .
cosw = Acosut+Bcosv+Ccosu-s»cosv+D (2-5)

The McClellan transformation is an extremely useful tool,
requiring only moderate computation, for designing many
common types of two-dimensional FIR filters. FIR filters

up to order 100 can be designed using this method.

Mersereau et al. [2-10] generalized the McClellan
transformation for two-dimensional FIR filters and showed
an efficient way to implement the filters designed by this
method. The significance of their implementation of the

designed filter is that a large two-dimensional convolution

*A linear phase filter implies symmetry of the filter.

13



can be replaced by a sequential convolution with small size

kernel operators. A description of the algorithm follows.

The frequency response of a one-dimensional 1linear

phase filter of odd length L is

-1
2
h(u) = h(n) [cosu]™ (2-6)

where h(n) represents the filter impulse response. Because
the frequency response of a cascade form is the product of
the frequency response of individual stages, the term
[{cos ufl of Egq. (2-6) can be considered as a total
frequency response obtained by cascading n identical
filters each with a frequency response cos u. It is

beneficial to rewrite Eq. (2-6) in terms of the z-transform

to obtain
L-1
L-1 2
H(z)= ) h(n)z""=h(0)+Y h(n) (p, (2)]" (2-72)
n=0 n=0
where
-1
= Z+tz 2-7b
pl(z) 5 ( )

Figures 2-2 to 2-4 show three basic implementation

structures proposed by Mersereau et al. [2-11].

14



Referring to Fig. 2-2, implementation of ]
two-dimensional filter consists of a (Q(= 351) stage
identical seguential convolution. Note that py(z) is
replaced by & two-dimensional filter Hf(zl,zz), which is
obtained by the McClellan transformation. The g-th stage
output Oq(zl,zz) is obtained from the cumulative sum of the

g-th stage as
Oq(zl'ZZ) = Oq_l(zl,zz)+h(q)Aq(Zl:Z2) (2-8a)

where

Rg(2102p) = By (21,25 He(2,,2,) (2-8b)

The term Op(zj3,23) corresponds to the output array

G(zl,zz), or equivalently

Q
2
OQ(zllzz) = h(l) [Hf(zlizz)] F(lezz) (2_9)
2=1

The convolution indicated in Egs. (2-8) and (2-9) could be
implemented directly from the direct convolution algorithm
of Eg. (2-1). The other structures, shown in Figures 2-3
and 2-4, also can be implemented in & similar manner
[2-11]. Mersereau et al. also pointed out that the
computational efficiency, 1i.e., number of multiplication
and addition operations required for implementation, is

greater than the number for either the direct
15
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implementation or an FFT implementation for filters of

order up to 50x50.

Another structure of interest, shown in Fig. 2-5, was

proposed by McClellan and Chan [2-12]. They noted that
n, -n
2 +2
2
variable pl(z) of Eq. (2-6). Unfortunately, an arbitrary

is the n-th degree Chebyshev polynomial in the

two-dimensional impulse response cannot be implemented in
this way because it 1is not always symmetrical. The
implementations discussed so far are applicable only to
McClellan transformed filters. The elementary filters of
Figures 2-2 to 2-4 do not necessarily has the same
frequency response. The 1limitation of the previous
implementation has motivated a search for more general
design techniques for & <class of two-dimensional FIR
filters that can be easily implemented by sequential

convolution with small size kernels, say 3x3.

Abramatic and Faugeras [2-13 to 2-15] presented a
synthesis procedure, described in Fig. 2-6, for designing
such a class of filters. 1In comparison with Fig. 2-2, the
elementary second-order filters have different transfer
functions. The sequential filter proposed by Mersereau et
al. is 2 special case of this class of filters. The design
procedure approximates the prototype filter by mezns of
minimizing the mean square error [2-13] or Chebyshev error

[2-14] between the epproximete and prototype filters.
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Another simple filter with properties similar to those

mentioned above is shown in Fig. 2-7,

2.3 SVD Expansion of a Non-Separable

Impulse Response Matrix

In the ©previous sectionsg, en SCGK convolution
techniques for two-dimensional convolution were discussed.
The concern here is with another filter structure based
upon EGK convolution with smell size kernels, typically
3x1. The basis for the new epproach is 2 matrix expansion
by use of the singular value decomposition [2-161. The
reason for choosing the SVD technique in image proéessing

applications is discussed.

A two-dimensionel impulse response - can be
characterized as a matrix. If we consider an erbitrary

real impulse response which is modeled by the leL2 matrix

(H(1,1) H(1,2).vv..... ..H(l,Lz)-
H(2,1) .

H = : : (2-10)
é(Ll,l) H(Li,Lz)

Suppose the impulse response ics spetially invariant and is

of scpereble form such that

23



wa3sAS UOTINTOAUOD YOS 9pedse) ‘r-z 2Inb1g

" . L
(719 ERINT — (0 %H (D' u%l.r_
_ M NOILNTOANOD YM NOILNTOANOD NOILNIOANOD

(%°1)°y ('D"%  (D3v (1'D'v

24



E = S.ET (2-11)

where ¢ and r are column vectors representing column and
row one-dimensional impulse responses, respectively. We
have used the superscript T to denote transposition. Then,
two-dimensional convolution may be performed by seguential
row and column one-dimensional convolutions. As a result,
one can obtain a substantial decease in the number of
multiplication and addition operations if the input array
size becomes large. If the input array size is NxN, the
separable convolution operators of Eg. (2-11) requires
N2(L1+L2) multiplications compared with N2L1L2
multiplications required in the nonseparable case (fewer
are required if the impulse response matrix possesses
symmetry) . Unfortunately, we cannot assume that the
prototype impulse response matrix H is always separable.
Cne way of dealing with the nonseparability problem 1is to
use the E£VD technique. 1In the SVD matrix expansion, any
arbitrary leL2 matrix of rank R can be decomposed into the
sum of a weighted set of unit rank L, xL, matrices. The
significance of the SVD expansion is demonstrated by noting
that the nonseparable matrix H is the sum of individual

separzable matrices of unit rank [2-17).

According to the SVD expansion, there exist an L;xL,

unitary matrix U and an szL1 unitary matrix V for which

%
uTH v = A% (2-12)
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where

~_ 1
A=(1) 0

—_— (2-13)

—
N of
o
>
e
z
O

. % .
is an L2xLl matrix with a general diagonal entry A2 (j) for

j=1,2,...R called a singular value of H. The singular

values can be obtained by square rooting the eigenvalues of

T T .
HE or H H. The columns of U are the eigenvectors of ﬂgT

and the columns of V are the eigenvectors of HTE. fince

EET and ETE are symmetricel and square, the eigenvalues

A%(j) are real, and the eigenvectors set {Ej} '{Elj} for

j=1,2,...R are orthogonal.

Since matrices U and V are wunitary matrices,

Eq. (2-12) 1is equivalent to Eg. (2-14). Hence, H can be

decomposed as

5 - -
H= [y u ... HL1]A Yy

(2-14)

Equation (2-14) can be reformulated into series form zs

26



R
LR T
H = ‘ . V. -
H E A (J)gJ Vs (2-15)

If we let
c. = }\%(j)gj (2-162)
= v, (2-16b)

where Ej and Ej are one-dimensional column and row

convolution operators, respectively, then

R R
H = }E:c -rT = H
b3 S5 73 =5 (2-172a)
j=1 j=1
where
H. = ¢ -rT b
=35 £5° 55 (2-17b)

It should be observed that the vector outer product gj-zg
of the eigenvectors forms a set of separable unit rank
matrices each of which 1is weighted by a corresponding
singular value of H, as shown in Fig. 2-8. If matrix H is
separable, then we have only one SVD expansion term. If
matrix H is not separable, theoretically, the exact
representation of H needs R terms. Hence, the number of

multiplication operations for direct convolution requires

RN2(L1+L2) multiplication operations, as shown in Fig. 2-9.
27
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If we assume that the singular values A%(j) are
listed in order of decreasing magnitude, then the SVD

expansion of Eq. (2-17a) can be always rewritten as

H = Hoyn + Ex (2-18a)
where
'K
Houp = Hy (2-18b)
j=1
R
= (2-18c)
EK EJ
j=K+1

where K is the number of retained term for Hgyp and the
"Hat" symbol (") represents the approximation of B. The

matrix E denotes the truncation error as a result of

K
retaining the first K terms. Obviously, §1(=g for K = R.
It can be shown that the case for K = 1 corresponds to the
minimum mean square error (NMSE) separable approximation of
H [2-18]. 1If the elements Of'ESVD for K=1 are not close
in comparison to the elements of H, we may add the next

largest singular value term for a closer approximation of

H.

In general, we will be satisfied with a multi-stage
expansion that will closely approximate H. ©One of the most
commonly used numerical error measurements is the

normalized mean sqguare error (NMSE). Let us define the SVD

30



approximation error egx for the mezsurement of the degree
of approximation by retaining only the first K terms in the

expansion as

ZZIE (1,3)|2 %
€
: ZZ'H“'J"

(2-19)

If all singular values are the same magnitude, we have to
retain R terms. 1If, however the first few singular values
are very large compared with the magnitude of the rest of
the singular values, it would be sufficient to retain only
the first few terms for approximation. Two quéstions
naturally oarise. How many terms will be sufficient for
close approximation in most practical cases? What
characteristics of impulse responses are recuired to

approximate H by a few singular value terms?

In most cases, an imaging system can be modeled by a
superposition integral relating the input and output
continuous fields of a2 linear system [2-4]. In order to
reduce the problem to a discrete model, the point spread
function (PSF) of the imaging system, as well as the input
and output images, should be discretized. The matrix H
resulting from the PSF samples 1is nearly singular or
ill-conditioned since the rows of the matrix H are

approximately a2 linear combination of one another

(2-19,2-20].
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Ill-conditioning of a matrix can be described by its
condition number [2-21]. The condition number of given

matrix A is defined in terms of the ratio

X
max
cla] = X (2-20)
A2,
min
% % .
of the largest A to smallest A, singular
max min

value of A. The condition number is a useful tool for
explaining the effect of perturbation caused by additive
noise on the accuracy of computation involved [2-22]. The

s £
condition number approaches infinity as Aéin

goes to
2ero. In this case, the matrix is called ill-conditioned
and will have a large condition number. In an ideal
imeging system, characterized by a delta function point
spread function, the condition number is unity since all
singular wvalues have the same magnitude. Sometimes it is
convenient to demonstrate matrix conditioning by showing
singular value magnitude plots. Referring to Fig. 2-10, a
well-conditioned matrix requires more terms in a SVD
expansion than an ill-conditioned matrix. But, it is noted
here that ill-conditioned and nearly singular problems are
very common in imaging systems [2-4). Therefore, we do not
need to retain all terms in the SVD expansion, but only a
few terms because of 1ill-conditioning of the PSF matrix
itself. The wusefulness of the 8VD expansion can be

demonstrated by noting that we can trade off between the
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amount of NMSE and the computational efficiency by choosing
the number of terms in the SVD expansion. By retaining
only K terms in the SVD expansion, the required

multiplication is KNZ(L1+L2). Computational efficiency

L.L
ar OF K< 'EngrT)'
(Ly+ L,

still holds as long as KNZ(L1+L2)5 NleL

2.4 The SVD/SGK Cascade Convolution Technique

In the previous section, approximion of a nonseparable
impulse response matrix H in terms of the sum of individual
separable matrices of unit rank was discussed. To
implement the SVD convolution, each separable convolution
operator is implemented in parsllel, and summed together,
as shown in Fig. 2-9. In this section, 8VD and SGK
techniques are combined to obtain a more versatile
two-dimensional convolution technique requiring a simpler

implementation.

Since each SVD expanded separable matrix of unit rank
is an outer product of the one—dimensionél column and the
row operator €5 and Ly here each €3 and L is to be
considered as a one-dimensional FIR filter. There are a
variety of alternative forms ‘in the FIR filter realization.
Realization of FIR filters generally takes the form of s
nonrecursive computation algorithm. One way of realizing
FIR filters for hardware simplicity is to use a cascade

form. 1In the cascade form, the z-transform of the impulse

response with the length of L can be expressed as a product
' 34



of second-order SGK filters as

Q Q
H(z)= Tl Hy (2)= Il [8
k=1 k=1

-1 -2
o,ktB1, k% "*By k% 7] (2-21)

where the Bj x 2ore real numbers and @, the number of
r

convolution stages, is

=
!
=

, L odd
(2-22)

ho
i
SEIY

, L even

When L is even, one of the kernel terms Bz'kwill be zero.
Here we shall be concerned only with the case of odd length
impulse response. The kernel of each second-order SGK

filter can be easily obtained by solving the zeros of the
-1

polynomial H(z) because H(z) is a polynomial in =z of
degree L-1.
A new approach for two-dimensional SVD/SCGK

convolution, shown in Fig. 2-11, 1is to realize each

one-dimensional convolution operator gz and for

r

-2
£=1,2,...,K as a seqguence of second-order SGK filters.
Referring to Fig. 2-11, the z-transform of the SVD/SGK

convolution filter is

K
H = 2-23
H(zl,zz) = }E:Cl(zl)Rz(zz) ( 3)
2=1

or
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A 50 Q
n(zl,z2)=2[il=llc2,i(zl)] [0,R,5%] (2-23b)
=1 ’

where
Q
Cz(zl) = iE C .(zl) (2-243)
Q
RR,(ZZ) = il;[ R .(zz) (2-24b)

The terms Cl(zl) and Rz(zz) for 2=1,2,...K denote the
z-transform of each column and row one dimensional
convolution operator, as defined in Eq. (2-16), and each
Cljle)' RQJ}ZZ) for i,j = 1,...C is the z-transform of the

second-order SGK filter.

One of the most important reasons for using FIR
filters is that they can be designed to possess linear
phase, a8 feature that is very useful in speech processing
and data transmission. It is easy to see where the zeros
of such linear phase FIR filters can lie by examining their
z-transforms because a linear phase filter is symmetrical.

In the general case, the filter system function is

L-1
- h 0
JORD DL (2-25)

n=0

Linear phase FIR filters have a symmetry property such that
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h(n) = h(L-1+n) (2-26)

Therefore, by using Eq. (2-26), Eg. (2-25) can be rewritten

as
- {224 L-1  _ (L-1)
H(z) = z {h(O) 2 +2z 2 ]
L-3  _ (L-3)
+hi) o2 +2 2] (2-27)
+ .. .}
If z is replaced by z & then we obtain
(LD SE (L-1)
H(z) = z {h(O) [= vz 2]
- (L-3) (L-3)
sz 2 +z 2 ] (2-28)
+ ... >
By comparing Eg. (2-27) with Eg. (2-28), one obtains
-1
H(z) = 2 H(z ™) (2-29)

Equation (2-27) shows that the zeros of H(z) are identical

to the =zeros of H(z‘l) In other words, if H(z) has a

complex zero a+ib, with a2+b2i‘1, then H(z) must have a

minor image =zero ;ib . Since the impulse response of
a

the filter is a real number, every complex zero of H(z) has

its complex conjugate as another zero.

The discussion above leads immediately to the possible

2

form of Hk(z). For every complex zero of H(z), a3 +b2# 1,
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the second-order SGK filter will be of the form
H, (z) = [z Y- (a,+ib, )11z 1= (a, ~ib )]
k k k k k (2-30)

If the zero, a , is not complex, then the form of SCK

filter is

H(z) = [z"1-a][271- é} (2-31)

If the zeros are either -1 or 1, then the zero is its own
complex conjugate as well as a mirror image. 1In this case,

the form of the SGK filter is

H (z) = (z77¢ 1) (2-32)
From the discussion above, the following rule of zero

grouping can be stated:

1) Complex zeros are grouped together in conjugate
pairs.

2) Real zeros, that &are reciprocal of each other,
are paired together.

3) Double or higher multiplicity zeros are paired

together in pairs.

The rule of zero grouping guarantees that all kernels
are resl numbers. The proposed SVD/SGK convolution has
both advantages and disadvantages. Since two-dimensional
large kernel convolution is replaced by a cascade of

one-dimensional SGK filters, the processing complexity can
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be reduced. Also, from a theoretical point of view, there
is no approximation error in realizing the cascade form
because all kernels can be found exactly by simply solving
for the zeros of H(z). Only the S8VD truncation error
defined in Section 2-3 will be introduced. On the other
hand, computational inefficiency could be one of the
disadvantages of replacing two-dimensional SGK filters by
one-dimensional SGK filters. It is possible, however, to
perform two-dimensional SCGK filter convolution instead of
one-dimensional since we can rewrite Eg. (2-23) in the

alternative form

X
A Q
H(z;,2,) =:z: .ngz,i(zl'zz)] (2-33a)
=1
where
Hy,1(21722) = Cp 5(21,25)Ry 5 (z;.2)) (2-33b)

As a matter of fact, the two-dimensional SGK filter will
increase computational speed by a factor of two, but the
hardware is more costly and the processing more complex.
Implementation of a two-dimensional SGK filter, in general,

requires nine multipliers and adders.

2.5 1Image Processing Display Implementation

There are many ways to implement the SVD/SGK

convolution method. The goal of this section 1is to
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describe how to organize the implementation and apply
SVD/SGK convolution to an image processing display system.
Let us denote F(j,k) as a filter input array with a size of
NxN and the array G(j,k) as its output. We also assume
that the size of the prototype impulse response is
(20+1)x(2Q41). For simplicity, we shall discuss only
implementation for one term in the SVD expansion because
the SVD/SGK convolution consists of K identical paths. The
implementation iterates 2Q stages. The node labeled
Yij(i,k) for i =1,2,...,2Q is an intermediate array, which
will be used in the next convolution. 1In other words, at
each node, the array Yi_l(j,k) is used to produce array
Y;i(j,k). Therefore, YQQ(j,k) corresponds to the final
output array G(j,k). Once the array Y (j,k) bas been
computed from Yi-l(j'k)' Yi_l(j,k) is no longer needed and
that Y, can then be stored in place of Y, ;- To implement
SVD/SGK convolution, it is then necessary to have at 1least
one common storage for the intermediate array Yi(j,k) for
i=1,2,...,2C. But the storage array should be
initialized by the input array F(j,k). as the computations
proceed zlong the chain of SGK filters, each Y (j,k) will
be larger in extent than its predecessor Yi—l(j'k)'
Therefore, the required storage size must be 1large enough

to hold (N+20Q)x(N+2Q) pixels.

Because the implementation of SVD/SGK convolution is

highly modulzr, the <c¢oncept of SVD/SGK convolution is
41



ideally suiteé for implementation by a digitel image
display system. Two-dimensionel convolution performed by a
digitsl computer in imege processing is often guite time
consuming because of the seriel nature of the computation
and the slow input-output transfer rate between the
computer and display [2-23]). But solid stete device
technology makes it possible to develop memory devices that
produce pixels a8t & seriel rete of ezbout 10 million per
second. Figure 2-12 is & basic diagram of the architecture
for SVD/SGK convolution [2-23]. In the operation of this
hardware, an originzl image to be convolved is written into
an accumulator memory with & size of (N+2Q)x(N+2Q). The
accumulator will thus appear as an array of nonzero values
encircled with @ square rings of zeros. Then the input
srray is sequentially convolved with a 3x1 impulse response
operator, depending on the row or column direction. Three
multiplication and three addition operations are performed
for each pixel. After each convolution, the microprocessor
will update the kernels of the 3x1 convolution operator.
This process proceeds for 20 stages, equivelent to 2¢ frame
time. Thus, after 20 frame times, the contents of the
accumulator memory are added to the partisl sum memery,
which is initialized by zero, and return to the original
image. This processing completes the first term of the SVD
expansion. The partial sum memory cen be displayed, if

desired. This process 1is repeated for the remaining SVD
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Figure 2-12. SVD/SGK convolution architecture
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terms, resulting in e total processing time of 2K0 frame
time intervals. For conventional 30 frame/second
operation, the SVD/SGK convolution operation can be
completed in 2KQ/30 seconds, far less than the 20 to 20

seconds required by a hardware floating point processor.

2.6 Conclusion

In this chapter, it was shown that the SVD expansion
of the impulse response of & two-dimensional FIR filter is
a very useful technique for a two-dimensional convolution.
The SGK and SVD/SGK convolution methods are attractive
technigues for simplifying the computational requirement of
two-dimensional convolution. The SVD/SGK convolution
approach is attractive for two reasons. First, 1large
two-dimensional convolution is replsced by sequential
one-dimensional convolution with small size convolution
operators. If one 1is interested in implementing SVD/SGK
convolution with special-purpose hardware, that approach
reduces both the cost and the complexity of the processing.
Second, the design for the SVD/SGK convolution filter is
simple and fast, and the design procedure introduces a very
small approximation error caused by retaining only the
first few terms of the SVD expansion. But the design for
the SGK convolution filter generally leads to complicated,
time-consuming nonlinear optimization programs. To utilize

SVD/SGK convolution on the digital image display system, a
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basic diagram of the architecture for SVD/SGK convolution

was introduced.
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CHAFTER 3

FINITE WORD-LENGTH EFFECTS IN SVD/SGK CCNVCLUTION

3.1 1Introduction

Until now, we have assumed full precision
implementation for ESVD/SGK convolution. We will now
discuss some practical problems that must be considered
when digital signal processing algorithms are implemented
with programs for general-purpose computers or, especially,
with special-purpose hardware. These problems are caused
by the use of finite word-length registers to represent
signal values, coefficient values, and arithmetic
operations. Because of finite word-length, a quantized
number will not take the exact value assigned by the design

procedure.

When a signal, to be processed digitally, is obtained
by sampling a band-limited signal, the numbers must be
represented by a finite word-length register in the digital
machine. This conversion process between analog samples
and discrete valued samples 1is called the quantization
process. This quantization process is an irreversible

nonlinear operation. When the filter «coefficients are

46



quantized for digital implementation, the resulting filter
must be checked to be sure: that it is close enough to the
deéired response. In addition, finite word-length
operation has a strong effect on both the cost and speed of
the system. If the word-length is large, then the cost of
hardware will be expensive and the processing speed low.
Therefore, reducing the word-length as much as possible is

a2 major goel.

It should be noted here that effects of finite
word-length in a digital filter depend on many issues such
as whether fixed-point or floating-point arithmetic is
used, whether the fixed-point number represents a fraction
or an integer, and whether quantization is performed by

rounding or truncating.

In a digital system, numbers, generally, are
represented by & radix of 2. Thus, numbers are represented
by strings of binary digits, either =zero or one. 1f a
word-length of b bits is chosen to represent numbers, 2b
different numbers can be represented. There are two ways
to represent binery numbers, depending on the location of
binary points. In fixed-point arithmetic, the position of
2 binery point 1is assumed to be fixed. The bits to the
right of a binary pcint are the fractional part and those
to the left of the binary point are the integer part. But,

with no loss cf generality, we assume throughout this
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dissertation that the position of the binary point is just
to the right of the first bit. Thps, the range of numbers
that can be represented with b bits is -1.0 to 1.0—2-(b-12
It is noted that the signal magnitude can be scaled to any
desired range. Certainly, the binary point could be moved
further to the right to allow a signal with magnitude

greater than unity, but the price paid is greater

complexity in hardware.

There are three formats commonly used to represent
fixed-point numbers, depending on the way of expressing
negative numbers: sign and magnitude, 2's complement, 1's
complement. The sign and magnitude, the most simple
format, represents the magnitude by a binary number; the
sign 1is represented by the leading digit. It is useful to
assume that in all three representations, the 1leading bit
is zero for a positive number and one for a negative
number. For this reason, the leading bit is called a sign
bit. But the sign and magnitude format presents an
inherent problem in performing simple arithmetic, such as
addition. Therefore, the sign and magnitude format is

generally avoided in a digital system.

For 1's complement representation, positive numbers
are represented as in the sign and magnitude format. A
negative number is represented by complementing all of the

bits of the positive number . In 2's complement
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representation, positive numbers are represented as in the
sign and magnitude format. But 2 negative number is
represented by subtracting the magnitude from 2.0. The
choice among the three formats depends on bhardware
consideration. The two's complement format is widely
chosen in most digital systems because it conveniently
performs subtraction using an adder. Another advantage of
using the 2's complement format is that the correct total
sum will be obtained even when partial sums overflow or

underflow.

In fixed-point arithmetic, the result of adding two
b-bit numbers is still b bits. However, the magnitude of
the resulting sum can exceed unity. This phenomenon,
called overflow, is inherently related to the limited
dynamic range of fixed-point arithmetic. Scaling can be
performed to avoid undesired overflow. The product of two
b-bit numbers results in a 2-b-bit number. 1f
multiplication is carried out p times, the required
word-length for representing the result is p.b bits, This
is clearly an unacceptable situation for the hardware and
economy. To remedy this problem, truncating or rounding
operations to fit the results of multiplication into a
finite word-length register is neceséary. The error Jdue to
truncating or rounding of p bits of word-length into q bits
(p>9q) of word-length 1is commonly referred as roundoff

error. Considerable attention has been paid to
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investigating the effect of roundoff error on digital

filter implementation in the last decade [3-1 to 3-5].

Floating-point arithmetic is a method for providing
automatic scaling. An arbitrary finite number x can be

represented exactly using the floating point representation
x = sign(x)c - 2% (3-1)

where c, the mantissa, is a full precision binary number
such that 1/2<c¢c<1 and i, the exponent, is an integer.
The number of bits, b, in a flowing-point representation
should be divided into the number of bits by, for the
mantissa and the number of bits by for the exponent.
Although floating-point arithmetic requires truncating or
rounding operations in both multiplication and addition
[3-6], it provides more dynamic range than fixed-point

arithmetic,

The comparison between fixed-point and floating-point
arithmetic depends on the input probability density
function, input power spectral density, and filter
frequency response [3-7]. If the floating-point mantissa
and fixed-point word-length have the same word-length, then
floating~point arithmetic is more advantageous. GCenerally,
when a large dynamic range is required, floating-point
arithmetic generates less roundoff noise because it

provides automatic scaling [3-1]. But it shoulé be noted
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here that floating-point arithmetic is significantly more
complicated and expensive in hardware than fixed-point
arithmetic. When economy and speed are of major concerns,

fixed-point arithmetic is usually a logical choice.

The comparison between truncating and rounding depends
on whether fixed-point or floating point arithmetic is used
and how negative numbers are represented. However,
experiments have shown that the errors generated by
truncation are more severe than those generated by rounding
because of a bias [3-3]. Truncation operation is not

commonly used in practical digital system.

The next problem of concern 1is fraction or integer
multiple representation of numbers. 1In integer multiple
representation, all numbers are represented by 2—N, where N
is an integer. Therefore, the multiplication operation
reguires only a shift operation. This shift operation will
increase computational speed and simplify the hardware.
But one can expect losses in dynamic range and accuracy in
arithmetic. Since accuracy is essential 1in finite
word-length arithmetic, fraction representation is commonly

chosen.

Due to all these reasons, attention will be focused on
fixed-point arithmetic with the rounding operation and
fraction representation. Another reason for restricting

our attention to fixed-point arithmetic is that the
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overflow resulting from the limited dynamic range can be

avoided by proper scaling of the signsl 1level.

3.2 Preliminary Statement

Fixed-point arithmetic with finite word-length causes
three common error sources [3-3]:
1) Quantization of the input signal into a set of

discrete values causes inaccuracies.

2) Representation of the filter coefficients by a
finite word-length changes the filter

characteristics.

3) Rounding or truncating of the results of
srithmetic operations within the filter causes
errors, known as roundoff* noise in the filter

output.

Overflow can also be z problem within filters. However,
the overflow problem can be avoided if the signals are

properly scaled. This problem will be discussed later.

The first source of error asbove, commonly referred to

as A/D noise, 1is inherent in any analog-to-digital (2/D)

*This term is universally adopted whether rounding or
truncation operation is actually performed.
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conversion process, and has been studied in great depth
[3-5]. It is noted here that the input data array is
already a guantized version in most practical cases. For
example, 8-bit image datz is common in image processing.
Furthermore, it shall be shown later that the effect of
input quantization 1is far less severe than the effect of
roundoff noise. Hence, the effect of A/D noise has been

excluded in this study.

The second source of error mentioned above occurs
because the filter coefficients, following a design
procedure, which would normally use full precision, must be
quantized with finite word-length. This guantization of
the filter coefficients will alter the transfer function.
This error differs from structure to structure. Tt is
advantageous to use a structure that is insensitive to
filter coefficient gquantization. 1In general, the effect of
filter coefficients in accuracy is most severe in a
higher-order filter when the filter 1is realized in the
direct form than when it is realized in the parallel or
cascade form. As a rule, therefore, the parallel or
cascade form should be used for higher-order filters
whenever possible [3-3]. Experimental results have shown
that the amount of error is not significant in our case.
Therefore, no particular emphasis will be made in this

study, except in Chaper 5.
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The third source of error mentioned above is of major
concern in fixed-point arithmetic, and is the major subject
of the next section. Roundoff noise is the most important
factor in determining the complexity of hardware and speed.
Large word-length will slow down computational speed.
Furthermore, the price paid by increasing the word-length
for filter coefficients is negligible compared to the price
paid by increasing the word-length for reducing roundoff
error. In addition, a 1limit cycle can occur in the
recursive realization of FIR filters (3-9). However, a

limit cycle cannot occur in the nonrecursive structures.

3.3 Fixed-Point Arithmetic

3.3.1 Roundoff Error

The direct form of discrete convolution can be

characterized as a calculation of the sum of products

N N

S = Za(n)b(n) = Zc(n) (3-2)

n=1 n=1

Let us assume that a(n) and b(n) are (b+l)-bit numbers
(including sign bit) and products are rounded to less than
(2b+1) bits, but more than (b+l) bits. Then, the rounded

products can be written as

[c(n)]r = c(n) + e(n) (3-3)
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The relation between [c(n)], and c(n) is shown in Fig. 3-1,
where [c;n)]r denotes the rounded number and e(n)
represents the error resulting from rounding. In
fixed-point arithmetic, the error made by rounding with
(by+1) bits satisfies the inequality

-b -b

1 1
2 2
5 < e(n)< 5 (3-14)

Thus, the resulting sum can be expressed as

N

N
s, = :E:[c(n)]r =5 + }E:e(n) ~(3-5)
n=1

n=1

Let us assume that the resulting sum S will be stored into
(bp+1) bits of word-length. Then, the resulting sum

rounded to (by+1) bits can be rewritten as

N
32 = s1 + v =S8 + }E:e(n) + v (3-6a)
n=1
where
2-b2 2—b2
- 5 S VS (3-6b)

Therefore, by combining Egs. (3-5) and (3-6), we obtain

-bl -b

2
ISZ-SIS 2 N + 2 (3-7)
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Figure 3-1.
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The characteristic of the roundoff noise at the output
depends on the location where rounding is performed. There
are two possible locations for rounding. First, if all
multiplications are performed with full precision, rounding
is performed only after summation. Then, from Eg. (3-5),

e(n)= 0 for n =1,2,...N so that

-b
2 2

|s,-81< = (3-8)

If all multiplication products &re rounded for storage
before addition, v = 0 and

-b
2 .
|s,~s|< =5— N (3-9)

Unfortunately, all of the bounds derived are for worst
cases, and thus, are of little practical usefulness. 1In
the following discussion, we will derive more useful

bounds.

A less conservative estimate of the noise caused by
rounding can be obtained by a statistical approach [3-3].
It should be noted here that a precise analysis of roundoff
noise is generally complicated, ané not required in
practical applicaticns. The purpose of error analysis is
to determine word-length within a filter to satisfy some
specification with reasonakble tolerance. Furthermore, a
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final decision concerning word-length is insensitive to
inaccuracies in the error analysis. Thus, an analysis

correct to within 30 % to 40 $ is often acceptablé [3-6].

The statistical approach considers the errors
introduced by rounding to be smell random quantities. This
viewpoint simplifies the analysis and enables useful
theoretical results to be derived. Many computer
simulations results have verifed the wvalidity of the
statistical approach [3-3 to 3-5]. It has been claimed
that the statistical approach tends to be more accurate
when the number of quantization levels is not too small

[3-3].

Three common assumptions are made concerning the

effect of rounding [3-3). They are:
1) The error sequence e(n) is 3 white-noisg seguence,

2) The probability distribution of the error sequence
e(n) 1is wuniform over the range of quantization

intervals.

3) The error sequence e(n) is uncorrelated with the

input and itself.

The wuncorrelatedness assumption is particularly
attractive because the total error due to rounding is the

sum of each rounding error. There are some controversies
58



over the wvalidity of the assumptions we have made. For
instance, if the input is constant, we will see clearly
that all three assumptions above are invalid. 1In such
cases, the roundoff noise is a deterministic quantity, and
is no 1longer uncorrelated with the input. But these
assumptions seem to be valid for most filters with input
signals of reasonable amplitude and spectral context. If
uncorrelatedness is not assumed, then the analysis will be
more complicated, and the results will be dependent on the

particular input signal or class of input signals [3-2].

Based on the discussion sbove, Fig. 3-2 shows a noise
model of a 3x1 SGK filter in which the rounding operation
is replaced by an additive roundoff noise. 1In this model,
we assumed that all multiplication products are represented
exactly, and rounding is performed only after they are
summed, 1i.e., at the filter output. Then only one noise
source is present in the filter, and it superimposes on the

output.

There are 2Q 3x1 SGK filters in each SVD expansion
stage, C columns and 0 LOWS. Let us define a
two-dimensional 3x3 filter, tj’fz,m), depending on the
column or row direction. The subscript j denotes the j-th

stage SVD expansion. Thus, let
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0 c 07
for column convolution
|0 ¢ 0]
t. .(2,m) = 3-10
j,it%e o 0- ( )
r; r, r3 for row convolution
0 0 0

for i=1,2,...,2Q. Figure 3-3 shows the roundoff noise
model for the SVD/SGK convolution filter. The mean and

variance of the error secuence e(n) can be shown to be

mg = 0 (3-11)
2
e 12

We assume that the rounding is performed with (b+l) bits
word-length. 1In this model, 2 given error sequence e(n) is
filtered by succeeding sections, so. that the output noise
variance will depend upon the ordering of the second order

SGK filters.

Let us define gjj}z,m) to be the impulse response from

’

the noise source e; (n) to the output. Thus,

(2,m)@et.

g"i(llm)=tj J,i+2

-12
3 (z.m)ee..-eetj'zgtz.m) (3 )

P1+1

The mean and variance of the roundoff noise are then given
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by

2 2 2 (3-13)
Yoy T Te22l9y,i(m ]
£ m

and the total noise variance is the sum of each noise

variance of the 3x1 SGK filter. Therefore,

20

2 2 2

s = : 3 ’ -14

of = e L [T Xley,:em 1] (3-14)
i=l" 4 m

If an impulse response H is approximated by K singular

values, then the total output noise variance due to

rounding is

K K 20
otz:ota1=20§=022 ; 2 [}:Zlgj,ju'm’ '2” (3-15)
j=1 j=1'i=1 & m

i=1

If the two-dimensional impulse response gj-(n,m) consists

1
of Nl SGK filters for the columns and (zo—i—Ni) SGK filters

for the rows, then gj ﬁz,m) can be rewritten as
14

o ‘
gj,i(l,m) = gj'i(ﬂ)g§'i(m) (3-16)
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In vector form, Eg. (3-16) is equivalent to

(3-17)

c r . . .
where gj'iand ﬂj,i are one-dimensional impulse responses
obtained by convolving N, SGK filters for the columns, and
(ZQ-i-Nl) SGK filters for the rows, respectively. if g
J,1
consists of only SGK filters for the columns or the rows,

then ¢ ané g should be

j'i Jri
0
C
. . = 1 (3-183)
25,1
0
or
(gf 2T =10 1 o0 (3-18b)
_J’l
Note that

2 2
> Yley, i em 1215 (0] Zlg;."i(m)lz (3-19)
2 m

2 m

Substituting Eg. (3-19) into Eg. (3-20), we obtain

-2p K

2Q
2 _ 2 c 2 2
®total™ Tz Z{ 2 [Z 95,1173 1gy 5 tm) | ]} (3-20)
j=1 i=1 m
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Equation (3-20) 1is a theoretical formula predicting
roundoff noise with (b+1l) bits word-length. Tts validity

will be demonstrated in Chapter 5.
3.3.2 A/D Error

Next an attempt has been made to show that the input
A/D ncise 1is negligible compared to the roundoff noise.
Again, the statistical model 1is chosen, and the input
guantizetion 1is considered as an injection of additive
noise to the input. The noise gquantitites are uniformly
distributed over one guantization interval and
statistically independent. €Since the first place where
guantization of the input signal may take place is at the
A/D converter, the A/D noise effect is independent of the
structure we wused to rez2lize the filter. Figure 3-4

describes the statistical model for A/D noise.

If the quantizer has a word-length of (t+l) bits, then
the input to the actusl filter is x(2,m)+gkn§2,m), where
( 2 ,m) is the guantization error, bounded by

t -
—<e (2,m< Z_E. Let us define the output error
A/D 2

e
A

(X

N

array, E(2,m}), as
E(2,m) = H(R,m)eeeA/D(l,m) (3-21)

€ince the filter is linear, it cen be shown that E(2,m) bhas
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zero mean and variance given by

2 _ 2 2
%a/p = % 22 IH(m | (3-22a)
£ m
where
02 = ..2_::.2_t
t 12 (3-22b)

It is noted that the filter has been normalized, so that

ZZQ(z,m) =1 (3-23)
'3 m

Such a normalized filter will not change image contrast

between input and output. Therefore, it is obvious that

Zzlﬂm,m)!zs Y. Y H(m =1 (3-24)
£ m 2 m

Using Egs. (3-17) and (3-19), and assuming that the
gquantizer has the same word-length as a multiplier, it can

be shown that

2 2
°A/D < oe ({3-25)

It is shown that the A/D noise is smaller than or equal to
that of roundoff noise. In general, A/D noise is

negligible compared to roundoff noise.
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It is necessary to remerk on the effect of filter
coefficient quantization. Although =zero 1location and
freguency response sensitivities to coefficient chénges cen
readily be obtained, no general statistical analysis of the
type given in Section 3-3 has been obtained to describe the
cascade form of FIR filters. Herrmann and Schuessler [2-9]
worked on this problem only experimentally, not

theoretically.
3.4 Conclusion

The accuracy of a digital filter is 1limited by the
finite word-length wused in its implementation. When a
digital filter is implemented with special-purpose
hardware, one 1is wususlly interested in determining the
minimum word-length needed for a specified performance
accuracy. Also, word-length is an important factor in
determining the complexity of hardware and speed. Thus, it

is very important to understand the effect of quantization.

In this chapter, attempts have been made to analyze
relevant effects of wusing fixed-point arithmetic for
SVD/SGK convolution from a statistical viewpoint. Cur
consideration of finite word-length effect began with a
discussion of the various methods of number representation
that are commonly used in digital system. The following
discussion focused on three common source of errors caused

by implementstion with finite woréd-length. Then, we showed
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how & statistical anelysis can estimate the effects of
quantization 1in SVD/SCGK convolution. Statistical methods
were shown to be very efficient in systems with
non-ceterministic signals. It was also shown that roundoff
noise is of mejor ccncern in digitzl implementation, and a
theoretical formulea to predict total roundoff noise
variance of SVD/SGK conveolution was derived. The 2/D noisge
waes shown to be negligible in our case. Finally, the
dependence of the roundoff noise on section ordering was
demonstrated. The discussion of section ordering and a
dynamic range consideration in the fixed-point arithmetic

is the subject of the next chapter.
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CHAPTER 4

SCALING AND SECTICN ORDERING

4.1 1Introduction

In the previous chapter, a theoretical formula for
predicting roundoff noise variance was derived. Cne
important constraint should be imposed on the
implementation with fixed-point arithmetic. There is &
finite dynamic range of fixed-point arithmetic. To ensure
that the final output be correct, overflow at the output of
any second-order SGK filter must be avoided. 1If the output
of each section (SGK filter) exceeds the finite dynaemic
range of the filter, undesired signal distortion will be
introduced to the output. For example, given the dynamic
range of (-1.0, 1.0), adding two numbers may result in a
number that is not within the given range. Truncating or
rounding operations that assign the 1limit value to the
result (say -1.0, or 1.0) introduce an error. This problem
directs attention to the need for a scaeling procedure for
the filter parameters of each SVD/SCGK section in order to

prevent overflow.

Another issue, section ordering, is also important to
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minimize roundoff noise. BAs seen in Eg. (3-15), the total.
roundoff noise has a strong dependence on section ordering,
i.e., g,d}z,m) will be different if the ordering is
different. For example, Schussler [4-1] has demonstrated
that a FIR filter with a length of 33, ordered one way,
produces 02= 2.402, where Q 1is the quantization step,
while ordered another way yields 02= l.leosdz. Although
this experimént demonstrated two extreme cases, it clearly
shows the importance of section ordering in cascade form
FIR filters. €ince the respective difference is so large,

determining the minimum roundoff noise ordering is

essential,

Unfortunately, attempts to find optimal ordering
become impractical since, given M sections, there are M!
possible orderings. Even for a moderate value of M, say
M= 7, searching 5040 possible orderings is very
time-consuming. Furthermore, due to the analytical
complexity of Eq. (3-15), no analytical approach to finding

an optimal ordering seems possible.

Chan and Rabiner [4-2] investigezted the section
ordering problem of one-dimensional, cascade form FIR
filters quite intensively and reported their results, based

on the experiment, as follows:

l) Most orderings have very low noise compared to the
maximum possible value. More specific, for a FIR
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lowpass filter with length 11, they showed that
approximately two-thirds of the orderings have
noise variance less than 4% of the maximum, of
which nine-tenth have noise variance less than 14%

of the maximum.

2) There is a large gap between smell and large noise
variance distribution, and the noise values within

the gap are produced by very few orderings.

Their conclusions are encouraging. Since the large
majority of possible orderings are very close to the
minimum noise variance ordering, finding & suboptimal
ordering is possible with reasonable computations. 1Instead
of finding a time-consuming optimal ordering, it may be far
more practical to use a suboptimal ordering method that can
rapidly determine an ordering that is close to the optimal.
Furthermore, the reduction in roundoff noise gained by
finding the optimum ordering is very small, compared to a

good suboptimal ordering.

Based upon their experiments, Chan and Rabiner
proposed a simple one-dimensional ordering algorithm ([4-2],
which has proven to be very efficient in minimizing

roundoff noise varience.

The purpose of this chepter 1is to discuss scaling
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procedures and ordering algorithms for SVD/SGK convolution.
Two existing scaling methods, sum and Lp-norm scaling, are
discussed, and applications to SVD/SGK convolution are
given in Section 4-2. A brief review of the Chan and
Rabiner ordering algorithm and 1its generalization to

SVD/SGK convolution are described in Section 4-3.

4.2 Scaling Procedure

Scaling is important because the computational dynamic
range sets a practical limit to the maximum value of signal
levels representable in the filter. The theoretical basis
for the scaling procedure chosen here is Jackson's work
[4-3], commonly referred to as sum scaling. To formulate
the required overflow constraints, let us assume that an

input signal x(n,m) is bounded in magnitude by 1.0.

We shall consider a scaling procedure in which a
(20+1)x(20+1) FIR filter is implemented by SVD/SGK
convolution. There are 2Q 3x1 SGK filters for the columns
and rows in each £€VD expansion stage. To simplify
notation, only one SVD expansion stage will be considered.

Therefore, the subscript j will be dropped.

We will define f;(2 ,m) to be the impulse response from
the input to the i-th section. The z-transform of fi(z,m)

can be written es
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_ -2  -m
Fi(zl,zz) = ZZ fi(l,m)zl z,
£ m

(4-1)

i
gngp(zl,zz)

where Tb(zl,zz) is the z-transform of tp(ﬂdm), as defined

in Eg. (3-10). Let S; be the scaling factor for the i-th
1

section and Ti(zl,zz) be a scaled z-transform of Ti(zl,zz).

]

and the scaled transfer function from the input to the i-th

section is

[ _ ' -2 -m
Fi(zl,zz) —Zz fi(l,m)zl z, (4-32)
£ m
or

' i, i i
F.(z,,z,) = NI T (2,,2,)= [IS. Tl T (2,,2,)
i'717°%2 p=1 p 1’72 p=1 i p=1 p “l'%2

(4-3b)
Letting vi(2,m) be the output at the i-th section, v (g ,m)
is obtained by convolving the input array x(2,m) with the

) [ ]
impulse response fi(z,m). Thus

£ m
v, (2,m) = ZZX(PrQ)fi(ﬂ‘P*‘l:m"Cﬁl) (4-4)
P qQ
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~and | vi(l,m)l is bounded by

vi (em) | < xce,m |0 SOSTIE (m |
P g (4-5)

i

= Ix“L'm)lmax pEllsplz:Zlfi(p’q)l
P g

Therefore, a necessary. and sufficient condition on the

scale factor to ensure that the output of each section is

bounded in magnitude by 1.0 is that

i
4-6
|x(e,m ] plll[spl D) le tpea) | < 1.0 (4-6)
P g

Since |x(2,m)| is bounded by 1.0, Eg. (4-6) 1is equivalent

to
i -1
I Is,l < > |£; (P,q) |] (4-7)
p=1 P g

The scaling procedure of Eqg. (4-7), satisfied with

eguality, is called sum scaling.

Another scaling procedure, referred to as Lp—norm

scaling, was also introduced by Jackson [4-3]. Note that

the i-th section output vi(z,m) satisfies the condition

T AT
L

vi(l,m) = LZ f fﬁi(u,v)x(u,v)dudv (4-8)
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where 3'(u,v) and 2(u,v) are the Fourier trensform of

]
fi(i,m) and x(%,m) respectively. Here we a2ssume that the

input x(2,m) is a deterministic signal.

The Lp—norm of a Fourier transform #(u,v) is defined

as

1 11l m l/p
”H”p =[—2— / [lﬁ/(u,V)ldedV] (4-9)
47 I I

Equations (4-8) and (4-9) immediately lead to the relation

m m
Ivi(z,m) | < %/ fl&' (u,v)Z(u,v) |dudv = || Fix|| 1 (4-10)
4m i

- =7

Applying the Schwartz inequality to Eg.(4-10) vyields the

relation

T i
]
|vi(z,m)|%5_l7Jf [3i(u,v)|2dudv.J(]z(u,v)|2dudv (4-11a)
4w
-T -7

or

'
v, (m) |2l L0, IIX (4-11b)

In general, it can be shown that

' '
IEs- x i< lieg Il -1 X1l (4-12)
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for
1 1
— 4+ = =1
P q
and p,gq21. Therefore, with Lp—norm scaling, the required

condition and preventing overflows is satisfied by

vy m | <IEgIl 11Xl (4-13)

Based on Egq. (4-13), a sufficient condition for scaling can
be given if one has knowledge of the Lp—norm of the input
signal. One particularly interesting case is p =« and

9 = 1. 1In this case, the input signal should be bounded by

T
‘l?_'/ /IZ(U.V)IdudV <1.0 (4-14)
4w

- =T

Then, the necessary and sufficient condition on the scale
factor to gquarantee that the output of each section is

bounded in magnitude by 1.0 is that

: MAX :
1751l = [ nsusr 13 (w,v) i€ 1.0 (4-15)
which is eguivalent to
> ot 4-16
j];[lsj < |omgugn |55 (u,v) | (4-16)
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The scaling procedure of Eg. (4-16), satisfied with

equality, is known as peak scaling [4-3].

The two scaling procedures discussed above are
summarized as follows. If the input signal is bounded by
|x(2,m)|5 1.0, then each scale factor 5§ can be computed

according to the following procedure:

1. Compute

2 _ _
of -Ezui(z,mu for i=1,2,...,2Q (4-173)
2 m
2. Then
1 .
— for i=1
%3
S. = (4-17b)
i
Oi-1
5 for i=2,3,...,2Q
i

If input signal is bounded such that

™ ™
[Z(u,v) |dudv £ 1.0 (4-18a)
-

2]

w

=2

then each scale factor S; is computed as follows:

1. Compute
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MAX (4-18b)

2
2. Then
1 for i=1
Yi
S. = (4-18c)
' Yi-1
Y. for i=2,3'.oo'2Q
1

But, it should be noted here that Eq. (4-16) cannot be used
in the case of a random input signal, because if the signal
is random, its Fourier transform does not exist. Instead
of wusing the Fourier transform, the equivalent condition
can bé obtained with the appropriate power spectral density

and autocorrelation function [4-2],.

Experimental results indicate that the two scaling
procedures yield noise variances that are similar [4-2].
In general, sum scaling is much simpler to perform than
peak scaling in FIR filter cases. With peak scaling, one
must find the maxima of the |J;(u,v)| for a1l i. Even
using the FFT algorithm will require more computations than
finding ;;[fi(l,m)l for all i. It has been claimed
that sum scaling is too conservative to be used in TIR
filter cases (4-4]. Put this is not of major concern in
the caese of a FIR filter. Therefore, in order to save

-

computation time, we shall focus on sum scaling throughout

79



this study.

The sum scaling of Eg. (4-7) requires computation of
the two-diﬁensional impulse response fi(l,m) for all 1i.
Since each SVD-expanded matrix ﬂj of Ea. (2-17) is
separable, further simplification is possible for SVD/SCK
convolution. Note that each separable matrix Ej is @an
outer product of one-dimensional column and row convolution
operators Ej and £j' Instead of applying the sum scaling
by computing fi(z,m), the same result will be obtained by

applying the sum scaling to Ej and £j independently. The

following Lemma will generalize the above argument.

Lemma: If a two-dimensional separable impulse response
matrix H 1is realized in the one-dimensional cascade
form, sum scaling can be applied to the
one-dimensional  convolution operators ¢ and r

independently.

Proof: 1In the SVD/SGK convolution system, there are ¢
3 x1 SCGK filters for the columns and rows of the
input image. Given a certain ordering, there are Nl

3 x 1 8GK filters for the columns and (i-N;) 3 x 1 SCK

filters for the rows from input to the i-th section.

Let us assume the i-th section is 2 filter for the

column. From the sum scaling of Eg. (4-17), we have
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. ZZlf l(ILm)I Z|f1 1(£)|Z|fl L]
i 01 ZDf (tom| Elf (z)lzu (m) | (4-19)

where fg(z) and fz(m) are one-dimensional impulse
responses obtained by convolving the Nl filters of the
columns and (iﬁNl) filters of the rows. The
superscripts c¢,r are associated with column and row,

respectively. But,

r r
DolE  m] = Y e | (4-20)
m

m

Therefore,

C
;|fi_1(£)|
i~ c _
o leSia | (4-21)
% .

which is equivalent to one-dimensional sum scaling.

By the Lemma, two-dimensional sum scaling is shown to
be equivalent to two one-dimensional sum scaling
operations. The same Lemma can be applied to peak scaling.

Since fi(z,m) is separable, then

§,(u,v) = fT04T (V) (4-22)
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Therefore,

MAX MAX ’
—rgugn |3, (0, v) oy cuen 45 @) (|| 025 14E ) | (4-23)
-n<vsn = = ==

4.3 Section Ordering

The next step, given the scaling procedure chosen, is
to choose an ordering for the sections to minimize the
total roundoff noise. As an approach to determine an
ordering algorithm for SVD/EGK convolution, a
one-dimensional ordering algorithm for the cascade form FIR
filter will be introduced. If 2 FIR filter of size (20+1)
is realized in cascade form, there are (¢ sections of
second-order filters and (! possible orderings. TIf we
define bi(k) for i=1,2,...,0 to be the impulse response
from the (i+l)-st section to the output, the total roundoff

noise variance can be shown to be [4-2)

SRR S T .
- 27 S [ 7] 420
i=1 k

Here we assume that the rounding is performed only after
the products are represented in full accuracy. The best
ordering will minimize the total output noise variance.
Based on the Chan and Rabiner experiment, the proposed

algorithm is summarized as follows [4-2]:
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Beginning with i = Q, assign the i-th section,
together with the section already assigned, that

yields the smallest possible value for z:| b;_; (k) ]2.
k

‘This algorithm is suboptimal since the algorithm
minimizes the output noise variance from individual
sections instead of minimizing the sum of the output noise
variance. However, 'in all cases tested, the algorithm has
proved to yield section ordering very close to the optimum
ordering because a large majority of possible orderings

yield small output noise variance, as discussed before.

In SVD/SGK convolution, there are a total of 20 3 x 1
SGK filters. Searching (2Q)! possible ordering is an
enormous task. But we shall see, based on the existing
theory, the generalization of a one-dimensional ordering
algorithm for SVD/SGK convolution is possible, and the

proposed algorithm will prove to be efficient and simple.

Let us rewrite the output noise variance formula for
SVD/SGK convolution, as derived in Egs. (3-15) and (3-20),

as

2 ,-2b & (22
—_ 2
Ytotal 12 Z {Z (ZE lgj,i(z’m) | )} (4-25)
j=1 *i=1 "' 2 m
2 _ 5 2
%total 12 Z{E(Zlgj ; ()] Elgr (m) | )}
j=1" i=1" 2 ’



where %Li(z,m), gﬁj}z), and %ij}m) are already defined in

Section 3-3. Again, only one SVD expansion term will be

considered; therefore, the subscript j will be dropped.

Using Eq. (4-25), it is guite simple to extend the
Chén and Rabiner ordering algorithm to SVD/SGK convolution.
But the significance of using Eg. (4-26) to search for an
ordering algorithm for SVD/SGK convolution is that the
ordering problem can be treated as solving two
one-dimensional ordering problems. Since Z |g§(£)|2 and
Z; lgiﬂMlz are positive numbers, the following is

satisfied: _
min Elgg(l)lzzhi(m”z]
L 2 m
B 5 9 (4-27)
= min Zlgg(l)l ]min[Zlgli:(m)l

L £ m
Rather than minimizing ;Z |gi{31,m)|2 s an equivalent
m

condition can be obtained by minimizing Z;|g§(2)|2 and
§:|9€KW)|2 separately. Thus, minimizng Igg(gnz and

2
g¥(m) 2 is equivalent to two one-dimensional ordering

i

i)
problems. After ordering column and row operaters
independently, the remaining step is to decide whether the
SGK filter on the column or on the row should be assigned

at the i-th section.

To show the rationale for the elgorithm

mathematically, assume that (2¢-i) SGK column operators and
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row operators have been already assigned with Nl column
operators and (ZQ—Nl—i) row operators. Now, we want to
select the. i-th section of the SVD/SGK convolution. To

simplify the discussion, let us define

o, =3 165,, (0112 (4-28)
2

2
B, =Z|g’i:+l(m)| (4-29)
m

If we had assigned the next filter on the columns to the
i-th section, then the output noise variance would be

proportional to
c c 2
E{f = B8, Elgi(ﬂ')l (4-30)
L

If we had assigned the next filter on the rows to the i-th
section, the resulting output noise variance would be

proportional to
r r 2
E; = a; Zlgi(m)l (4-31)
m

By comparing Eiand Eli-of Egs. (4-30) and (4-31), one can
easily decide whether the filter on the columns or the

filter on the rows shoulé be assigned to the i-th section.

Since a; for 1i=1,2,...Q¢ can be obtained as a

ir Bj

result of one-dimensional orderings for the column and row
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operators, this procedure is far simpler than using

Eq. (4"25)0

In brief, the proposed ordering algorithm is

summarized as follows:

1. Find a one-dimensional ordering to the column and
the row operators by using the Chan and Rabiner

algorithm and store ;s By for i=1,2,...C.

2. Beginning with i=2Q, compare E: and Ez given by
Egs. (4-30) and (4-31), respectively, to decide
whether the filter on the rows or the filter on
the columns should be assigned to the 1i-th

section.

This proposed algorithm is also suboptimal in minimizing

E Z |gi(;z,,m)|2 rather than minimizing 2 o; + where
£ m i

9 = ZR:E 9 (eom) |2,
m

4.4 Conclusion

In addition to the effect of finite word-length
discussed in Chapter 3, the problems of overflow and
section ordering to minimize the total roundoff noise are
of great importance when a digital filter is realized in
cascade form. To prevent overflow, the filter parameters
and input signals must be scaled so that no overflow occurs

following addition. Proper ordering must also be found for
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a filter in cascade form because the output roundoff noise

has a strong dependence on the way it is ordered.

Following the discussion of two different scaling
methods, sum and Lp-norm scalings, sum scaling was chosen
because sum scaling is simple and easy to employ. A
detailed sum scaling procedure for SVD/SGK convolution was
presented. Because separable matrices result from the SVD
expansion of a nonseparable impulse response matrix, the
two-dimensional scaling problem turned out to be two
one-dimensional scaling problems. The proof was given in a

Lemma.

Next, the section ordering problem was considered.
Extending the existing one-dimensional suboptimal ordering
algorithm proposed by Chan and Rabiner [4-4], a.generalized
two-dimensional suboptimal ordering algorithm for SVD/SGK
convolution was proposed. Because it is actually
equivalent to two one-dimensional ordering problems, the
proposed ordering algorithm is very simple and fast to
compute. The experimental results based on the proposed
ordering algorithm, which is shown to be very efficient,

will be discussed in Chapter 5.
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CHAFTER 5

EXPERIMENTAL RESULTSE CF SVD/SGK CONVOLUTION

USING FIXED-POINT ARITHMETIC

5.1 1Introduction

In this chapter, computer simulation experimental

results for SVD/SGK convolution

are presented. Two

prototype filters with linear phase have been chosen for

the experiments. One is a lowpass filter, the other, a

bandpass filter. The sizes of the filters are 15x15 and

11x11, respectively. Perspective

views of the frequency

response of the prototype filters are given in figures 5-1

and 5-2, respectively. Figure

5-3 shows the SVD

approximation errors for the expansion of the prototype

filters. It is observed that the NMSE decreases very

rapidly in both cases. 1In the case of the lowpass filter,

the SVD approximation error with

3-stage expansion is

0.5336 8. In the case of the bandpass filter, the SVD

approximation error for a 4-stage expansion is 0.7825 %.

Numerical and photographical results
of this SVD/SGK convolution when

numbers and real image are precented

related to the outputs
the inputs are random

in this chapter.
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f the frequency

ive view o
response of the prototype lowpass

filter

Perspect

Figure 5-1.
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Figure 5-2.

Perspective view of the frequency
response of the prototype bandpass
filter

90



NMSE (%) —o

30¢-

== (15x15) LOW PASS FILTER

=—o0=—=(1Ix11) BAND PASS FILTER

()]
(@)

o

! 2 3 4 5 6
NO. OF SVD TERMS ———»

Figure 5-3. NMSE versus number of singular value
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5.2 Fixed-Point Arithmetic Experimental Results

Our experiments were made in the following framework.
We shall wuse M to denote the word-length for repéesenting
filter coefficients and N to denote the word-length for
storing intermediate results. Furthermore, we thall adopt
the‘policy that all signal levels that are representable by
given word-length be constrained within the range of
( -1,1). A multiplier with input signal level greater than
unity may need to be followed by extra accumulators and
extra wide adders. Hence, more hardware is required. The
number of rounding operations within 3x1 SGK filters is
assumed to be one. In other words, since the typical
operation performed in convolu;ion is a sum of products, we
assume here that the rounding operation is performed only
after the products have been summed with full precision.
In addition to this, the cascade form of the SVD/SGK
convolution requires & proper section ordering. The
suboptimal ordering algorithm discussed in ‘Chapter 4 was
adopted to minimize roundoff noise. Because of the
quadrilateral symmetry of the prototype filters used, the
one-dimensionzl column and row convolution operators
obtained from the SVD expansion of H were identical. Thus,
their cascade forms were identical. The ordering algorithm
ended with‘a perfect interlace scheme; each filter for the
rows convolution was followed by & filter for the columns
convolution and vice versa. But it can be proved that this
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result, although often trve, cannot be generalized to all

cases of guadrilateral symmetricel filters.

Then, after the ordering procedure, sum scaling was
applied to the filter coefficients so that overflow will
not occur within filters. Unfortunately, large differences
in magnitude among the coefficients causes the scaled
filter coefficients to exceed the given dynamic range of
word-length.4 In this case, the filter coefficients were
further divided by their maximum coefficient to insure that
the scaled filter coefficients lie within the given dynamic

range of word-length for the filter coefficents.
5.2.1 Roundoff Error

To confirm the wvalidity of the noise formula of
Eq. (3-15), derived in Chapter 3, a uniform density random
number array of 46x46 pixels has been generated as an
input. The statistical approach used to analyze roundoff
noise in Chapter 3 1is not practical if the input is
deterministic. For this analysis, an image array has been
modeled as a Markov ©process with an adjacent pixel
correlation coefficient along lines of 0.95 [5-1].
Furthermore, it has been assumed that the maximum signal
magnitude of the input array is unity, so that all signals

are represented by given dynamic renges of word-length.

If the filter size is 15x15, then the output size is
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60x60. Because the noise formula is valid only under
"steady state" conditions, the actual output is taken over
a 32x32 portion of the output array, ignoring a band of
width of 14 along each of the four edges of the real output
array. The designed SVD/SGK convolution filter was
convolved with the given input array in fixed-point
arithmetic., The filter coefficients were represented by
floating-point with 36 bits ‘of word-length. The. standard
deviation of the actual errors produced at the output with
rounding to N bits was measured and compared with its
theoretical estimates computed from the noise formula of
Eg. (3-15). The system of Fig. 5-4 was used to measure the
value of for various word-length of storage [5-2]. The
system Hale,zz) was implemented with floating-point
arithmetic with 36 bits of word-length. Table 5-1 shows
the experimental results. There is good agreement between
the predicted and measured values. This confirms the
validity of our model and a statistical approach to analyze

the roundoff noise.
5.2.2 Filter Coefficient Quantization Effect

In Chapter 3, the quantization effect of the filter
coefficients was shown to be not as severe as that of
rounding. Before we present the experimental results, it
would be beneficial to discuss the error measurement of 5

pair of images. A true comparison between a pair of images
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TABLE 5-1

Standard deviation of output noise caused by rounding

operations for a prototype filter

N Theory Experiment
8 0.552x102 | 0.719x10”2
10 0.138x1072 | 0.191x1072
12 0.345x10"° | 0.465x107 3
14 0.862x10"% | 0.117x1074
16 0.216x20"4 | 0.291x107*
Lowpass Filter
N Theory Experiment
8 0.329x10° % | 0.439x107t
10 0.823x10°2 | 0.111x107%
12 0.206x10"2 | 0.270x1072
14 0.514x10° | 0.685x1073
16 0.129x107> | 0.173x1073

Bandpass Filter
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should follow some objective criteria. Tt is desirable
that the objective criteria be mathematically tractible and
reasonably calculable so that they can be used as objective
performance functions to evaluate an image processing
system. Considerable attention has been paid to the
development of such criteria [5-3]. Unfortunately, because
of the complexity of the human visual system, there are no
universally accepted criteria to measure image fidelity.
But, the most commonly used quantitative measure of 3 pair
of image is the normalized mean sguare error (NMSE), as
defined in Chapter 2 [5-4]. We shall use the NMSE as our
objective criterion throughout this dissertation. Table
5-2 shows the computed WMSE between floating-point
arithmetic with 36 bits of word-length and fixed-point
arithmetic with different N and M bits of word-length. In
all cases, the results obtained with M =16 bits are <close
to those with full precision. Tt is concluded that 16 bits
of word-length to guantize filter coefficients is
sufficient without reducing filter per formance
significantly. 1In Chapter 3, it was shown that the storage
required for the filter coefficient is far less than that
recuired for the data. We will then consider that it is
more practical to reduce the word-length recuired for the

data storeage.
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TABLE 5-2

Fixed-point implementation error for various
word-length

N M 8 12 16 30
8 3.4221 | 1.4033 | 1.3197 1.3450
10 3.3241 | 0.7768 | 0.3174 0.3082
12 3.3706 | 0.6223 | 0.0843 0.0741
14 3.3700 | 0.5995 { 0.0221 0.0194
16 3.3693 | 0.5993 | 0.0088 0.0048
Floating | 3.3690 | 0.5990 | 0.00765 | 0.0000065
Lowpass Filter
N M 8 12 16 30
8 7.9396 | 7.3349 | 7.1219 7.1115
10 3.9017 | 1.8639 | 1.8007 1.7972
12 3.5280 | 0.6642 | 0.4529 0.4463
14 3.5184 | 0.4887 | 0.1123 0.1081
16 3.5196 | 0.4842 | 0.028 0.028
Floating 3.5190 | 0.4841 | 0.00435| 0.0000191

Bandpass Filter
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5.2.3 Output Image Comparison

In order to evaluate the performance of the SVD/SGK
convolution more precisely, 1let us define the following
NMSE factors. Assuming that G and F are output and input

arrays, respectively, then we shall use the following

notation
G =F H
== -9 X (5-1a)
G = H (5-1b)
Ssvp = E ®8 Hgyp
é . A (5-1¢)
Zsvp/sck - = ®® Hgyp/sex
where H 1is a prototype impulse response, E SVD is the
approximation of H by retaining a few dominant terms in the
SVD expansion of H, and B is the SVD/SGK convolution
A" ~ SVD/SGK
realization of ESVD° In Eq. (5-1c), the term on the right

has been computed using fixed-point arithmetic. Then we

define

5> 16,51 -6gyp (1,512 12

€1 < 2
EZIG(i,j))I (5-2a)
i 3

99



-EE: }E:'&svn(i'j)'asvn/scx(i'j)|2H 1/2 (5-2b)
€y= 5 (5-2b)
2

LZ ZIGSVD(I,J)I

A 7 172
Z ZlG(l'J) “Gsun/scx (143717 (5-2c)

3 ZZIG(m)IZ
5

Two errors are 1involved in SVD/SGK convolution with

fixed-point arithmetic: €y is the error caused by the SVD
approximation, and €, is the error due to fixed-point
arithmetic. €3 is the total error. Table 5-3 summarizes
the computed NMSE with different word-length of data
storage. In this experiment, the filter coefficients were
quantized with 16 bits, and the input was a randem array
with correlation coefficients of 0.95. Returning to
Eg. (5-2), we shall derive an upper bound of the total
error €3 . Since the total error €3 is contributed by €
as well as €3, this bound will be very useful in SVD/SGK

convolution implementation. Let us rewrite Fag. (5-2) in

terms of a matrix Euclidean norm, which is defined to be

1/2
el - [ZZlcu,m ] (5-3)

Hence, Eq. (5-2) can be rewritten as

2 2 ;
€4 ” 9” =|| G —QSVD”
(5-4a)
2 ~ 2 ~ A 2
e3 I Ssypll © =l Sgyp=Csyp,/sax (5-4b)
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) A
e il =1ls-¢

2 SVD/SGKII (5-4c)

But note theat

~ A

|| G- -G -G

Il G- Ssvp*Csvp svn/scx” (5-5)

—SVD/SGKH

Using the Schwartz inequality on the right hand side of

Eg. (5-5), we have

-G 5-6
Il'e gsvn/sc;K” < (e~ —SVD||+I|GSVD svn/scxll) (3-6)
Substituting Eq. (5-4) into Eag. (5-6) results in
||G|| e, I Gl +2€ e, || G111 Gaypll +€2 Ile || (5-72)
€3 <& 2 2svp!l T€2 I Egyp
Therefore
!lG I
2sVD
€3 S &) + €y ———~€,+e, (5-7b)
Il Gl
since
Il Ggypll =1l Gl (5-7¢)

Returning to Table 5-3, we can see that the €4 error never
exceeds the bound given by Eg. (5-7b). However, the
fixed-point implementation error €, could be reduced to
less than 1.0 § NMSE with 12 kits word-length of storage.

The €, error is dominant in the bandpass filter case.
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TABLE 5-3
Summary of experiment
2h 8 10 12 14 16 *
€ 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243
€y 1.3451 0.3174 0.0843 0.0195 0.0048 0.0000065
€3 1. 3445 0.3174 0.0883 0.0297 0.0249 0.0243
Lowpass Filter
£} 8 10 12 14 16 ©
€ 3.4981 3.4981 3.4981 3.4981 3.4981 3.4981
€, 7.1115 1.7972 0.4464 0.1082 0.0284 0.0000191
€4 7.9674 4,0326 3.5160 3.4989 3.4984 3.4981

Bandpass Filter
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Obviously, the €, error decreases as more terms are
retained in the SVD expansion. Furthermore, there is no
reason to believe that €] will be the same order as ex of
Eg. (2-19). For instance, €, of the bandpass filter is
0.7825 $ with 2 4-stage expansion, Rut, € is 2.498 %.
But, the situation is quite opposite in the lowpass filter
cases. Appendix 2 describes the relation between the €y
and €7 errors. RAs shown in Eq. (A-16) of Appendix A, the
€] error 1is msinly attributed to the mean difference
between G and é . Given fixed

€, »«
SVD k
increases as the mean difference increases.

the ¢ error

1

The prime goal of this error analysis is to reduce the
error and to force the SVD/SCK processed output closer to
the direct processed output. If we correct the output so
that m 2 equals to m

IsvD g9’
order as €. In the following, we shall develop a simple

then the el error is the same

algorithm to force the mean difference equal tc zero.

Assuming the filter is time-invariant and 1linear and

me is the mean of the input array, then

ng = m LT H(L3) N
i
But, the prototype impulse response matrix H is normalized

such that ZE H(i,j) = 1, therefore,
i j

mg= me (5-9)
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Also,

ma = m H (irj) 5-10a
S5vp f}l__:zj: SVD ( )
where
K
o= 3 Ve oT (5-16b)
Hovp = Lle, Iy
i=1

Substituting Eq. (5-8) into Eg. (5-10) yields in Eg. (5-11)

- - H i,4 5-11
a = mf[1.0 2: 2: HSVD(l,J)] ( )
i3
where o represents the mean difference, i.e., m -m .
9 Ygvp
In order for m, to be egual to m we simply add

dsvp g’
the guantity o to every output pixel. This simple point

by point operation will significantly reduce the £ error.

Hence, the overall error €3 will be reduced.

Table 5-4 shows the effectiveness of the mean

correction procedure in overall performance. Compare ¢, and

38
€ , where ¢ denotes the total error after mean correction.
4 4 .

The extra computation of m_ and EZ H (i,3) would be

£ i 3 svp

fully Jjustified in the bandpass filter case since @
substantial reduction 1in NMSE can be obtained. The
usefulness of this simple mean correction procedure in a
rhotographic example will be demonstrated further in the

next section.
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TABLE 5-4

The NMSE comparison of before and after
mean correction

No
8 10 12 14 16 Rounding

Before 1.3445 }10.3174 10.0883 | 0.0297 | 0.0249| 0.0243

After 1.3449 1 0.3180 | 0.0864 | 0.0265 [ 0.0179| 0.0173

Lowpass Filter

N No
8 10 12 14 16 Rounding

Before 7.9674 | 4.0326 | 3.5160 | 3.4989 | 3.4984| 3.4981

After 7.3556 | 2.0835 | 1.1237 | 1.0170 | 1.0156| 1.0143

Bandpass Filter
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The experiments have been repested with verying
correlation coefficients of input arrays. The results are
shown in Table 5-5. Experimentelly, it has been concluded
that the fixed-point implementation error is quite
independent of the correlation coefficient of the input
array. These results confirm that the model employed wes

sufficiently velid for simulation.

5.3 Real Image Experimentel Results

In this section, photograpic results, based on
computer simulation, for SVD/SGK convolution are presented.
The SVD/SCGK convolution method with a fixed-point
arithmetic has been applied to the convolution of real

images as a test of its validity.

From previous experimental results, using random
number arrsys as en input, it was concluded that 16 bits of
word-length for filter coefficient quantization and 12 bits
for data storage, i.e., rounding, were sufficient to limit
the effects of guantization end roundoff noise to less than
1.0 8 NMSE for most prectical ceases. Although this
conclusion is based on the particular model discussed 1in
the previous section, we shall use the same word-length in
the experiment with real images. Figure 5-52 shows an
original aerial scene imeage. The original image contains
256x256 pixels with each pixel amplitude quantized over the

integer range 0 to 255. Tn the first step o¢f the
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TABLE 5-5

Summary of experiment with varying correlation
coefficient of the input array

0.0 0.1 0.3 0.5 0.7 0.9
0.0807 0.0771 0.0684 0.0573 0.0442 0.0289
0.1227 0.1175 0.1224 0.1144 0.1180 0.1072
0.1463 0.1391 0.1369 0.1304 0.1273 0.1187
0.1462 0.1393 0.1391 0.1273 0.1252 0.1195

Lowpass Filter

0.0 0.1 0.3 0.5 0.7 0.9
2.9375 2.9332 2.9609 3.0376 3.1653 3.4213
0.4248 0.4201 0.4288 0.4369 0.4485 0.4483
2.9557 2.9335 2.9681 3.050 3.1625 3.4440
0.7460 0.7562 0.7561 0.7967 0.8378 1.0970

Bandpass Filter
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simulation, each pixel of the original image was normalized
to the range 0.0 to 1.0. Figures 5-5b and 5-Sc illustrate
the direct prccessed output with prototype lowpass and
bandpass filters, respectively. The direct processed
outputs were obtained using floating-point arithmetic with
36 bits of word-length. A comparison of direct and SVD/SCGK
convolution for lowpass and bandpsss filters with N = 12
and ¥ = 16 bits, is given in Figures 5-6 and 5-7,
respectively. There are no apparent differences in visual
results for direct anéd SVD/SCK convoluticn. The measured
NMESE ané absolute difference image, multiplied by 2
specified scale factor, are &lso presented to show the
accuracy of SVD/SGK convolution. In both cases, the
resulting errors are 1less than 1.0 %. This experiment
verifies the validity of the model wused in the previous
section. Figures 5-8 &and 5-9 contein simulation results
for the experiment of Figures 5-é and 5-7 when the
word-length for data storage is reduced by setting N = 8.
Obviously, the error contribution caused by insufficient

word-length for rounding is significant.

To illustrate how the different SVD approximetions of
& given prototype 1impulse response eaffect the outputs,
Figures 5-10 end 5-11 show the SVD/SCK processed output
with different K. In this experiment, N = 12 and ¥ = 16
were assumed. It is noted that the filter with K =1

corresponds to the MMSE separsble approximation of the
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(b)

(a)

(c)

Example of direct processing convolution

a) Original
b) Lowpass filter
c) bandpass filter

Figure 5-5.
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(c)

Figure 5-6.

(b)

(d)

Comparison of direct and SVD/SGK
Convolution for lowpass filter with
L=15, K=3, M=16 bits and N=12 bits.

a) Original

b) Direct

c) SVD/SGK (NMSE=0.06398%)

d) Absolute difference X scale
factor 200
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(c)

Figure 5-7.

(b)

(a)

Comparison of direct and SVD/SGK
convolution for bandpass filter with
L=11, K=4, M=16 bits and N=12 bits

a) Original

b) Direct

c) SVD/SGK (NMSE=0.8742%)

d) Absolute difference X 40
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(c)

Figure 5-8.

(b)

(a)

Comparison of direct and SVD/SGK
convolution for lowpass filter with
L=15, K=3, M=16 bits and N=8 bits.

a) Original

b) Direct

c) SVD/SGK (NMSE=1.1037%)

d) Absolute difference X 200
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(b)

(d)

(c)

8 bits.

16 bits and N

M=

:4’

convolution for bandpass filter with
K

Comparison of direct and SVD/SGK

L=11,

Figure 5-9.

a) Original
b) Direct

SVD/SGK (NMSE=8.049%)
d) Absolute difference X 40

c)
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(a)

(c)

Figure 5-10.

(b)

(a)

Lowpass SVD/SGK convolution with
K=1,2, L=15, M=16 bits and N=12
bits.

a) SVD/SGK, K=1
b) Absolute difference X 200
c) SVD/SGK, K=2
d) Absolute difference X 200
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Figure 5-11.

(b)

(d)

Bandpass SVD/SGK convolution with
K=1,2,3, L=11, M=16 bits and N=12 bits.

a) SVD/SGK, K=1
b) Absolute difference X 40
c) SVD/SGK, K=2
d) Absolute difference X 40
e) SVD/SGK, K=3
f) Absolute difference X 40
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e
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£)

(

11. (Continued)

Figure 5-
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prototype impulse response. For the lowpass filter, there
is no significant visual difference among different K's.
Eut, there is & significent difference in the bandpass

filter.

Figures 5-12 and 5-13 illustrate the effect of the
mean correction algorithm. Although there ie an obvious
improvement in image cuelity in the bandpass filter, the
improvement in the lowpass filter is not noticezble because
the output mean before mesan correction in the lowpass
filter is &already close to the input mean. The measured
NMSEs (before and after), computed means, &nd ZZﬁSVD(i'j)

are listed in Table 5-6. rd

For the baendpass filter with K = 1, before mean
correction, the SVD approximation error is so severe that
the SVD/SGK processed output is &almost saturated. After
mean correction, the output is subjectively satisfying, and
the resulting NMSE 1is significantly reduced. This
experiment visually demonstrates the effectiveness of the

mean correction procedure.

5.4 Conclusicn

This chapter has presented experimental results of
SVD/SGK convolution using fixed-point arithmetic based on
computer simulation. First, the derived noise formule

predicting roundoff noise has been confirmed
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(a)

(c)

Figure 5-12.

(d)

Comparison between before and after
mean correction with L=15, M=16
bits and N=12 bits (lowpass).

a) SVD/SGK (K=1l), before
b) SVD/SGK (K=1), after
c¢) SVD/SGK (K=2), before
d) SVD/SGK (X=2), after
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(c)

Figure 5-13.

Comparison between before and after
mean correction with L=11, M=16 bits,
and N=12 bits (bandpass).

a)
b)
c)
d)
e)
£)

SVD/SGK
SVD/SGK
SVD/SGK
SVD/SGK
SVD/SGK
SVD/SGK

(K'_'l) r
(K=l) ’
(K=2) r
(K=2),
(K=3),
(K=3) r

before
after
before
after
before
after
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(e)

)

£

(

inued)

-13 (Conti

Figure 5
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Figure C-1l. Illustration of condition
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function in x and 2lways passes through two points, (-1,
-1) end (1,1). The only case for which the condition of
Eq. (C-5) is being satisfied is shown in Fig. C-1. That

is equivalent to solving

1
fia >1 ., A, > 0 (C-6a)

1 5 A <0 (C-6b)
23, v B

Eguation (C-6) gives the range of AO such thst

-2 < A (C-7)

N =
N} =~

0 <

but, C <2< % corresponds to the case of u_ < B, and
1

'§Z§A0.50 corresponds to the case of u, > Bc ,
resgpectively. AO = 0 means that the transformed filter is

identicel to the bzsic filter.

The relztion between ucand Bcis obtained by solving

Eq. (C-7), which 1is a quadratic function in cos B. That

is
1+v/1-4A_ (cosu -A))
— 0
cosB_ = 0 c (C-8)
2A
0
But the pius sign in Eg. (C-8) 1is discarded since
icosB| <1.
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APFENDIX C

Cerivetion of Egs. (6-26) and (6-27)

The second-order transformation can be characterized
by
cosu = A0 + AlcosB + A200528 (C-1)
By imposing the constraints at ¢ anéd 1w, we obtain

1

A+ A, + A

0 1 2
(C-2)
-1 =2, - A + A,
Equation (C-2) immediztely leads to the relations
Ay, = =B, (C-3a)
A, = 1 ' (C-3b)
Substitution of Eg. (C-3) into Eg. (C-1) results in
cosu = A0 + cosB - Aocoszﬁ (C-4)
The range of Ay, satisfying,
-l flx) 21 (C-5)
will ensure that |cos ul'ﬁl where £(x) = A0+x—P0x2,

x=cosB but -1<x <1. Note that £f(x) 1is a quadratic
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6 - Bo s R

m =-A_9.+_A_2.
7 ) )

m =A2+ﬁ+AA + 3 a2
8 0 2 0%2 T g M2

for Q = 2. But, A0= -Az and Al= 1 when P = 2.

Therefore, the relation between a(n) and h(n) can be
obtained directly by substituting Eg. (B-2) into Eg. (B-3)
for first-order transformation and into Eg. (B-4) for

second-order transformation.

177



If P = 2, the relation is given by

A,
.::1(1)-1 -0 T 0. -b(O)-}
) Al
A
=1 2 1 (R-4a)
a(2) 3 AO + - 3 b(l)
A
a(3) 1
0 - 0
A,
La(a)d Lo -+ 0 - Lb (2)-
for Q = 1 and
2 (0) 0o 0o m. 0o o] [b(o)]
a(l) 0 0 m2 0 0
a(2) 0 my m, my 0 b(1l)
a(3) 0 mg m, Mg 0
_ |2 1
a(4)]| = 7 m, mg m, > b(2) (R-4Db)
a(5) 0 mg m6 m5 0
a(6) 0 m; m, mg 0 b(3)
a(7) 0 m2 0 0
a(8) 0 0 m 0o of |b(a)
where
A7
ml = 1_6
A.A
_ 172
M, = —3
A
_ 72
m3 =73
Ai Aghy Ag
R (B-4c)
A
_ 1
s = 7
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[ b(0)] -1 0 1 0o -1] [n(o
b(1) o 1 0 1 o) |n
b(2)] =]2 o o o 2} |n (B-2b)
b(3) o 1 o 1 ol |ne)
b(4) -1 0.1 o -1| |ne
| 1

for ¢ = 2. By expanding Eq. (6-9) with P = 1,2, the
coefficient a(n) can be expressed in terms of b(n) and the

control parameter 2 e

If P =1, then

- A]_ -
a (0)] 0 = 0] [ b(0]
1 1 , _
a(l1) =|5 By 3 b(1) (B-3a)
A
| a(2)] o —= ol L bl
for 0 = 1 and A
~a(0), -0 O 1 0 04 rb(0)-
Ay : Ay
a(l) 0 7 Bod; ) 0 b (1)
2
a 2 A A
_ 1 0 A + 1 0 1
a1 = |3 - 70 =z 7 3| | 2@ (po3p
Ay A
a(3) 0 — A —= 0| | b3
4 4
La (4)- .0 0 A o o4 Llp(a)-
3
for ¢ = 2, where AO+A =1 for u < and -A +A.= 1 for

1 c- "¢ 01
Uo> Bge
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APPENDIX B

Relation between Basic Filter Coefficients and

Transformed Filter Coefficients

Let h(n) for n = 0,1,...,20+1 represents - an impulse
response of the basic filter and a(n) for n = 0,1,...,20P+]
represents the impulse response of the transformed filter.
It was shown that the Fourier transform of a symmetrical

filter can be expressed as

Q
h(e?) = e 3 b (n) (cosuw)™ (B-1)

n=0
The new coefficient b(n) is obtained from the Chebyshev
polynomial recursion formula. The relation between h(n)

and b(n) is given by

b (0) 0 1 07 [h(0)
b(2) o 1 o] |n2

for ¢ = 1 and
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. 2
But the first term in Eg. (a-11) is equivalent to €y -

Thus,
Ey =€k * « (Aa-15)

or

N 1=

[ e2 M2 i

m
1= . z
2> l6ti g Ggyp (4, 3) |
i 3

2 (A-16)

7]
M
My

> leti, |2
i}

- |

It is clear that el will decrease if one can set €m close

1~

to zero.
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then,

s a (A-10)

Q| a
Q thhJ
i
™

Suppose F(k,%2) is an input array and me denotes its mean,

then oz and o; can be also expressed by

2 =33 T3 I, Hgy (4,3) 1A G-iT,5-3")
it ' i3

(A-11)
S[H(L',3") =Hgyp (1',3")]
and
03 - 20 22X HEIAE,LYI-IEE Y (3-12)
i3 i
where
M 3) = DO (F(k,2)-m ) [F(k+i, 2+3)-m] (A-13)
k 2

Combining Egs. (A-11) and (A-12), and substituting into
Eq. (A-10), yields .

ZZ Z X MHE, I -HgypE, 311", 3,3")

il jl 3 3

g2 _J
z
J

1

Z Z H(,IIA(E-1",35-3")
' i j

(B, 3") ~Hgyp (1',3")]

i
z

i
(A-14)

H{i',3")
‘a
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v (i sy 122 2
ZZ'G(I,J)-GSVD(I:J)I M (m-mj) (A-5)

and

2 2_ C 12 02 _
M og-zz |G (i,3)] Momg (A-6)
i j
Dividing Eg. (A-5) by Eq. (2-6), we obtain the

Z ZIG(I 3) GSVD(1,3)|
2: z:IG(l i) ]2

2,2

1 - €t (A=7)
— ——3

Z:-: 237 1G(1,3) =Gy (i,3) |

following
relation.

2

e
- =

g

p-

m2M2
1 - J 5
> xl6i, )]
L i 3 ]
Note that

>

=M «a

€ = m. =
where m g m

2
.‘»:_;: 6(4,3) ~Ggyp (1,3 | (2-8)

=N

>3 6,3 ]2
i3
if let
and if we le 2 2

E:EE:IG(l,J) SVD(l,j)I

m2M2
g

ZZ IG(i,j)lz (A-9)
i3
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APPENDIX A

Relation between gk and ¢ Error
1

Let G and ESVD be the output array of size MxM as

defined 1in Section 5-2. Their variances 02 and 02 are
g g
given by
.. 2
EReus-n
03 =13 (A-1)
M2
~ .. 2
Y Ggup 9 gl
2 i 3
O, = (A=2)
g M2
where m and m(,j denote the mean of the output array G
and G , respectively. 1If the error array E is defined as
SVD -
E=G- ESVD (A-3)

then, its variance is given by

.y . 2
> DoI6 3 -Ggyp (4, 3) -mtmy |
e — (R-4)

e
M2

After some algebraic manipulation, it can be shown that
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techniquelfor the two-dimensional variable cutoff digital
filter would be useful. Finally, eﬁtending SGK or SVD/SGK
convolution to the recursive approach would also help solve

the two-dimensional signal processing problem.
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are also sufficient to 1limit Gquantization and roundoff
noise effects to less than 1 § NMSE in both the first- and

* second-order transformations.

Several problems are worthy of further investigation.
If one is particularly interested in implementztion speed,
the SGK convolution approach 1is always faster than the
SVD/SGK convolution approach. Comparison of the processing
frame cycle required for SéK and SVD/SGK convolution shows
that only O frame cycles are needed with SGK convolution,
while the SVD/SGK convolution requires 2KQ frame cycles
when the size of impulse response is (20+1)x(20+1) and K is
the number of singular values employed. Finding 2 simple
analytical design procedure for an SGK convclution filter
is still ©problemn. An alternative to one-dimensional
SVD/SGK convolution is to wuse two-dimensionzl SVD/SCK
convolution. Two-dimensional SVD/SGK convolution reduces
the computational speed by a factor of 2. 1In this case,
the scaling procedure should be carefully chosen to use the
full dynamic range of the given word-length. Tt is also
expected that two-dimensional SVD/SGK convolution requires

a greater word-length.

In the previous approach to the parametric design, we
used one-dimensional methods to design a variable cutoff
SVD/SGK convolution filter. 7Tn addition, the basic filter

was restricted to be linear phase. 2 generalized design
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It has been shown that parametric modification of thé
cutoff frequency of a filter is possible with
transformation. Basically, the approach Geveloped in the
one-dimensional case by Oppenheim et al. [7-1] was used. »
detailed analysis for first- and second-order
transformations was made, and severzl design examples were
Fresented. In the first-crder transformation, the
transformation could not Froperly preserve the freguency
response of basic filter as the deqree of transformation
increased. In the second-order transformstion, due to
inherent characteristics of trigonometric functions in the
trensformation, the transformation works only in & limited
range. In other words, it is impossible to change the
cutoff frequency of the basic filter arbitrsrily. Put the
resulting transformed filter shows a frequeﬁcy response
almost identical to the basic filter within the
transformation range. It was found that, by relaxing the
specified constraint, arbitrary variation of the cutoff
frequency of the basic filter with the second-order
transformation is still feasible. But a degradation of the
transformed filter frequency response was also observed.
It is believed that with both transformations, there should
be & trade off between the degree of transformation and the
preservation of the frequency response of the basic filter.
Finally, it was found experimently that 12 bits for the

accumulator memory and 16 bits for the filter coefficients
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magnitudes. A theoretical formuls for predicting the total
roundoff noise hes been derived and confirmed

experimentally.

Two important issues involving the implementation of a
digital filter as a cascade of second-order filters,
scaling and section ordering for SVD/SGK convolution, were
also considered. We have sbown how the algorithm availeble
in the domain of one-dimensional signal processing can be
extended to two-dimensional signal processing. One
interesting result is that roundoff noise can be reduced by
interlacing row and column oriented elementary second-order

filters.

Experimental results dealing with image convolution
show that 12 bits are required for memory storage (the most
expensive part in image display systems), and 16 bits are
needed for filter coefficient quantization if one desires
to get results indistinguishable from the output using full
precision. These features can be reduced if one allows
some distortion in the image outputs. It has been shown
that the quality of an SVD/SGK processed output is improved
by resetting the output mean to be equal to the input mean.
Since it is impractical to compute the output mean, &
simple algorithm for resetting the output meen was
proposed. The effectiveness of the proposed algorithm has

been demonstrated visually.
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CHAPTER 7

SUMMARY AND FUTURE WCRK

In this dissertaion, attempts have been made to
describe 2 novel architecture for performing
two-dimencional convolution with 3 minimum amount of

hardware using the concept of sequential SGK convolution.

The singular vaslue decomposition of an impul se
response of & two-dimensional FIR filter has proven to be
useful in designing two-dimensional approximating FIR
filters that can be implemented 2as a cascade of 3x1
convolution operators. The usefulness of the SVD has been
demonstrated by noting a trade off between approximation
error and computational speed. The ESVD/SGK convolution
approach 1is particularly attractive when one is interested
in implementing & two-dimensional convolution with a
digital image display system. An approach to
implementation for SVD/SGK convolution that employs a small
set of relatively simple digital circuits has been
described. It has been demonstrated that the statistical
approach is very wuseful to oanalyze effects of finite

word-length in representing filter coefficients and signal
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sensitive to inaccurate coefficients in the passband, but
not in the stop band. Finally, it is believed that M =16
and N = 12 are sufficient to obtain less than 1 % NMSE in

most practical cases.
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TABLE 6-6

Standard deviation of the transformed filter caused

by rounding operation

M=16
N Theory Experiment NIMSE (%)
—2 -2
8 0.337x10 0.548x10 2.10
10 0.841%10° 3 0.119x10" 2 1.21
12 0.211x1073 0.295x10” 3 0.47
14 0.526x10 2 0.768x10" % 0.32
16 0.132x10" % 0.203x10" 4 0.08
First-Order Transformation
M=16
N Theory Experiment NMSE (%)
8 0.379x10 0.925x10 16.23
10 0.946x10 0.107x10 1.14
12 0.237x10 0.314x10 0.53
14 0.592x10 0.743x10 0.25
16 0.148x10 0.305x%10 0.13

Second-Order Transformation
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values, Table 6-€ summarizes the results. In this
experiment, we assumed that M = 16 bits and that only one
rounding operation is performed within the SGK filter.
Excellent agreement between the two values is observed. Tt
is believed, again, that M = 16 and N = 12 are sufficient
to achieve 1less than 1 % NMSE for both first- ang
second-order transformations. Surprisingly, it is noted
that the required word-length for the variable SVD/SGK
convolution filter is the same as required that in the

SVD/SGK convolution filter.
6.4 Conclusion

In this chapter, attempts have been made to develop a
design technigque for variable cutoff SVD/SGK convolution
filters. We considered first- and second-order
transformations. Second-order transformation, in general,
exhibits better results, but it inherently limite the range
of transformation. It has been shown that second-order
transformation is still possible if the specified
constraint is relaxed. But the price paid for relaxing the
constraint is degradetion of the frequency characteristic
of the transformed filter. 1In addition, the second-order
transformation doubles the size of the transformed filter.
The problem of implementing the transformed filter in
fixed-point arithmetic was also discussed. For a lowpass

filter, it was shown that the cascade form is highly
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plotted in Figqures 6-15 and 6-16. In the case of
first-order transformation, the response for the 8-bit case
deviates from the ideal response <cignificantly at the
beginning of the passband, whereas no visible errors zre
seen enywhere 1in the stopbandg. In the cezse of the
sccond-order transformation, the response for the 12-bit
case shows the same characteristics. PRut the responses for
16-bit for both first- and seconc-order transformations are
almost the same as the ideal. This experiment shows that,
for a lowpass filter, the cascade form ic highly sensitive
to inaccurate coefficients in the passbend, but the
behavior in the stopband is much less sensitivé. In
addition, the second-order transformation reqguires =
greater word-length to quantize the filter coefficients
than the first-order transformation docs. The basic filter

was the same as shown in Fig. 6-10.

In order to investigate the roundoff noise effect on
the fixed-point implementation of the variable cutoff
SVD/SCK convolution filter, the random number array with a
size of 46x46 was used again as an input. The correlation
coefficient was 0.95. Basically, the same scaling
procedure was used to prevent overflow, and the suboptimal
ordering slgorithm of Chapter 4 to minimize the roundoff
noise. Theoretical estimates of the roundoff noise
(standard deviation), based on the noise formula derived in

Chapter 3, were computed and compared with the measured
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Perspective view of the frequency
response of the transformed filter
1

with Bc # Bc

Figure 6-14.
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The results of the first- and second-order transformations
are shown in Figures 6-11 and 6-12. Figure 6-11
corresponds to the horizontal, and Fig. 6-12 corresponds to
the diagonal direction. Comparison of the first-order and
second-order transformation shows that the second-order

transformation yields far superior results (See Table 6-5).

Another interesting transformation is the case of

R . An examéle of changing the cutoff freaquency so

B
c1 #°C
R . . . 11
that uc1< Bcl and uc2>»3c2, l1s presented in Fig. 6-12,
and the resulting filter perspective view of the frequency
response is given in Fig. 6-14. 1In this experiment, the
second-order transformation is wused with the same basic

filter shown in Fig. 6-10.

6.3 Fixed-Point Implementation

Once again, it is of great interest to implement a
variable cutoff SVD/SGK  convolution filter with
special-purpose fixed-point arithmetic hardware. Since the
transformation is mainly concerned with the cutoff
frequency of the transformed filter, the effect of
fixed-point implementation on the cutoff frequency is
significant. Experimental evidence shows that a lowpess
filter with filter coefficients rounded to 16 bits is
sufficient for both first- and second-order transformation.
The frequency responses with different word-length for

filter coefficient quantization and with no rounding are
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Perspective view of the frequency
response of the basic filter

Figure 6-10.
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TABLE 6-4

List of the transformed SVD/SGK convolution filters and
their cutoff frequencies using first-order transformation

Cutoff Frequency
- (Horizontal)
Filter Al A2 Af R(%)
Desired Measured
1* 0.25 1 0.02] 0.272 0.7097 0.7097
2 0.08 ] 0.04| 0.188 0.6500 0.6056 -8.4
3 0.01 10.08| 0.272 0.5800 0.4684 -18.3
4 0.02 | 0.04)] 0.241 0.8500 0.8515 ©19.8
5 0.02(0.03] 0.283 0.9500 D,9520 33.9

*Basic Filter
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Figure 6-9. Perspective view of the frequency
response of the basic filter
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filter is obtained by substituting ( Z;Z-% in Eg. (6-34) by

the transformation

-1 P -1

e B T o L e
2 k'™ 2
k=0
-1 {6-35)

-1 P Z,+2 k
22+z2 _ :E:Ai( 2 “2 )
2z 2

If the basic filter is linear phase with cutoff
freaguencies, ucl and uczalong the horizontal and vertical
axes, respectively, and if one is interested in changing

the cutoff freguencies to Bcl and g, , basically the
2
transformation is performed as it was in the

one-dimensional case.

An example of the first-order transformation on the
SVD/SGK convolution filter is shown in Fig. 6-8. The basic
filter has quadrilateral symmetry with cutoff frequencies
ucl = uc2= 0.7097. A perspective view of the frequency
response is shown in Fig. 6-9. Unless stated otherwise,
ucl = ucz= U, and Bcl = Bc2= Bc are assumed for the
transformation. Figure 6-8 shows the cross-sectional view
of the frequency response on the horizontal axis. 1In the
case of u, < Bc’ the transformation works quite zdequately,
but not for uc>-8C . Table 6-4 summarizes the filter
parameters and the measured and desired cutoff frecuencies.

Figure 6-10 shows another basic filter, which also possesses

quadrilateral symmetry with cutoff freguency u, = 1.1266.
' 148
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filters.

Figure 6-7 illustrates the frequency responses of the
SVD-expanded separable filters on the horizontal axis. The
prototype filter is a two-dimensional linear phase lowpass
filter, and the SVD/SGK convolution filter was obtained by
truncating the SVD expansion to 4 terms. The first-stage
separable filter corresponding to the largest singular
value shows a}most the same frequency characteristics as
the basic filter. But the other separable filters
corresponding to the next largest singular values no longer

are lowpass filters.

But a variable cutoff SVD/SGK convolution filter is
obtained by simply transforming each of the one-dimensional
convolution opereztors on the columns and rows of the input
image. Specifically, the z-transform of the SVD/SGK

convolution filter is given by

0. -
2 .
Hovp/sek (211220 Z[ ,1(2 )II Hz,j(zz)] (6-342)
or
Q. _ 2 -1
1 z,.+z n
1723
Hsvp/sex (21722 Z {1“1[2 2,1 =% ] (6-34b)
=1 n=1

-1
Q 2 z,+z m
r 2 "2
’ i'il[E ;bz,i‘“‘" —z ) ]}
m=

but 01,02550. The Z-transform of the transformed SVD/SGK
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the transformed filter as R increases., It is believed that
with the second-order transformation, there should also be
a2 trade off between R and the preservation of the freauency

response of the basic filter.

To extend the discussed frequency transformation
technique to SVD/SGK convolution filters, it is noted again
here that a SVD/SGK convolution filter is a sum of
separable filters,wand each separable filter is decomposed
into an outer product of one-dimensional convolution
operators on the columns and rows of the input image. If
the basic SVD/SGK convolution filter is & two-dimensional
FIR filter with linear phase, each SVD-expanded separable
filter is also a two-dimensional FIR filter with 1linear
phase. We assume here that the size of the basic filter is
(20+1)x(2Q+1). Thus, each separable filter has the

property that

Hi(n,m) = Hi(Q-le-m)l 0 S mrnS Q (6-31)

Since H,(n,m) is separable, then
_ ..C r
But, from Eg. (6-31), Hj(n,m) is also decomposed into

H; (n,m) = hi(Q-n)hli-(Q—m) (6-323)

Therefore, the convolution operators on the column and row,

h?(n) and h?(m), are also one-dimensional linear phase FIR
i i
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TABLE 6-2

List of the transformed filters and their cutoff
freguencies using second-order transformation

Cutoff Frequency
A, A, A, AE . R(%)
Desired Measured
~0.5 | 0.0 | 0.11x107% | 0.272 | 0.4788 0.4794 |-28.9
~0.3 | 0.0 | 0.11x107% | 0.304 | 0.5362 0.5371 |-20.4
~0.1 | 0.0 | 0.11x107% | 0.346 | 0.6181 0.6194 | -8.3
0.0 | 0.0 | 0.11x107% | 0.367 | 0.6739 0.6739 0.0
0.1 | 0.0 | 0.11x10"2 | 0.398 | 0.7444 0.7463 | 10.5
0.3 | 0.0 | 0.11x107% | 0.408 | 0.9477 0.9489 | 40.6
0.5 | 0.0 | 0.11x1072 | 0.356 | 1.2252 1.2283 | s1.8
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where the matching point a. is obtained from

1
4(cos u_-1)
-1 £ +1
%y = cos (cosB_-1) (6-29)

But, it should be noted here that oy equals 1w whenever the
desired g, is within the transform range. For the case of

Ue >Bz, the constraint given in Eg. (6-12) also can be

relaxed by locating the metching point at Bg= ay where
0<az < m. The range of Ay can be shown to be
cosa2-3
where
-1 4(cosuc+1)
a, = cos -1 (6-30b)

2
(cosBc+l)

Figure 6-6 illustrates the frequency response of the
transformed filter with the (relaxed) second-order
transformation. Table 6-3 lists the matching points, the
desired and measured cutoff frequencies, and R. There is
also good zgreement between the desired and measured cutoff
frequencies. 2s shown in Fig. 6-6, relaxation of the
constraints in the second-order transformation allows the
basic filter to transform in the desired manner, but the

transformation gradually degrades the frequency response of
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respectively. By substituting Ao = +1/2 into Ea. (6-27),
we obtain the maximum or minimum attainzble cutoff
frequency with the second-order transformation. The
relationship between u., and meximum or minimum attainable
B is shown in Fig. 6-4. Figure 6-5 shows the results with
the second-order transformation. Table 6-2 shows the
measured filter parameters. The basic filter is the same
as previously described. Upon comparison of the
first-order and the second-order transformations, the
second-order transformation is seen to adequately preserve
the frequency response of the basic filter if Bc is within
the transform range. Eut, the resulting trensformed filter
has an impulse response length of 4Q+1, instead of 20+]

obtained as with the first-order transformation.

A second-order transformation is still possible even
if the desired cutoff fregquency Bcis out of the transform
range. To extend the transform range, for the case of
u, £ B,, the constraint given in the Eq{ (6-25) is forced
to be satisfied at B=1:l, where 0 < a; £ T, rather than
at = 7, The ©price paid for relaxing the constraint is
that the transformed filter characteristics are sacrificed
to some degree. 1In this case, the parameter ) lies in the

range of

cosa1+3

0<Aa )

<
0 (6-28)
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second-order transformation, there are three parameters,
AO, Al, and pz to be controlled. For the case in which the
cutoff freguency of the transformed filter is greater than
or eqgual to the cutoff frequency of the basic filter, we

can put another constraint on the transformation. That is

hT(ejB) = h(eju)

. o (6-25)

By imposing the constraint of Eg. (6-25), we can preserve
the frequency response of the basic filter better than when
the first-order transformation is used. But we shall show
that the second-order transformation severely restricts the
range of transformation. By using a2 similar analysis, as
used in the first-order transformation, it cen be shown

that the parameter AO is restricted to the range

1
0 <hp< 3 u, < B
1 (6-26)
-= < <
7 SBhp< 0 U > B¢
and the desired cutoff freguency ec is given by
. - RS \ll—4A0(cosuc-A0)
c - cos (6-27)
2A

0

Petailed derivetions of FEas. (6-26) &nd (6-27) are
given in Appendix C. Plthough the transformation is
echieved by varying the parameter Por the meximum or

minimum |3

0

en be obktzired when Ag=1/2 or -1/2,
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TABLE 6-1

List of the transformed filters and their cutoff
frequencies using first-order transformation

Cutoff Frequency
AO Al A2 Af - R(%)

Desired Measured
0.0% 0.9 0.11x10"2 0.367 0.6739 0.6739 0.0
0.1 0.0 0.39x10-3 0.398 0.7119 0.7127 5.6
0.2 | 0.0 |-0.22x10"% | 0.419 | 0.7572 0.7583 | 12.4
0.3 0.0 0.37x].0-2 0.471 0.8125 0.8137 20.6
0.4 0.0 0.10x10_1 0.523 0.8819 0.8833 30.9
0.5 0.0 0.14x10-l 0.701 0.9730 0.8571 44.4
0.6 0.0 0.38x10-1 0.754 1.1001 1.1027 63.2
0.7 0.0 0.l4x10O N.A. 1.2960 1.1299 92.3
0.8 0.0 0.38x10° N.A. 1.6640 1.6703 (146.9
*A0 = 0.0 means a basic filter.
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In order to verify the first-order transformation, the
following experiment was performed. The basic filter is a
one-dimensional linear phase lowpass filter with an impulse
response length of 15. The measured cutoff frequency of
the basic filter is 0.6739. Throughout this chapter, the
specified frequency is normalized to the range of (0,7 ).
Figure 6-3 shows the frequency responses of the trafisformed
filter with the parameter &, varied from 0.1 to 0.8. Table
6-1 summarizes the filter parameters and the desired énd
measured cutoff frequencies of the transformed filters.
There is excellent agreement between the two values. Rut
it is observed that the first-order transformation does not
adequately preserve the frequency response of the basic

filter as Ag goes to 1. In the case of A, > 0.6, the

0
resulting transformed filters can not be considered to be
lowpass filters, because the first-order transformation
does not constrain the frequency response at u =8 =71,
Experimental evidence shows that there 1is a trade off
between R and the preservation of the frequency response of
the basic filter. To preserve the frequency response of
the basic filter more adequately, R should be relatively
small. Thus, the penalty paid for large R is that the

transformed filter does not preserve the fregquency response

of the basic filter as shown in Fig. 6-3.

As alternative to the first-order transformation, one

may apply a second-order transformation. Tn the
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for c];go. To obtein & variable cutoff 1linear phase
filter, based on the SVD/SGK convolution, each SGK filter
is transformed in the menner described earlier. The

2-transform of the transformed filter is

H(2) = T 1, (2) = {Zb(n)[ }:A (?i—z—~) ]} (6-23)

i=1 i

Therefore, the coefficients of the transformed &CK filter
are expressed in terms of the parameters APy 2and the
coefficients of the basic filter (see BAppendix R). By
controlling the parameter Ak, the transformed filter cutoff
frequency can be varied. Before we present the

experimental results, let us define a

R = x 100 (6-24)

which will be wused to describe the degree of the
transformation. Figure 6-2 shows the freaguency response of
a typical lowpass filter and the parameters thet define it.
The three parameters Ay v By and Af characterize the
frequency response of the filter. If the parameters for
the transformed filter sre close to those of the basic
filter, then the trensformation will adecquately preserve

the frequency response of the basic filter.
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linear phase, complex zeros not on the unit circle should
be grouped together in groups of four, corresponding to the

%*
complex conjugates and reciprocals, i.e., a, o ,!;,l%. As
a «

a consequence, H(z) will have fourth-order SGK filter with

system function of the form

2

ri+1
H (z) = 1-2¢( i )cose z +(r —l§-+ 4c0526 )z -2
fi Ty
2 . (6-20)
r, +1

-2 -4

)coseiz_3+z
Ly

where r; and Bi are the magnitude and phase of one of the

complex zeros not on the unit circle.

The same rule of zero grouping in Chapter 2 can be
applied to the real zeros and complex zeros on the unit
circle. Therefore, we can obtain a realization of H(z) in
terms of a cascade of second- or fourth-order linear phase
SGK filters. The z-transform of the second- or

fourth-order SGK filters can be written as

—_ -1 n
H; (2) = Lbi‘“)(z+§ ) (6-21)

But H(z) can be factored in the form

0, 2
H (z) = £l [Eb (n) (252 )]n (6-22)

H(z) =

I
e R
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Equation (6-16) leads to the constraint that Ay = 1-A,; the

parameter A is restricted to the range of

0

The resulting transformed filter cutoff frequency is given

by

_ ~1[COS u_-A,
B, = cos [‘——————-—] (6-18)

l+A0

Let us associate the complex varisble 2z with the basic
filter system function H(z) and the complex variable Z with
the transformed filter system function HT(Z). Then, the

transformation of Eg. (6-8) is equivalent to

1 2+z~L kK

z+z
Ay (—=—) (6-19)

2

P

k=0

If the filter is implemented as a cascade of SGK filters,
it 1is noted here that the SGK filter should be symmetrical
because the transformation is applicable only to a 1linesr
phase filter. 1In Chapter 2, it was shown that the complex
zeros of H(z) should be grouped together in conjugate peirs
to ensure that all kernels for 3x1 SGK filters are real.
But, a resulting 3x1 SGK filter may not be 1linear phase.
For example, the 3x1 SGK filter from grouping complex
conjugate pair zeros not on the unit circle will not be

symmetriceal. ‘In order to ensure that all SGK filters are
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frequency response magnitude at B = 0 to be equal to that

of the basic filter. Mathematically, it cen be shown as

hT(eJB) = h(elY (6-12)
B=0 u=0

in which case, A0+A1 = 1., But, in order to ensure that

|cosuf <1, A should lie in the range of

0

0 < A0< 1 (6-13)

By changing the freguency control parameter Ao from zero to
unity, we caen obtain a transformed filter whose cutoff

frequency is given by

- cos u_-A
BC = COoS 1 [_____S__Q] (6-14)

l-AO

In other words, if we wish to increase the filter cutoff
freguency from u, to Bc with u, < Bc' then the control

parameter A is obtained from Eg. (6-15) as

0

cosf_ ~ cos u
c c

A =

0 cosBc-l (6-15)

where 05’A0< 1. To decrease the cutoff frequency of the

basic filter, the correspondence is

hpe3®)] = need9

B=T u=Tn

(6-16)
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cos u

cosu=A +A cosf

-

-1 cosPB

|
\| TRANSFORMED FILTER

I -1 cosB

BASIC
FILTER

. (u)

H(B)

Figure 6-1. Nature of the first-order transformation
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basic filter, although the frecuency scale is distorted by
the transformation. Ry substituting the transformation of
Ea. (6-8) into Eg. (6-7), the freqguency response of the

transformed filter is found tc be

0 P
hp(edB) = 7IBOP [ 2 bn) ZAk(cosmk]
n=0 k=0

(6-9)

From Eg. (6-9), it 1is noted thaet the impulse response
dimension of the transformed filter is now 20P+]. By
gppropriately controlling the parameters Ak' for
k = 0,1,...,P, the cutoff frequency of the transformed

filter cen be veried.

If P =1, then Eg. (6-8) becomes
cosu = A0+AlcosB (6-10)
and for F = 2, the transformation sssumes the form

2
cosu = A0+AlcosB+A2cos B (6-11)

We shall «call the trensformations of Eg. (6-10) and
Eg. (6-11) first-order and second-order transformations,
respectively. The nature of the first-order transformation
is depicted in Fig. 6-1. For first-order transformation,
if one is interested in increasing the cutoff frequency,
i.e., u, < Bc , Wwhere u, and Bo correspond to the cutoff

frecuency of the basic end transformed filters,

respectively, one may prefer to constrain the transformed
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Letting n = Q-m, Eg. (6-2) becomes

Q
h(el%) = %% 3" a(n)cosu (6-4)
‘ n=0

where a(0) = h(Q) and a(n) = 2h(Q-n) for n = 1,2,...,C.

We note that

Tn(cosu)'= cosnu (6-5)

where Tn is the n-th dJdegree Chebyshev polynomizl that

satisfies the recursion formula

Tn+1(x) = 2xTn(x) - Tn_l(x) (6-6)

for n = 1,2,...,0. Thus, Eg. (6-4) can be reformulated as

Q
hied¥) = ¢7JUQ Zb(n) (cosu)® (6=7)
n=0

The new coefficient b(n), for n = 0,1,...,0, is obtained
from the Chebyshev polynomial recursion formula of
Eg. (6-6). The basic appreoach [6-5] to the variable cutoff

linear phase filter is to use the transformation
P

cosu = Zl\k(cosﬁ)k (6-8)
k=0

where u and B are the frequency variables of the basic and
transformed filters, respectively. The trancsformation

described above preserves the frecuency response of the
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SVD/SGK convolution filter. In this chapter, we shall
discuss only e lowpass-to-lowpass transformation.
Modification for highpass-to-highpass or
bandpass-to-bandpass is rather straightforward in most
ceses, We assume here that the basic filter is a
two-dimensional 'FIR filter with linear phase. The basic
concepts of frequency transformation and modification to
the SVD/SGK convolution filter are discussed in Section
6-2. A fixed-point implementation of the variable cutoff
SVD/SGK convolution filter and experimental results are

described in Section 6-3.

6.2 Frequency Transformation

of Linesr Phase FIR Filters

R one-dimensional FIR filter with impulse response of

length 2Q+1 has a fregquency response

2Q
h(eI¥) = 3 h(m)e™IM (6-1)
m=0

A linear phase filter is symmetrical so that

h(m) = h(Q-m) (6-2)

for m = 0,1,...,Q. Thus

Q-1
he?™ = e " n(0)+ 3" 2n (mycostu(g-m) 1]
m=1

(6-3)
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Based on the earlier work of Constandinides [6-~1,6-21,
Schussler and Winkelnkemper ([6-3] were the first to design
such a variable cutoff frequency digital filter. - It hes
been shown, that by replacing each delay element in the
basic filter structure with a first-order all-pass network,
2 transformed filter whose frequency response is identical
to that of the basic filter on a2 distorted frequency scale
is obtained. Unfortunately, the method described is
restricted to FIR filters, and is not applicable to TIR
filters. Furthermore, the resulting transformed filter is
an IIR filter because by replacing the basic element, the
first-order all-pass network becomes recursive.,
Consequently, the linear phase property of the basic FIR
filter is lost. But, the veriation of the cutoff frequency
can be accomplished. Cppenheim et al. [6-4] proposed a new
frequency transformation technique in which the resulting
transformed filter is still an FIR filter, and the phase is
linear 1if the basic filter is 2 linear phase FIR filter.
By noting the fact that the SVD/SGK convolution filter is
essentially a sum of separzble filters, each weighted by a
singular value, and each separable filter 1is an outer
product of one-dimensional column and row convolution
operators, it is possible to extend the proposed
one-dimensional frequency transformation technigue to the
SVD/SGK convolution filters. We shall show that this

approach is quite successful in designing a variable cutoff
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CHAPTER 6

PARAMETRIC DESIGN AND FIXED-POINT IMFLEMENTATICN

OF SVD/SGK CONVOLUTICN FILTERS

6.1 Introduction

In this chapter, we will consider the problem of
designing an SVD/SGK convolution filter for which the
cutoff frequency is parametrically varizble. Variable
cutoff frequency filters have numerous applications in
image processing. For example, one might sequentially
obtain & best restored image by changing the cutoff
frequency, hence the freguency response, of the restoration

operator.

Since filter coefficients are generzlly a function of
the filter cutoff frequency, one can change the filter
cutoff frecuency by varying all of the filter coefficients.
But thie procedure requires changing a number of
parameters. Therefore, it is often impractical and too
complicated. It would bke more practicsl if one could
construct & filter so thet the cutoff frecuency is

controlled by only & few perameters, say one or two.
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experimentally. This experiment verifies that the
statistical noise model used to analyze the roundoff error.
It has been found that M = 16 bits and N = 12 -bits oare
sufficient to 1limit the effects of quantizaetion and
roundoff noise to less than J.0 % NMSE in most cases. To
obtzin & reasonable decrease 1in the NMSF, 2 simple mean
correction elgorithm was propcsed. The imege aquality
improvement obtainable by resetting the output meen equal
to the input mean has been demonstrated. The pictorisl
images resulting from SVLD/SCGK convolution, as shown in this
chapter, suggest thet this technique may have some

opplication in rezl-time image display system.
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TABLE 5-6

Summary of experiment with real image

Before After n
E : Hgyp (1+3)

NMSE (%) Mean NMSE (%) | Mean ]

12.6752 0.8122 1.9035 0.7210 1.1278
3.1634 0.6973 0.3658 0.72006 0.9682
0.0739 0.7201 0.0640 0.72001 0.9998

Lowpass Filter me = 0.7202064

Before After ~
Llg. (i,9)
i 4§ “svp'tr)

NMSE (%) Mean NMSE (%) Mean

134.6718} 1.7231 23.3312}| 0.7202 2.3928
15.5961| 0.6046 3.3338¢f 0.7199 0.8397
13.8732| 0.6167 2.5028 1] 0.7200 0.8564

2.8910| 0.7592 0.87421 0.7206 1.0543
Bandpass Filter m. = 0.7202064
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