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Abstract

In this note, we review several important properties of Elliptically Symmetric
Distributions (ESD’s). ESD’s are generalizations of the Gaussian distribution;
they can be represented as scale mixtures of the Gaussian, are closed under linear
transformations and have conditional expectations that are linear on the condi-
tioning variable. Several results in estimation theory, such as parameter estima-
tion, Kalman filtering theory etc. hold for ESD’s. In several cases, the null distri-
butions of certain invariant test statistics remain unchanged from the Gaussian
case. ESD’s are also Bussgang processes. Finally, we show that the zeroes of an
ARMA system cannot be resblved in two cases: a) when the system is excited by

an unobservable ESD process and b) when the output process is Bussgang.



Introduction

Gaussian distributions hold a central place in linear estimation and detection
theory. This pre-eminence is largely attributed to three important properties of
the Gaussian: closure under linear transformations, linearity of conditional expec-
tations and the Central Limit Theorem. Vershik [1], showed that these two pro-
perties characterize a large class of distributions --- the ESD’s, of which the Gaus-
sian is a special case. Vershik showed that distributions in this class have charac-
teristic functions of the form é(u )=g (v’ Cu ); and that linearity of conditional
expectations is a necessary and sufficient condition for membership in this class.
Blake and Thomas [2] showed that ESD’s must have density functions of the
form p(z)= f (z! C~'z), where C is positive definite. The uncorrelated-
implies-independence property of the Gaussian translates into uncorrelated
implies semi-independence [i.e., £ (zg(y))=E (9 (y))E(z |y)] for the ESD.
Furthermore, wide-sense stationarity implies strict-sense stationarity for ESD’s (a
result to be expected since ESD’s are second-order processes). ESD’s thus
represent a generalization of the Gaussian distribution. This generalization
preserves the structure of the Gaussian (i.e., the quadratic nature), while relaxing
the specific form (i.e., the exponential; although this specific form usually leads to

tractable results).

Bussgang (3| proved an important property for Gaussian processes: let x(t)
be stationary, and Gaussian, and, let Z denote an arbitrary zero-memory non-

linearity (ZMNL); then,

E{z(k)Z(z(k-7))}=0a E{z(k)z(k-7)} (1)
where a is a constant independent of £ and j. The term Bussgang process is
applied to any process z (t) that satisfies (1). Furthermore, we can represent
Z(z(t)) as a z(t)+ d(t), where d (t) is uncorrelated with z (¢). Gray [4] and

Godfrey and Rocca [5] proved that Minimum Entropy Deconvolution (MED)
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schemes converge to Bussgang processes. (They assume that the system input is
modeled as an i.i.d. non-Gaussian process such as the sub-Gaussian or a two-

component Gaussian mixture; see also [7-10]).

McGraw and Wagner [6] showed that ESD’s satisfy a condition known as

Nutall separability, i.e.,

0do(u v ;T d ¢,(v
PSR, | ol @)

where ¢, is the joint characteristic function of z (¢) and z (¢ +7), and, ¢, is the
characteristic function of z (¢). Nutall separability is a necessary and sufficient
condition for a process to be Bussgang. They also proved an analog of Price’s

theorem, useful in computing the moments of the output of a ZMNL.

Bussgang processes have also been studied by Barrett and Lampard [11].

They sought expansions of the joint p.d.f. p (z ,2 ) of the form

P (z,20) = pi(z,) Po(z2) ? . Gmg On (z1) 0.2(z ) (3)
where,
fpt ) 9‘ Iy = 6mﬂ 1 =1,2 (4)

in which 8, are orthonormal polynomial functions (with respect to the univariate
p.d.f.’s); in particular they showed that the class of distributions with diagonal
representations (i.e., @, =0, m #%n in (4)) are Bussgang and that conditional
expectations are linear, i.e., E {z(¢t+7) | z(¢t)}=r (nz(¢). If z(t) is a Markov
process belonging to this class, then its autocorrelation must be exponential. If
p(z,y) is symmetric, what we have is, in effect, the Mercer expansion. Brown

[12] showed that processes which satisfy
oy 1(7) = dp ai(7) m=12,... (5)

are Bussgang, if the d’s are real constants, independent of r.
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Examples of the Bussgang include any i.i.d. process, colored Gaussian
processes (the expansion in (3) involves Hermite polynomials); exponential
(involves Laguerre polynomials; e.g., the square of the envelope of a narrow
bandpass filter excited by white Gaussian noise); sine waves of constant ampli-

tude (Chebyshev polynomials); and, more generally, any ESD process.

Properties of ESD’s

The material in this section is largely based on Chu [13] and uses Chu's

notation; proofs, where omitted, may be found in Chu.
Let x denote a real-valued, n-component ESD random vector.

(0) Density function : the p.d.f. p(x) and the characteristic function ¢(v ) are

given by
p(@)=/ (= C'z), € >0 (6)
and,
bv)=h(v' Cv) (7)

(1) Gaussian representation : ESD’s can be represented as scale mixtures of
the Gaussian, i.e., as a weighted average of Gaussians, each with the same corre-
lation matrix C, but with different scales. In some cases, the weight function
may be non-negative, and hence may be interpreted as the p.d.f. of the scale fac-
tor; such a process is called compound Gaussian. Any symmetric marginal dis-
tribution may be used to construct an ESD.

[o2]

p(z)= [w(t)N,(C/t)dt (8)
0

where N, (C /t) represents the zero-mean Gaussian density with covariance

matrix C /¢t and the weighting function, w (¢ ), is given by

i e e S
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w(t)=@m)"/2| C | Y22 L7(f (s)) (9)

where s is a scalar, and, L~! denotes the inverse Laplace transform. ESD’s are
thus characterized by the correlation matriz C and the weighting function w.
E(w,C) will denote such a distribution.
(2) Averages : If g(x) is Borel measurable, then,

co

E{g(z)t=[w(t)E{g(z)|N,(C/t)}dt (10)

0

where E {y | N(C /t)} denotes E{y}, computed as if y had the zero-mean Gaus-
sian distribution with covariance C /t. It follows, at once, that C is a scalar

multiple of the covariance matrix of z .

(3) Closure under Linear Transformations : if z is ESD(w,C), then,
y = Az is ESD(w,ACA?Y).
(4) Marginals of ESD’s are also ESD and have the same form and hence the

same weighting function w (¢ ).

(5) Linearity of Conditional Expectations : if z =col(z,,7,) then,
E(zy|21) = CnCy 2, (11)

where C,; and C |, are appropriate sub-matrices of C'.

(6) Conditional covariance has the same form as in the Gaussian case, except

for a scalar multiplier that depends on the conditioning variable.

ff 1(s1)ds
E (z,z} |9-'1)=J—JT(8‘“)““‘[C22—C21C1_110121 : (12)

where s =z4C |,z,.

(7) Buésga.ng property : x(t) is Bussgang (McGraw and Wagner [6]).
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(8) i.i.d. process : if x is ESD and has independent components, then x is neces-

sarily Gaussian; hence, if x(t) is i.i.d. and non-Gaussian, then, it cannot be ESD.

(9) Central Limit Theorem (CLT) : property (3) implies that the CLT does
not apply to ESD’s; i.e., if z; are ESD(w,C), then z =) 1z; is also ESD(w, C,)
(Picinbono [14]).

(10) Ergodicity : Vershik [1] seems to prove that a stationary ergodic ESD pro-

cess is necessarily Gaussian.

Applications : Well-known results iﬁ Gaussian linear estimation/detection
theory are readily applicable to ESD’s. For example, Chu shows that if the plant
and observation noises and the initial state vector are jointly ESD, then the clas-
sical Kalman filter theory holds (except that the state covariance matrix, useful
in performance analysis, needs to be computed separately). Applications in the
area of estimation/detection are also discussed by Picinbono [14], Yao [15], Gual-
tieroti [16], Goldman [17] and Masreliez and Martin [18]. Chmielwski [19] gives an
excellent review of applications in other areas as well as an extensive bibliogra-
phy. Applications are also discussed by Devlin et al [22]. A very readable

account of ESD theory may be found in Muirhead [20].

ARMA identifiability : In this section we show, via a counter-example, that
non-Gaussianity of the system input is insufficient to resolve the zeroes of an

ARMA system, using only the observed output.

Theorem 1 : The zeros of an ARMA system excited by an ESD process, cannot

be resolved using the output alone.

Proof : If the input x(t) to an ARMA system is ESD, then the output y(t) is also -

ESD. The p.d.f. of y(.) is completely characterized by its correlation matrix C
and the weighting function w(t). Applying an all-pass filter does not change C

(since it is a correlation matrix!) or w(t) (via property 3); consequently, the p.d.f.
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of y(t) is insensitive to phase. Thus, as in the Gaussian case, the true zeroes of
an ARMA system, excited by an ESD input, cannot be resolved using the output

alone.]

We note that our result is much stronger than that in Rocca and Kostov [21]
who prove this result for a particular gradient-based method.

All joint moments and cumulants of an ESD process can be described in
terms of its correlation function and w(t) (recall that x(t) is a second-order pro-

cess whose p.d.f. is completely specified by C and w(t)). For example, Muirhead

[20] shows that
E{z(t)z(t+u)z(t+v)z(t+w)} = K [R(u)R (v-w)+R (v)R (w-u)+R (w)R (u-v)| (13)
where K =F {z%}/3E2{z?}, and is given by,

ofow(t)/t? dt
K =— (14)

[{w(t}/t dt |?

In particular, for v =v=w, we have, E {z (¢ )z3(¢t +u )} = 3KR (0)R (u ).
Since an ESD process is Bussgang, we have the more general result-
E{z(t)z"(t+u)} = K, R (0)R (u ), where, K, may be obtained via Eqn (10).

The k-th order cumulant, cumd{y (t1),y (t5), - - - ¥ (t )}, of a process y(t) is
defined in terms of its joint moments of orders up to k; definitions and details

may be found in Giannakis [23]. For a stationary process, the k-th order cumu-

lant is a function of (k-1) variables. The diagonal slice is obtained by setting

to=tg= ' -+ =t =t,+u. The cumulants of a non-Gaussian process cannot all

be zero (for k>2); and, as such, they have been used in system identification

(see (23], and references therein). Let C@(u ) denote the dia.géna.l slice of the k-th

order cumulant; let M(u ) denote E {y (¢ )y* (¢t +u)}.
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Theorem 2 : The zeros of an ARMA system, whose output y (¢) is Bussgang,

cannot be resolved using only the diagonal slice of the output cumulants.

Proof MY(u) = E{y(t)y™ t+u)}. Now, Z(y)=y™!, is a ZMNL and

y (t) is Bussgang. Hence, from Eqn. (1),

Mi(v)=9n R (u) (15a)
It is easily shown that,
k
Cer) = X an Mz(7) (15b)
m=1
k
=R(D Y ap In (15¢)
=1

The sum in Eqn. (15¢) is easily evaluated, and, yields,
C¢(r) = R (r)C{¥(0)/ R (0) (16)

Thus, for a Bussgang process, the diagonal slices of its cumulant are proportional
to its autocorrelation, and are therefore phase-blind. Consequently, if the output
of an ARMA system is Bussgang, the system zeros cannot be resolved using only

the diagonal slices of the output cumulant.0

In [23], it is claimed that a "fourth-order whiteness” (i.e., the fourth-order
cumulant is a delta function) assumption for the input suffices to permit system
identification using only the diagonal slices of the output cumulant. However, it
is possible for the input process to be ESD and fourth-order white. In this case,
the output being ESD, is also Bussgang; consequently, the true system zeroes
cannot be identified from the diagonal slice of the output cumulant alone. We
note that the methods presented in (23], are valid when the input is modeled as
an i.i.d. non-Gaussian process (and hence not ESD). Further, thié theorem does
not rule out wavelet recovery using 1-D cumulant slices of the form considered in

Giannakis [24].



Conclusions

We have reviewed several important properties of Elliptically distributed
processes; we have seen that several results in Gaussian theory, e.g., Kalman
filter theory, are applicable to these processes. Two new results have been

presented:

1. The zeroces of an ARMA system excited by an ESD process cannot be
resolved using the output alone.

2. The zeroes of an ARMA system.cannot be resolved using 1-D cumulants of

the form C(u,...u), if the observed process is Bussgang.
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