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ABSTRACT.

This dissertation is devoted to the imaging aspect of
the problem of obtaining high resolution images of
practical radar taréets with digital °~ processing
techniques. The motion compensation aspect of the problem
is also briefly described. A multi-frequency stepped
(MFS) radar is assumed and the Fourier transform
relationship between the data (dimensioned in aspeci angle
and signal frequency) and the target reflectivity function
is derived in both 2-D and 3-D forms. Assuming that the
data is available for 360° aspect angle and using wideband
radar, a coherent digital processing method is developed
which will give the best possible resolution. Suéh a
situation occurs when the target makes a complete turn.
It is found that for such an imaging system'the resolution
is inversely proportional to the mean carrier frequency if
such frequency is large compared to the signal bandwidth.‘
In the case when the data is undersampled in range or
aspect angle or both, a modified coherent digital signal -
processing technique is described that will get around
such difficulty. It is found that the modified processing

method gives poorer resolution-but is better than either
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the mixed processing method or the inéoherent processing
method. The latter two processing techniques are also
described in this dissertation. Experimental results are
also presented and problems with real targets such as

shadowing, glint'and scintillation are discussed.

In the 2-D case, the radar data are sampled in polar
coordinate' format. The sampling requirements in this
sampling scheme are discussed in great detail. Results
from Doppler processing and Degrees of Freedom concepts
both show that polar coordinate sampling in the Fourier
domain is adeguate if the inverse of the greatest sampling
interval (in either radial or cross-radial dimension) 1in
the Fourier domain covers the entire linear extent of
interest in the real domain. Analytical methods using
Poisson's summation formula show the same results in more
detail especially in predicting undersampling effects.
The results on polar coordinate sampling can be applied to
other systems in which polar format sampling is a natural

setting.
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Chapter 1

PREAMBLE

1.1 Background

This dissertation addresses the problem of obtaining
high resolution images of rotating objects utilizing radar
signals. High resolution here refers to resolutions which

are a fraction of a wavelength.

The key idea behind the high resolution capability of
imaging radars is the ability to record not only the
magnitude of an echo but also its phase. In a broad
sense, radar receivers that can do this are called
coherent radar. The era of coherent radar was inaugurated
when stable oscillators became available. Once the phase
measuring capability of a radar receiver was realized, it
did not take long for Carl Wiley at the Goodyear Aerospace
Corporation to initiate the concept of the Synthetic

Aperture Radar in 1951 [31].

The Synthetic Aperture Radar (henceforth SAR) in the
simplest case achieves high azimuth resolution by making

use of the linear motion of the antenna platform with




respect to the earth. The early radar imaging systems
were primarily terrain mapping éystems. The radar
platform was typically airborne. The actual physical
antenna aperture was usually small, A bibliography
consisting of the articles (8,12,22,35] gives a good
review of SAR. The first practical SAR system was
demonstrated in 1957 by Cutrona et al. using an optical
processor. Since then, a wide range of coherent radar
imaging systems have been initiated and developed for many

diverse applications.

SAR can in general be classified into two groups
based on the geometry of the system. The first group
assumes that the target is stationary. This includes the
usual SAR modes which depend primarily on optical
scattering, namely strip mapping, Doppler Beam Sharpening
mapping, and Spotlight mapping [21,6]. Other imaging
systems in the group are based on different principles of
operation. In particular, there is Interferometer Radar
[16] for topographic mapping, Harmonic Radar [17] for
in-foliage metallic targets, and Hologram Matrix Radar.
[19] for ice thickness profile measurement. Members of

this group are typically characterized as terrain mappers.

The second group of SAR types is one in which the

target is presumed to move along a certain trajectory




while the antenna(e) remains stationary. 1Inverse SAR is a
typical example. Other radar imaging systems in this
class exploit a mixture of techniques; namely, frequency
diversity (multiple frequency system), spatial diversity
i (multistatic system), and polarization properties of radar
reflections. To analyze this type of SAR, a wide range of
scattering models including Rayleigh, physical optics and
Geometrical Theory of Diffraction (GTD) are used. Ormsby
et al. [25] give a succinct overview of some of the
systems. Inverse SAR techniques can be found in Chapter 7
iof [10] for airborne targets and in [39] for ships upon th
ocean. Strictly speaking, both groups utilize a similar
' theory but because of the different applications and
geometry, the resolution requirements, sampling rate,
|parameter sensitivity, target model and system geometry
will vary. Radio astronomy 1is an exéeption because it

belongs to both groups.

Interest in SAR in this dissertation lies mainly on
the Inverse SAR. Such a system 1is also called a
Range-Doppler Imaging Radar. If the phase differences
‘between the phase of the transmitted waveform and the
phase of the received echo of some fixed point of
reference on the target are compensated for, the moving
target will "appear” as if it were static in translational

motion but rotating about the point of reference. Since




the éross overall range to the target does not contribute
to the imaging process, inverse SARis essentially a Range
Doppler Imaging system of rotating objects. Except for
system geometry, this system is similar in principle to
the Spotlight mode SAR [6]. The problem of gross range
estimation and the phase compensation associated with it.

is called motion compensation.

1.2. Problem Description

Consider a rigid body as shown in figure 1.1 rotating
with its axis normal to the paper. If the illuminating
radar is far from the target, then the lines of constant
range (x) and cross-range (y) are rectangular coordinates

on the target.

Consider a point reflector at (x,y) on the target.
The two way phase delay of an echo from this point can be

measured by a coherent radar as

_ 4
¢ = X r(x,y)

where A 1is the wavelength of the radar signal and r(x,y)

is the antenna to the (x,y) point distance. r,>>| x|,

0
r0>>|y|. Then

r(x,y)

V(r0+x)2+yE

. 2
y
(x+ro)+ ==y oFE

e




Figure 1.1. Measurement of echo phase from a rotating target. -
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Suppose r, is constant. Then the Doppler frequency of the

0
echo is

_1 d¢

£ =37 a
v2 fax, vy ay
oA |dt g dt
-2 [_1 . _x_]wy (1.2.1)

To

where w is the rotation rate in radians per second, so

that x = pcoswt, y = psinwt for p=Vx2+y2.

Suppose over a small enough time interval, the target
rotation is small enough such that x does not change by
more than one range cell width. This means no range
migration. In this case the Doppler frequency of the
refleéted signal 1is proportional to the cross-range
distance y of the point reflector. Therefore, resolvin§
the Doppler frequencies of two point reflectors will mean

resolving them in cross-range.

In attempts to strike a better cross-range
resolution, there has been over the years a trend toward

processing SAR and Inverse SAR (ISAR) data over wider and




wider time (hence aspect angle) intervals. Over this time
interval, the range cootdinate X may migrate through one
or more range cells (called range walking). Also, the
"constant" of proportionality % (“1+f§huin Eq. (1.2.1) may
not stay constant over the time interval (changing
Doppler), resulting in Doppler spread, which translates
into poorer cross-range resolution. The latter effect is

also called variable range-rate (page 14, [37]).

Processing techniques which partially solve these
!problems were suggested [7] but in 1974 it was realized
[37] that all these problems disappeared if.the data were
regarded as samples collected over a polar coordinate
raster. This idea in priﬁciple allowed full Doppler
processing and hence full potential resolution. Optical
methods were used to show the principle that indeed by
physically rearranging the data on the photographic
surface of an optical filter in polar format, the
conventional problems of range walking, changing Doppler,
and higher order terms in the Taylor's series expansion of

r(x,y) disappeared altogether.

In practice, to make the principle work takes more
considerations. For one thing, most radar objects that
are of interest are three dimensional in nature.

Therefore, point scatterers in the shadow region of the




1

object can get obscured. In other words, some point
scatterers will not contribute t6 the signal return for
all aspect angles. This means that one will not be able
to fully utilize the data from all aspect angles and

therefore not be able to achieve the best resolution from

i these point scatterers.

A similar problem that is different in origin is that
for practical radar objects, signal returns from point
scatterers are subject to a great deal of fluétuation,
both in amplitude and phase. This phenomenon can be due
to either the nature of the target itself or due to
atmospheric effects. The important point is that now the
original assumptioh that the target backscatter function
is constant with time can no longer hold. These questions

are dealt with in Chapters 2 and 7.

In the early years of SAR development, because of the
enormous - storage and computational 1load required to
reconstruct SAR images, most operational SAR used optical
processors. It was not until about 1975 that serious work
on SAR digital processing appeared in the 1literature
([21],I13D. The advent of CCD correlators [2] and new memory
technology (page 181, [6]) make the real time SAR digital
processor a realizable entity. 1In fact, the first real

time SAR digital system was built into the NASA SEASAT




-

satellite and 1launched 1in early 1979. Therefore it is
important that digital processing of ISAR data be studied

and well understood.

The main issue in this dissertation will be to study
digital reconstruction techniques with ISAR data to obtain
as good a resolution as possible. One possibility is to
collect and process the data over a wider time interval.
This invariably leads to the necessity of having to treat
the data as being sampled in polar format. Th; special
case in which the target data is collected over 360°

aspect angle is considered.

A dquestion arises from the known fact that a
practical processor for such imaging systems has to be
digitally implemented [3]. Since data samples are
coliected in discrete target aspect angle intervals and
only discrete range samples can be measured with a radar,
the effects of such discrete sampling must be studied
first. The important question that needs to be answered
is therefore how to determine the sampling requirement for
the polar coordinate sampling format. The answer to this
question has applications in Tomography, Radio astronomy,

and all other systems which collect data in polar format.

In practical ISAR systems, the gross range (r of

9)
the target is not constant. This will give rise to a




r

jcomposite Doppler in the reflected signal. It is

dr

0

|
l .
therefore important to isolate the Doppler component due
i
lto =t and subtract it from the composite Doppler.
i

1Moreover, since the reconstructed image is a projection of
?the target onto a plane normal to the target rotation
:vector, the direction of the rotation vector w should be
known or estimated apriori so that the image can be scaled

correctly. For an arbitrary object flying an arbitrary

.trajectory, w is time varying and difficult to predict.

11.3. Approach to the Problem and Thesis OQutline

The radar data collecting system cascaded with a
‘signal processor are treated together as an imaging

system. A good idea of the resolution provided by the

'signal processor can be obtained by first computing the
.point spread function (PSF) of the imaging system. A
|

imeasure of resolution based on the PSF can be defined by

either the Rayleigh criterion or the half power width of

|the PSF. The PSF and hence the resolution can also be

derived from Doppler bandwidth concepts. These are done

|
‘in Chapter 3.

The polar coordinate sampling requirement issue is
dealt with first using the Degrees of Freedom (henceforth

DOF) concept [15], then with Doppler bandwidth concepts.

10




These are studied in detail in Chapter 4. Unfortunately
these concepts only provide a method to evaluate the
sampling requirement of the system. It does not however,
indicate what happens in the event that the sampling
requirement(s) is not met. In Chapter 5, Poisson's
summation formula [27] is used to study the error incurred
in the discrefe sampling in polar coordinates. The
analytic expressions derived for the samplihg error can be
used to evaluate the consequences of undersampling. At
the same time, Poisson's suﬁmation formula is also applied
to Tomographic systems, The resulting analytic
 expressions for the sampling error also allow one to
understand the effects of polar coordinate sampling in

these systems.

For reasons of available egperimental data, a
Multiple Frequency Step (MFS) radar is described in
Chapter 2. The relation between the data and the target
reflectiv{ty function o(x,y) is derived first for the two
dimensional case where (x,y) are the target coordinates.
In this case the target rotation vector is always normal
to the 1line-of-sight (LOS). The three dimensional
relation between o(X) and the data is also derived with ¥
being the target point vector relative to the rotation
_center, In this case the LOS is at an arbitrary angle

relative to the rotation vector.

11




The analyses in the subsequent chapters are based on
the MFS radar system. Even then, unless otherwise stated
the actual analyses can be applied to other high-resolution

radar systems.

Digital implementation techniques of the target
reconstruction problem are developed in Chapter 6 keeping
in mind the computational speed and storage restrictions.
These techniques are applied to the experimental data in

Chapter 7.

An attempt will be made in Chapter 8 to derive
analytically the various Doppler components.of an airborne
target flying an arbitrary trajectory. The time pattern
of these Doppler components is studied for a linear
trajectory and a circular trajectory. An understanding of
the time pattern of the various Doppler components is an
important step before the actual reconstruction techniques

can be applied to realistic ISAR data.

Chapter 9 gives a summary of the results in all the

previcus chapters.

12




Chapter 2

RADAR SYSTEM AND DATA REPRESENTATION

2.1 Multi-Frequency Radar System

The radar transmits a sequence or burst of K pulses
starting at time t;. The subscript i corresponds to the
th . (3 '
i burst. The transmitted signal is

N-1

s(t) = E X(t-ti) (2.1.1)
i=0
,where N =total number of bursts transmitted
ti =iT3
T3 =burst repetition period
x(t—ti) is the ith purst of pulses defined as
K-1
x(t) = x. (t-3T,)
b Z 5 (73T (2.1.2)
j=0
xj(t-sz) is the jth pulse defined as
xj(t) = Ba(t)cos(zﬂfjt+¢j)
2.1.
1 if et [O,Tll ( 3)
a(t) =
0 if gt [0,T,]
T2 =pulse repetition period in seconds
T1 =pulse width in seconds
fj =frequency of the jth pulse carrier

13




h pulse.

¢j =arbitrary but constant phase in the jt
It is implicit in Eq. (2.1.1) that the. bursts are repeated

’continuously. For convenience of ‘illustration, the bursts

|are separated in time. This is depicted in Fig. 2.1.1,
Ewith T3>>T,.  Time separation between bursts may or may
| not exist depending on the application and design. For
| example, in designing a "track while scan radar," one may
!want to separate the bursts and do search scanning between

bursts.

Figure 2.1.2 is a functional block diagram of the MFS
radar system. It shows the implementation of a matched
filter composed of a reference signal generator, a mixer

(multiplier) and an integrator. The matched filter is

: matched to a signal phase corresponding - to the two- way

'propagation delay of a point at some arbitrary but fixed

range r With the return signal as input, the matched

0.
filter output will give a composite phase of all

. scattering centers referenced to the point at range Ly -

From Egs. (2.1.1) to (2.1.3) the transmitted signal

can be rewritten as

N-1 K-1
s(t) = B E E a(t—iT3-jT2)cos(2nfj[t-iT3—jT2]+¢ij)
i=0 3j=0
where a(t)=1 if te[O,Tll, and where ;3 is the

arbitrary phase associated with the jth pulse in the jth

'burst. For simplicity, suppose there is only one point

14




“ s(t)
T3
l Transmitted signal format
1 1 1 [1 e
313
l x(t) Transmitted pulse train -

Burst length = T

|
5o [ 08 [ F eee [ Ho [h
T T T

1 2 2

‘y(t) ‘Received pulse train

2
.._c_.{

nIN
-
pu
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"

‘ z(t)

> t
2r 1,425 21,425
c° 2¢c 2¢

Quadrature reférence signal =z'(t)= Hilbert transform of z(t)ﬁ

Complex reference signal R(t)= z(t) + jz'(t).

Figure 2.1.1. Signal format for the MFS radar with tiﬂo.
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TRANSMITTER
VR(t:) = z(t) +52"(t)
s(t) T DELAY
R(t-T)
T, | " COMPLEX DATA
DUPLEXER [ 1=
MIXER '
RADAR
ANTENNA' (@))
ROTATING
OBJECT

Figure 2.1.2. Block diagram of the MFS radar data
gathering system.
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scatterer at range r(t). Suppose also that the pulse

width T, is sufficiently small so that the jth pulse of

. the ith

burst can be considered as hitting the target at
time t =iT3+jT2+r. T is the pulse transit time between
the antenna and the point target. Then the complex

representation of the received signal is

2r (1T +3T,+T)
y(t) = B' a (£-iT4=3T,- )
i g c

, . 2r(iTyHIT,+T)
.exp{jZij(t—lTB-sz - . + ¢ij}

where j2=—1.

For simplicity of notation, r(iT3+jTy+t) will be
written as r unless it 1is important to show the T
dependence explicitly. For the reference signal to ’the
matched filter, let us use the complex representation of

the carrier wave in the following.

R* (t-t) = Bexp{-jtznfj(t-ts)+¢ij]}

j=0,1,2,...,K-1. R(t) 1is the impulse response of the
matched filter and tg is sampling time instant of the

' matched filter. The matched filter output is thus
ts
= * -
D_(t_) 5 R* (t_-t)y(t)at

tsTy

17




Tt
. f S
- BBE: E .[ e—j[2ﬂfj(t-ts{+¢ij]
i3 Tty '

—Tl

; . 2r
ej@nfj[ts—lT ~3Ty- = +¢ijl

. 2r
- BBE : z :j jz'nf [t ~iT,-3Ty- —6-}

. S o
a(t-1T3-3T2—7;)dt

3

Let Dr(ts) be sampled at

C s 2r, ' .
ts = 10T3+JOT2+_i'c0 Tl' for 1 =o,1'ooo'N-1,
i=3,i,...,K-1. I, is the range at some fixed reference

pcint near the target point. Then, as illustrated in

Fig. 2.1. 2, the sampled data will be
Ty+3 T, + 2ry +T

- 1
= E E -iT. -7 -2
D (10,1 )= BB J or a(t 1T3 3T2 s )

19T3+3gTy*

o 0

. . s . . 2
a -exp{janj[(lo—l)T3+(jo—J)T2— E(r-ro)]}

where D _(t)) is now denoted as D (ig,jg). For |r-r

sufficiently small (say lr-r0|<<Tl=pulse width) ,

O,JO)—T BB' E E (1 i )G(J Jo)

dt

ol

D (i
j jZWf [l -i)T +(J0 j)T _(r— 0
. =BB' Tlexp{ ijfjo( £y (r- ro)}
Thus in general
{,9) = 31 T T
Dr(l.j) TlBB exp{j2n( S ) (x ro)}.
Using a simpler notation
18
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2fF.,
k. = —3 , then
j c
[ 3 — ' 4 -
D (i,3) = TlBB exp{janj(r ro)}. (2.1.5)

!This matched filter output which corresponds to the jtR
|pulse of the itP burst is the sample data point
corresponding the the jth frequency. The output from each
pulse is a complex number whose phase corresponds to the
two way path difference between the target point and its

reference, and whose "amplitude" T;BB' measures the

scattering coefficient of the point object. The radar

‘system described will therefore measure the phase
|

‘differential between a target point and a reference point.

It should also be noted that if {fj} is arranged so
that

£, =f_+ JAf

J 2Af
. "Zf '—
kJ = 0 +J

where Af is the temporal frequency step, then Dr(i,j)

represents the spectral signature of the point object at

i th

.'range r corresponding to the i

discrete Fourier transformation of Dr(i,j) over j, a rande

burst. If one takes the

|
i
}profile can be obtained. The above assertion, of course,

‘holds true only if the target range r does not change
ésignificantly over the burst 1length interval. For a

continually moving target (changing r with motion in

‘translation and rotation), the entire burst must be

sampled before the target point moves sufficiently far to
’ v 19




(

produce appreciable phase shift. The customary criterion

is to set the phase shift over half the burst length to be

less than m/2. In the worst case, this corresponds to

KT 2f
(v.» —2 ) (—BysT
r 2 c 2

where v, is the range rate, fg the signal bandwidth over
the entire burst. The pulse repetition period within a

burst is therefore governed by

e~

T, £ .
2 2erfB

(2.1.6)

For example, with K=256, v,=250 m/s, £p=500MHz, T,S15us.
This corresponds to a maximum unambiguous range of only

2.25km,

when the above condition on T, is not met, range
profile distortion will be one consequence. If the point
target were stationary, Dr(i,j) in Eq. (2.1.5) 1is an
accurate representation of the point target spectrum. The
DFT of Dr(i,j) over j will give a range profile which is
the result of an impulse function convolved with the
ambiguity function of the signal =x(t). If the point
target moves in range by some appreciable amount during
the entire burst length time, the range profile will be a
rectangular (or pulse) function convolved with the signal
ambiguity function. This form of distortion is called
range profile distortion. For constant v , range profile

distortion (abbreviated rpd) can be eliminated by phase

20
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[, . . .
'shift correction on Dr(l,J) . It has been estimated [40]

that

2f.
— s - 3
= Dr(l,j)exp{ j2m( S )(VrTZ)}

Dr(i’j) rpd
corrected
Burst-to-burst range walking is another consequence
of the motion of the object. It means that the target
point has moved more than one range resolution cell
distance during a burst time interval. 1In the absence of
range profle distortion, the effect of range walking is a
1shifting -in range between two adjacent signatures®*. The
‘moving target point gives rise to a similar 1linear phase

shift error of the data. Range walking (abbreviated rw)

is corrected as follows [40]: op

C _ L . i .
D_(1,3) . = Dr(l,J)exp{ 12“(75_)(VrlT3)}
corrected

where Vy iT, is the distance moved since the first burst.

Range profile distortion due to substantial target
. point displacement caused by rotaton of the vector ETB is
a much more difficult problem. Fortunately target point
displacement within a burst length is usually negligibly
small and of little consequence. For example say the
target rotation rate is ¢u=0.b2(rad/s), rrg =30 m.; then

'*A signature is the set of data associated with a burst
| either before or after range compression.

21




lthe maximum randge rate is Vr=0.6 m/s. For a burst 1length

=2 . .
of T3=10 s , the displacement -is Ar=0.006 m. For
2f '

.f=500MHz, the echo phase shift error is j;’Ar = 0.004 rad

(0.0006A ).

2.2 Interpretation of Target Data

The MFS radar described in section 2.1 can be used as
an Inverse SAR (ISAR) system. The reference point will
be the center of rotation of the object. Its range £,
will still be kept constant. rgy is called here the gross
range. The ISAR will be modeled first in two dimensions.

This model will be extended later to three dimensions.

In deriving Eq. (2.1.5) for the jth pulse in the ith

burst, the following implicit assumptions are made.

1. The gross range X, is either constant or of a known
time variation. In practice T, is limited to an
accuracy of one range resolution cell. It is even
more difficult to identify the center of rotation
of an airborne target by virtue of its coherent
signai reflections.

2. The signal echoes are specular returns. This means
that the reflections can be approximated by
Physical optics.. Echoes due to diffraction,

reverberative phenomenon, and creeping waves are




considered negligble. The specular assumption

holds when signal wavelength A<<2a where a is the

maximum radial extent of the target.

"3. There is no atmospheric frequency dispersion. The
phase delay from a target at constant range r is
the same at all frequencies.

4. There is no atmospheric propagation phase error.
That is, the delay phase error is neglible. This
holds for relatively short propagation path

lengths in the troposphere.

Instead of a single point scatterer, consider a
kotating object ( w rad/s) with every point on it being a
scattering center as shown in Fig. 2.2.1. Let the
rotation vector W be normal to the LOS. Suppose fhewfar
field assumption (r0>>2a) holds so that there is no range
curvature. Let (& ,n) be rectangular coordinates fixed on
the object. Suppose at t=0, the (g,n) axes coincides
with the (down-r&nge(x), cross-range(y) ) axes. Also
suppose t=0 at the beginning of the first pulse (j=0) in
the first burst (i=0). Here the aspect angle is
synonymous to the angle between the x-axis and some
particular fixed axis (&) on the target. The aspect angle
at time t is equal to wt, where w is assumed to be
constant. The (x,y) coordinates are thus related to the

(E,n) coordinates by
23




(a)

Radar

U
antenna f(t) { \ \

e

e X

\' | :, | \:‘ wt

(x + 3y) = (€ + jn)exp{-jut}

o

max

2f
k = max
max c
2f
k = min
min c

k°= %(kmin.+ k ) kB =k -k

min

Figure 2.2.1. 2-D Imaging geometry and the pupil function.
(a) Two dimensional target coordinates and the -
rotating object. (b) The resulting 2-D pupil

function of the radar imaging system.
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With uT, not sufficiently With T, sufficiently
small small

Figure 2.2.2. Distorted data sampling pattern in the Fourier
domain for large values of T, vs. undistorted data
sampling pattern in the Fourietr transform domain for

small values of sz.
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(x+fy) = (E+4n)exp{-jut} (2.2.1)

Finally assume that there is no range shadowing* so that
at the wt -aspect angle, the reflectivity of any point
. scatterer at (&,n) is o §,n;ut), The point scattering
coefficient of the same point scatterer is denoted as
o(x,ys;wt) where (x,y) and (€,n) are related by
Eq. (2.2.1).

The range vector r of the point (&,n) at time t is

r(t) = Fb+(€+jn)e-jmt (2.2.2)

Let r(T) be the initial distance of target point (&,n)
when the first pulse (i=0,j=0) hits the target. The two
way transit time for the first pulse is therefore 2T.
Since the second pulse is transmitted T, seconds later,
the target point distance when the second pulse hits the
target is. r(r+T2). It is easy to see that the target is
! illuminated by a pulse only at the discrete times t=t..

1j
where

tig = 1T3HiT,4t (2.2.3)

fO]‘.' i=0'1,2'o..’K-1; j,=011’2,-oc'N-1.

* For any realistic object, shadowing cannot be avoided.
| But this assumption must be made for analytical
justifications. .
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Let .
(E+fin) = pexpl{jfo}.

It follows from Eqg. (2.2.2) that
2

r(t) [r(2)+ p +2rdpcos(mt—¢)]1/2
0,2 N 1/2
r0[1+(55) +2(;E)cos(wt-¢)]

With the far field assumption,

P2 _,2a,2
(7)) <77 <1

0 (0]
Thus
r(e)¥ r,[1+2(2) cos (wt-¢)11/2
o 2
= r0[l+ % cos(mt-¢)+0(37)] (Taylor's expansion)
. 0 ry :
= r, +pcos (wt—-9¢) (far field assumption) (2.2.4)

0

It follows from Egq. (2.1.5) that the data from point

target (&,n) alone is

jZij(r(t)~r0)

D.(i,3) = T,BB'0(E,n;ut)e

jznkjpcos(wt—¢)

T.BB'o(§,n;wt)e .

1

The variable doppler phase shift of the scattering point
is thus

kpcos (wt-¢)
where k=k4 when te[iT3+jT, iT3+(j+1)Ty] for all
values of i, j defined previously. Since the data is

sampled only at t=tij=iT3+jT2+T, the sampled data becomes

Dy(1,3) = T;BB'0(&,n;jut, )
,ﬁnkjpcos(in3+ij2+m¢-¢)(2.2.5)
‘e

27




Let ei=in . Typically with w=0.02 rad/s, T2=10-2 s,

and with no range ambiguity,

2

wT<wT, = (0,02) (107%) = 2x10~2

rad,
wT can therefore be dropped from Eq. (2.2.5). Then,

jkjpcos(e—¢+ij2)

BB'O(E,n;wti.)e . (2.2.6)

Dr(i,j)=T i

1

Let
-Jei

(x;+dy;) = (E+dn)e (2.2.7)

‘X3, Yyi are therefore respectively the range and
|

' cross-range distances of the point (§,n) from its

! th

' reference center at the beginning of the i~ burst.

-d (ei+JwT2) }

pcos(ei-¢+jmT2) Re{ (E+in)e
. -J (JuT )
= Re{(xi+3yi)e

xicos(ij2)+yisin(jmT2) (?.2.?)

Using the previous example again, but with the number of
pulses per burst being K=256,

jur, < KWT, = (256)(0.02)(10-2) = 5.12x10—2 rad.
Therefore jWwT, can be dropped from Eq. (2.2.7) and the
following approximation can be made.

: v
pcos(ei~¢+3wT2) = X,

Ecosei+nsin6i (2.2.9)

Substituting Eq. (2.2.9) into Eq. (2.2.6)

28




Jkyxi

D_(i,3) = T,BB'o(x;, ¥ ;ut;)e (2.2.10)

Another way of looking at the problem is that one would

|
i
|
]

" like to keep ij2<<n/2 by forcing

T, << 5 (2.2.11)
!

 such that the approximation in Eq. (2.2.9) still holds.
For imaging a seaborne target with w=0.6 rad/s and K=256,
one would want to choose the pulse repetition period T2

such that

2

T. <<n/(2x0.6%256) = 10 ° sec

2
 which corresponds to a pulse repetion frequency of at
i ' .

. least in the order of 1lKHz.

It follows from Eg. (2.2.10) that the composite data

: from the entire object is
'l' ‘ j2nij
s 2\ L -
Target
Area

i
dxidyi .

Carrying out a coordinate transformation with Eq. (2.2.7),

ankj(gcosei+n51nei)

: D(i,3)=TBB’ o(E,njwt;.)e dgdn

J ‘ .
Target
Area

P IE G(E'n7wtij) is independent of wtij , and

A Jenf (EcosB+nsind)
z(6,f)=)Jo(E,n)e dg&dn (2.2.12)

= 2-D Inverse F.T. of o(g,n).

1)
Then TlBB Z(ei,kj)
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Therefore, for a general object the data collected by
the MFS radar can be ihterpreted approximately as the 2-D
Inverse Fourier transform of the target reflectivity
function o(&,n). i corresponds to the aspect angle 9 on
the object at the beginning the fﬂl burst; jthcorresponds

. to the jth spatial frequency component k.

5 of the object

reflectivity function.

For most of the timeG(E,n:wtij) represents  the

'diffraction coefficient of (£,n) depending on its
: neighborhood. According to GTD [20], both the magnitude
%and the phase of 0 will change withr 0.

In the case when wT, is not sufficiently small to be
' neglected, one needs to substitute Eq. (2.2.7) into
: Eg. (2.2.6). Carrying out an analysis similar to the one

above will lead to
D(i,j)=TlBB'Z'(kjcosijz,kjsinijz) (2.2.13)

where . -1 >
Thus even when wT, cannot be neglected, the data still
. represents the two dimensional inverse F.T. of d(x,y)

except that now the transform domain sampling follows a

curve

£.(3)
fy(J)

kjcos(jmTz)

k;Sin (3uT,)

30




!
! where fx(j) and fy(j) are radial and cross-radial

| dimensions in the transform domain. Figure 2.2,2

illustrates this distortion in the transform domain

sampling.

2.3 Generalized Three Dimensional Formula

The three dimensional representation of the scattered

wave from a rotating target was formally derived [4] in
| terms of the wave propagation vector k and scattering
Epoint vector X. With reference to Fig. 2.3.1, the far
gfield electromagnetic wave incident on the object can be

i

|

 approximated by a plane wave

-R2nft Jke (x+r

_ o)
Ei(t,x)= E.e e (2.3.1)

0

where f is the signal frequency, E; the field strength of
i the incident electromagpetic wave. If one uses
Kirchhoff's approximation one gets for the backscattered
far field Eg at the receiving antenna [4]
ke (x+x)
— e — - —
E = Ei(t,x) uk°ds(x)

Illuminated ?*ro
surface

(2.3.2)

where A =¢/f, ds is the incremental area vector normal to

the target sur face, and
T, = k/|K]|.
Define
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- (2.3.3)
and
_ A . —j§-§; _
p(p) & —L e P-dS(X). (2.3.4)
2/ illuminated
surface

By substituting Eq. (2.3.1) into Eq. (2.3.2) and using the
'relations in Egs. (2.3.3) and (2.3.4) one gets

E, _ —J2nft+peT)
E = p(ple : (2.3.5)

S Z/Fro

' - By restricting the class of targets being observed to only

| -
' convex objects, p(p) can be rewritten as

_ . -ipex_ _ _
p(p)= e p+ds(x) (2.3.6)

p-n>0

where B is a unit vector in the direction of ds. By
inspecting> Eq. (2.3.5) it can be seen that p(p) is a

measureable quantity by homodyning* Eg and phase shifting-
ithe resulting baseband video by a phase equal to 5356
;which can be determined apriori. p(p) can therefore be
. treated as the baseband video signal of a coherent radar

system except that other than being baseband, it is also

i ;----—_--.-—- . K3 n (] » " : [
* "Homodyning is a demodulation or "mixing down operation
"in which the video signal riding on a carrier frequency is

‘mixed with a 180° out-of-phase carrier of the same
: frequency resulting in a baseband video.
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phase shifted by an amount equal to ﬁlfb. Since the video
signal can be easily measured by a standard radar system,
it is justified to concentrate only on p(p). Since p(Pp)
is the video signal measured off theiilluminated side of
the object (i.e. p*°n>0), the video signal measured off the
‘non-illuminated "back" side of the object is p(-P). It

follows from Eq. (2.3.6) that

p(p)+p*(-p)= ;5_;-5' J’e-—.yp.-x p*dS(x) (2.3.7)
S

where S is the entire surface of the convex body B. From

the divergence theorem

=J P’x)d§

2vT B
p2 - X ;—

= e e dx 2.3.8
v A ( )
2w

= E—E Y(x)e dx (2.3-9)

where Y(x) is the characteristic function of B defined as

_ 1 X € B
Y (x)= -
: 0 x £ B.
If one further defines
r@® 2 2T (@ et D)1,

1it follows from Eg. (2.3.9) that I(p) and Y(X) are Fourier
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transform pairs:
r@ = [v@e P ¥ ax, (2.3.10)
iThis is Bojarski's identity.

Since P(p) and P(-p) are respectively the phase
shifted baseband video signal measured off the "front" and
“"back" of the target, TI(p) represents a composite phase
shited baseband video signal measured off the entire
target body. The only difference with T'(p) is that it is
' scaled by the propagation vector parameter p. By the way
the characteristic function Y(x) of the target is defined,
Y(x) represents the spatial distribution of the point
scatterers on the sur face of the target.
Equation (2.3.10) thus shows that by measuring the
composite phase shifted baseband video signal I(p) for all
values of P (in frequency f and aspect angles), the
characteristic function Y(X) of the target can be obtained

by simply.Inverse Fourier transforming TI(p).

Now it willAbe shown that it is unnecessary to pose
the target-data relationship in terms of I'(f)) and the
characteristic function. A direct relationship between.
the target ‘"reflectivity" function 9(X;X) and the signal
return data D(k) will be derived in 1line with the 2-D

model used earlier.
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Write the transmitted signal (or beam) in vector form

k..
1)

C . .th
‘where ai=beam azimuth at the beginning of the 1t burst,

t

€i=beam elevation at the beginning the i hburst,

th

fj=carrier frequency of the j~ pulse.

Let ro=vector from the antenna to the target center or
point reference,

=vector from the antenna to a point on the target.

Note that kjj can also be written as

- =, 2

where k=signal wave propagation vector

Aﬁsignal wavelength (=_C)
: 2Tk

u = k/| k|
With this new notation, Eq. (2.1.5) can be rewriten as

—-— - ' * - . —-——
Dr(kij) = T,BB exp{JZNkij (r-ry)l.

It follows that the point target vector is

X(t) = T(6) ~EFy. (2.3.12)

: For the same reason as in the 2-D case, the data are

sampled at t=t;y=iT3+jT,+T as in Eq. (2.2.3). The data

from a point target X can thus be written as

321rkij-xij

v — ' eI
Dr(kij) = TlBB o(xij,kij)e

where ;ij stands for §(tij). If the scattering
35




coefficient o stays constant with aspect change,

If all the assumptions made for the 2-D model holds,

the composite data from the 3-D object is

_ J.ﬂ _ Jzniij.xij
— [] pd
D(kij)—-BB J U(Xij)e dxij (2.3.13)
Target
voljye
Let ' o — —
2 (X) A $j;(§)e32"k.x ax
= 3-D Inverse F.T. of o(X).
' Then

D(Eij) = BB'Z(kij) .

Again as with the 2-D case, D(E&j) can be interpreted as
the 3-D spatial frequency spectrum of the target

scattering coefficient.

An important result of Eqg. (2.3.13) is that the
Fourier transform data in the k space of the scatterinq
coefficient function for one signature (say the ith
signature which corresponds to the ith burst) coincides in
direction with the actual physical aspect angle direction
of the object. Oné can now directly associate the aspect
angle of the object with the angular dimension of the
Inverse F.T. data in k . space. 1In practice because the

"available signal frequency is limited in the 1lower end

)

fmax

36
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!1imited by technology, the available F.T. data is
contained in between two concentric spheres. This is

illustrated clearly in Fig. 2.3.2,

In the 2-D model of section 2.2, the target is
assumed to be rotating on a flat platform (say (xl,xz)
plane) with rotation vector w in the x, direction.
Because the incident radar wave is parallel to this plane,
one should get the Inverse F.T. data within an annula
ring on the (xl,xz) plane as shown in Fig. 2.3.2.

However, if the rotation platform is not rotating in the

same X4 direction at all points in time, the scattered

data will not all lie on the (x;,%x,) plane. This is
expected to occur for aircraft, which at any instant in
time will have pitch, yaw and roll besides the rotation
effect due to translation. A similar situation occurs for
seaborne targets in which one has again the roll, pitch
and yaw motion besides the rotation effect due to
translation. The major difference between an airborne
target and a seaborne target is that for most caées the

long-term translational - rotation effect would be the

 predominant rotational motion of an aircraft; meanwhile, it
is the shorter term roll, pitch and yaw that would be
. predominant for a ship target, especially in high sea

states.

Now we have a compact model in which all kinds of
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wave .
vector =

Radar k
antenna \x\——r-
——-Q//;///
o
Figure 2.3.1. 3-D radar target model for Bojarski's
identity.
*3

3-D solid sphere

]

desired data

in 2-D model
\
max
actual data min
due to target -~_____—”//
roll, pitch, and yaW.§________,4”/
. xl
Figure 2.3.2. 3-D data in Fourier domain showing data
confined in concentric spheres of radii kmin and
(Note that the deviation of the F.T.

d33 from the planar annula ring due to target
rotation vector changes.)
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[rotational motion with respect to the LOS can be

completely accounted for in Fig. 2.3.2., One should keep
in mind that this is a direct result of the fact that the
propagation vector (k) direction coincides in direction

with the 1Inverse F.T. vector (p) in the data. An

. important point here is to realize that whatever the

absolute rotation rate vector © is in the absolute fixed
coordinates, only the components of @ that are
perpendicular to the LOS contribute to the imaging
process. Therefore, where the data lie in the 3-D sphere
depends only on the aspect angle of the target with
respect to the LOS. The component of © that is normal to
the LOS determines only the scale along the aspect angle.

This is obviousﬁfrom Fig,‘2.3.2.
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Chapter 3

POINT SPREAD FUNCTION, SYSTEM RESOLUTION

3.1 spatial Frequency Units

2f

of —L for the

In Eq. (2.1.5) kj was used instead p

reason of simpler notation. It became clear with this
substitution that for a given burst (say the ith burst) ,
the measured data given by Eg. (2.1.5) was the spectral
signature of a point object. That is, if the target
reflectivity and ranges were constant, the data

corresponding to signal frequency fj was a measure of the

k;jl spatial frequency component of the point object. By

incorporating the assumptions made in secton 2.2, it was

further concluded that the radar data D(i,j) represented

t ']
along the direction of aspect angle 84 the kjh spat;al

frequency component of the target reflectivity function.
This notion was easily extended to the three dimensional

model in which the spatial frequency (kj,ei) was replaced

"I by a vector kij. kj is therefore a more useful notation

when it comes to relating the radar data with the target
th
K
. spatial frequency component of the target by using a

. reflectivity function. One can now nmeasure the
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|
i carrier frequency fj such that

2f . 2
ky = — =5
c ]

where Aj is the carrier wavelength.

Justification for using spatial units can also be
found in SAR. For one thing, equations in SAR have been
: derived in a variety of ways by many authors. In almost
all of the derivations, the time dimension has been an
essential part of the formulae being derived, and ‘the
meaning of the formula sometimes becomes obscured in the
many factors involved in it. Yet, in almost all the
applications for which SAR was designed, the spatial

distribution of the object is the central objective. It

: seems reasonable, therefore, to put the egquations in
, spatial units rather than in temporal units. Of course,
when one is concerned with implementation then temporal
units must be taken in consideration. Another reason for
preferring. spatial units is the fact that the echo phase
is determined by the relative spatial distribution of

scattering centers.

The first basic equation relating temporal units to

spatial units is

t
X = 5 th' (3-1-1)
0
where x is the spatial distance of an object at instant t,
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!travelling with velocity v along a linear path.

Next, the Doppler frequency which ié usually
considered in temporal units, can be expressed in spatial
junits. Consider for example the strip mode SAR geometry
in Fig. 3.1.1 where the aircraft is flying a straight line
along the x-axis with its antenna looking down and forward
at squint angle es. Consider a point target C. The
aircraft is at point A at time t=0, with slant range RO'
B is the aircraft position at any other instant t.

Suppose the transmitter temporal frequency is o
i
. (wavelength 1;), then the phase of the echo from point C

|
will be

$(t) = 2nf

2R(t)
0 c

After rearrangement,

¢(t) = 2mk,R(t) (3.1.2)

where k, is the spatial frequency associated with fj given

by the conversion equation

>

k

2f0
0 _c—' . (3.1.3)

Hence, phases can be written in terms of spatial frequency
and spatial distance wusing the conversion Eg. (3.1.3).
'This representation is also meaningful from the optical
I

signal processing point of view. If a monochromatic
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aircraft velocity
aircraft position at
C time t=0

B <

Ro= initial slant range
at time t=0 ,

h = aircraft altitude

@ = squint angle

8  (down looking)

Figure 3.1.1. Doppler geometry for Strip mode SAR.
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source at C illuminates the x-axis of Fig. 3.1.1 with
‘wavelength c/2f0, the phase of the illumination at any
point along the x-axis trajectory relative to the phase at
some fixed point on the x-axis (say point A) will be
¢(x) = 2mkyR(x). The instantaneous spatial frequency at
any point x due to the phase ¢(x) measured along the
x-axis will in fact be -~ 4¢(x) =xdR(X) ., However, the

2T  dx 0 dx
instantaneous Doppler time frequency is

1 det) _ o, dR(E) _ |, dR(x)]v.

21 dt 0 dt 0 dx

Therefore the instantaneous time Doppler f£frequency at
point x is related to the spatial frequency of the
! i1lumination on the x-axis by the velocity v. For this
reason, the spatial frequency can be treated as the
| spatial counterpart of the instantaneous Doppler time
frequency with the velocity v as the conversion factor.

We will call it the Spatial Doppler frequency.

For another example let us look at the strip mode SAR

again as in Fig. 3.1.1. Using the cosine rule on triangle

ABC

2
R(t) = \/Ro + (vt)2 - 2Rgvtcos (6) . (3.1.4)

Expanding in Taylor's series, then

4
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vtcosH 2 (3.1.5)
0 R 2R>
o 0
{ if one keeps only terms  of 2nd order in the Taylor's
|
i Series expansion. Substituting Eq. 3.1.4) into
|
qu 3.102)'
vtcosb 2
o(t) = 2mk.R |1- ——S 4+ L (vt (3.1.6)
00 R 2 R2
0 0
With Eq. (3.1.1)
) r xcosb ;.2
blx) = 2mkoR, Ll‘ = 2= (3.1.7)
R R
0 0
' If the Doppler frequency is defined as
A _1 4¢
.1.8)
then Eq. (3.1.6) leads to 5
£ v 2vfocoses . 2v fot
D L]
c c
| If the spatial Doppler frequency is defined as
k _A_i_ d¢ (x)
D 21  dx
then Eq. (3.1.7) leads to
r o X .1.
kD = kocoses + kO(RO) (3.1.9)
. One now has the Doppler frequency in a very compact form.
{
! kD is the rate of change of echo phase per unit distance
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[travelled by the aircraft. This is the actual fundamental
doppler which determines the systém's imaging ability.
i Besides, kD is a function of the distance x of the
aircraft at point B irrespective of what perturbations
;might exist on the velocity v. Notice also that the first
Doppler term in Eq. (3.1.9) 1is due to the relative
translational velocity (along the line of sight) between

points C and A. This component is called the

translational Doppler (kt). It is given here in spatial
frequency units, i.e.

ke = -kocoses.

The translational Doppler is zero for the antenna beam
which is directed broadside at es = 900. For more complex
.trajectofies of the aircraft, k, is more complicated with
the squint 85 being a function of time. This is related

to the problem of motion compensation.,

The second term ko(ﬁg) is called the differential
Doppler (kd) in spatial frequency units. The differential
Doppler is solely responsible for the high resolution
imaging property of synthetic aperture radar»systems.

This is in fact true for all modes of SAR.

Finally if one compares Egs. (3.1.8) and (3.1.9), the

spatial frequency kp can be converted readily to time
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frequency fD by
£ = vk (3.1.10)

3.2 Point Spread Function in the Continuous Domain

As noted earlier in section 2.3, the Fourier
transform (F.T.) data was restricted to two concentric

spheres. For the two dimensional model the data was

2f .
restricted to an annula ring of radii —==% =k . and
2f c min
max _ . )
s - kmai' If the data were available for all

frequencies and aspect angle, the target <can be

reconstructed by taking the F.T. of the data.

Since the data represents the 2-D F.T. of the object

in the 2-D model, and since the object can be

rreconstructed by taking another 2-D F.T. on the data, the
%entire radar system and the reconstruction processor can
!be lumped together and viewed as an imaging system. As
such, the annula ring structure in the F.T. data can be
viewed as the pupil function of the imaging system. The
F.T. of this pupil function then gives the point spread
: function (henceforth abbreviated PSF)or impulse response

of the imaging system.

Suppose there is no perturbation on the rotation
vector of the target. The annula ring pupil function can

be written as an isotropic function as follows.
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G(k) = c1rc(k/kmax)-c1rg(k/kmin) (3.2.1)
where 1 leil
circ(x) =
0 otherwise

. Polar coordinates have been used for convenience. The PSF

is thus

glp) B{G (k) }

Jl(zﬂkmaxp)

X s 51 PmkginP)(3.2.2)
max min

P P

I

where B{+} indicates Fourier Bessel transform,
p = radial polar coordinate in the spatial domain,

Jl(-)=-Bessel Function of the 1lst kind, order 1.

The PSF of the radar imaging system is plotted in
Fig. 3.2.1. It 1is difficult to predict the behavior of
the PSF from Eq. (3.2.2). Instead, some approximate forms

will be studied.

PSF for Small Values of »p

From the relation

X
1
0

the PSF can be written as
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Figure 3.2.1. Point spread function of the radar imaging
Systelno
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2mpk
1 max
glp) = — ET,(E)AE.
2mp 0
27pk_ .
min
' Suppose the "narrow" band assumption holds, in which
k0 >> kB
here k, = i(k +k )
w 0  2''min ‘max
k, = k -k . .
B max min
Then
2mpk
k max
g(p) » 0 s J_(E)dE (3.2.4)
() 0
| 21rpkmin
. The integration interval is linearly proportional to P .
EHence for small p(<<i}), JO(E) is essentially constant.
B
Thus
n
g(p) = 21rkokBJo(21rkop) (3.2.5)
This approximate PSF is plotted in Fig. 3.2.2a with
kB = 0.1k00
PSF for Large Values of p
For large p one can use the following approximation
[page 401,38].
=4/ < - T _nm
J (&) _vﬂ?g cos (&~ 5) (3.2.6)
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B 0.38/k

£xact PSF

NAAARAA
YV VY VYV VY Y

D>
>
=
=
—
—
I—

-
- al.4/k, Approximate PSF -
B 1 Zikoky T (ank,p) ]
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-6.5kg™ 0 ' 6.5k

Figure 3.2.2. Approximate PSF of the MFS radar imaging system.
(a)For small values of p and the Rayleigh resolution.
(b)For large values of O.
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l
Substituting Eq. (3.2.6) into Eg. (3.2.4) and using the

narrowband assumption again, one gets by integration

N “Zké/z ~3/2 kg ‘
g(p)=\———— Jp sin(21rp§ )sin(2Trpk0) (3.2.7)
- .

The closeness of these approximations is evident from
Figs. 3.2.2a,b. With k,=10k;, the approximation for small

o in Eq. (3.2.5) is accurate up to about 1.4%x7%

0" For

large pr

lg (o) |= p~3/2

The beating phenomenon for large p which is predicted in

Eq. (3.2.7) is also evident in Fig. 3.2.2b.

Even though kB<< k0 for the current system, in
practice the temporal frequency corresponding to kB can be

very wide in bandwidth, for example as high as 1 GHz.

3.3 Point Spread Function from a Different Point of View

The point spfead function in the previous section was
derived as an optical system, Here we will try to
understand the system in a different way which will allow
us to analyze the system more as a matched filtering

problem,

Suppose point object Py is located at polar
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| coordinates (pO,O) with constant reflectivity 0o From
| .
'Eq. (2.2.6) the recorded data is proportional to

j2nkpocose

G(6,k) = o,.e

0

where (6,k) are polar coordinates in the F.T. domain.

Let the data G be processed to be resolved in range
first. From the expression above for G(6,k), one can see
that for each point scatter P at distance g along the LOS

from the center of rotation, a linear phase exp{j2mkt}

;will be introduced. Therefore in order to identify a
;point scatterer at range &, G(6,k) can be passed through a
f'matched filter corresponding to the linear phase returns
from that point scatterer, The weighting (impulse
response) for this matched filter will be [ed2Tk2;*

over all possible values of k.

Thus the matched filter output is

g(6,0) = [a(e,Ke” P2 gy,

This is the one -dimensional Fourier transform of the
collected data. Therefore, Fourier transforming the data
also corresponds to matched filtering the data to get

' range compression.

Suppose one has a full range of continuous data for

i all frequencies between kp;, and k_ . . and for all aspect

n X
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angles 6e¢(0,2n) . Taking the l-dimensional F.T. on G

with respect to k will lead to

(1/2ky o
g, 08  e(e,k)e” PP Ry
- =1/2k
Bj - 3.3.1
. _ cosoeJZHko[pocose 2] ( )
| where )
' So= 51nc[kB(2-p0cose)]

sinc(x)= sin(mx)/mx

Now the data is resolved in range and the function g(6,%)
‘is called the range compressed data. It is obvious from
Eq. (3.3.1) that g(6,%) peeaks at 2= pocose. This means
‘that the matched filter response peaks only when the

'matched filter parameter £ matches with the instantaneous

range p,cos .

After range compression, the phase of the data g(6,%)

is proportional to only k0 and the range differential

fpocose -2between the point object and the point center O.
!The magnitude of the data is proportional to so(z) which
peaks at 2 =pocose. However, range compressed data
having the same characteristics as g(6,%) can also be

obtained from a completely different radar system with a

completely different signal format. Thus, if the target

is rotating slowly enough so that it satisfies the
iconditions discussed in chapter 2, one has the option of
?choosing other radar systems to achieve the same imaging
%property. For example a 1linear FM signal with signal-
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' bandwidth J%kB and mean frequency %%ko will give

essentially the same characteristics as the multifrequency

bursts.

In the 6 dimension, one can again wuse the matched
' filtering concept to reconstruct the point image of the

point scatterer P Since the range compressed data from

0.
Py is proportional to

j2nk0[pocose-£]
sinc[kB(z-pocose)]e ’

ideally the matched filter is two dimensional.

In the 6 dimension, one can again use the matched
‘ filter concept to reconstruct the point image of the point
scatterer Pg. Since the range compressed data from Po is

' proportional to

Jznko(pocose-z)
sinc[kB(z-pocose)]e ’

: ideally the matched filter is two dimensional in nature.

The response of the filter matched to P({p,p) is

a 2m ﬁmpkopcos(é-¢)

o(P)= -1—5 j g(e,i)sinc kB[!L-pcos(G-fb)]e deds.
0“0

27

In practice, this implies that long processing time will

be needed to implement the filter. Instead, an

approximate filter impulse response function will be used

as follows:
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-J2mk
sinc kB(l—pcos(6-¢))6(2-pcos(6-¢)e

oPcos (6-9¢)

;Using the expression for g(6,%) in Eq. (3.3.1) the filter

!respOnse will be
a2m

o(P)= é%![ g(e,Z)sinc[kB(z—pcos(6-¢))]6(2—pcos(9-¢»
0J0

—jZWkopcos(9—¢)
e aeds

27

[0}

- _0 : —hY -

= > S sinc kB(pcos(e ¢) pocos(e ¢0))
0 jZNkB[pocose-pcos(6-¢)]

e dae,

where the & dependent phase term is dropped because only
.the magnitude of the matched filter response will be of
interest here. The above expression for the matched
filter can be observed as being a contour integration
alohg the contour ‘

L = pcos(6-¢).

By feferring to Fig. 3.3.1 and using the relation

2 2
' = —
p' = py + P -2p,pcosd
o' = tan_l (——%53%%$—),the following simplification can be
p0 pc made
Rcos -pcos (6-¢) = p'cos(6+¢'). Therefore
! % LI -jZHkop'cos(e+¢')
L, o(P) = T3 sinclk_ p'cos(6+¢')]e ae
(| B
0
But p' is the distance POP between the target points,

(6+¢') 1is the angle between P.P and the LOS. .Therefore

0
p'cos(6+¢') is the projected length of POP on the LOS. We
can, for convenience, make a change in variable 8'=0+¢' |

: Then the filte; response at point P is
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Projected distance of Py
on the LOS

Center of
rotation

Figure 3.3.1. Projected distance onto the LOS
' of point P is pcos(€-¢), and
of point Po is.pocose.
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o(P) = de'

0 (3.3.2)

% 2% ~j2nkop'cose'
e 1 1
5 51nc[kBp cosfle

' This means that any target point at distance p' away from
3 P0 will have a non-zero contribution to the reconstruction

|
iof Py proportional to o (P). o(P)/o0 is by definition the
|
. point spread function of the imaging system. The PSF in

expression (3.3.2) can be rewritten as

2m ok o +1/2ky _
- v ]
(D')= C(P) - ls J e ,_727Tkp cosb

0

dkdase' (3.3.3)
k0-1/2kB

-which is exactly the same as Eq. (3.2.2).

Even though we arrive at the same point spread

I
| function from both the optical system view point and the

!matched filter point of view, the latter approach gives us
I
| a more intimate wunderstanding of the reconstruction
|

Eprocess. In faét it suggests a method to reconstruct the

‘ target, which is more suitable on a digital computer. Its
|

' further importance will also be obvious when we come to

the problem of sampling requirements.,

3.4 Resolution of the Imaging System

The resolution obtainable from an annula pupil

function will be of interest here. Just as in the problem

|of defining the bandwidth or the time width of one
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ydimensional signals, we are faced with the problem of
!

I : .

' defining the resolution of our system. There are two ways

jof looking at the resolution of the system. One is the

{ usual resolution criterion used in optics. The other is
|

| from the signal bandwidth approach.

Resolution From the Point Spread Function

From section 3.2 we have seen that for small values
of p, the PSF can be approximated by J0(2ukop). With

: Rayleigh's criterion for resolution,

J.(27k.p) = 0
0 0 p=6

iwhere $ is the Raleigh resolution. Therefore

52nk06 = 2.4048 and the Rayleigh resolution is

§ = 0—,-359—21 (3.4.1)
0

i

‘This resolution limit is good at least for kB/k0 ratios

;less than 0.1. The surprising result here is that the
?bandwidth becomes insignificant with this resolution
limit. To show the importance of k,; in the sharpening of
it the point spread function and therefore the sharpening of

the resolution limit, we will compare two PSF's, one with

i kg= 10kp and the other with kj =% kg - The second case
represents a disc pupil function circ(k/kg ). The

.magnitudes of the PSF's are shown in Fig. 3.4.1. The
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Figuré 3.4.1. Comparison of point spread functions for the

annula ring (k°= 1(.)kB) and t:.he disk (k°= %kB)

pupil” functions.
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Rayleigh resolution of the disc pupil function is 0.61/kB
| compared to 0.38/k, for the annula ‘pupil function. The
. improvement in resolution from the disc pupil to the

annula pupil is
0.61/kB

n
= 16 fold.
0.387k0

Unfortunately, we are getting this resolution
improvement by paying a price at the side lobes. The
first sidelobe for ring pupil PSF is approximately
~4dB (0.4) while that for the disc pupil PSF is

approximately -8.74B (0.135).

Comparing with the PSF of a rectangular pupil
function rect(h/ZkB ) the resolution improvement is even
more dramatic, but again with a worse sidelobe level. The
resolution and sidelobe levels for the three systems are

summarized below:

TABLE 3.4.1

RESOLUTION LIMIT AND -SIDELOBE LEVELS OF
’ DIFFERENT PSF'S.

Pupil Function Resolution Sidelobe Level
| Annula Ring (k0=10kB) 0.38/k0 -4.0dB
Disc (radius kB) 0.61/}{B -8.7dB
. 1 Square (length ZkB) 0.5 /kB -13.44B

- Even though kg does not show up in the expression

for the resolution 1limit of the annula pupil PSF, kp
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r
: affects the level of the sidelobes. The effect however,

is not significant. The table below shows the change in

t

!
' sidelobe level with respect to kB .

TABLE 3.4,2

VARIATION OF SIDELOBE LEVEL WITH BANDWIDTH

k

B First Sidelobe level
0.1 k0 _ -4,01 dB
0.2 k0 -4.05 4B
0.4 ko ~4.37 dB

3.5 Resolution From the Doppler Bandwidth of the Signal

The resolution of the system can also be obtained

from the signal bandwidth of the radar returns. For any

| constant aspect angle 6 , let us call the projection space
! .
data (range compressed data) g(6,2) a range profile. A

!
{

Erange profile is therefore the projection of the target
l
. onto the LOS and then convolved with the sinc(f) function
|
i due to the narrowband property. From Eq. (3.3.1), the

. projection of a point target at (pO,O) is

+J2mk cosf

(8,2)=0.sinclk_(2-p,cosf)]e 00

(3.5.1)

This can be rewritten as

- J2mk (1-cos9)

21k4P g oo

g(e,2)=oosinc[kB(£—p0cose)]e e
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As in PFig. 3.5.1 the phase term in the last
'exponential 1is the phase due to the distance of the point
target from the initial point at 6 = 0. The relative
phase of the signal at aspe;t angle 6 is

¢ = 2ﬂkopo(l—cose)
The incremental phase change when the aspect angle makes

an incremental change A6 is

N

Ag= %% AB = 27k sinf A6

00
This is the phase change along the contour £ =_p0cos .
Within this angular increment, the point target traverses

an arc of length DOAG. The spatial Doppler frequency of

the signal can be defined as

change in signal phase

k

>

1
d am distance travelled by point target

AB

= 2im 57—
ZWABpO

A6-0

Thus k

- : . 3.5.2
q = kosin® | ( .2)

The maximuh Doppler return therefore occurs at 8= m/2 and
minimum occurs at & = 3m/2., 1In particular,

k = k

dlmax 0

= -k, .
d|min 0
The Doppler bandwidth kdB= 2kg. It is well known that the
inverse bandwidth 1is a good measure of the resolution

obtained from a signal. The resolution of target points
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- Radar

1
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D
S
B

L\

<— Po (1-cos6)

Phase recorded at aspect angle is

2po(1—cose)

¢ =« 21f ————
o c

Zﬂkbpo(l-cose).
Figure 3.5.1. Figure showing the distance of Po

along the LOS (range) from the
initial point at aspect 6=0.
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[

|
'

along a circular arc can therefore be taken as

0.5 '
5, = %2 (3.5.3)

In other words, any two points sitting on a same circle of
radius Po can be resolved if their arc distance is greater
than §A’ Since GA is independent of the radius Pg » the
resolvable distance §, (which we will call arc resolution

for now) is uniform over the entire target.

Since the pupil function is isotropic, the PSF must
also be isotropic. Thus, the above arc resolution limit

is also a resolution limit in radial distance. The two

. dimensional resolution can therefore be closely

represented by GA.,

The interesting result here is that even though a
completely different approach 1is wused, the resolution

limit from both the optical system and the bandwidth

rconcept agreed very closely. More importantly, both
iapproaches come to the same conclusion that the bandwidth

K (in radial frequency) does not play a dominant role in

B
determining the resolution. This conclusion seems

contrary to the fact that for each 6, the projection data

(range profile) resolution is determined by the inverse

‘bandwidth (k;I) . Because of this we should clarify the

‘relationships between resolution and ko and ky. If we
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;
iconsider only one projection data (range profile) from a
{given aspect angle, the resolution obtainable is only

'along the 1line of sight and it is proportional to kgl .

!

!
|On the other hand, if we consider the projection data over

the complete set [0,27] of aspect angles , the resolution
is proportional to k?} . Between the two extremes, both
ko and kB are expected to play an important role. This
will not be pursued further here until we come to consider
. the distortion (aberration) effects in practical

| situations.
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Chapter 4

DISCRETE PSF AND SAMPLING REQUIREMENTS

4.1 Discrete PSF

The polar coordinate Fourier transform data in the
MFS radar system is available only in discrete frequency
steps. The radial frequency sampling interval is
Ak = 2Af/c. There the data is discretized radially. 1In
the azimuth direction, data are sampled only over
increments of aspect angle Af = wT3 . Because of this
i radial and angular sampling, the PSF 1is no longer

available in a closed form as in Eq. (3.2.2).

In Chapter 2, it was shown that the target
- reflectivity function ¢ can be computed by taking the
iInverse F.T. on the radar data. In polar coordinates,

‘let g(¢m,2n) be the computed target reflectivity function.

Then
%mm 27 .
, ko aznkﬁncos(e—dam) .
9@ 20y — G(,k)e dkde (4.1.1)
amly Jo
min

' In order to compute the PSF, let G(g,k) be the data from a
i

gpoint target at (p= 0, ¢ = 0); thus
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G(0,k) = ooé(e-ei)d(krkj)
where §(x) is the usual Dirac delta function,
kj= kmj_n+ JAk for J=0,l,2,...,K"l
0.= 1iA6 for i=0,1,2,...,N-1
Ak= 2Af/c (spatial frequency increments

A06= aspect angle increment.

Then ¢(¢,%,) can be written as the following linear

approximation

0
—
=z

-1

9(¢mnln) ;‘__’ NK 00 e
3 i

Janjzncos(1A9—¢n)

]
o
I
(=]

Here one is only interested in values of gL, over a

Ig'n )
discrete angular array of ﬂ“= ml6, m=0,1,...,N-1. The

above equation becomes

kokpg K-l N-1 d2mk 8, cos (i-m) 40
g(m,2 )% % 9, Z e . (4.1.2)
j=0 i=0

where g(m,z ) now denotes g(¢ 2 ).
Integratlng over k flrst the expression can be

simplified to

kokB N-1 sin (mKL_Akcos (i-m)A8)
glm, ). g % SIn(7L_ Kcos (i-m)bm)
i=0
JZﬂkolncos(l—m)Am
e
If one discretizes L by setting R'n = sn/kB where s is a

. n
scaling factor k, = k,/kg, then o




sin(msncos (i-m)A@)

0'B
g(m,n) = — 0
NE 70 &4 sin(nZR cos (i-m)46)
| (4.1.3)
j2nkosncos(i-m)Am
(Y= ’

: Where g(m,n) denotes g(¢m,2n). The exact equality is used
in Eq. (4.1.3) because g(m,n) is the linear approximation

of glb,,%) .

Statement: g(m,n) = g(0,n) ¥m,n

i.e. g(m,n) = g(n) is isotropic

Proof:
k-1 N- l

_ _0B
g(m,n) = x5 9% ©
j=0 i=0

gZﬂk '3 cos(lvm)Ae

By changing variable, i' =(i-m)

-1  N-m-1

g(m,n)= OkB .CZ Z Z j21rk [} cos(J. A0)

NK j=0Li'=-m i'=Q

Note that NA® = 2m; the cyclic property of cos(i'l8) gives
cos (-mpg) =cos ( (N-m) Am)

Hence
"K-1 N-1 N-m-~1

k. .k jZﬁk.Rncos(i’Ae)
9"“'“"-@—%2 PIEID DN

j=1 Li'=N-M i'=0

= g(0,n)
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We conclude from the above statement that the
discrete point spread function is isotropic if we
'discretize the angle ¢m with the same increment Ap and
!starting from the same initial angle. Because of this,
the PSF in Eq. (4.1.3) will be plotted in one dimension
only, viz., in the radial dimension n. The figures in
Fig. 4.1.1 are plots of g(0,n) versus n for kg = 10kg .
Figure 4.l1.la is plotted for N = 256, K = 40; Fig. 4.1.1lb

is plotted for N = 512, K = 40; Fig. 4.1.1c is plotted for

N = 512, K = 20 except for a change in scale on n.

‘The most salient difference between the discrete

pupil PSF and the continuous pupil PSF is in the presence

of "periodic" <clutters for the discrete case. The

function g(n) 1is "periodic" in the sense that the

relatively significant values of the function occur at
periodic intervals. Moreover, the period P of such

repetitive structures is approximtely

N k-—]_

P = —
27 O

(4.1.4)

The empirical relation in Eq. (4.1.4) also indicates that
| the period is independent of the range sampling rate (K).
By doubling N from 256 to 512 while keeping K constant at
40, the "period" of the clutters increases twofold as
_shown in Figs. 4.1.l1a and b. A different kind of clutter

that does not obey Eq. (4.1.4) appears beyond p = 20/kB
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[ . .
| for K = 20, N = 512, This fluctuating clutter seems to be

a result of K value because it shifts with K. Another
ipoint of interest is that while the peak of - the clutter
decreases monotonically with its order, the "width"
increases. In the actual 2-dimensional plots for the PSF,
these clutter will show up as concentric annula rings with

the radii being approximately jN/27m (in Eg' units).

Figureé 4.1.1a,b,c.also show thaf the PSF g(n) is
pretty "badly pghaved“ beyond the first clutter. It also
seems like that the clutters are additive in nature.
Therefore 1if the PSF for N = 512 is subtracted from the
'PSF for N = 256 with K = 40 in both cases, the first
cluttef should be pretty wéll isolated. Figure 4.1.2

shows the difference between the two PSF's. Surprizingly

beéause it looks much more 1like some "well behaved®
function. Note that p ranges from 0 to 10/kB in this
figure. The peak of the first clutter ~occurs at about
P = %%§€3'40.744k51. As a further illustration, g(n) is
plottéd for the special case in which there is only one
'range sample, 1i.e. K = 1. 1In this case the PSF for the

continuous pupil becomes J (an n) . This is shown in
0 0

at around P = 40.744k81 . This further supports the

iconjecture that it is caused by azimuth (angle)
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enough, the first clutter does appear to be isolated ’

Fig. 4.1.3a. Again notice that the first clutter appears
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Figure 4.1.1. PSF of discrete pupil of the imaging system.
(K is the number of radial samples;
N is the number of angular samples.)
(a) k=40, N=256
(b) K=40, N=512
(c) K=20, N=512
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Figure 4.1.1 continued

73




B ANGLE SAMPLING N=512

— RADIAL SAMPLING K=20 A
: ko = 10kB :
b -
B (c) T

Figure 4.1.1 continued
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PSFCN=256,K=40) ~ PSF H=512,K=40)

1T T71 7

LI

Figure 4.1.2. Difference of the PSF in Fig. 4.l.la
and the PSF in Fig. 4.1.1b.
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Figure 4.1.3. PSF for the discrete pupil N=256, K=1.
(a) The PSF. (b) The isolated first and second
order clutter term computed from taking the
difference of two PSF's.
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{
iundersampling. In Fig. 4.1.3b the 1lst and 2nd clutter are
|

obtained as before by taking the difference of two PSF's.

First clutter el(n) =V9(n) -g(n) (4.1.5)

|N=256 |N=512

~-g (n) (4.1.6)

Second clutter e,(n) = g(n)

|N=512 |N=1024
Again one sees that the clutter terms are some well
behaved functions. These clues provide us with some

interesting guides intosolving the problem analytically.

4.2 Sampling Requirements

We have found some clues in the previous section on
the effect of undersampling in both azimuth and rahge
dimensions of the PSF. One obvious conclusion from these
is that the sampling rates are extremely importaﬁt
. parameters for the design of a radar imaging system. Here
we will try to solve the problem of defining what is
considered sufficient sampling and what are the barest
necessary sampling rates so that the data can still be
used to reconstruct the target. The importance of this
problem is also underscored by the fact that the

narrowband assumption can be relaxed into a full disc

plane and thereby give a concrete understanding to the
.polar coordinate sampling requirements in tomographic.

systems.
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The key idea here is to 1-D Fourier transform the
data into range profiles which is also called projection
data, and then carry out analysis in that domain. Another
important concept that will be utilized here is the

degrees of freedom (DOF) concept [15]}.
(A) Range Sampling - Number of Frequency Steps (K)

Since the DFT in the radial frequency dimension is

carried out to convert the data into range profiles (in so

called "projection space"), the DFT property gives the
|
;unambiguous range
1 _ K
Ak kB
For sufficient sampling in radial (range) dimension, the

for K>1.

following criterion must be met.

Criterion 1l: The projection data must unambiguously cover

'the whole target of maximum extent 2a, i.e.,

%— 2 2a.
"B

Hence

K 2> 2akB

(B) Azimuth Sampling - Aspect Angle Sample (N)

Depending on which aspect of the imaging system we
are emphasizing on, the sampling rate in this dimension is
icalled different names. For example, the azimuth sampling

rate is represented by the burst rate when the transmitted

signal format is emphasized.
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In section 3.5, it was shown that the maximum Doppler

bandwidth

kool fa| _a
dB -~ 2ma |d6 |max 46

minJ= 2k0'

The maximum change in phase from one range profile to the

next range profile (or called signature) is then

n 99

|A¢maxl = db maxAe = 21TakOAe' (4.2.1)

For sufficient sampling in the angular (azimuth) dimension

the following criterion must be met.

Criterion 2: The maximum phase change between two
consecutive range profiles (signatures) must be less than

Tr- i.eo'

lAe- l < m.
max| =
Hence
Ul 1
AD < = .
= 2n§k0 2ak0
Since
N = 2w/A9,
N > 4wako.
Therefore
K > 2akg (4.2.2)
N > 4nak0

These are called the sufficient conditions that must be

satisfied so that the target can be resolved to the best

resolution achievable with the system without being
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'plagued by undersampling effects. They also give

parameters with which preprocessors can be designed to

bring down oversampled rates.

Necessary Condition

Very often, Dbecause of practical limitations,
sufficient sampling conditions in Eq. (4.2.2) cannot be
met. In those cases the question that one needs to ask is
what the necessary sampling rate should be if

reconstruction is possible at all.
In general, the maximum unambiguous range is given by
Zp = ]'(_‘ [ V (402-3)

Again in general, from Eq. (3.5.2), it can be derived that

de¢ _ .

6 = 2wak051n6.
With A6= 2m/N,

~ inge. 2T
A |= 2mak sing. - .

Using criterion 2 for |A8|S T,

41rakosin9S L

—x— = L.
Hence

6 < sin”! (4"21‘0)' (4.2.4)
‘Let
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then the above inequality from criterion 2 becomes

o <o . (4.2.6)
= “max ,

Therefore suppose that range sampling is sufficient, then
as long as we do not process the echo signal of a point
target o (pgrdg) for more .than zemax across the zero
Doppler aspect angle, the target reconstruction can be
achieved without azimuth undersampling effects. The =zero
Doppler condition occurs when the aspect angle 6 ==¢0 and
8 =¢0 +7. Moreover, the maximum 6§ aspect angle extent for -
unambiguous Doppler phase is Opay - In order to

unambiguously reconstruct the target, we use the following

| criterion which is also illustrated in Fig. 4.2.1.

Criterion 3: The contour of integration & = acos® for
every target point should pass through the region of .

overlap constrained by these two conditions:

. Pmax
e

A A

max.

These criteria can also be rewritten as

v

emax eAz (4.2.7)

where
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Omaxd NN

N
T — %
//%W £ = a cos(9-9,)

AN
NS

] D

7
//W//\
7

l

| Omax % N

¥

bms,

Figure 4.2.1. & = a cos(0 - ¢,) is the contour of the signal
, from a point target o(a,q)o) projected onto the
line-of-sight as it rotates.
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) =
Az = COS (P rax’?)
= cos ! (x/2ak}).
On simplification , .
2 2
N K
(mg) * (Ta}?;) z L (4.2.8)

. which is the necessary condition
|
. Table 4.2.1 Summary of Sampling Requirements in Polar

Coordinates :
NECESSARY CONDITION T':-— 2+(|':—)2 > 1
' S S
> =
SUFFICIENT CONDITION N 2Ny = dmakg
K=K, = 2aky

! The necessary and sufficient conditions can easily be
| visualized if we plot the constraints in two dimensions.
This is illustrated in Fig. 4.2.2. Note that Eg. (4.2.8)

is in general an ellipse with major. (minor) axis Ng or Kg.

4.3 Sampling Requirements From the DOF Point of View

(A) Range Sampling

The DOF concept in one dimension is given by the
"time bandwidth product." Hence, for a target of maximum

‘extent 2a and bandwidth : kg for the transmitted signal,
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K [Oversampled]

Target can be resolved
with maximum (best)
resolution possible.

(N, Kg)

Target can be partially
resolved by coherent
processing.

[Undersampled]
Target cannot be
resolved at all by
coherent processing.
coherent p gﬁ\

e

Figure 4.2.2. Regions of (N,K) which illustrate the
sampling requirements. N, K are
integers greater than O.
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i the "time bandwidth product®

(maximum spatial extent) (signal bandwidth)

]

TBWP

]

2akB

KS .

: Since the TBWP represents the maximum number of samples of
data that needs to be processed to give one reconstruction
; sample point, it also represents a sufficient sampling
condition, Moreover, this number is identical to the

range sampling requirement found from a slightly different

point of view.
' (B) Azimuth Sampling

The degrees-of-freedom (DOF) is defined as [15] the
product .of the target area with the Fourier domain pupil
area. This numbef (an integer) represents the total
number of linearly independent samples that can pass
through the imaging system and therefore only DOF number
:0of samples need be collected to sufficiently reconstruct

the target. For the annula ring pupil,

Target area = waz

Pupil area = 27k k_ .
0 B

Then the DOF of imaging system = (naz)(znkokB )
= 2n2(ak0)(akB ) -
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The azimuth sampling requirement is

_DOF _ 27 (ak,) (akg)

N =
TBWP 2(akB)
= m2ak
Therefore = TaxXg
K = 2akB
2 (4.3.1)
N=mT ak0

for sufficient sampling. Note that with the Doppler

bandwidth approach, the sampling criterion was
(4.3.2)
NK > 8ﬂ(ak0)(akB)
and with the DOF approach it was
NK > 27 (ak,) (akg) (4.3.3)

which are very close in comparison. They are off only by

a factor of 4:5.

4.4 Conclusion

It was shown that the PSF corresponding to the
discretely sampled data in the annula ring pupil function
is different from the ideal PSF corresponding to the
continuously sampled data in the same pupil function. The
difference 1lies in the presence of more or less
periodically recurring so called clutters along the radial

{dimension of the discrete PSF. The seemingly additive
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inature of these clutter functions may provide some clues

to their analytic structure.

Next, it was also shown that by using criteria 1 and

2, the sufficient sampling requirement was
K=K, = 2akB

S
N = NS = 4nak0.
From criterion 3, the necessary sampling requirement was
- 2
ﬁl 2 + éﬁ > 1,
S s/

These sampling conditions were similar to those derived

1from the Degrees of Freedom concept which is a completely

‘different approach.
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Chapter 5

ERRORS IN POLAR COORDINATE SAMPLING

In many of the new imaging systems that are arising,
more and more of these seem to collect their data samples
with a polar coordinate format. Most of these systems
involve obtaining projections of the objéct and
reconstructing the image from these projections. Since
only a finite number of projections can be taken and only
a finite number of samples can be read from each
projection, the polar coordinate sampling format is "built
into" the system. Systems that use polar coordinate
sampling include radio astronomy, electron microscopy,
X-ray tomography, rotationally symmetrical array design,

optical imaging, radar imaging and so on.

The first attempt to estimate the sampling
requirements in polar coordinates appeared in 1967 [5] in
which the maximum linear distance between any two adjacent
. samples in the Fourier transform domain was chosen so that
'its inverse was greater than the maximum diameter of the
object. This intuitively obtained result was also

‘discovered in section 4.1. Smith et al. [33] in 1973
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'computed the Fourier transform of a 2-D Gaussian function
sampled in polar coordinates. It was found that besides
yanother Gaqssian function that was obtained after the
 Fourier transformation, a series of clutter terms

associated with the function also appeared.

The objective of this chapter is to obtain an
analytic expression for the errors or clutters associated
with sampling in polar coordinate format and therefore try

to determine exactly the necessary and sufficient sampling

rate in both azimuth and radial dimensions. Our approach
!is as follows. We will sample a disc and. an annula ring
ipupil in polar coordinates and compute their Fourier
gtransforms which will be called "discrete" point spread
Ifunctions. Since these functions are isotropic, we will
mention the transformation as Fourier  Bessel
transformation. We will apply Poisson's Summation Formula
to compute the discrete point spread function and get an
expression for the difference between the discrete
- transform and continuous transform., This difference is

the error associated with the sampling.

One very significant immediate application of the

iresult is on the estimation of the azimuth and radial

. sampling intervals for X-ray tomographic systems. For

many practical systems, experimentation was the method

|
I
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used to find an "optimum" number of azimuth samples or
projections. Since each projection exposes the patient
'with an extra dose of radiation it is extremely important
to know the minimum number of projections that is needed

to get a reconstruction that is free of sampling errors.

5.1 Poisson's Summation Formula

1. Fourier's Theorem

Let g(x) be a periodic function with period A', with
at most only a finite number of simple discontinuities

(finite steps). Then for any €>0,

o0 _ j2_1'|'
Lim _ g(x+e)+g(x-€) _ z:gne A

e>0 2
. . n=-—o
here .
wher . A %1 nx
9, = & g(x)e dx.
0
This is Fourier's Theorem.
. . NA G nx
2. Now consider the integral f(x)e ax where f(X)
0
also has only a finite number of simple discontinuities.
NA 2T A 24 NA 2n
gz—-—nx K—nx
.l}(x)e dx= +§ +.,..+ (x)e dx
0 0 “A (N-1)A
N-1lp(m+1)A %Enx
= z f(x)e dax
m=1"mA
N-1 rA JA n(t+mA)
- E £ (t+mh) e at

m=0 0

Then
90
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m : (5.1.1)

where fi; (t) = f(mA+t). From Fourler s Theorem,
f_(t+e)+£f_(t-€)

jan J&L ng
pin B m = A:E: j £ (E)e b i
e->0

n=-«

At t = 0, the left hand side is

2im fm(+e)+fm(-s)

s 5 = 5 [£(ma)=f (m+1)A)]

and the right hand side is

J—- n&
L :E:S £ (E)e de.

n_—oo
' Therefore o A o
1 1 :E: . Jz*“id
K[fm+fm+1] Y m(E)e §
n=-»/0

where f represents £.00). Summing up both sides over all

SIE +£ .1 = £ (a)e ,da
m— n——

m+1l
v 1 JzEnE |
- '}E: }E: -I.fm(a)e ae|.

m,

m=0

=-o| m=0 )
Substituting Eq. (5.1.1) into the term in the 'square

brackets,
_ 1
Zz ftfner) = 3 Z
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{On simplification,:

0

if we approximate an integral

0

of samples, the error

infinite
1
en.
end points of the function

consequential.

5.2 Angular Sampling

Consider the discrete Fourier

unit circle discretely sampled in
Let Jj2mwpcosb
f(0) = e for 6=
Let N be an even integer. Since
term is
1 -

'Using Poisson's

discrete F.T.

N-1 NA s -
iy > e + Lig,-
fm = Aj f(x)dx + e *+ 2[f0 fN]
m=0 "0 n=1
where 2 NA o
en = Z-g f(x)cos(z— nx)dx .

"1This is the Poisson's Summation %ﬁfmula [5].

f(x)dx with a linear sum
incurred will be a
sum of error terms, the nth order of which being

The residual error term QTQ)‘fQ only depends on the

Summation Formula

(5.1.2)

It says that

(countably)

and is usually not

Bessel transform of a

azimuth as in Fig. 5.2.1.

%21“ i=0,1,2,...,N-1

fo = £y, the residual
(5.2.1)
in Eq. (5.1.2), the
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Figure 5.2.1.

Angular sampling on a unit circle.
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1 N-1 j2npcos(%£i) 1 2T iompcosd o 1 2
N E ;e = ﬁ e de+ T
i=0 0 n=l "0 5 2.2)
-e32"°°°secos(%ﬂne)de
= Jo(21rp)+§ :en(p)
where n=1
27
1 Jj2mwpcosH
en(p)— =1e cos (nN6)de - (5.2.3)
0
From standard integral tables [ 1],
T j(nNn
1 Jj2mpcosH _ 2
Fj e cos (nN6)dé= JnN(an)e .
0
Because N is even say N = 2N',
2% jan
1 Jj2mpcosH _ © 2
F,] e , cos (nN6)de = J_.(27mp)e .
- .
Hence
_ ~(_q1y0N'!
en(p) = 2(-1) JnN(Zﬂo). (5.2.4)

Note that if 4]|N, (—1)nN is always positive and e, (p)
will always be positive. Finally substituting Eq. (5.2.3)
into Eq. (5.2.2), the discrete Fourier Bessel transform of

a unit circle is

1 N-1 J2ﬂpcos(%£'i) . :f: nN' 2
L E e =J0( Tp)+2 (-1) JnN( "p)’(5o2.5)
i=0 i
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If we call the left-hand side the Discrete Fourier Bessel
transform of a circular ring, then the first term on the

right-hand side is the continuous Fourier Bessel transform

' term while the terms JnN(Zﬂp) in the summation represents

the nth order error due to the discrete approximation.

Properties of J,y(27p)

Since discrete sampling is meaningful only when N is
a large integer, we need only to study the properties of

JnN(ZﬂO) for large orders nN [39].

From the properties of Bessel functions of the first

kind and large orders, Jpnyn(2) is negligibly small compared

< <

' to its first peak for 0 £ z £ nN. The value of the first

peak is also the most dominant one. Besides, over that

. interval J,n(z) is a monotonically non-negative increasing

function. We will therefore only be interested in knowing
where the first peak occurs and how significant it is
compared to the maximum value of Jy(27p) =1 at p = 0.
This will give us a concrete method. to choose N (or ‘the
angular sampling interval %1 ) depending on exactly how

large an error one can tolerate on the discrete

approximation.

95




Referring to G.N. Watson [39], the first peak of

JnN(an) for large N occurs at

0.8086N/3
27

1/3

(N

= 1/3 -
an - G7 )n +0 (nN)

) n+( ) (5.2.6)

where 0(°) represents the order of the series truncation

error., For large n, P, is approximately linearly

rproportional to n which means that the nth order error

. shows up at p#anP where P = N/2w. The series of nth

order error will therefore appear like radially periodic

clutters. In two dimensions, the errors appear as

tcircular artifacts of radius given by Pn for n = 1,2,3...

Table 5.2.1 shows values of P computed for various
values of n for N = 256. A linear approximation using
only the first term in Eq. (5.2.6) is shown with the
i resulting percentage error. Notice that even without the
linear approximation, values of P, still show that P, is
very closely equal to nP but with P & 41,00 The radially
periodic phenomenon and tﬁe value of the "period" P was
already observed in section 4.,1. This observation will be
i brought up again when we consider the PSF of the

narrowband pupil.

The last column of Table 5.2.1 shows values of the

first peak of the nth order error term ep(p) = Jpn(27p).
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For N = 256, the first peak of the first order error
'Iy(27p) is 0.211 (-6.76dB). This-is a significant value
gcompared to JO(O). If ppinis the smallest radius of the
first order error term Jy(27p) that can be tolerated and €
is the largest error allowed within the region of
interest, N must be chosen such that

1
Ig(2mP i) S 5 € (5.2.7)

min
As an illustration, Fig. 5.2.2a shows Jg(2mp) which

is the exact Fourier Bessel transform of a circle of unit

radius in Fig. 5.2.1.

Figure 5.2.2b shows the discrete Fourier Bessel
-1

0]
'where k0 = 1. Figure 5.2.2c shows the exact Fourier

transform as given in Eq. (5.2.5) for P over [0, 200k

Bessel transform and the independent error terms for

n=1,2,3,4.

5.3 Radial Sampling

A. Over Full Disc Pupil Function

Suppose we have a series of K impulsive concentric
circles shown in Fig. 5.3.l1la as pupil function. Let the

pupil function be

K-1
G(k) = Ak Z § (k-JjAk) (5.3.1)
j=0
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(a) The exact transform JO(ZHD) of a unit circle.

Figure 5.2.2. TFourier Bessel transform of a unit circle
and its angular sampling effects.
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(b) The Fourier Bessel transform g(p) of the unit circle
with angular sampling interval 2m/256.

P=200

(c) The exact transform Jo(Zﬂp) and the independent error
terms due to angular sampling.

Figure 5.2.2 continued
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2kg

(2k-1) radial samples

@12  ke2lk-l

Radial sampling index j=0,1,2,..., K-2, K-1.

Figure 5.3.1. Full disc pupil function, discrete
in radial dimension but continuous in

angular dimension.

101




where Ak = kB /K-1. Since this is an isotropic function,

the point spread function is also an isotropic function

-l given by
g(p) = B{G(k)}
= ZnXRG(k)JO(anp)dk
_0
j 5.3.2
211AkZJJO(K 1kgP3)  or ( )
=1
K-1
27
mhk Z ]J|J0(K 1%gP3) (5.3.3)
j=-K+1

Here, two forms of the point spread function have been
presented because depending on the application one or the

other will become more handy to use.

For our purpose, we will use Eq. (5.3.3). Applying
Poisson's Summation Formula from section 5.1 in a slightly
modified version, it can readily be shown that the PSF of

the multi-circle pupil function is

kB © B
g(p):?{ llio(Z"Dk)dk+Z“:E: ‘ |k|J0(2npk)cos(2H§§;nk)dk
; ) . B
—kB n=1 -kB
(5.3.4)

+ 2nkBJ0(2nkBp).
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The First Term

The first term on the right hand side of Eqg. (5.3.4)
tis the Fourier Bessel transform of a disc pupil of radius

kg and is given by

kg
Jl(ZﬂkBp)
T k|3, (2mpk)dk = k, ——— (5.3.5)
0 B 5

_kB

'The first term therefore represents the exact point spread

|

- function of the continuous disc pupil.

The Third Term

The third term represents an additive factor which
modifies the main lobe of the exact point spread function

of the disc pupil.

The Second Term

The second term on the right hand side of Eq. (5.3.4)

represents a series of nth order "radial sampling clutter”

[39]. 1It is
radial ©o
Sampling = Z en(p) (50306)
clutter n=1l
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where

00

en(p)=2i[ [IkIJO(ank)][rect(k/ZkB)]cos(Zn

can be used to study the behavior of e, (p). Let

0

en(p,x)=2ﬂ5 |k|Jo(2npk)cos(2ﬂxk)dk

-0

and define a convolving function

00

J'rect(k/ZkB)cos(ZNXk)dk.

Wl(X),

Let us first find &,(p,X). ~ Equation (5.3.8

simplified as

0
en(p,xY = 4nSkJ0(2npk)cos(2ﬂxk)dk,
0
From standard mathematical tables,

and a little manipulation, it can be shown that

)

K-l x)ax (5.3.7)

k

.- B
is the nth order radial sampling clutter. Equation
(5.3.7) 1is a cosine transform and the convolution theorem

(5.3.8)

(5.3.9)

can be

(5.3.10)

[Abramowitz, Stegun] [1]

j” -aucos(gp) 1 u
kJ (ak)cos(bk)dk= ' ‘ [ + : ]b>a>0
: u | ul|2__2 2_2
o po2-a2 [b whia2] "[p"-a b*-a
0 0<b<a
(5.3.11)
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which is not defined for b = a. By substituting u =0,

a= 2mp, b = 2mx,
-3/2
_1_2_[x2_p2] x>p>0
& (p,x) = 2m (5.3.12)
0 : p>x;0 .

Next, wl(x) can be rewritten as

wl(x) = 2kB51nc(2ka).

|
. By the convolution theorem

'en(p) = én(prx)* ‘Vl(x) <= n(K"'l) . (5.3-13)
kB
Hence
A (R-1)
e (p) =| & (o, x)w (% x)dx
n n 1 k
- 00 B
L (& 3/2 (5.3.14)
= _B 1 sinc (2k (ELEZEL -x))dxVvp>0.
™ 2 2 B k
X =P B
wl(BL%:l)-x)peaks at x= n]iK-l)while én(D,x) blows up at
B B
X = p. Since p 1is a moving parameter, we will expect
enﬁo) to peakatornearp=§l%:l)at which point the area of

B
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overlap is maximal. The convolution process is

i illustrated in Fig. 5.3.2.

B. Over Annula Ring Pupil Function

Suppose the annula ring pupil is discretely sampled
in the radial dimension as shown in Fig. 5.3.3. Since the
derivation of én(p,x) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>