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Abstract

In this paper we investigate robust estimation of two-dimensional (2-
D) power spectra of signals which are adequately represented by Gaussian
random field models but for which we have imperfect observations. Two
situations of particular interest occur when the contaminating noise is addi-
tive and when the contaminating noise appears in the innovations. In these
cases the observed data is not Gaussian and conventional procedures are no
longer efficient. To estimate the parameters of the signal model from the
contaminated data we describe two new procedures which were originally
proposed for estimation of scale and location from independent data and
adapted to one-dimensional autoregression parameter estimation by previ-
ous researchers. The first algorithm is a robustification of least squares and
equivalent to an iterated weighted least squares problem where the weights
are data dependent. Known as the generalized maximum-likelihood (GM)
estimator its analysis is accomplished by the use of a so-called ”influence
function” or directional derivative of the estimator in the direction of the
contamination. We compute expressions for relative efficiency of the es-
timator using the influence function and specify criteria for selection of
the estimator’s robustifying functions. The second algorithm is an itera-
tive procedure known as a filter-cleaner. This procedure is shown to be
approximately equivalent to an optimal minimization problem.

Experiments using the robust procedures with synthetic data are re-
ported and the results compared with a conventional method of model-
based spectrum estimation, i.e., consistent least squares parameter estima-
tion. Finally, we conclude with a summary of the utility and improved
performance of the robust procedures over the conventional method and a
discussion of the shortcomings of these heuristically derived robust meth-
ods.
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1 Introduction

In model based spectrum estimation, a parametric model, typically a constant
coefficient difference equation driven by a random input, is proposed to represent
the observed data. An estimate of the spectrum is obtained by fitting the
model to the observed data and using the parameter estimates in the theoretical
spectrum expression derived from the model. The model selection is often one
of convenience, yielding optimal results when all assumptions (e.g., normality)
are satisfied and having tractable parameter estimation methods. Model based
spectrum estimation using a variety of models has been evaluated and good
results obtained for data which matches the assumptions [1,2,3].

But what happens when the assumptions are not satisfied, especially when
the fine structure of the spectrum is of primary interest? Large deviations from
the assumptions are obviously going to cause problems. But in this case one
did a predictably poor job of model selection and could do better by choosing
a second model. It is not clear, though, what happens when large deviations
occur in a tiny fraction of the data because of errors in observation or when
small deviations occur in all the data because of strict distributional assump-
tions. Note that all measured data are of limited accuracy and are basically
discrete; and, therefore, can only be described approximately by a continuous

distribution. In these last two situations the true signal can be thought of as



having been generated by an assumed nominal model but observed with error.

This paper investigates model based two-dimensional spectrum estimation
techniques for imperfectly observed signals. The procedures developed here
use the concept of robust parameter estimation which has received extensive
consideration in the statistical literature. A major portion of this literature (e.g.,
see [4] and [5]) treats location and linear regression models with the assumption
of independent and identically distributed (IID) data. The literature on robust
estimation in the dependent or autoregressive time series case is sparse. Kleiner
et al. [6,7,8] have developed several robust estimation techniques for the one-
dimensional (1-D) case when the data are representable by an autoregressive
model. Very little, if any, work has been published for two-dimensional robust
spectrum estimation; and the 1-D techniques are not directly extendable without
considering the unique properties of two-dimensional models.

Two general approaches seem to be prevalent in robust estimation. The first,
Huber’s minimax approach [5], attacks the problem by considering so-called “M-
estimators”, which are a generalization of maximum likelihood estimators for
location and scale of independent data. Huber’s method is to optimize the worst
that can happen in a neighborhood of a nominal model, as measured by the
asymptotic variance of the M-estimator. The second, proposed by Hampel [4]

and often leading to estimators similar to Huber’s, is known as the “infinitesimal



approach” whose main tool is the so-called “influence function”. The influence
function is a directional derivative which describes the effect of an additional
observation on a statistic (or parameter estimate). The influence function can
be used to linearize an estimator and predict its performance in a neighbor of a
nominal model.

In this paper we employ the second approach and derive a directional deriva-
tive which is similar to Hampel’s influence function. Asymptotic properties of
robust parameter estimators for two-dimensional model-based spectrum estima-
tion are computed using this function, and criteria for designing the form of the

estimators are proposed.

2 Contamination in Observed Data

The assumption of normality for the true signal of interest is often proposed
from empirical evidence or justified in theory by application of a suitable cen-
tral limit theorem. But in practical empirical situations measurement errors
or isolated phenomena may cause observed data sets to contain small fractions
of unusual data points, or “outliers”, which are not consistent with a strictly
Gaussian assumption. Such data in principle can be modeled as having a distri-
bution which is nearly Gaussian in the central region but with heavier tails. In

other situations the rounding or grouping caused by finite bit quantization and



computation of signals can also be viewed as signal measurement error. Then
the observed data is distributed as though it were Gaussian near the mean but
having no tails at all.

This paper concentrates on the signal plus noise model, where the observed
data {z(s), s € Qu} on the M X M rectangular lattice 0y = {s = 4,5 | 0 <
1, < M — 1} are the sum of the true signal y(s) and a noise component n(s).

Thus, the model is

z(s) = y(s) +n(s), s€ Q. (1)

The primary objective is to estimate the spectrum of y(s) given the observed
data {z(s),s € Qu} and assuming that the signal y(s) is adequately represented
by a spatial interaction model, either a spatial autoregressive or Markov random
field, nominally driven by a Gaussian random noise input. We will not elaborate
on the methods for specification and conventional estimation of parameters in
spatial interaction models since they have been widely studied in the engineering
and statistical literature. For example, see [2,3,9].

We are particularly interested in two commonly occuring situations: 1) the
innovative outlier (IO) model where n(s) = 0 for all s but y(s) is a non-Gaussian
signal and 2) the additive outlier model where n(s) # 0 for at least some s but
y(s) is Gaussian. Other situations exist, for example, n(s) may replace y(s)

or n(s) may be correlated with y(s). The latter requires a more general model



than (1) and the former, known as substitutive outliers (SO), will only be treated
empirically in the experiments reported here.
Martin and Thomson [10] have suggested that isolated measurement errors

or outliers be modeled with the mixture distribution

Fe=(1—7)6 +N(0,02). (2)

Here & is the degenerate distribution having all its mass at zero and N'(0,02) is
the standard normal distribution with mean zero and variance 0. The IO model
will be said to hold whenever, z(s) = y(s) for all s and the innovations process
deviates from a nominal Gaussian distribution. For example, the innovations
may have a heavy-tailed non-Gaussian common distribution which results from
the sum of a normal random variable and a random variable distributed accord-
ing to (2). The AO model will occur if n(s) in (1) has the distribution given by
(2). Then the signal is observed correctly most of the time, i.e., z(s) = y(s),
but 100+ percent of the time y(s) is observed with error. We note that this
contamination leads to a non-Gaussian heavy-tailed distribution for the z(s),
although for small v, F, will be nearly 7, = N(0,07). In general, these are
only two of several possible contaminations, and for unknown v the distribution
F4 1s also unknown regardless of whether it is associated with the innovations
or an additive effect.

Even when ~ is small, say v < .10, the outliers may have a detrimental
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effect on parameter estimates; and consequently, the model based spectrum
estimate. In this situation the optimally designed estimation procedure based
on the assumption of strict normality is not fully efficient. For example, the
parametric methods of 2-D spectrum estimation described in [2] and [3] are
vulnerable to even a few outliers, as are their counterparts in 1-D [10]. Therefore,
a procedure is required whose performance remains quite good for a broad class
of underlying distributions (in the neighborhood of the Gaussian distribution)
but which may not necessarily be best for any of them. Such procedures are
called robust.

Strictly speaking a robust procedure should have the following two prop-
erties: i) when the data are “good”, i.e., Gaussian, the procedure should be
almost as good as the conventional (often optimal) procedure presuming nor-
mality, and ii) when outliers are present or the distribution deviates slighty from
the assumptions, the procedure should still work well, and in particular work
much better than the conventional procedure.

In the next section we describe two procedures which have these properties,
and in Section 4 we present the results of limited empirical studies. We conclude

in Section 5 with an evaluation of the usefulness of these algorithms.

10



3 Algorithms for 2-D Robust Spectrum Esti-

mation

3.1 Two-Dimensional Parametric Models

There are two nonequivalent classes of models for two dimensional random fields,
the simultaneous models and the conditional Markov models [11]. Here for the
spectrum estimation problem we are particularly interested in the simultaneous
autoregressive models from the first class and the conditional Gaussian-Markov
models from the second class. We briefly describe these models since the details

can be found elsewhere [9,12,13,14].

Class 1: Simultaneous autoregressive models are generalizations to multi-
dimensions of the familiar one-dimensional time series autoregressions and are

characterized by the difference equation

y(s) = D bry(s +1) + Pu(s), s€Q, (3)
reN

where {w(s)} is an IID Gaussian random noise array with E{w(s)} = 0 and
E{w?(s)} = 1, and N is the neighbor set which defines the region of support
for the model. By restricting the members of the set N to be a subset of the
non-symmetric half-plane, unilateral non-symmetric half-plane (NSHP) mod-

els are defined, while no restrictions on the members of N result in noncausal
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autoregressive (NCAR) models. For both models the spectra are given by

32
[1 = Yren Or exp(—jAir)|2” (4)

Sy(A) =

Class 2: Gaussian-Markov random fields (GMRF) are characterized by the

difference equation

y(s) = > bry(s+r)+e(s), seQ, (5)
renN

where the correlated noise array {e(s)} has E{e(s)} = 0 and correlation struc-

ture

v, g=t

Efe(s)e(t)} =\ —vbsy, (s—t)eN

0, otherwise.

The Gaussian-Markov random field {y(s)} possesses a Markov property with

respect to neighbor set N [15,14], namely, the conditional density of y(s) is

p(y(s) | all y(r), r #s) =p(y(s) [y(s +r), r€ N).

In view of the Gaussian nature of y(s), it is also true that

E{y(s) [all y(r), r # s} = E{y(s) | y(s + 1), r € N}

and

Var{y(s) | all y(r), r # s} = Var{y(s) |y(s + 1), r € N} .



The GMRF model is usually defined with a noncausal neighbor set since an
equivalent NSHP model can be found when the neighbor set is unilateral. In
general, this equivalency is not true for NCAR and noncausal GMRF models.

The GMRF spectrum is computed by

v
1~ Sren b exp(—jAr)’

Sy(’\) = (6)

3.2 2-D Robust Parameter Estimation

Robust spectrum estimation for time series has been suggested in [6,7,10]. Since
least squares estimates are consistent for 2-D non-symmetric half-plane (NSHP)
and noncausal Gaussian-Markov random field (GMRF') models, the arguments
used in the 1-D case can be followed and a robustified least squares problem can
be defined. Suppose the signal is modeled by a NSHP Gaussian random field,
then robust parameter estimates g, of 8 = col{fy, r € N} and Sgp of 3 are

computed by solving

Z{j} xsW (%)) ("”(S)C;;EZM"S) =0 (7)

and

> W(xs) [cw (—(—)‘Qﬂ) ~-B| =0, (8)

bper-d coSam

where the past history vector is defined by xs = col{z(s +r), r € N}. The

estimators (7) and (8) are known as the two-dimensional generalized maximum-
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likelihood (GM) estimators. The equations to be solved are identical for a
GMRF model but then Sgas is and estimate of \/v.

In (7) and (8) ¢, and B are tuning constants selected to adjust robustness
and yield consistent estimates when the observed data {z(s)} are normally dis-
tributed. The function () is to limit the influence of those summands of (7)
and (8) for which v(s) = z(s) — 8'xs is a poor estimate of the residual and
W(-) is a weight function to down-weight those summands with outliers in the
components of Xs. The choice of ¥(-) and W(+) functions with good robustness
properties will be discussed in subsequent sections.

Equations (7) and (8) can be solved with an iterated weighted least squares
procedure as suggested by Huber [5] and the robust estimates § = 855, and
B = Sem then used in (4) to compute the estimated spectrum.

The main tool in the analysis and synthesis of robust estimators for inde-
pendent data is the influence function [4] which has been proposed on heuristic
grounds but, nevertheless, contains information on the asymptotic bias and
variance of robust maximum-likelihood (M) estimators of location and scale.
For dependent data the situation is complicated by several technical arguments
which have not yet been clearly resolved (see, for example, [16] and [17]). In

the next section we generalize the 2-D GM-estimator as an asymptotic statis-

tical functional for which we define a directional derivative (viz., an influence
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function) that can be used to guide the selection of the functions 3(-) and W (-)

in (7) and (8).

3.2.1 An Asymptotic GM-Estimator

First, we introduce some notation. Define the m-dimensional vector xs =
col{z(s +r), r € N}. Let xJ = col{z(s),xs}, No = N U (0,0), and denote
the (m + 1)-dimensional distribution function of x? by FM. We assume that
the data are stationary so that F° is the same for all s. Now, let zo, x, and x°
be dummy variables for z(s), xs, and x2, respectively. In the following assume
E{z(s)} = 0, otherwise, robustly center the observations by replacing them with
{z(s) — £m} where &) is an ordinary M-estimate (see [5]) of the mean of z(s).
Then the asymptotic GM-estimates 045 of 8 and Sagar of B are defined by
the functional T(F™o) = col{g(F™N), S(FNo)} whose value is a root of the m+1
equations

Epw {xW (x)$(x 8(F™°), S(F))} = 0 (9)

Ezw {W(x)[9*(x% 8(F™), S(F™°)) — B]} = 0 (10)

evaluated when FNo = f'f". Here the constant ¢, has been included in the
definition of ¥(-) for simplicity.

Note that if the empirical distribution function of the observed data on an

15



M x M lattice is given by

1
FYoM = — 3 by, (1)

2 SEQM

then the solution of (9) and (10) at FNo = FNoM yields the estimates 855, and
Saum defined by (7) and (8).

By a suitable definition of the boundary conditions, FNo*M is a reasonable
estimate of F2° in a variety of ways [18]. Furthermore, we expect that T'(FNe:M)
relates to T(F2°) in a similar fashion if 7'(-) is sufficiently well behaved. Hence,
analysis of (9) and (10) should lead to reasonable prediction of the behavior of
(7) and (8) for sufficiently large M.

Consider the following minimization problem:
/ W (x)p(x"; 6, S)dF™ = min! (12)
for fixed S where p(x°; 6, S) is related to 1(x% 6, S) by

"é_ép(xo; Qv S) = X’!ﬁ(xo;ﬂ, S) (13)

The solution of (12) is also a root of (9). Moreover, if p(v) is a convex function
in v, implying that ¥(v) must be strictly monotone, then the solution to (9)
is unique. This follows from the fact that if p(v) is continuously differentiable
and convex, then (9) is both necessary and sufficient for the solution to be a
global minimizing point [19]. Existence of the solution is guaranteed if p(v) is

symmetric.
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3.2.2 An Influence Function for the GM-Estimator

Von Mises [20] has shown that a statistical functional T'(+) at a distribution G,
which is “near” a distribution F, can be written as a Taylor series expansion at

F asin
T(G) = T(F) + / #(2)d(G — F) + remainder, (14)
if there exists a real function ¢(-) such that for all G in domain{7'} it holds that

T'(F;G — F) € lim Dt _t}-)) =i fgs(:c)dg. (15)

T'(F;G — F) is known as the 1st-order Gateaux derivative of T'(F). Note that
T'(F; G — F) is simply the ordinary right-hand derivative in the direction of G,
at t = 0, of the functional T'((1—1)F 4tG). The derivative T"(F; G — F) depends,
in general, not only on F but also on the measure G — F. If T'(F;G — F) is
evaluated at G = F, then T'(F) = 0, and consequently, [ ¢(z)dF = 0.

Letting G = §, in (15) we see that T'(F;é, — F) = ¢(x), which Hampel
[4] calls the influence function (I'F') of T at F, usually written as IF(z; T(F)).

Thus it 1s true that
T(G) — T(F) = [ IF(z; T(F))dg + remainder. (16)

When (16) is evaluated with G equal to the observed sample distribution,

Fn =132 6, in most cases [4] the remainder becomes negligible for n — oo

n i=1

17



so that

T(F.) - T(F) ~ = 3 I (s T(F), (1)

i=1

which is the estimation error in the estimate T(F,) of T(F). It is this last
expression that gives IF(x;T(F)) its name, for IF(z;; T(F)) represents the
approximate contribution, or influence, of the observation z; toward the error.
Moreover, if the z; are independent, then the terms on the right side of (17)
are independent, and by the central limit theorem /n[T(F,) — T(F)] is asymp-
totically normal, and it is a simple matter to show that asymptotic variance

equals

V(T,F) = / IF(z; T(F))dF . (18)

For the IID case we see that the bias and asymptotic efficiency of the estima-
tor T'(F,) depend explicitly on IF(z; T(F)). It turns out that M-estimators for
the IID or regression model, defined by [(z;T, F))dF, have an IF(-) which is
proportional to t(-). Thus, the desired robustness properties for the estimator
may be achieved by simply selecting a ¥-function dictated by analysis of the
results (17) and (18).

The approach that we take in this paper is to define a similar device for
T(F™Ne), then use it to guide the selection of () and W(-) used in the GM-
estimator. Unlike the IID case, the (m + 1)-dimensional distribution F¥° =

(1 —)FNe + 1640 for 0 < ¢ < 1 does not correspond directly with any naturally
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occuring contamination in the random field [16]. This problem occurs because
bxo is not a stationary distribution in the set of (m 4 1)-dimensional marginal
distributions, and it matters not only the magnitude of x° but also the location
of the contamination. Patchy outliers will have quite a different effect than
will isolated outliers. Nevertheless, we show that we obtain an equation similar
to (17) and that an influence function defined with F*° is proportional to the
kernels of (9) and (10) except for a constant multiplying factor. Thus, similar
reasoning to the IID case is used for selecting the GM-estimator -function
which is composed of ¥(-) and W(-).

Let 8, = (F1°) and S; = S(F}"°) and note that 8, and S, are the asymptotic
GM-estimates when the data are distributed with marginal F™°, i.e., when
t = 0. Substitite 7} in (9) and (10) and differentiate with respect to t at ¢ = 0,
obtaining

% /xW(x)gb(xo;Qt, S;)dFNo =0 (19)

t=0

2 [w ;0. 5) - Blary

=0. (20)

t=0
Here we make the assumption that 1(-) and W(-) are sufficiently well behaved

so that the processes of integration and differentiation are interchangeable.

By defining an (m + 1)-dimensional GM-estimator influence function for
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and S under FNo ag

IFgr(x%; 8y, So) = ;

t=0

and carrying out the indicated differentiation in (19) and (20), the result in

matrix-vector form is
-1

M, mys xW(x)y(x°; 8y, S
IFem(x°% 60, 50) = Sk , (21)
mg, mg W (x)[1*(x°% 65, So) — B]

assuming the inverse exists and where

M, = SlfW(x)W(xo;Qo,Sg)xxfd}"N“
0
1 zo — Gpx
mys = S—O/xW(x)zﬁ’(xo;ﬁD,Sg) (OS—O_O) dFe
msg = o [ XN o, SR b, So)dF™:
0

_ gt
ms = o [ WO %o, S So) (22 )
0 0

and ¥'(v) = L4(v).

We note here that for symmetry reasons (which will become evident in sub-
sequent sections) if outliers occur only in the innovations and the innovations
distribution is symmetric, whether or not Gaussian, then mg s and mgy are

both zero. In this case the influence function separates, i.e.,

ITFem(x2;8,) My ' xW (x)1(x°; 8o, So)
- (22)

I Fam(x% So) ms W (x)[)*(x°; 6o, So) — B]

20



where I Fgp (%% 8,) and I Fgpr(x°%; So) are the influence functions for the separate
estimates 8 46y With S known and Sy with 8 known, respectively.

When the observed data obey the AO model and n(s) in (1) is not identically
zero, then FNo = FMNo and g, # 8 due to bias in the estimate; although, if the
amount of contamination is small we should expect that |§, — 6| and |So— 3| will
be small for good choices of 1(+) and W(-). Then (22) should hold approximately
for the AO model as well.

The importance of this separation is that the robustness properties of the es-
timate g5, do not depend on Sgas, and vice versa. This suggests an alternative
to simultaneous solution of (7) and (8): compute any robust estimate of scale
and then use this in solving (7). Additionally, we can evaluate the asymptotic
properties of the parameter estimates QGM by considering a fixed scale S.

By an expansion similar to (14) we obtain

T(f'N" ,M) = T(;;‘NO) = % Z IFGM(xg; T(JF'N“ )) + remainder. (23)
seQpr

where the remainder, under suitable regularity conditions, becomes negligible

when M — oo. Also, we find that
M[T(FNoM) — T(FNo)] — N(0,V(T, FN)), (24)

where

V(T, Fo) = / TFan (X% T(FN VI Flypy (x% T(FN0))dF Mo, (25)
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Proof: Clearly, [ IFan(x°%8,,S0)dFNe = 0. By a suitable selection of (-
and W(-), IFan(xg; 8, So) for all s will be uniformly bounded and a stationary
process. When s —t & N, then IFgp(x2;8,,50) and IFgn(xY;6,,So) are in-
dependent and IFgp(x2;6,,50) is a-mixing. Under these conditions a central
limit theorem for dependent random vectors [21] applies and (24) follows. Since

NSHP and GMRF models have a Markov property it is easy to show that
[ TFar(x%; 80, So)dF (wolx) = 0.

Then IFgun(x2;6,,S0) is a martingale difference so that IFgar(x2;8,,S0) and

IFen(x$; 8, So) are uncorrelated for s # t and (25) follows.

3.2.3 Selection of the Robustifying Functions

Note from (22) that the 2-D asymptotic GM-estimator influence function for 8
is proportional to 1*(x% 6y, So) = xW(x)1)(x°; 8y, So) and for S is proportional
to x*(x%; 8y, So) = W(x)[4)*(x°; 8y, So) — B]. Hence, robustness criteria for the
influence function translate directly into similar requirements for the kernel
functions ¢*(x% 6,, So) and x*(x°; €, So). Therefore, selection of 3(-) and W(-)
determine the performance of the estimator.

Hampel [4] has suggested that the influence function for M-estimators meet

the following robustness criteria:

1. The influence function should be bounded. This guarantees that no single
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observation can have an unlimited influence on the value of the estimate.

2. The influence function should be continuous. Thus, small perturbations

of the data will result in small changes to the estimation error.

3. The influence function should return to zero. Ridiculously large outliers

in the data should have no influence at all on the estimate.

These criteria correspond directly with the more technically defined criteria of
gross-error sensitivily, local-shift sensitivity, and rejection point, respectively,
which may be found in [4]. Two functions proposed for M-estimators in the IID

case are Huber’s ¢y-function and Tukey’s bisquare ¥ g-function. The former,

defined by )
[
va(t)=911, ¢t>1 (26)
-1, t<£ -1

is shown graphically in Figure 1 and meets the first two basic criteria. Tukey’s

yp-function, defined by

t(1—12)%, Jt| <1
Pp(t) = (27)
0, t| > 1

and shown graphically in Figure 2, is a redescending function which meets all

three criteria. Because 1p returns to zero, it provides an extra measure of

23



-1.0

-1.0 =

Figure 1: Huber’s 1y-function.
robustness against extremely large outliers while sacrificing efficiency at the
nominal model.

In view of the similarity between the expansions (14) and (23) we take
these criteria to also apply to the two-dimensional GM-estimator influence func-
tion. Specifically, the influence function, and consequently the kernel functions
*(x% 8o, So) and x*(x°; 8o, So), should also have the same kinds of properties
as ¥y and ¥p. For example, if ¥(-) = y(-), then W(-) should be chosen so
that xW(x) is bounded for each element of x, i.e, W(-) should downweight el-
ements of x which contain outliers. A natural way of accomplishing this is to

let W(z) = Sg(%), where d is a measure of the largeness in x obtained from
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Figure 2: Tukey’s redescending bisquare g-function.

d* = Lx'C;'x. Here c is a constant and Cx = E{xx'} is the m x m covariance
matrix for the past history vector xs of the clean process. In practice, a func-
tion, such as Tukey’s bisquare 15 (-), which redescends to zero is used for g(-) to
insure that xW(x) remains bounded for arbitrarily large elements in x. Several
procedures are available for determining an estimate of Cx; for example, see [8].
In this paper we will not discuss this topic but instead assume that Cx is known

or estimate it from clean data.
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3.2.4 Tuning Constants

The tuning constant B is chosen to make the estimate Ssgp = B when the
signal y(s) is observed without error and w(s) is distributed as A/(0,1) in (3).

Under these circumstances (10) becomes

f W (x) [ 242 ( = ﬂﬁt ) —B} dFN(x%) = 0. (28)

since for the IO model 8,5y = @ so long as F, is symmetric. The tuning

constant is then computed by

B= W( ) F.(o)ido (29)

where f,(v) = (27)~7 exp —%)

Proof. Clearly, the data is also normal with F, = F, = N(0,02). Let
fu(¥°) be the density function for F2%, i.e., T = fi‘c; fy(x°)dx®. Additionally,
this joint density can be written in terms of a conditional density and a m-
dimensional joint density as f,(y) = fy(yoly)fy(y). Using these relationships

(29) becomes

] W(x){ ] l 2,52 (—;t) —B] fy(xglx)da:g} f(x)dx = 0.  (30)

The NSHP model driven by Gaussian white noise is a unilateral Gaussian-

Markov model and the conditional density f,(yo|y) can be shown to be

fu(oly) = (2mB?)7% exp [—% (y" _{fty) } . (31)
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Now, let v = E"Teﬂ and make this change of variable in (30), yielding

[ { / [c3¢2 (Ci) a B] (2m)% exp (—"";) dv} f(x)dx =0.  (32)

The integral in braces is independent of x, therefore, if W(-) is a non-negative

and symmetric function, then

/ [cw (63) . B] (@2x)Yexp (—”;) =0,

and the result (29) follows. The constant B, evaluated for selected values of ¢,
using both ¥y(-) and ¥p(-), are shown in Table 1.

The constant ¢, adjusts the robustness properties of the GM-estimator. Gen-
erally, for smaller values of ¢, the estimates are more robust with respect to
additive effects in the observed data. The compromise, however, is a reduction
in the efficiency of the estimator at the nominal, or Gaussian, model. To show
this and to obtain insight into the selection of values for ¢, we compute the

asymptotic variances for the GM-estimator under a Gaussian IO model. Let
M(p,FNo) = i (33)
and rewrite the influence function as

*(x% 85,5
IFau(x°; T(F™°)) = M~ (3, F™) Gl : (34)

X*(XO;QLH SO)
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The asymptotic variance in (25) becomes

S pdFNo [ op*x*dFNo
V(T,F®) = M7 (¢, F™*) i M~ (3, F°). (35)
f X*Qﬂdf}vo f Xa2d}-No
For the IO model with Gaussian distribution, i.e., w(s) in (3), IID with common
distribution N(0, 1), the asymptotic estimates 8, and Sy equal the true values 8

and f3, respectively. Moreover, if v(s) = %;:Eﬁ, then v(s) is IID with common

distribution f,(v) = A(0,1). It is now a simple matter to show that

M7 Q(y", FNo)M;
vz, oy = | ME AT ° (36)
ot m§2P(X*,fN°)
where
Q' F™) = Cwax [¥H(0)fu(v)dv
PO, FY) = Wi [[#2(v) - BIfu(v)do,
and

Cw2x = E{W?(x)xx'}

Wg = E{Wz(X)}.
The expressions for My and mg can also be simplified to

Mi = O f ' (v)f,(v)dv
ms = 2Wi / (0 )p(v)v f, (v)dv,
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where

Cwx = E{W(x)xx'}

W, = E{W(x)}.

It is clearly the case that under the same conditions and the fact that if (-) is
an odd function, then my ¢ = 0 and mgg = 0.
Using these results in (36) the asymptotic covariance matrix for the estimate

6, 1s then

[ *(v) fu(v)dv
[f %' (v) fo(v)dv)?

and similarly the asymptotic variance of the estimate Sy is

V(g F) = g CwxCwaxCises (37)

B? J[$*(v) — BI*fo(v)dv W,
4 [/ (v)p(v)vfu(v)dv]) Wy

V(S,FN) = (38)

Ordinary M-estimators are defined when W(x) = 1 for all x. In this case
Cwx = Cy2x = Cx, the covariance matrix of the m-dimensional data vector
Xs, W1 = W, = 1, and (37) and (38) are the asymptotic variances of the
M-estimators for 8 and £.

If in addition ¥(v) = v for all v, then the GM-estimator reduces to the least
squares estimator of § and 3. Carrying out the computations in (37) and (38)

for the Gaussian situation yields

Vis(8,N(0,02)) = B>Cy? (39)
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and

VLs(S,N(O,0: Y= %2 (40)

When the data comes from the Gaussian 10 model by definition there are
no outliers. The optimal function W(-) should be W(x) = 1 for all x. In this

case the asymptotic GM-estimator covariance matrix for 8 reduces to

2%\ _ 2 fd’z(”)fv(v)d” oy
V(8,N(0,0))) =P ) fo() dv]zcx . (41)

In most situations the true values of the parameters are not known. Con-
sequently, the evaluation of a Cramer-Rao bound is not possible, although an
analytical expression can easily be computed using the joint distribution FNo
or the influence function in the Gaussian case. The Fisher information matrix

I(@) turns out to be given by

1
p?

Cet LX) (42)

where f'(x) = 3% f(x) which is a complicated function of the parameters 6.
Our stated purpose though is to determine guides for selection of the tuning
constant ¢,. Actual efficiencies are best obtained from Monte Carlo results. In
fact, analytical results for the AO model are extremely difficult since then the
distribution function is not even available.

We are motivated then to define an aysmptotic efficiency relative to the least

squares estimates, although consistent for the NSHP and GMRF models, are
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YH ¥
Cy B ' REfFG M B | REffG M
1.0 | 0.5161 | 0.9031 | 0.0266
1.1 | 0.5777 | 0.9191 | 0.0343
1.2 | 0.6352 | 0.9330 | 0.0433
1.3 | 0.6880 | 0.9451 | 0.0537
1.4 | 0.7358 | 0.9555 | 0.0652
1.5 | 0.7785 | 0.9642 | 0.0778
2.0 | 0.9205 | 0.9897 | 0.1552 | 0.5017
3.0 | 0.9950 | 0.9996 | 0.3434 | 0.7748
4.0 [ 0.9999 | 1.0000 | 0.5134 | 0.9101
5.0 [ 1.0000 | 1.0000 [ 0.6395 | 0.9611
6.0 | 1.0000 | 1.0000 | 0.7277 | 0.9810
10.0 | 1.0000 [ 1.0000 | 0.8886 | 0.9976
20.0 | 1.0000 | 1.0000 | 0.9706 [ 0.9998
oo | 1.0000 | 1.0000 | 1.0000 | 1.0000

Table 1: Tuning constant B and relative efficiency for selected values of ¢, using
Yu and ¥p. (REfigy for ¢ and values of ¢, < 2.0 are not shown because of
computational inaccuracies.)

not efficient. Thus,

der tr{Vzs(8, F™)}

Efferm = (v (8, F)]

(43)

Substituting the expressions for Vis(8,N(0,02)) and V(8,N(0,02)) in (43)

yields the relative GM-estimator efficiency

_ [ 92 (v) fo(v)dv
[f ¥'(v) fo(v)dv]?

REffu (44)

Values of REffgys, computed for various values of the tuning constant ¢, are

shown in Table 1.
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3.3 2-D Filter-Cleaner

An alternative to robust parameter estimation and an intuitively appealing idea
is to “clean” the possibly contaminated data {z(s), s € Qa} before computing
the spectrum. If z(s) differs too much from a robust prediction #(s) based on the
other values, then z(s) is replaced by a value closer to #(s). This procedure is
applicable to NCAR as well as NSHP and GMRF models, since consistent max-
imum likelihood estimation can be incorporated in the algorithm. We describe
this procedure assuming y(s) in (1) to be modeled by a NCAR model.

The algorithm is begun by first fitting a NCAR model, (45), to the observed

data {z(s), s € Qu}.

z(s) = > bra(s +r) +w(s) (45)
renN
To estimate § = col{f,,r € N} a consistent estimator, such as maximum-

likelihood (ML) for the NCAR model, is used.
The variance of the residuals v(s) resulting from the fitting of (45) to the
data is computed using a robust estimator for scale. For example, the median

absolute deviation (MAD) works well (see [4] or [5]).

median{|v(s) — median{v(s)}|} .

46
0.6745 (46}

Smap =

The factor of 0.6745 in (46) is to make the estimate of scale consistent when the

data is truly Gaussian [5].
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The residuals are then passed through a nonlinear filter for cleaning:

M®=qﬁmw¢LEELw (47)

coSMAD’
The function t(-) is one of the ¥-functions described in Section 3.2.1 and ¢, is a
tuning constant to adjust robustness. From these cleaned residuals we generate

an estimate of y(s) as

g(s) = va 6:9(s +r) + 9(s). (48)

To solve this equation we need to make assumptions regarding the boundary

conditions. If a 2-D toroidal lattice is assumed, then
¥ =B Y(@)V (49)

where ¥ and V are vectors whose components are the lexicographically ordered
9(s) and ©(s), respectively, and B(f) is a block-circulant transformation ma-
trix. Solution of this equation is efficiently done using the 2-D discrete Fourier
transform. See [13] for details. This completes the first iteration.

The estimated values of j(s) are used in (45) instead of z(s) to start a new
iteration, and this process is continued until small changes in the values of 8
occur.

Finally, the NCAR spectrum is computed from (4) using f = Smap and
6 = 8. Alternatively, one may replace 82 in (4) with S,()), the periodogram of
the estimated residuals, as suggested in [10].
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The filter-cleaner algorithm is schematically shown in Figure 3. In the next

section we give an interpretation of this algorithm.

3.4 An Interpretation of the Iterative Algorithm

Kleiner et al. [6] showed that the 1-D filter-cleaner iterative algorithm can
be interpreted as an approximate solution to a minimization problem. This

interpretation is easily extended to two dimensions by considering (50).

m&ﬂ{z cp [m(s) ‘-’1‘5"’@] —log[detB(ﬁ)]} (50)

sef C”S

where
7(8) = ol [§(s + 1), r € N].
9(+) is an estimate of the underlying NCAR process. Differentiating (50) with

respect to § at 8 = _;_9_ we have

PR [m(s) —ciis(ﬁ)} [5,3@) + G(S,Q)Q] 4 %log[detB(Q)] =0 (51)

S€EQ S =
where
ay 6
s, )y = BEXTE) e
96,
and
P(z) = p'(2).
If G(s,8)d is small compared to ¥s(8), then (51) reduces to
at ~
co , |2(s)—8¥s(6)] .. .5 3] .
- 0) + — log[detB(8)] = 0. 52
%Sd)[ 230 51 + 5 losldet B@) (52)
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Figure 3: Filter-cleaner algorithm.
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But for a fixed scale S, the ML estimate [9] is a solution of the following

minimization problem

min {S% % [y(s)—;ﬁ—y—sl = 1og[detB(g)]} ; (53)

Differentiating (53) with respect to 8 we get

% [ﬂ;&] ’; ;; log[detB(8)] = (54)

Using (47), (54) can be written as

> 50 | M) 50 + G ostaetn@) =0 (55)

sSEN
which is an approximation to (52). Thus, the robust filtering algorithm is ap-
proximately equivalent to computing the estimates (52) until convergence is

observed. Equation (52) is itself an approximation to the minimization problem

in (50).

4 Simulation Examples

Experiments with synthetic data were conducted to evaluate the performance
of the two-dimensional GM-estimator. The first experiment compares robust
spectrum estimation results for two sinusoids in noise with the conventional
approach of consistent least squares estimation. It is well known that NSHP

modeling of complex spectra requires large model order to resolve details [3];
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and since the robust technique requires extensive computational capacity due
to its iterative nature, the GM-estimator was evaluated on smaller data sets
and low order models in Experiments 2, 3, and 4. In these experiments many
runs were made against different data sets to obtain a feel for the statistical
performance of the GM-estimator. No spectra were computed in Experiments
2, 3, and 4 since the spectrum for low order models has no interesting detail.

Experiment 5 provides similar results for evaluating the two-dimensional filter-

cleaner algorithm.

4.1 2-D Robust Parameter Estimation

Experiment 1. An important application of spectrum estimation is the de-
tection and resolution of two closely spaced sinusoids in noise. In one and two
dimensional studies this problem is usually formulated as sinusoids in Gaussian
white noise. Here, for evaluating the performance of the GM-estimator we com-
pare the Gaussian white case to the case when the contaminating noise has a
heavy tailed non-Gaussian distribution. The LS and GM procedures were used
to compute estimates from both Gaussian and non-Gaussian data, thus yielding
four spectra for comparison.

We generated a 64 x 64 set of lattice data according to
LEPT; Tt
y(s) = A4 cos(agls + a1) + A,y cos(agzs + as) + ((s)
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with ¢, = [16.0,16.0], ¢, = [16.0,20.0], A; = Ay = 1.0, ay = .2, a = .3
and ((s) IID with common distribution A/(0,.05), equivalent to a SNR = 10db.
In this experiment a NSHP model with the 40 element neighbor set shown in
Figure 4 was used.

The estimated spectrum of the signal plus Gaussian noise using conventional
consistent least squares estimates is shown in Figure 5, and the spectrum using
the GM-estimator on the same data is shown in Figure 6. Huber’s 1y-function
was chosen for ¥(x% 8, So) and W (z) = ﬁg(f) with Tukey’s bisquare function
used for g(-). The tuning constant B = 0.7785 was chosen from Table 1 for
¢, = 1.5. The constant ¢ = 6.0 was used for W(-). The LS and the GM-
estimates result in similar spectra, both resolving two peaks at s = [16.0, 16.0]*
and s = [16.0,20.0])*, which are correct. Thus, the GM-estimator does almost
equally well as the conventional procedure in the Gaussian situation.

Next, data contaminated with a heavy-tailed distribution were formed by
adding outliers from a distribution A(0,1.0) to 10 percent of the signal plus
Gaussian white noise at uniformly distributed lattice sites. The estimated spec-
trum using least squares estimates from the contaminated data is shown in
Figure 7, and the spectrum computed using the GM-estimate is shown in Fig-
ure 8. Here, the spectrum computed using LS-estimates from the heavy-tailed

data is relatively poor; but the GM-estimator does almost as well as when the
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data are Gaussian.

Experiment 2. In the first part of this experiment we generated data using
a lst-order Gaussian-Markov random field model on a 32 x 32 toroidal lattice
with parameter values 610 = 6_;0 = .2340, 6op = 6p—1 = .1011, and v =
1.0. Contaminated data were formed by adding outliers from a distribution
N(0,20.25) to 5 percent of the data at uniformly distributed lattice sites. Both
least squares estimates and robust GM-estimates from the contaminated data
sets were computed and compared to the theoretical parameter values and the
least squares estimates from the clean data. Twelve cases were run by using
different sets of outliers. The 1-functions and tuning constants were chosen to
be same as in Experiment 1. Results are shown in Table 2. Figure 9 shows
graphically for comparison the errors tabulated in the last column of Table 2.

One easily sees that the GM-estimates for both § and v in the non-Gaussian
AO model situation are better than LS-estimates for the same data in every
simulation run. On the other hand the LS and GM-estimators yield similar
results for Gaussian data.

In the second part of this experiment we generated 12 sets of contaminated
data by using 12 different GMRF data sets and adding 5 percent outliers to each
set of data. The LS and GM-estimates are shown in Table 3 and errors graphed

in Figure 10. The conclusions are identical to the first part of this experiment.
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Experiment 3. We evaluated the GM-estimator’s performance under differ-
ent types of contamination, i.e., innovative and substitutive outliers. First we
generated 12 sets of two-dimensional non-symmetric half-plane autoregressive
data using a causal neighbor set and 12 sets of IID Gaussian random noise fields.
The model parameters were 6_19 = .9704, 6y _; = .9735, f_1,-1 = —.9686, and
B? = 1.0. Next, we simulated innovative outliers by taking the same IID Gaus-
sian random noise fields and adding outliers from a distribution A(0,20.25) to
5 percent of the noise data at uniformly spaced lattice sites. The autoregressive
data was then regenerated using this driving noise with a heavy-tailed distri-
bution. The -functions and tuning constants were chosen to be same as in
Experiment 1. LS and GM-estimates of the clean data and contaminated data
are listed in Table 4 and errors graphed in Figure 11.

Note that for the IO model LS and GM-estimators do equally well estimating
0 in both Gaussian and non-Gaussian situations. However, the GM-estimator
outperforms the LS-estimator for estimating the scale 8. This is as expected
since symmetrically distributed innovative outliers effect only the scale and not
the structure of the spectrum, and both the LS and GM-estimator are consistent
estimators of 8 for the I0 model.

In the second part of this experiment we used the 12 sets of two-dimensional

GMRF data used in the second part of Experiment 2. Data contaminated by
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substitutive outliers were formed by substituting outliers from a distribution
N(0.20.25) for 5 percent of the clean data at uniformly distributed lattice sites.
LS and GM-estimates were computed and the parameter estimates compared
with the LS estimates from the clean data. The results are shown in Table 5
and errors graphed in Figure 12.

Again the GM-estimator outperformed the LS-estimator in the non-Gaussian

situation.

Experiment 4. Next we evaluated the GM-estimator when both the ¢(-) and
W (-) functions redescend. Here we repeated both parts of Experiment 2 using
Tukey’s bisquare function (27) for both ¢(-) and ¢g(-). The tuning constants
were B = 0.7277 and ¢, = ¢ = 6.0 in accordance with Table 1. The tabulated
estimates are shown in Table 6 with the corresponding errors graphed in Fig-
ure 13 and Table 7 with the corresponding errors graphed in Figure 14 for parts
one and two of the experiment, respectively. Figures 15 and 16 compare the
estimates of § using a redescending function with the results in Experiment 1.
No conclusions can be drawn regarding improvement in estimates of § using a

redescending 3-function.

Summary. Tables 8 and 9 summarize the results of Experiments 2 , 3 and 4.

Table 8 shows the average of the squared errors for the coefficients {6, r € N}
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estimates, and Table 9 shows the average of the absolute values of the errors
for the residual’s variance 32 estimates. All errors are computed relative to the
least squares estimates of the clean data.

The GM-estimator yields estimates from the contaminated data which are
closer to the true (LS Clean Data) values than the non-robust least squares es-
timator in both the additive and substitutive outlier cases. This is true for both
the coefficients and scale estimates. For the innovative outlier case the least
squares and generalized M-estimators do equally well for the coefficients, but
the robust procedure does much better for the variance estimates. This is as ex-
pected since innova.ti;.re outliers (from symmetric distributions) have little effect
on the shape of the spectrum (see Section 2) but will effect scale estimates. Too
few experiments were run to draw any significant conclusions regarding the use
of redescending 1-functions. We do note, however, that while the estimates of 8
are relatively close for both the redescending and non-redescending situations,

the estimates of 3% seem to be improved with the redescending function.

4.2 2-D Filter-Cleaner

Experiment 5. To evaluate the two-dimensional robust filter-cleaner algo-
rithm simulations for a NCAR model using the filter-cleaner algorithm were car-

ried out using the following first order NCAR model with 0(1,0) = O(-1,0) = .2340,
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8(0,1) = 6(0,1) = .1011 and B% = 1.0.

Data obeying this model were generated on a toroidal 32 x 32 lattice. Out-
liers were generated by first calling a uniform random number generator to
give 50 random lattice points. Then 50 independent Gaussian random variates
having zero mean and variance of 20.25 were added to the NCAR data at the
random lattice points. For comparison purposes ML estimates of parameters
were calculated before adding the outliers. Then after adding the outliers we
computed the conventional ML estimates again. The iterative procedure using
Huber’s 1y-function for cleaning the residuals was applied with ¢, = 2.0 as a
tuning constant in (47).

This experiment was carried out in two parts. First, for 10 runs we kept the
outliers the same but changed the underlying NCAR field. Estimates are shown
in Table 10. Second, for another 10 runs we kept the underlying NCAR field
constant but changed the outliers. Estimates are show in Table 11. As seen
from Table 10 and Table 11, the outliers decreased the numerical value of the
ML estimates of parameters and increased the estimated variance in all runs.
But the comparisons in Figures 17 and 18 demonstrate that the filter-cleaner
improves the estimates. Most runs required only three or four iterations for

convergence.
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5 Conclusions

These intuitively appealing robust procedures provide simple robust spectrum
estimates. The experimental results conclusively show that the GM-estimator
and filter-cleaner do better than the conventional least squares estimates for
non-Gaussian I0 and AO model situations where the non-normality results
from outliers distributed uniformly over the observed lattice and with small
probability of occurrence. Furthermore, the empirical evidence shows that the
GM-estimator also does well when noise has been substituted for the true data.

There remain several problems to be investigated. First, the definition of an
influence function for two-dimensional data is not complete since the contami-
nated data distribution depends not only on the magnitude of the contamination
but also its location on the lattice. Second, the robust GM parameter estimator,
extended from the 1-D approach, has no theoretical underpinnings, but only a
heuristic application of Hampel’s qualitative robustness requirements that the
influence function of a robust estimator be bounded and continuous. Third,
analysis of the GM-estimator is only practical for the IO model since analy-
sis in the presence of additive outliers is extremely difficult as expressions for
the ML estimates under a non-Gaussian distribution are not easily computed.
Moreover, in the spirit of robustness the true distribution of the observed data

is unknown, and without this information we are unable to compute the ML
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X- s e - Neighbor

Figure 4: Neighbor set.

s—+r

estimates. Similar problems occur for the filter-cleaner. For example, to this

date it has not even been proved that the cleaned data are stationary [4]. We

are currently investigating these problems and hope to present the results soon.
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([ Run No. | Est Method | 61,00 =8—10)  Bro,1) = Oro,—1) v Sq Err ||

Theoretical Value .234000 .101100 1.00000
LS Clean Data 236163 106680 1.00565

GM Clean Data 229264 103671 1.03459 .000028

1 LS Contaminated Data 133592 045695 2.48139 .007120
GM Contaminated Data .159626 076479 1.27725 .003385

2 LS Contaminated Data .134956 062564 1.70262 006095
GM Contaminated Data 167096 077300 1.17206 .002817

3 LS Contaminated Data 179539 076275 1.72544  .002065
GM Contaminated Data .182444 .085116 1.16808 .001875

4 LS Contaminated Data .137559 093601 2.05112 .004947
GM Contaminated Data 157125 090598 1.17712 .003253

5 LS Contaminated Data .205881 067976 1.66953 .001208
GM Contaminated Data 197621 079790 1.18175 .001104

6 LS Contaminated Data .162913 .065956 1.84768 .003512
GM Contaminated Data .175196 077595 1.18580 .002281

7 LS Contaminated Data 121111 102253 2.08793 .006628
GM Contaminated Data .160067 086082 1.19599 .003107

8 LS Contaminated Data 115475 090131 2.21251 .007420
GM Contaminated Data .160979 .103696 1.18925 .002831

9 LS Contaminated Data .135594 106215 2.02817 .005057
GM Contaminated Data A77840 077823 1.22309 .002117

10 LS Contaminated Data 175925 046927 2.07145 .003600
GM Contaminated Data 180178 085476 1.21113 .001792

11 LS Contaminated Data .169912 062514 1.88382 .003170
GM Contaminated Data .186321 088134 1.16140 .001414

12 LS Contaminated Data 188894 080131 1.70692 .001470
GM Contaminated Data 186448 084844 1.20755 .001474

Table 2: GM-estimator results for additive outliers in a GMRF with changing
contamination.
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Figure 9: Errors for the results shown in Table 2. CONT signifies contaminated
data, i.e., Gaussian data with outliers, and CLEAN signifies Gaussian data
without outliers.



([ Run No. | Est Method | 61,00 =0—10) 01y = b0.—1) v Sq Err ||

Theoretical Value .234000 .101100 1.00000

LS Clean Data .236163 106680 1.00565
1 LS Contaminated Data 133592 045695 2.48139 .007120
GM Contaminated Data 159626 076479 1.27725 003385
GM Clean Data 229264 103671 1.03459 .000028

LS Clean Data .240428 114784 1.03011
2 LS Contaminated Data .088360 067536 2.55879 .012679
GM Contaminated Data .133752 .092041 1.28817 .005948
GM Clean Data .239153 .114014 1.05122 .000001

LS Clean Data .242595 .107649 1.01870
3 LS Contaminated Data 114572 .039206 2.54770 .010537
GM Contaminated Data 162640 071597 1.26652 .003846
GM Clean Data .241548 .115400 1.04944 .000031

LS Clean Data .223647 073663 0.99701
4 LS Contaminated Data 056664 016945 2.51918 .015550
GM Contaminated Data .119442 066373 1.27842 .005456
GM Clean Data 226468 079048 1.03414 .000018

LS Clean Data 282265 .093625 0.93248
5 LS Contaminated Data .103913 1038853 2.55393 .017405
GM Contaminated Data 166528 .085191 1.19616 .006733
GM Clean Data 275986 100556 0.93030 .000044

LS Clean Data .248693 074178 1.00454
6 LS Contaminated Data .078250 1044128 2.56529 .014977
GM Contaminated Data 145491 057209 1.28177 .005469
GM Clean Data .250922 075576 1.01768 .000004

LS Clean Data .272333 063656 0.97107
il LS Contaminated Data 121358 013489 2.50059 .012655
GM Contaminated Data 177642 061307 1.23972 .004486
GM Clean Data 271213 067591 1.02253 .000008

LS Clean Data .214168 125415 1.08745
8 LS Contaminated Data .102068 .061869 2.45701 .008302
GM Contaminated Data 131741 .096509 1.31228 .003815
GM Clean Data .215870 .125856 1.06614 .000002

LS Clean Data .232649 081906 0.99928
9 LS Contaminated Data 115411 064520 2.37098 .007023
GM Contaminated Data .152461 082684 1.24742 .003215
GM Clean Data .230616 081241 1.01009 .000002

LS Clean Data 245452 .108255 0.92095
10 LS Contaminated Data .080360 .040073 2.47818 .015952
GM Contaminated Data 135570 079535 1.17925 .006449
GM Clean Data 241974 113848 0.95411 .000022

LS Clean Data .269604 .101009 0.97095
11 LS Contaminated Data 125567 040974 2.50815 .012176
GM Contaminated Data 170548 .058331 1.24076 .005817
GM Clean Data .269864 099759 0.99666 .000001

LS Clean Data .190854 .153230 1.04144
12 LS Contaminated Data .093560 051904 2.52522 .009867
GM Contaminated Data 121134 109920 1.30009 .003368
GM Clean Data 189772 162675 1.06802 .000045

Table 3: GM-estimator results for additive outliers with changing GMRF .
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Figure 10: Errors for the results shown in Table 3.
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“ Run No. I Est Method | 3(_1,0) 9(0’_:) 9(_1__1] ﬁ2 Sq Err "

Theoretical Value .970400 .973500 —0.968600 1.00000

LS Clean Data 987543 .990750 —0.989295 1.00068
1 LS Contaminated Data 979687 .984730 —0.986289 2.49886 .000036
GM Contaminated Data | .989580 .989391 —1.002531 1.22117 .000060
GM Clean Data 986765 .990741 —0.989043 1.04411 .000000

LS Clean Data 978444 .983040 —0.980719 0.98394
2 LS Contaminated Data | 979591 988116 —0.978982 1.54501 .000010
GM Contaminated Data | .980168 .990954 —0.987684 1.13906 .000038
GM Clean Data 976672 983041 —0.978850 1.01879 .000002

LS Clean Data 985621 987905 —0.985635 0.99660
3 LS Contaminated Data 984006 987575 —0.985954 1.62352 .000001
GM Contaminated Data | .989386 .991061 —0.997082 1.11063 .000052
GM Clean Data .985942 987097 —0.985748 1.00305 .000000

LS Clean Data 983659 .987190 —0.982041 1.04070
4 LS Contaminated Data 982791 987659 —0.982092 1.9254T7 .000000
GM Contaminated Data | .991139 .994523 —0.998166 1.15460 .000123
GM Clean Data 984271 987338 —0.982968 1.00193 .000000

LS Clean Data 985335 .991773 —0.987939 1.03691
5 LS Contaminated Data | .980742 .988022 —0.984732 1.64153 .000015
GM Contaminated Data | .984896 .990145 —0.993127 1.25468 .000010
GM Clean Data 984787 .992368 —0.988579 1.09527 .000000

LS Clean Data 985653 .985634 —0.983150 0.95784
6 LS Contaminated Data 987582 .989621 —0.985784 1.77971 .000009
GM Contaminated Data | .992080 .995766 —1.000052 1.12274 .000143
GM Clean Data 985511 987048 —0.984666 0.97672 .000001

LS Clean Data 983893 986260 —0.984334 0.89570
7 LS Contaminated Data | .986830 .986725 —0.987343 1.96666 .000006
GM Contaminated Data | .994321 .992332 —1.004607 1.07080 .000186
GM Clean Data 982811 .985403 —0.982872 0.92354 .000001

LS Clean Data 986759 987601 —-0.990171 1.00272
8 LS Contaminated Data 982307 986697 —0.987574 2.05374 .000009
GM Contaminated Data | .989451 .993037 -—1.001807 1.21356 .000057
GM Clean Data 987400 987676 —0.990468 1.02488 .000000

LS Clean Data 988944 987261 —0.987261 1.00454
9 LS Contaminated Data 991466 .991042 —0.988385 1.95325 .000007
GM Contaminated Data | .993732 .994287 —1.000144 1.15843 .000075
GM Clean Data 989334 988319 -—0.988145 0.97535 .000000

LS Clean Data 985354 .986986 —0.985492 0.97958
10 LS Contaminated Data 979887  .985451 —-0.984810 2.06648 .000011
GM Contaminated Data | .988242 991869 -—1.001101 1.15539 .000092
GM Clean Data 984484 986933 —0.985738 0.99613 .000000

LS Clean Data 985522 986145 —0.989582 0.97128
11 LS Contaminated Data 988188 .991835 —0.987793 1.69048 .000014
GM Contaminated Data | .990950 .995895 —0.998284 1.10968 .000067
GM Clean Data 985292 986050 —0.989459 0.99013 .000000

LS Clean Data 986957 .989961 -0.990111 1.02466
12 LS Contaminated Data 984518 986245 —0.990286 1.55146 .000007
GM Contaminated Data | 988375 .988803 —0.997312 1.16567 .000018
GM Clean Data 985825 .991247 -0.990510 0.99350 .000001

Table 4: GM-estimator results for innovative outliers with changing NSHP field.
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Figure 11: Errors for the results shown in Table 4.
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([ Run No. | Est Method | 61,00 =8—10) b0,y = b0.—1) v Sq Err ||

Theoretical Value .234000 .101100 1.00000

LS Clean Data .236163 .106680 1.00565
1 LS Contaminated Data .119086 036672 2.47T887 .009304
GM Contaminated Data 154036 069590 1.25918 .004060
GM Clean Data .229264 103671 1.03459 .000028

LS Clean Data .240428 114784 1.03011
2 LS Contaminated Data .143098 .095234 1.63618 .004928
GM Contaminated Data 178739 105796 1.18595 .001943
GM Clean Data .239153 .114014 1.05122 .000001

LS Clean Data .242595 107649 1.01870
3 LS Contaminated Data .155331 .053016 1.70561 .005300
GM Contaminated Data .185023 .089586 1.15419 .001820
GM Clean Data .241548 .115400 1.04944 .000031

LS Clean Data .223647 073663 0.99701
4 LS Contaminated Data .156333 .060597 1.84741 .002351
GM Contaminated Data 187209 075707 1.13710 .000666
GM Clean Data .226468 079048 1.03414 .000018

LS Clean Data 282265 093625 0.93248
3 LS Contaminated Data 198769 .067408 1.59788 .003829
GM Contaminated Data .214585 075061 1.11285 .002463
GM Clean Data 275986 100556 0.93030 .000044

LS Clean Data 248693 074178 1.00454
6 LS Contaminated Data 163208 014778 1.83012 .005418
GM Contaminated Data .190015 037523 1.14988 .002393
GM Clean Data .250922 075576 1.01768 .000004

LS Clean Data 272333 063656 0.97107
7 LS Contaminated Data 111479 084193 2.02618 .013148
GM Contaminated Data .186868 087190 1.19518 .003658
GM Clean Data 271213 067591 1.02253 .000008

LS Clean Data .214168 125415 1.08745
8 LS Contaminated Data 057887 091075 2.30465 .012801
GM Contaminated Data .137629 104363 1.25779 .003151
GM Clean Data .215870 125856 1.06614 .000002

LS Clean Data .232649 081906 0.99928
9 LS Contaminated Data .103274 125214 1.99076 .009307
GM Contaminated Data .143095 081648 1.20179 .004010
GM Clean Data .230616 081241 1.01009 .000002

LS Clean Data .245452 108255 0.92095
10 LS Contaminated Data .135159 049256 1.98369 .007823
GM Contaminated Data .180199 062672 1.13009 .003168
GM Clean Data 241974 113848 0.95411 .000022

LS Clean Data .269604 101009 0.97095
11 LS Contaminated Data .201832 034029 1.76589 .004944
GM Contaminated Data .224626 070500 1.13483 .001477
GM Clean Data .269864 099759 0.99666 .000001

LS Clean Data .190854 .153230 1.04144
12 LS Contaminated Data 125807 .086365 1.65478 .004351
GM Contaminated Data .144559 106571 1.27110 .002160
GM Clean Data 189772 162675 1.06802 .000045

Table 5: GM-estimator results for substitutive outliers with changing GMRF .

56



= 0" %

0.014000
0.012000
0.010000
0.008000
0.006000
0.004000

0.002000
0.000000

all GM CLEAN negligible

M 1S CONT
GM CONT
[J GM CLEAN

Figure 12: Errors for the results shown in Table 5.
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[[ Run No. | Est Method [ 610 =6-1,0) G0,y = 0,—1) v Sq Err ||

Theoretical Value .234000 .101100 1.00000
LS Clean Data .236163 .106680 1.00565

GM Clean Data 231174 103447 1.02514 .000018

1 LS Contaminated Data 133592 045695 2.48139 .007120
GM Contaminated Data 156848 .082112 1.15611 .003447

2 LS Contaminated Data .134955 .062564 1.70262 .006095
GM Contaminated Data 170820 .080460 1.11718 .002479

3 LS Contaminated Data 179539 076275 1.72544 002065
GM Contaminated Data 181513 086274 1.12680 .001702

4 LS Contaminated Data .137559 .093601 2.05112 .004947
GM Contaminated Data 156099 .090561 1.08119 .003335

5 LS Contaminated Data .205881 067976 1.66953 .001207
GM Contaminated Data .194840 .083588 1.12199 .001120

6 LS Contaminated Data 162914 065956 1.84768 .003512
GM Contaminated Data .170706 .080176 1.08993 .002494

T LS Contaminated Data 121111 .102253 2.08793 .006628
GM Contaminated Data .159220 082725 1.10167 .003247

8 LS Contaminated Data 115475 1090131 2.21251 .007420
GM Contaminated Data .166218 .104251 1.10346  .002449

9 LS Contaminated Data 135594 .106215 2.02817 .005057
GM Contaminated Data 178796 071914 1.15400 .002250

10 LS Contaminated Data 175925 046927 2.07145 .003600
GM Contaminated Data 177207 088759 1.15594 001898

11 LS Contaminated Data 169912 062514 1.88382 .003170
GM Contaminated Data 185092 087290 1.11613 001492

12 LS Contaminated Data .188894 .080131 1.70693 .001470
GM Contaminated Data .187262 .083213 1.16583 .001471

Table 6: GM-estimator using redescending g results with changing contami-
nation in a GMRF.
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Figure 13: Errors for the results shown in Table 6.
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[[ Bun No. ] Est Method [ 01,00 =6—100 801) = Bo,—1) v Sq Err ||

Theoretical Value .234000 101100 1.00000

LS Clean Data 236163 106680 1.00565
1 LS Contaminated Data 133592 045695 2.48139 .007120
GM Contaminated Data .156848 .082112 1.15611 .003447
GM Clean Data .231174 .103447 1.02514 .000018

LS Clean Data .240428 114784 1.03011
2 LS Contaminated Data .088360 067536 2.55879 .012679
GM Contaminated Data 135421 .093801 1.15181 005733
GM Clean Data .239569 .114071 1.04459 .000001

LS Clean Data .242595 107649 1.01869
3 LS Contaminated Data 114572 .039206 2.54770 .010537
GM Contaminated Data 160738 077252 1.16230 .003812
GM Clean Data .242776 115418 1.04057 .000030

LS Clean Data 223647 073663 0.99701
4 LS Contaminated Data .056664 .016945 2.51918 .015550
GM Contaminated Data .128238 072108 1.11820 .004553
GM Clean Data .223233 078112 1.02743 .000010

LS Clean Data .282265 .093625 0.93248
5 LS Contaminated Data .103913 .038853 2.55393 .017405
GM Contaminated Data .169156 086559 1.08605 .006422
GM Clean Data .278590 098113 0.93577 .000017

LS Clean Data .248693 074178 1.00454
6 LS Contaminated Data 078250 044128 2.56529 014977
GM Contaminated Data 150117 062442 1.14734  .004927
GM Clean Data .249784 074666 1.01152 .000001

LS Clean Data 272333 063656 0.97107
7 LS Contaminated Data 121358 013489 2.50059 .012655
GM Contaminated Data 176811 071100 1.11739 .004590
GM Clean Data 270652 066584 1.00111 .000006

LS Clean Data 214169 125415 1.08745
8 LS Contaminated Data .102068 061869 2.45701 .008302
GM Contaminated Data 131612 .100466 1.20619 .003719
GM Clean Data .215578 126882 1.07509 .000002

LS Clean Data .232649 .081906 0.99928
9 LS Contaminated Data 115411 064520 2.37098 .007024
GM Contaminated Data 153175 083887 1.13848 .003160
GM Clean Data .231113 081552 1.01140 .000001

LS Clean Data 245452 108255 0.92095
10 LS Contaminated Data 080360 .040073 2.47818 .015952
GM Contaminated Data 141314 083936 1.05435 005718
GM Clean Data 242536 .112349 0.94666 .000013

LS Clean Data .269605 .101009 0.97095
11 LS Contaminated Data 125567 .040974 2.50815 012176
GM Contaminated Data 171164 056797 1.09968 .005823
GM Clean Data 268690 .099329 0.97564 .000002

LS Clean Data 190854 .153230 1.04144
12 LS Contaminated Data 093560 051904 2.52822 009867
GM Contaminated Data 124334 .110919 1.17381 .003108
GM Clean Data 191426 158870 1.06208 .000016

Table 7: GM-estimator using redescending g results with changing GMRF
field.
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Figure 14: Errors for the results shown in Table 7.
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Figure 15: Comparison of the estimation errors for monotone and redescending
1p-functions.
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GMRF/AO NSHP/IO | GMRF/SO
Estimation Method Exp. 2.1 | Exp. 4.1 | Exp. 2.2 | Exp. 3.1 Exp. 3.2
Yy ¥e Yy Y YH
LS Contaminated Data .004358 .004358 1012020 .000010 .006959
GM Contaminated Data 002271 .002282 .004832 000077 .002581
GM Clean Data .000028 .000018 000017 .000000 .000017

Table 8: Estimated coefficient error summary for the GM-estimator. Entries

are the averages of the squared errors from each run.

GMRF/AO NSHP/IO | GMRF/SO
Estimation Method Exp. 2.1 | Exp. 4.1 | Exp. 2.2 | Exp. 3.1 Exp. 3.2
P ¥p Yy Yy vE
LS Contaminated Data 0.95007 .95007 1.50748 0.86675 0.90353
GM Contaminated Data | 0.19022 11854 0.26068 0.16510 0.18419
GM Clean Data 0.02894 01949 0.02519 0.02917 0.02519

Table 9:

Estimated scale error summary for the GM-estimator. Entries are the

averages of the absolute value of the errors from each run.
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[| Run No. | Est Method | 81,0y = 01,0y Bo1) = 80,—1) B Sq Err ||

Theoretical Value .234000 101100 1.00000

ML Clean Data .225644 121269 1.00170
1 ML Contaminated Data .154616 094649 1.91600 .002877
FC Contaminated Data 185604 111985 1.31443 .000845

ML Clean Data .249958 076669 1.00190
2 ML Contaminated Data 163430 058477 2.08880 .003909
FC Contaminated Data .209659 079445 1.25855 .000816

ML Clean Data .218520 087626 0.98160
3 ML Contaminated Data .135102 045927 2.08450 .004349
FC Contaminated Data .209613 071015 1.25949 .000178

ML Clean Data .220391 110259 1.06010
4 ML Contaminated Data .139180 088135 2.08910 .003542
FC Contaminated Data .183064 .105823 1.35668 .000706

ML Clean Data .237543 107537 1.00630
5 ML Contaminated Data .167581 086975 2.02010 .002659
FC Contaminated Data .201956 099527 1.31000 .000665

ML Clean Data .239895 095919 0.94703
6 ML Contaminated Data 151674 046862 2.34630 .005095
FC Contaminated Data .194207 082251 1.54170 .001137

ML Clean Data .243742 .103598 0.94607
7 ML Contaminated Data 150430 062032 2.17050 .005217
FC Contaminated Data .201700 095267 1.25738 .000918

ML Clean Data 211251 .123445 1.06330
8 ML Contaminated Data 135504 0B5867 2.26500 .003575
FC Contaminated Data 176978 113045 1.53670 .000641

ML Clean Data 222698 .100538 1.01080
9 ML Contaminated Data .159505 085977 2.04350 .002103
FC Contaminated Data .188891 096285 1.26087 .000581

ML Clean Data .236326 112829 0.93604
10 ML Contaminated Data 153308 078465 2.04740 .004036
FC Contaminated Data 188447 109484 1.30304 .001152

Table 10: Filter-Cleaner results with changing NCAR field.
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[[ Run No. | Est Method | 810) = 61,0 6(0,1) = b(0,—1) 52 Sq Err ||
Theoretical Value .234000 .101100 1.00000
ML Clean Data .236326 112829 0.93604
1 ML Contaminated Data 73117 062844 1.93850 003247
FC Contaminated Data 211612 104629 1.23093 .000339
2 ML Contaminated Data 153344 069949 2.19160 .004362
FC Contaminated Data .202336 106110 1.33045  .000600
3 ML Contaminated Data 153827 067113 2.26490 .0044448
FC Contaminated Data .205539 107336 1.35316  .000489
4 ML Contaminated Data .166025 .060874 2.17070  .003821
FC Contaminated Data .210387 085819 1.47743  .000701
5 ML Contaminated Data .153191 .093225 2.01570 .003648
FC Contaminated Data .204125 .109471 1.26397  .000524
6 ML Contaminated Data .183958 .096035 1.73150  .001512
FC Contaminated Data 216729 .095992 1.20182 .000334
T ML Contaminated Data .133196 .097445 2.09370  .005436
FC Contaminated Data .190912 .107058 1.36432  .001048
8 ML Contaminated Data .122522 072302 2.34830 007297
FC Contaminated Data .196236 .108129 1.44679  .000815
9 ML Contaminated Data 135321 .110230 2.09490 005104
FC Contaminated Data 196751 .1086330 1.33710 .000804
10 ML Contaminated Data 178558 085144 1.77630 .002052
FC Contaminated Data .206739 .099702 1.22350 .000524

Table 11: Filter-cleaner results for NCAR field with changing outliers.
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Figure 18: Errors for the results shown in Table 11.
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