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ABSTRACT

We consider the problem of enhancement and edge
detection on noisy, real images.A unified framework for
smoothing and edge detection based on an autoregres-
sive(AR) random field model is presented.An edge is
detected, if the first and second directional derivatives
and a local estimate of the variance at each point satisfy
certain criteria.When noise is present we would like to
estimate the directional derivatives from a restored ver-
sion of the noisy image.We propose a Reduced Update
Kalman Filter(RUKF') to perform the restoration.Then
we can perform edge detection recursively using a small
(4 x 4) window and still be fairly robust in the presence
of noise.Since the edge detector operates on the restored
image,it follows the RUKF by a fixed lag.A min-max re-
placement technique is introduced inbetween the RUKF
and the edge detector to improve edge strength.The re-
sults compare favorably with those of other edge detec-
tors.

1 Introduction

Edge detection is an important topic to most researchers
in the area of image understanding.A number of dif-
ferent techniques exist in the literature.A summary of
the earlier approaches to edge detection can be found in
Davis(’75) (1].Since then,several new techniques have ap-
peared. Among them are the ones that perform statistical
tests, [2],[3],(4], and [5], Modestino and Fries’s recursive
filter /edge detector (6], Shanmugam et.al.’s optimum fil-
ter [7], Marr and Hildreth's zero crossing edge detector
(8], the Nevatia-Babu line finder [9], Canny’s edge de-
tector [10], the regularization approach [11], the facet
model based approach [12] and the optimum matched,
detection and localization filters [13].

When noise is present in an image, one usually does
some form of preliminary image smoothing using stan-
dard presmoothing techniques such as median filtering
etc.Presmoothing is then followed by a standard edge
detection algorithm.Oftentimes, the choice of a specific
edge detector has no relation whatsoever to the pre-
smoothing algorithm. In this paper,we propose a uni-
fied framework for edge detection and smoothing. The
image is assumed to be adequately represented by a 2-
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D AR space-variant model.An edge is detected if the
first and second directional derivatives and a local es-
timate of the variance at each point satisfy certain cri-
teria.Due to the modelling assumptions, the directional
derivatives become functions of the model parameters
and the neighboring pixels in a (3 x 3) window.In the
absence of noise,the model parameters can be adaptively
estimated at each point from the underlying image it-
self. When noise is present , restoration helps to improve
the SNR and consequently edge detection itself as the
directional derivatives are also dependent on the neigh-
boring pixel values.This problem of simultaneous esti-
mation of model parameters and pixel values can be for-
mulated as an Extended Kalman Filter(EKF).Since this
is computationally too intensive we have proposed a Re-
duced Update Kalman Filter (RUKF) to perform image

restoration and an adaptive least-squares(LS) technique
for parameter estimation.The RUKF implemented along
the lines suggested by Woods [14] nevertheless differs
from it in that the parameters of the AR model are es-
timated adaptively.A reduced update region implies the
existence of a larger update region.In connection with
these two update regions,we (following [14])use the local
and global state vectors to characterize them. In general
the global state vector is composed of M previous lines
for a nonsymmetric half plane representation of the noise
free image using a M X M model. When a finite order
model is used, a subset of the global state called the local
state can be used.This region defined as the local state
is chosen to correspond with the support of the model
itself for the sake of convenience..When this is the case,
the parameter estimates obtained in the restoration pro-
cess can be directly used for the edge detector’s model
parameters.Edge detection could then be performed si-
multaneously with the RUKF .However, this did not pro-
vide adequate filtering and the support was consequently
increased to four pixels. Min-max replacement is then
performed recursively to enhance edge strength. This
forces edge detection to follow restoration by a fixed lag.

The AR model results in an oriented edge detec-
tor and may not detect well edges whose orientations
are markedly different from the edge detector itself.This
problem is partially overcome by running four quarter
plane(QP) edge detectors as explained in (15] on rotated
versions of the restored image.Since the detection process



follows that of restoration, the four QP detectors are run
on rotated versions of a (4 x 4) window.The final output
is taken as the union of the outputs of the four QP edge
detectors.The synthesis of the four QP edge detectors is
called the Full-Plane(FP) edge detector.,

The organization of the paper is as follows.Section II
deals with the FP edge detector and its details,while Sec-
tion III presents the implementation of the RUKF and
the adaptive parameter estimator.Section IV discusses
the experimental results and Section V presents the con-
clusions.

2 Design of the Full-Plane(FP)
edge detector

In this paper, edge detection is performed recursively and
follows the restoration process by a fixed lag. This means
that our image model for edge detection is assumed to be
an adequate representation of the restored image. The
FP edge detector then is applied to the restored image.
As mentioned in the introduction, the image model is a
2-D AR space variant model.Let §(zo, yo) be an estimate
of the the gray level at position (zo, o). The details of this
restoration process are given in Section IIL.The model is
expressed as follows. :

3(20,30) = c13(z0 — z,%0) + ¢23(z0, Yo — ¥)
+c38(zo = 2,30 — y) + n(zo, vo) (1)

At this point it is assumed that the parameters ¢, ¢,
and c; are known.The first directional derivative is writ-

ten as
95 a3 83 .
el (R o 2= 2
3a = 3500+ By e (2)

and because of the modelling assumption, it can be ap-
proximated as

0.5[c1[5(zo — 2, Yo) — 3(z0, vo))

+63[§(20 — 2, 0 — 1) = E(xg, Yo — I)HCOSQ
+ 0'5[‘:2[3(1‘51 Yo — 2} = E(ID! yﬂ)]

+ea[$(zo — 1,50 — 2) — §(zo — 1,y0)]]sina

where s
a = arctan(4¥) (3)
5z
And the second directional derivative
»?5 8 , 8% _ & .,
Far = pacesiat 26253; cosasina + ﬁszn a (4)

is approximated as

[e1[8(z0 ~ 2,90) — 25(z0 — 1, o) + §(o0, o))
+C3{§(mg = 2! Yo — 1) . 23(30 i 119‘0 = 1}
+3(z0, Yo — 1)])cos’a

+0.5[ca[3(z0, yo) — $(z0 — 2,0)
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=8(z0,y0 — 2) + 5(z0 — 2, yo — 2)]Jcosasina
+leal3(20, yo — 2) — 23(z0, yo — 1) + (0, v0)]
+eal8(20 — 1,50 — 2) — 23(z0 — 1,50 — 1)
+3(z0 — 1,y0)])sin’a

The details of how the first and second directional deriva-
tives are approximated as above may be found in [15].

We detect an edge if a)the second directional deriva-
tive in the direction of the estimated gradient is nega-
tive b)the magnitude of the first directional derivative
is above some threshold c)and the first derivatives along
the z and y directions are non-negative.To the above, a
final condition is added,viz.,d)the local estimate of the
sample variance (4 x 4 was used) must be greater than a
threshold. This threshold is important in real, noisy pic-
tures in order to reduce the effects of noise.

. The parameters ¢;, ¢, and ¢3 are estimated from the
restored image.Since real images are non-stationary, it is
preferable to estimate these parameters adaptively. The
nature of the model allows us to use a recursive Kalman
filter approach the details of which can be found in [16].

At the core of this approach is the QP edge detec-
tor(as mentioned in the introduction) and it arises out
of the underlying causal model. The causal AR model re-
sults in an oriented edge detector and may not detect
edges whose orientations are significantly different from
that of the edge detector.This orientation corresponds
to the first quarter plane as depicted in Fig 1.The value
of & in equation (3) is restricted to lie between 0° and
90°. The Full-Plane(FP) edge output is obtained from
a union of the four QP edge outputs and Fig 1. shows
this implementation in relation to the positioning of the
RUKF and the min-max replacement process.

3 Restoration using a RUKF

Given the special emphasis on noisy, real images, the
restoration process is particularly significant as far as the
edge detector is concerned. The particular technique used
here is the RUKF and this method and other Kalman
Filter approximation methods are fully discussed by Wo-
ods in [14]. In his work, Woods assumed a Non-Sym-
metric-Half-Plane(NSHP) model driven by spatially
white noise to represent the original image.

s(m,n) = ci’"'“)s(m -1,n)+ cgm'“)s(m +1l,n—1)

+c{™s(m,n - 1) + & s(m =10 1)+ w(m, n) (5)

where w(m, n) is the white Process noise field.

A particular case of this model is the (1 x 1) model
used in [14]. Here the support region of the model consists
of the four neighboring pixels(s(m — Lin),s(m—-1n—
1),s(m,n — 1) and $(m +1,n — 1)).When the support
region is reduced to include only three neighbors (s(m —
L,n),s(m=-1,n-— 1), and s(m,n — 1)),(5) is equivalent
to the space invariant version of (1).




s(m, n) in equation (5) refers to the original noise-free
image.This image is assumed to be corrupted by additive
white Gaussian noise (v(m,n)) with the variance ¢2.In
the equations that follow r(m,n) represents the noisy
image and is the only data avaiable to the RUKF.

r(m,n) = s(m,n) + v(m,n)

w(m,n) = N(0,02)
and
v(m,n) = N(0,02)

The indices m and n refer to the position of the
RUKEF .The coefficients of the model are not space in-
variant as in [14],but are estimated by a recursive LS
technique.Ideally, we could estimate both the parameters
and states using a EKF but the computational burden
would be very intensive.

The RUKF consists of two major processes, predic-
tion and update.Before prediction can be performed, in

our modification of the RUKF, we need the space-variant
model at that point.This is done by a Least-Squares re-
cursion.The pixel value of the point (m,n) is now pre-
dicted based on the model whose parameters have been
estimated.Since the model is causal in the raster-scann-
ing sense, it makes use of the restored values of the pre-
vious points in the recursion.Along with the predicted
value of the point (m,n) denoted by §,(m,n), the pre-
diction error covariance matrix R{™" (i, j; k, I) which de-
notes the prediction error between the pairs of points
(#,7) and (k,I) is also estimated.This is carried out over
the global state region.

gl[‘m.n} _ c{m,n)‘g‘(‘mvl'ﬂ)(m -1,n)
Mgt (m 41,0 — 1)

+c§m'“)§f,""1‘"}(m, n—1)

+c£m,n)§£m—1.n](m —1,n— 1) (6}
and
R™m, n;k, 1) = ™R (o — 1, n; %, 1)
+eM R (m + 1,m - 13k, 1)
+°gm,n]R£m—l,n)(m‘ n-—1; k, j)
+C£m.n)R£m—1,n}(m —-1,n-1;k, f) (7)

where (k,1) # (m,n) and (k1) e L53™ the global state.
Details about the global state and local state can be
found in [14]

R{™(m, n;m,n) = ™ R™ (m,n;m — 1,n)
+™M RN (m o nym 4+ 1,0 — 1)
+c{™ M R{™™ (m, nym,n — 1)

+{™VR™ (m, n;m ~1,n=1) 4+ 02

(8)

Here a and b refer to after and before respective-
ly.This is identical to Update and Prediction.Equation(6)

obtains the predicted value of 5§, using the NSHP model.
These model parameters,the coefficients [c(™™)] are es-
timated at each point as described previously, and this
is indicated by their superscipts. The major modifica-
tion here is that the update is restricted to the local
state.This is because updates are significant only in 2 lo-
cal neighborhood of the point (m, n).In this case the local
state is used as the update region.The Kalman gain vec-
tor and the update of the prediction state vector(§{™™)
is restricted to the local state region.

RI™™(m, n;i, )

R} o i,j) eRGY™  (9)
R o) 03] ) ¢
and
(i, ) = M)
+E™N (G, f){r(m, n) = 7 (m, )] (10)

R{™™(i, 53 k, 1) = R{™(i, 53 &, 1)
—Em(G DRM™N (my ik, D)

for
(i,5) e Rgy™
the local state and

(k1) e LoVM

the global state.

The model used in the RUKF is not identical with
the one used in the design of the F'P edge detector.In this
case, the support is four pixels,and this means that four
and not three parameters have to be estimated. The
same form of the adaptive least-squares technique de-
scribed in the design of the FP detector can be used for
estimation of the model parameters.Since the initial pa-
rameters are to be estimated from the noisy image, a
bias-compensated LS estimate[14] is used .Initial condi-
tions have to be prescribed for the filtering error covari-
ance matrix(R,).The initial error covariance was chosen
to correspond with that of the white noise process(c?)
which has to be estimated.

4 Results and Discussions

The RUKTF filter/FP edge detector was run on two noisy
versions of the airport image. The airport image after pre-
processing(median filtering followed by min-max replace-
ment)is shown in Fig.3.The FP edge detector was run on
this image. The noisy images(SNR's of 5 and 0 dB) are
shown in Figs.4 and 5 respectively.The edge outputs of
the original and noisy images are shown in Figs.6.7 and
8 respectively.

Real images lack an objective criterion on whether
an edge exists or not. This implies that our ‘best’ choice

. of thresholds is based on critical comparison of the edge
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outputs from the restored and original images. However
the performance of the edge detector can be judged by
a group of intersubjective interpreters.In our unified ap-
proach,there is a strong match between restoration and
edge detection.The same form of the random field model
is used in both..One important feature of this approach
is that there is no postprocessing operation like thin-
ning involved.Despite this, there is a relative absence of
multiple responses to a single edge.This is achieved by
localizing the domain of each QP edge detector to its
appropriate quadrant and summing up the responses.At
a phenomenological level,this technique compares favor-
ably with other techniques aimed at detecting edges in
real,noisy images and further details and comparisons
can be found in [17].

5 Conclusions

In this paper, we have described an edge detector which
is based on several criteria applied to first and second
directional derivatives which in turn are functions of the
parameters of an underlying correlated Random Field
model.In addition, we have incorporated an adaptive fil-
tering scheme to improve the SNR of the noisy, real im-
ages used.The filtering scheme uses the same form of the
model as that of edge detection.
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Figure 1: Interleaving of FP edge det.,RUKF and
min-max.
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