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Abstract

Texture information can be used as a basis for segmenting an image into re-
gions. Image texture is basically a local area phenomenon that is sensitive to
the size of the area. What appears as a non-textured area at one resolution level
can appear as a region with distinctive texture at a different resolution. The
performance of texture segmentation schemes is often highly dependent on the
size of the local area operator used to generate the classification features. The
size of the operators has a major impact on the performance near the bound-
aries between texture regions. Features based on large operators perform better
overall but are highly affected by the mixing of class statistics when the opera-
tor overlaps more than texture, such as near the texture boundaries. Features
based on small operators show poorer overall performance but are more likely to
maintain an acceptable performance level in the boundary areas. The trade-off
is between statistical accuracy of the classification versus the final accuracy of
the texture region boundaries. The problem being studied here is how to com-
bine information from texture classifiers operating at different resolutions into a
segmentation process that gives acceptable performance in all areas of an image.

In this study, the nature of the mixing problem is examined and a solution
is proposed based on using multiple resolution features in a hierarchical decision

process. A key component of the solution is an analysis of the image data prior

x1



to performing any classification. From this analysis, we determine the expected
location in the feature space of the mixture points. Three different methods of
1solating the mixture points in the feature space are proposed and tested. During
the initial classification phase, image points that are within the mixture areas
are left unclassified. Spatial information is incorporated into the segmentation
process by the use of a local area cohesion operation. The final segmentation
is based on a hierarchical decision process that uses the classification choice at
both resolutions and the spatial cohesion data. Several decision processes are

tested that use the information in different ways.
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Chapter 1

Introduction

The ability to use a machine to interpret pictures has been the focus of a tremen-
dous amount of work in recent years. Whether it is called machine vision or
image understanding or scene analysis, the goal is the same: build a machine
that can understand a picture in much the same way that a human observer
can. It should be able to identify objects in the picture and determine rela-
tionships between objects. A human observer is capable of extracting a wealth
of information from an image. The information can range from finding objects
to avoid while walking across a room to spotting structures in photos returned
from a satellite. The fact that a human can so quickly acquire, process, and
analyze the visual information constantly being thrown at him gives one a great
appreciation for the effectiveness of the human visual system. For a machine
to be able to do some of these same tasks typically requires a large amount of
computing resources and a significantly longer processing time.

One of the basic requirements for having a machine understand an image is

the ability to locate regions in the image that contain pixels with some common



characteristic. This task is usually referred to as segmenting the image and is-
described in detail in many standard references [1], [2], [3], [4]. The common
characteristic used as the basis for the segmentation can be a simple pixel prop-
erty such as brightness or color. An image can also be segmented according to
a a more complex, region based property such as texture. Texture is present
to some degree in virtually all images and can be a key feature for use in seg-
menting the image. Image texture is easily recognizable but difficult to define.
It exhibits a variety of properties such as coarseness, regularity, and granular-
ity. Textures can range from the randomness of something like tree bark to
the highly structured pattern of a chain-link fence. It is basically a local area
phenomenon that is sensitive to the size of the area being observed. A change
in resolution can transform an area of the image that appears as a non-textured
region with a constant gray level into a region with distinctive texture. Chang-
ing the resolution further can make the region return to appearing as a uniform
surface.

Virtually all images contain some type of texture that is used by humans to
understand the contents of the image. Segmenting an image using the texture
information is something a human can do rather easily in most cases. Previous
work on using texture as the basis for segmentation by machines has had varying
degrees of success. One area of texture segmentation where machines typically
do not perform as well as a human observer is in accurately finding the location
of the boundaries between textures. Texture segmentation algorithms that work
with acceptable error rates in areas of homogeneous texture often perform poorly
near the boundary between two or more textures. Conversely, an algorithm that

works well near the boundaries often is not acceptable for use over the entire



image. A key difference between the two methods is often the size of the spatial
area used to analyze the texture for making the segmentation decision. We are
often forced to make a trade-off between overall accuracy of the segmentation
versus the final accuracy of the texture region boundaries. Segmenting an image
into texture regions is nearly identical to the problem of segmenting an image
into regions of similar gray levels. The only additional work needed is the ability
to transform the image into a texture domain where each pixel is represented
by a number describing the texture that the pixel in the original image belongs
to, rather than by a number describing the image brightness at that pixel.
Obviously the problem is to find the method that can accurately map the points
in the original image into the texture domain.

A key part of any texture classification/segmentation process is the gener-
ation of features to use in differentiating between the various textures. Since
image texture is an area property rather than a point property, the features must
be generated by analyzing the image data in a neighborhood around the pixel
being segmented. The spatial area covered by the analysis operation represents
the resolution of the features and has a significant effect on the performance
of the features. Features generated using the data in a relatively large spatial
area are more likely to give a statistically better classification since the features
are based on a greater amount of data. Using a large spatial area operation
when near the boundary of a texture region can lead to problems. The area will
often overlap more than one region and the resulting feature is based on data
from two classes. This can lead to an increase in classification errors. At best
the result is a ragged boundary between regions. In many cases, a more serious

problem occurs in which a false region appears between the two true regions.



To get a smooth and accurate boundary, a smaller window size must be used
so that the feature generation operator more often encompasses texture from
only one region. This usually makes the boundaries between the regions more
accurate but can result in a higher overall error rate since the features are now
based on less image data.

The problem being studied here is how to combine the results from two
or more texture classification processes done at different resolutions, each with
different strengths and weaknesses, into a segmentation method that has accept-
able performance both near to and away from texture boundaries. The key to
achieving this is in how the information from the different resolution classifiers is
used. In combining the results of the classifiers, knowledge about their strengths
and weaknesses in classifying near edges is used to give a final segmentation that
is better than that achieved with either single resolution classifier working alone.
The combining of the multiple resolution information is done in a hierarchical
manner. With this approach, the segmentation accuracy is higher than that
achievable using the multiple resolution features on an equal or non-hierarchical
basis.

A brief overview of previous work image texture classification and segmen-
tation is presented in Chapter 2. Chapter 3 discusses the motivation for using
a multiple resolution, hierarchical segmentation process. The texture classi-
fication features and the classification algorithm being used are described in
Chapters 4 and 5, respectively. Chapter 6 discusses the effects of the mixing of
class statistics in generating the classification features and derives a expression
for the probability density of the mixture. In Chapter 7, a set of techniques is

presented for minimizing the effect of the mixture problem. Chapter 8 describes



the spatial cohesion technique used to enhance the classification accuracy. The
hierarchical decision process used to make the final segmentation is discussed in

Chapter 9. A summary of the work and conclusions are presented in Chapter 10.



Chapter 2

Background

2.1 Classification vs. Segmentation

Image data can be processed by classification methods or by segmentation meth-
ods or by a combination of the two. The dividing line between what is a classifi-
cation process and what is a segmentation process is somewhat fuzzy. Depending
on the definitions used, the methods described in the following chapters can be
viewed as one or the other or both.

Pattern classification is the problem of partitioning a set of data items into
groups or classes on the basis of one or more features measured from the data.
For image data, the features can be something simple like brightness or color,
or something more complex such as texture. The number of classes may be
determined before classification starts or it may be determined by the classifier
as the process proceeds. The resulting classifications are totally dependent on
the data, the classification algorithm, the selection of the classes available for

assignment, and on the selection of the features to be used as the basis for any



classification decisions. Changing any one of these four generally results in a
different partitioning of the data.

In a classification problem, the order in which the data is processed is not
highly significant. A classifier based on a priori information about the classes
present does not change as the data is processed. The results of the classification
are the same regardless of the ordering applied to the input data. For a classifier
that adapts to the data as the processing proceeds, the results can be different
for a different ordering of the data. However, under normal circumstances,
the various results should tend to converge to a common solution. This order-
independent property implies that the results of a classification of image data
is not depend on any spatial information. The absolute or relative location
of pixels in the image is not considered when determining the choice of class
assignment on the basis of the feature data.

Segmentation is unique to image data and is a process of partitioning image
pixels into groups that represent regions in the image with some common char-
acteristic. For image understanding applications, the goal is to have each region
be associated with some part of an object in the image. An object can be some-
thing physical such as a door or a lake, or it can be something more general such
as a blank background behind all the foreground objects. An object may consist
of more than one regions if parts of the object differ significantly in appearance
or if part of the object is hidden from view, but two objects in the image should
not share a single region. By its nature, the goal of segmentation is to result
in regions containing pixels that have some type of spatial relationship, regard-
less of whether or not spatial information was used in making the partitioning

decision. If spatial information is used, the distance in the image between two



pixels has a direct effect on whether or not the points should belong to the same
region. Unlike classification, two pixels with identical appearance in the image
may not be segmented into the same region if they are not in close proximity to
each other. If spatial information is used in doing the segmentation, then the
order in which the pixels are processed is important since this may imply the
location of the pixels in the image.

The key difference between the classification and segmentation is that the
goals of segmentation involve a spatial partitioning while classification does not.
Classification by itself does not yield meaningful results about the spatial re-
lationships between pixels in the image. Segmentation does result in spatial
groupings, however it is not typically used to apply a meaningful interpretation
to the grouping. This is left to a higher level process that operates on the results
of the segmentation.

Both classification and segmentation are pixel-based processes rather than
region-based processes and can not deal directly with image texture. The image
texture must first be mapped from the pixel brightness space into a feature space
where each pixel contains information about the intensity variations present in a
local area around the pixel. The task of segmenting the textures into regions can
be viewed as a three step process. First, a feature or set of features are generated
for each pixel in the image. This has the effect of transforming the texture
information in the local areas into one or more feature values. This is sometimes
referred to as a transformation from the pattern space to the feature space [5].
Classification techniques are then used to transform the image from feature
values to texture numbers. The classification process analyzes each pixel in the

feature space and assigns it to a texture class. This effectively maps the features



space into a classification space where each pixel is a number representing the
texture present at that position in the image. In the last stage, a segmentation
method is used to incorporate spatial information into the final groupings of
the pixels. Pixels that were assigned to the same class by the classifier may
or may not be segmented in the same spatial region. Since the input data to
the segmentation process is a single number representing the texture class, the
image can be segmented into regions of common texture in a manner similar to
the way a non-textured image can be segmented using gray levels alone.

In implementing an image texture segmentation scheme, as described above,
the three processes can be merged together in varying degrees to make the
division of functionality difficult to find. In the multi-resolution, hierarchical
segmentation method described in the following chapters, the role of the seg-
mentation stage has been reduced to something that can more accurately be
described as a classification post-processor. No attempt is made to divide the
pixels in the same texture class into spatial groupings that represent regions in
the image. The segmentation process is simply used to combine spatial infor-
mation with the output of the classification stage to enhance the performance

of the texture classification.

2.2 Feature Generation

A great deal of the past work in texture classification and segmentation has
used standard pattern recognition techniques. As with most classification tasks,
the choice of features to be used is crucial for good results. Since texture is

in general a local area characteristic, most features are based on some type of



operator applied to pixels in the local area surrounding the pixel being classified.
We will use the term “local area operator” or “LAO” to refer to a wide variety
of linear or non-linear operations that are performed in a spatial neighborhood
around a pixel. The form of the output from the LAO is dependent on the
operation and typically is a scalar value or a vector or a matrix. An example of
an LAO is a two-dimensional convolution operation in which the data within a
local area is convolved with a fixed set of number resulting in a single output
value. Examples of other operations that can be applied to data in a local
area include finding maximum(s) or minimum(s), measuring various statistical
moments, calculating histograms, etc.

Image texture can be classified using statistical features such as mean or
variance. These moments can be measured over a local area surrounding the
pixel in question and the resulting features are then used for classification. One
disadvantage of these features is that they lack any sense of spatial orientation.
A texture with a horizontal orientation can have the same moments as one with
a vertical orientation even though they look distinctly different to an observer.
Information about the spatial orientation of a texture in a local area can be
obtained by using a second order statistics such as the digital autocorrelation
function. This can be used to measure how well an image matches a shifted
version of itself. For images, this is a two dimensional function with the amount
of shift horizontally and vertically as the independent variables. Two properties
can usually be determined from the autocorrelation function: the coarseness of
the texture and the presence of any periodicity in the texture. Most applications

of this method limit the shift to a fixed number of pixels around the central point.
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A problem with this technique is that most natural textures have very similar
autocorrelation functions [6].

Since textures are often repeating patterns of pixels, a natural feature to use
is the spatial frequencies present in the image. This can be measured optically
[7], [8] or digitally via an FFT algorithm. Transforms into the frequency domain
other than the Fourier such as the slant or Hadamard have also been tried
[9], [10], [11]. A problem with this attempt is that to have useful transform
results, the transform must be over a large number of pixels. If the transform
is only applied to the small area surrounding the pixel, only high frequency
information is obtained. This technique also suffer from the same shortcoming
as the autocorrelation method in that it tends to perform poorly on textures
that are similar. Eklundh [12] examined using only the phase component of
Fourier features in classifying textures and determined that without amplitude
information, the texture discriminating power of these features was low despite
earlier successes in using phase information in areas such as transform coding
of images.

The method of gray level cooccurrence matrices [13], [14] (also known as
intensity cooccurrence matrices) is similar to the autocorrelation methods in
that it works in the spatial domain. The elements of the cooccurrence matrix
describe the number of times a pair of pixels with particular gray levels occur
a specified distance and direction apart in an image or portion of an image.
From these matrices, various features are calculated such as entropy or con-
trast. The cooccurrence matrix can be viewed as an approximation to the two
variable probability density function. As such the features represent ad hoc ap-

proximations of the true entropy or contrast. If cooccurrence matrices are to
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be calculated for a variety of separation distances and directions, the number
of features can become rather large. However, this method has proven to be
quite successful in texture classification. Results of classification tests are usu-
ally better that with autocorrelation [15]. Zucker and Terzopolous [16] used gray
level cooccurrence matrices for texture classification by interpreting the matrix
data as samples from a random process. Davis, Johns, and Aggarwal [17] ex-
tended the concept of the gray level cooccurrence matrix to include information
about the distribution of edges in the local area. Terzopolous and Zucker [18]
used these generalized cooccurrence matrices along with gray level cooccurrence
matrices to classify textures.

Texture often can be broken down into primitive components. These compo-
nents and the relations between them are referred to as a structural description.
The orientation and placement of the primitives can be quite regular as in an
image of brick wall or random as in an image of sand or gravel. Structural tex-
ture classification involves finding primitives in the image and determining the
strength of the interrelationships. These can then be used as features in doing
the classification [19], [20].

Laws [21], [22], [23] developed a set of texture features called “texture energy
measures” based on measuring the energy in the output of a matched filtering
operation on the texture. These are described in more detail in Chapter 4.

The above methods for generating features for texture classification are all
similar approaches in one sense. Each of them is concerned with finding a good
set of features to use in doing the classification. Once these features are found,

classical pattern recognition methods such as nearest mean are used to perform

12



classification. In doing so, knowledge about the individual characteristics of

feature operators is often not used.

2.3 Classification

Once the image texture has been transformed from the pattern space to the
feature space, the implementation of the classification algorithm for image tex-
ture is not significantly different from any other type of data. Descriptions of
the various types of pattern classification algorithms are described in Duda and
Hart [24], Tou and Gonzales [25], and Andrews [5]. Methods for doing pattern
classification can be divided into several categories depending on how much is
known about the statistics of features of the various classes.

If the statistics of the data in the feature space are known or can be esti-
mated, a classifier can be constructed based on the probability densities of the
data. Estimation of the parameters of the densities using samples of the data
is commonly referred to as “supervised learning,” supervised implying that the
true class of the samples is known. A common example of this is to assume the
probability densities are Gaussian and to estimate the first and second order mo-
ments from available sample feature points. Once the probability densities have
been determined, a classifier can be designed using Bayes decision theory that
minimizes the cost of an incorrect classification based on a set of loss functions.

Alternative techniques known as clustering or unsupervised learning are used
if the statistics of the classes are not known and no samples from known classes
are available to allow estimation of the parameters. A clustering algorithm is

an iterative process that attempts to determine the location of the class means

13



based on the data being classified. A well known example is the Isodata algo-
rithm [26]. This technique makes repeated passes through the data, each time
changing the estimate of the class means, until the locations of the class means
stabilize.

Most pattern classification methods are based to some extent on using a
set of discriminant functions to determine to which class to assign the point.
The discriminant functions can be viewed as boundaries in the feature space
between one class and another. The number of discriminant functions necessary
to construct the complete boundary for a class is dependent on the data. The
discriminant functions can be of any shape necessary in the feature space to

implement the desired boundary.

2.4 Segmentation

Reviews of many of the techniques for doing image segmentation are provided by
Ballard and Brown [1], Haralick and Shapiro [27], Fu and Mui [28], and Zucker
[29]. Many image segmentation techniques can be divided into two categories:
edge based and region based. Edge based systems include those that operate on
lines and edges in an attempt to locate the region by finding the boundary [30],
[31]. Region based systems localize the image regions either by combining small
regions into larger ones (region growing) or by splitting large regions into smaller
ones (region splitting). Region growing methods start with small regions on the
order of a few pixels and merge them together according to a similarity criterion
[32]. Region splitting methods proceed in the opposite direction, dividing large

region according to a splitting criterion into separate regions [33], [34]. The

14



concepts of region growing and splitting were combined by Horowitz and Pavlidis
[35], [36] into a technique that uses both.

Of special interest are segmentation methods that utilize information ob-
tained at different resolutions. Most of the classification and segmentation
methods studied either used features generated at the same resolution level
or treated features from multiple resolutions the same. Carlton and Mitchell
[37], [38] used two sizes of LAO to segment images. The large LAO was used to
obtain a first level segmentation of the image. The small LAO was then used
to subdivide the regions found by the large operator. This can be considered a
hierarchical segmentation method since the boundaries of the first phase of the
segmentation were not changed by the second phase.

Other methods of texture segmentation that make use of multiple resolution
images are those based on the “pyramid” techniques described by Tanimoto
and Pavlidis [39]. They use a set of successively reduced resolution images
(Fig. 2.1). The pixels or nodes in the lower resolution image higher in the
pyramid are functions of the “children” pixels in the higher resolution image on
the next level below (Fig. 2.2). The processing of the images can either proceed
in a top-down fashion, moving from the lower to higher resolution images or
alternatively in a bottom-up manner going from the higher to lower resolution
images.

Tanimoto and Pavlidis used a top-down procedure to isolate objects in the
image. The presence of an object is first noted in a node on one level and then
its shape is refined by moving to the children nodes on the next lower level where
there is more resolution. The procedure is repeated down through the pyramid,

refining the shape of the object.
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Figure 2.1: Pyramid structure with four levels

a a b b
a | a b b A B
c c d d C| D
c c|d | d

a = child of A

b = child of B

¢ = child of C

d = child of D

Figure 2.2: Relationship of nodes on adjacent levels
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The work by Pavlidis and Tanimoto [40] and Chen and Pavlidis [41] on tex-
tured image segmentation use the split-and-merge algorithm with the pyramid
data structure. Their methods are based using both the bottom-up approach
for merging and the top-down approach for splitting. Each father node is a
function of the four children beneath it in the larger image. Pavlidis and Tan-
imoto used features based on two-dimension Fourier transforms of the image
brightness. From these features, a texture uniformity and texture similarity
metric is computed to use in making the decision as to splitting a block into
four regions or merging a group of four blocks into one. Chen and Pavlidis used
features based on a simplified version of the cooccurrence matrix that does not
contain directionality information. By examining the feature values of the four
children nodes, a decision can be made whether to merge them into one or to
split the four into different regions. After doing these operations, the cooccur-
rence matrices are recomputed. This process repeats recursively up to a up to
a predetermined level in the pyramid. The result is an image containing square
regions of various sizes. The picture is then operated upon by two other pro-
cesses to group adjacent regions together using the cooccurrence matrices and
to remove small regions by joining them to larger ones.

Burt, Hong, and Rosenfeld [42] performed segmentation on non-textured
images with a similar bottom-up pyramid method using gray level information.
Their method differs from that of Chen and Pavlidis in that the pyramid struc-
ture uses overlapping 4 by 4 blocks of pixels (Fig. 2.3). At each level a pixel is
linked to one of the four candidate father nodes in the lower resolution image
above it. The father nodes are then recomputed as a function of the children

nodes linked to it. This process moves upward through the pyramid and then

17



a | a |ab|ab | b | b
a | a [ab |ab | b | b
a| al|ablab| b | b
c c |cd|ed | d | d A| B
a a | ablab | b b :/‘k g
c c | ed{ed| d | d
c ¢ |led|ed| d d
c c |led|ed| d | d a = child of A
b = child of B
¢ = child of C
d = child of D

Figure 2.3: Pyramid with overlapping nodes

repeats until the links between nodes stabilize. The trees of links thus give a

segmentation of the image.

Pietikdinen and Rosenfeld [43] extended the linked pyramid approach to use
texture features. The texture features are based on gray level cooccurrence
matrices and are initially measured in non-overlapping local areas of 8x8 pixels.
The bottom level of the pyramid thus contains nodes representing each of these
blocks. Their method also utilizes both bottom-up and top-down processes to
improve the segmentation results.

While the pyramid techniques do make use of multiple resolution informa-
tion, the process does not vary as it moves from one resolution to another. The
decision process for nodes encompassing few pixels is the same as that for nodes
in the low resolution image encompassing many pixels. The method for obtain-
ing the low resolution image in the pyramid method discards a great deal of

data. Reducing the resolution by a factor of 4 reduces the the number of pixels
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by a factor of four. This is not the same as operating on an image with a large

local area operator at each pixel to produce a new image.
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Chapter 3

Multiple Resolution

Segmentation

The primary objective of this research is to develop a technique for finding tex-
ture boundaries through a classification and segmentation method that utilizes
feature operators of multiple sizes in ways that take advantage of their partic-
ular characteristics. The use of local area operators (LAOs) of differing size is
important because the spatial size of the operator has a direct effect on the clas-
sification accuracy in various parts of an image. Thompson [44] examined the
relationship between the size of the texture granularity and the size of the local
area operator used to analyze it. He compared techniques for determining the
minimum size of the LAO with the results of human perception of the textures
using various size viewing regions. He found that “there is a well defined trade
off between spatial resolution of a texture boundary and the ability to distin-
guish between visually similar textures.” Besides using multiple size operators,

a classifier should make use of the available information in an intelligent manner.
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Simply using information from various size LAOs as just more features without
taking into regard the size of the LAO does not generally improve performance.
Our knowledge of how the various size operators respond in the different areas
of a picture should be put to use. The concept of using local area operators of
multiple sizes is not new. However, in the past the results were always combined
without regard to the relative strengths and weaknesses of the two operators un-
der various conditions. The work described in Chapter 2 involving the pyramids
of successively reduced resolution versions of the same image does make use of
different resolutions [41], [39]. However the basic algorithm is not a function of
the resolution and it does not make use of the information from more than one
resolution simultaneously. At any one level in the pyramid, the image data is
processed at that resolution level and then the resolution is changed.

The spatial size of the local area operator used to generate the features affects
the classification accuracy in two opposing manners. In an area consisting of a
single, homogeneous texture, an LAO covering a larger spatial area generates
more accurate features than a smaller LAO assuming the same pixel resolution
was used. This is due to the nature of image texture, as discussed in Chapter 2,
in that it can not be measured at a single point but must be measured over a
local neighborhood. To generate feature points that can be used to accurately
classify the texture, the features should be based on as much data as possible.
The variations for the feature data from a 5x5 LAO are greater than from a
15%x15 LAO covering a spatial area nine times as large. Accurate classification is
only possible for those pixels that generate feature points that can be separated

in the feature space from the feature points of other classes.
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If the variance of the feature values is too large, a significant percentage of
the features representing the pixels of one class are closer to the mean of another
class. This results in an incorrect class assignment when using a classification
algorithm based on measuring the distance from a feature point to each class
mean and assigning the point to the nearest class. For this reason, the larger
local area operator is preferred. If we can assume that the LAO is guaranteed
to always be over an area of the image that contains a single texture, then
the larger LAO will perform better than a small one. However, in a image
with multiple textures, and the inherent boundaries between them, many of the
possible positions of the LAO cause it to be over more than one texture. The
spatial size of the LAO is directly related to the likelihood that it encompasses
more than one texture. If the features for an image point are generated from
data belonging to more than one texture class, the underlying statistical model
is no longer that of a single class, but instead is a mixture of the statistics of the
classes in present. This is discussed in more detail in Chapter 6. The probability
of a classification error for points with features based on a mixture of the class
statistics are higher than for points with single class features This implies that
the smaller LAO should be used since it is less affected by the mixture problem.
These two opposing effects result in a trade-off between high overall classification
accuracy with poorly defined texture boundaries, and lower overall classification
accuracy with better defined texture boundaries.

The effect of the different sizes of LAOs for generating features can be seen
in the texture segmentation work by Laws [22]. The texture mosaic he used

(Fig. 3.1a) contains 8 textures with identical first and second order moments in
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regions that are of pixel dimensions 128x128, 32x32, and 16x16. The classifi-
cation using a 31x31 LAO (Fig. 3.1b) resulted in few errors in the interiors of a
region but the boundaries are not well determined. The 15x15 LAO (Fig. 3.1c)
leaves many errors in the interior of the region but did a much better job of

finding the region boundaries.

The obvious solution to this problem is to classify the points away from the
texture boundaries with features generated using large LAOs, and to classify the
points near the texture boundaries with features generated using small LAOs.
Unfortunately, this can not be done directly since the texture boundaries are one
of the things we are attempting to locate and they are not known in advance.

The alternative solution being examined is based on using the large LAO
features to construct a test for detecting pixels near the texture boundaries.
Pixels that are determined to have a high likelihood of not being near a texture
boundary are classified normally with the large LAO features to take advantage
of the higher classification accuracy possible with these features. The remaining
pixels are assumed to be near a texture boundary and are classified with the
small LAO features. By using the features in this manner, we are implementing
a hierarchical classification. The classifier phase using the large LAO features
has priority over the classifier phase using the small LAO features. In addition,
the two stage process allow the results of the large LAO classification to be used

in performing the second stage classification.
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Figure 3.1: Texture mosaic used by Laws
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Chapter 4

Classification Features

In any pattern classification problem, the proper selection of the features to
be used in the classification algorithm is very important for obtaining the best
possible results. Substantial work has been done by others to develop ways to
select the best possible set of classification features for the available data. The
features that we use are similar to those developed by Laws known as “texture
energy measures” [21], [22], [23]. His features have been shown to work as well
or better than most others on a particular set of relatively fine-grained textures
(see Section 4.2) and are also relatively easy to calculate. In the work by Laws,
efforts were made to use an optimum set of the features. A statistical selection
procedure was used to select a set of features with the best discrimination power
for a given set of input textures. For our purposes, finding an optimum set of
features is of secondary importance in comparison to developing a technique
for combining the results from the multi-resolution features at hand. There is

some justification in using a non-optimum set of features in that any real world
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Figure 4.1: Block diagram of feature generation process

application of a texture classifier will almost assuredly be working with features

that are less than perfect for the data being classified.

4.1 Texture Energy Measures

The texture energy features we use are based on a using a sequence of two local
area operations (LAOs) on the image data as shown in Fig. 4.1. The first LAO
to be applied to the original image is a two-dimensional convolution. The output
of this step is processed by the second LAO that calculates an estimate of the
standard deviation. The output of the second step is normalized to become
one component of the feature set. This multi-stage process is repeated for each

component of the feature set.
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The first LAO convolves the image data with a fixed set of convolution masks
having fixed, integer-valued weights. The term “mask” is used here and in the
discussion below to signify a matrix of values used in performing the convolution.
The two-dimensional convolution is performed for each pixel over the full input
image. The result of the convolution at any one position in the image is used
as the output image value for that position, as expressed by

n n
Fz,y) = 22 > f(z+4,y+5)h(,5), (41)
i=—n j=—n

where the f represents the input image, h the convolution mask of size 2n +1
by 2n+1, and F the output image. In order to make this convolution technique
work near the edges of the image, a border of n pixels is added to the image.
The pixels in the border area are set to the mean value of the image in order to
minimize the effect on the convolution output.

The convolution masks are designed to act as matched filters for certain
types of quasi-periodic variations commonly found in textured images. The
pixel dimensions of these masks are typically 7x7 or smaller. In most cases the
sum of the elements of the mask is zero, which results in the output image having
a mean of zero. The convolution masks are intended to be sensitive to visual
structures such as edges, ripples, and spots. Because the micro-texture features
in the image are quasi-periodic, we expect strong variations about the mean
output as a function of mask position for masks that are matched to the local
texture. Convolution masks that are not matched to the texture have smaller
output variations. Thus the relevant information for texture discrimination is
present in the convolution output image as the local variance of the output

values.
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Figure 4.2: Vectors used to generate convolution masks

In Laws’ work, the first stage LAO for calculating the texture energy features
used several different convolution mask at sizes of 77, 5x5, and 3x3. The
output of this operation was processed by the second stage LAO, described
below, and normalized. A subsequent feature selection process resulted in using
features based on only four of the first stage LAOs, all of size 5x5. These were
referred to as the E5L5, R5R5, E5S5, and L5S5 masks. The E5, R5, S5, and L5
terms refer to the 5-element vectors shown in Fig. 4.2 that are used to create
the 5x5 LAOs by taking direct (outer) products of the two vectors. In addition,
the LSL5 mask is used for the final normalizing process. Figure 4.3 shows the
convolution masks used. The four LAOs selected were found by Laws to be the
most important for classifying the Brodatz textures he was using. We are using

the same four masks for the features generated in this study.

The second step in calculating the features involves applying a larger LAO
to the first stage data to measure the sample variance (or some approximation)
within local areas, either at each pixel or over a sub-block of the image. It is the
size of this LAO that is changed to give the multiple resolution data for the final
classification. Typically, the spatial size of the LAO for measuring the variance
is on the order of 15x15 or 31x31 pixels.

The variance in the local area of the filtered image can be measured in a

variety of ways. One method of computing local variance within a 2n 4 1 by
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Figure 4.3: Convolution masks
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2n + 1 pixel area centered at point (z,y) is given by
o*(z,y) = (2n+1 ‘_Z_M_Z_:n(f(w +i,y +J) —m(z,y))?, (4.2)

where the local mean, m, at point (z,y) is given by
4.3
m(z,y) = (2n 1) ,_an_z_:nf(m +%4,y+ 7). (4.3)

There are also variations on this equation that provide different expressions
for the local variance. Kuan [45], [46] used a method in which the local mean,
m, in Eq. (4.2) is that from the area centered on the point f(z +i,y + j) rather
than around the point f(z,y). The local variance equation thus becomes

o(z,y) = @ Ip 1)2 Z E f@+iy+j)—m(z+iy+5)>  (44)
i=—n j=—n

If the convolution calculation is performed using LAOs having zero mean,
the local variance may be approximated by assuming that the image is indeed
zero mean and averaging the squares of the points within the local area

o*(z, z+1i,y+ 4.5

(z,y) = @n +1)2=—Z_M-Z_:nf y+i) (4.5)

Experimental examination of the statistics of some filtered images show that
this zero mean assumption is justified.

The final feature values use the standard deviation, o, rather than the vari-
ance of the data. This implies that the features can be calculated with an
approximation for the standard deviation such as averaging the absolute values
of the points in the local area

o(@9) = Gy 0 O f@ iy + )l (46)

i=—n j_—ﬂ.
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This method produces some savings in computation over Egs. (4.2) and (4.5).
The differences in the final classification performances using the various measure-
ments in Eqs. (4.2), and (4.4)-(4.6) have turned out to be essentially negligible.
Since we are mainly interested in the relative performance at multiple resolu-
tions, the performance differences from one method to another are of no great
consequence. We have used the sample standard deviation method (Eq. 4.2) in
the work to be described.

The output from the second LAO is a non-normalized feature image. The
final step in creating the feature set is to normalize the feature data. This makes
the feature data independent of changes in brightness and contrast in the input
image. The normalizing factors are derived in much the same way as the feature
points described above using two LAOs. The first LAO is a convolution using a
small (5x5) mask. However in this case the mask is not zero sum, resulting in
a output image that does not have a zero mean. The output of this operation
is similar to that of a low-pass filter. A second LAO is again used to measure
the standard deviation, o, of the output image. Since the image does not have
a zero mean, Egs. (4.2) or (4.4) must be used instead of Egs. (4.5) or (4.6).
The output of the second LAO is a processed image that is used to normalize
the data in the feature images on a pixel-by-pixel basis. The pixel values in the
feature image are normalized by dividing them by the corresponding pixel values
in the normalizing image. Any difference in multiplicative gain from one image
to another cancels since the final feature images are now a ratio of standard
deviations. As mentioned before, the mean of all the features is zero because

the convolution masks used by the first stage LAO to produce the features are
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all zero sum. This has the desired side effect of canceling any additive bias or
brightness change in the input image.

The texture energy features calculated by Laws were based on using several
different first stage LAO convolution masks and one size of second stage LAO
standard deviation measurement. In order to reduce the dimensionality of the
classification process, a principal component transformation [3] was then used
by Laws to allow selection of the a working subset of feature data containing
the most significant transformed features. This process has been simplified in
our case. Based on Laws’ conclusion, a subset of the possible convolution masks
were selected beforehand (Fig. 4.3) and used without performing the principal
component transformation.

As described above, the four masks selected were those indicated by Laws to
be the most important for classifying the Brodatz textures he was using. How-
ever, the performance that can be obtained using only these convolution masks
is certain to be inferior to that obtained using an equal number of features that
are optimum linear combinations of many features. For the purpose of this
research, the relative performance of the classification at various resolutions is
more important than the absolute classification accuracy. It is important to
remember that, unlike Laws’ work, this is not a study in doing feature selection
but rather a study in how to best utilize existing features from various resolu-
tions. It is very likely that the results that follow are not as good as they might

be if more effort went into selecting an optimum feature set for the classification.
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4.2 Test Data

The primary test image used in this study is a texture mosaic (Fig. 4.4a) com-
posed of eight different texture samples taken from the Brodatz texture book
[47]. The Brodatz book consists of photographs of a variety of textures, both
small and large grained. Photographic prints of several of the textures were
obtained from the author. These were digitized as 512x512 pixels images with
256 gray levels per pixel, followed by a histogram equalization process.

The mosaic is a 512x512 image with 8-bits (256 gray levels) per pixel. It
consists of eight textures which are numbered from one through eight and listed
for reference in Table 4.1. Rectangular regions of size 128x128 pixels were ex-
tracted from the 512x512 scanned images for these eight textures and combined
into a single mosaic image following the diagram in Fig. 4.4b. All eight textures
are present in the image in squares of size 128x128, 64x64, 32x32, and 16x 16.
The texture data in the smaller regions was obtained by extracting data from
the larger 128128 regions. This mosaic is slightly different than the mosaic
used by Laws (Fig. 3.1a) in that is has regions of four different sizes rather than

only three. The mosaic Laws used did not have 64x64 regions.

In the segmentation results that follow, the individual textures are shown
in the images with each class assigned a gray level. Figure 4.4c shows the gray

levels used to display each of the eight textures.
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(a) Texture mosaic image
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(b) Numerical texture map (c) Gray-level texture map

Figure 4.4: Texture mosaic image and reference maps
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Reference Texture Brodatz page
number number

i} Grass D9

2 Water D38

3 Sand D29

4 Wool D19

5 Pigskin D92

6 Leather D24

i Raffia D84

8 Wood D68

Table 4.1: Components of the texture mosaic

4.3 Experimental Results

The resulting features generated for the texture mosaic are shown in Figs. 4.5
and 4.6. These represent the results of using the four first stage LAO convolution
masks (Fig. 4.3) described in the previous section, with the 31x31 and 15x15
standard deviation operation of Eq. 4.2, followed by the normalizing process.
The images shown have been scaled to an eight-bit output range (0-255) for
viewing. For the purposes of doing the computations in this study, all the
feature data used for the classification are stored as floating point numbers.
The same feature data was also used to estimate the parameters for the a Pri-
or: statistics for each individual texture. The first and second order statistics
for each of the eight textures was measured using the feature data in the largest
(128x128) regions of the mosaic. The exact area used to compute the statis-
tics within the 128x128 regions was selected to be the largest portion of each
region that was not affected by the boundary effects of the neighboring regions.
Thus, if the two LAOs are a 5x5 convolution operation and a 31x31 standard

deviation operation, a 94x94 region in the center of the 128x 128 region is not
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affected by the edges of the images or the neighboring regions. The data in
this area is used as the sample data for training the classifier. This results in
a 4-dimensional mean vector and a 4x4 covariance matrix for each of the eight
textures. These are used as the first and second order moments in the a prior:

statistics for the classification algorithm described in the next chapter.

36



N

(d) L5Ss

Figure 4.5: 31x31 normalized features
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(d) L5S5

Figure 4.6: 15x15 normalized features
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Chapter 5

Classification Algorithms

A key component of the texture segmentation process is the technique for do-
ing pattern classification. Numerous algorithms for pattern classification are
available. The selection of an algorithm is determined to a large extent by the
amount and type of information that is known about the data to be classified.
Classification techniques may be divided into two groups: ones that rely on
some amount of prior knowledge about the data to be classified and those that
operate without any prior knowledge. The amount of information available de-
termines the type of classifier that can be used. The ideal situation is to know
a priori the complete statistics for all classes, either directly or by estimating
the parameters. If this is the case, the classification algorithm may be based on

Bayes decision theory which ensures minimum misclassification error [5].

5.1 Bayes Classifier

For the case in which the a priori probabilities of each class and the probability

densities of the data from each class are known, an optimum statistical classifier
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based on Bayes decision theory can be designed that minimizes the cost of
making an error. The cost is based on a set of values that describe the loss for
making each potential type of error. For a classification problem involving N
classes and one-dimensional data, the classes are denoted byt =100, N I
the equations that follow, we assume that i takes on values from 1 to N unless
otherwise specified. For each data point, , we must decide which of the N
classes to assign the point to. The a prior: probabilities of each class, P(w;),
and the conditional densities, p(z|w;), of each class are known. Using Bayes rule

[48], we can relate the a priori and conditional probabilities to the a posteriors

probability:
Plufe) = HE2)Z) (5.1)
where
N
p(z) = le(wle)P(wj)- (5.2)

The Bayes classification is performed by calculating the value of P(w;|z) for
each of the N classes and assigning the point z to the class with the highest
a posterior: probability. When the a posteriori probability, P(w;|z), is used in
this fashion for doing classification, it is referred to as a discriminant function.
For a N-class problem, we need N discriminant functions. The classification
consists of assigning the point to the class with the largest discriminant value
[24], [25].

The Bayes classifier algorithm can be extended to multi-dimensional data.
In this case, Eq. (5.1) is replaced by

p(x|wi) P(w;)

P(wi fx) = p(x)

(5.3)
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where
N
p(x) = > p(x|w;)P(w;). (5.4)
=1
In Eq. (5.8), the data is represented by the d-dimensional vector, X. The equa-

tion can be simplified considerably if we assume equal @ priori probabilities

(P(wi) = P) and if we assume that the conditional densities are multivariate

Gaussian
1 1 =1
X |w; 5 - —z(x=p,)E; (x—pL;) 5.5
p(x|w;) PRI (5.5)
where
i = Elxlw] (5.6)
5 = Bl(x — p)(x — g e (5.7)

Under these assumptions, Eq. (5.3) can be written as

1
(2m)% |3

e“%(x—ﬂa)'ﬁfl(x‘”-‘)) i‘ (5.8)

P wilX) =

b = ey
Since the values of P and p(x) are the same for all classes, those terms can
be removed from the expression for P(w;|x). Taking the logarithm of each side

yields the discriminant function

9i(x) = —In(P(wilx)) (5.9)

1 1 d
= S(x—p) T (x - ) + 5 nlZil + Sln(27). (5.10)

Constant terms can be removed from the above expression since they are present
in all the discriminant functions and do non affect the result of any comparisons
between the conditional densities of the classes. This reduces the discriminant

function to

gi(x) = (x — ;)T (x — p;) + In| Sy (5.11)
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This results in a set of discriminant functions (one for each class) that can
be used to perform the Bayes classification of the unknown points. Note that
by relating g;(x) to the negative log of the a posteriori density, we have reversed
the sense of the test applied to the discriminant functions. Classification of an
unknown point is done by evaluating g;(x) for each class and assigning the point
to the class that results in the lowest value of g;(x).

In Eq. (5.11), the first part of the expression is the square of a general
distance function called the Mahalanobis distance, defined by

Dy (%, ;) = (x — ;)" 57 (x — p;). (5.12)

The Mahalanobis distance is a distance function that compensates for different
variances of the data in the d dimensions. If d is one, the Mahalanobis distance
is in units of standard deviations of the data. The same concept applies for
higher dimensions.

If we assume that the covariance matrices for all classes are proportional to
the identity matrix (3; = ¢I) then the Mahalanobis distance is proportional to
the Euclidean distance and the expression for the discriminant functions reduces
to the Euclidean distance from the point to the class mean. This implies that
the point is being classified to the nearest mean in the d-dimensional Euclidean
feature space. Without the above assumption on the covariance matrices, the
feature space is no longer Euclidean but is warped by the differing covariances
of each component of the feature vector. However the fundamental classification
operation can still be viewed as a comparison of the distances between the point
and the various class means. In the more general case of Eq. (5.11), the distance

is essentially the Mahalanobis distance plus a class dependent bias given by
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In|Z;|. This distance can be referred to as the “Bayes distance”, Dp where

Dp(x, 1) = gilx) (5.13)

= Di(x, ;) + In|Z;]. (5.14)

This measure of how close the point X is to the mean of class 7 is not a true

distance metric since Dp(p;, p;) # 0, due to the additive bias.

5.2 Classification Results

The Bayes classifier described above is applied to each individual pixel in the
image using the the texture mosaic features generated with the 31x31 and 15x 15
standard deviation LAO shown in Figs. 4.5 and 4.6, respectively. The results are
shown in Table 5.1. Also shown are the results of classifying the mosaic using
both the 31x31 and 15x15 features simultaneously as 8-dimensional feature
data. The values in the table indicate the percentage of correctly classified
points in the image, for both the full image and for the sub-images consisting of
various sized mosaic blocks.

The pictorial classification results are shown in Fig. 5.1. A key point to
notice is that using both the 31x31 and 1515 features simultaneously did not
increase the accuracy of the classification significantly over that achieved with
just the 31x31 features.

While image textures can be classified using the above techniques, the results
indicate that there are a few inherent problems. The most significant problem is
the presence of an incorrect class along the boundary between two other classes.

This is most obvious in Fig. 5.1b in the areas between classes 1 and 2 and between
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31x31 15x15 31 x 31+

15x15

Overall 68.1 69.9 68.5
128x128 83.2 78.2 83.4
64 %64 70.2 71.6 70.8
32x32 48.4 58.1 48.5
16x16 23.5 44.9 24.2

Table 5.1: Results of Bayes classification

classes 7 and 8. This is a more serious problem than if the points in these areas
were incorrectly classified to the wrong class of one of the two on either side
of the boundary. If this false class did not appear, our main concern would
be to find the boundary between the two classes. However, with the presence
of the third class, we can never be sure whether or not the class is legitimate
or an artifact of the classification technique. A secondary problem concerns
the distribution of the incorrectly classified pixels. In the above example, the
incorrectly classified points should have been distributed into all 8 classes in
approximately equal number, but it is apparent that most of the errors resulted
in a pixels being assigned to class 6. This problem can be seen in the lower right
portion of Fig. 5.1b where the texture blocks are of size 15x15. In this part of
the image, a large number of pixels have been classified to class 6 (leather). This
indicates that class 6 tends to be a default class for points classified incorrectly.

In the next chapter we examine the origin of this phenomenon.
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(c) Classification results — 15x15 (d) Classification results — 31x31
features and 15x15 features

Figure 5.1: Classification results for texture mosaic image
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Chapter 6

Mixture Densities

The success of any pattern classification system depends greatly on the features
available. No pattern classification algorithm can compensate for features that
cannot separate the classes. A basic assumption in most statistical pattern
classification schemes is that each unknown sample point data point is a member
of exactly one of the possible classes. This implies that the features for each
data point are based on exactly one statistical model and that the features for all
points in the class are based on the same statistical model. Given a set of features
calculated from the data points, a pattern classifier tries to match them to the
features of the known classes. Using some type of similarity measure, the most
likely class for membership is decided on and the sample point is classified to
that class. An exception to this is the classification methods based on fuzzy sets
[49], [50], [51]. A fuzzy set is one whose members have an associated probability

describing the likelihood of membership in the class.
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6.1 Why the Mixture Problem Exists

The assumption about data points being from only one class breaks down some-
what when classifying image texture. Image texture is not a point phenomenon;
it is a local area phenomenon in which the texture at a point in the image
can only be determined by analyzing a neighborhood surrounding the point in
question. For this reason, the features used in texture classification schemes are
based on a measurement made within a local area. An inherent problem with
this approach in analyzing an unknown image is that the local area may encom-
pass a single texture or multiple textures. The local area operators (LAOs) used
to calculate the features often overlap more than one texture in the image. In
this situation, the resulting feature values do not have statistics matching just
one of the classes. Instead, the feature statistics are a combination or mixture
of the statistics of the classes that are present in the area encompassed by the
LAOs. This implies that sample points close to the boundaries between regions
of different textures generate features that are spatially nonstationary and a
function of spatial position in the image. This is true even though the statistics
of the individual classes may be spatially stationary.

The statistical model for these nonstationary features is a mixture density

as described by Duda and Hart [24],

N
p(x|0) = _ p(x|w;, ©;)P(w;), (6.1)
j=1
where N is the number of classes, © = (0y,...,0y). ©; is the parameter vector

for the corresponding component density and P(w;) are mixing parameters that
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satisfy
N
> P(w;) =1. (6.2)
i=1
Here the mixture density is a weighted sum of the component densities. The
fact that the mixing parameters change as we move from one part of the image
to another is what makes the feature statistics nonstationary.

The presence of a mixture density has a significant effect on texture classifi-
cation accuracy. The degree to which this problem affects classification accuracy
depends mostly on how much a mixture of two or more classes resembles another
class. For example, assume we are attempting to classify the textures shown in
Fig. 6.1 by using two features: 1) a measure of the number of horizontal edges
and, 2) a measure of the number vertical edges within a window. Class 1 consists
of only horizontal edges, class 2 consists of only vertical edges, class 3 contains
both horizontal and vertical edges, and class 4 has neither type of edges. The
features that are generated along the boundary between classes 1 and 2 show
both horizontal and vertical edges, much the same as the features generated for
class 3. We can expect that many of the points in this boundary region will be
incorrectly classified to class 3. Other boundaries, such as between classes 3 and
4 are not affected in this way because that mixture does not resemble any other
class.

The mixture problem described above affects the generation of feature data
from the image data. For natural images the problem is also present in the
original digitizing process. The digitization of the image involves measuring the
average brightness level within small, local areas. If a local area overlaps more
than one texture, the resulting pixel value is based on a mixture of the textures

present in the area. In the analysis that follows, the presence of the mixture
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Figure 6.1: Sample texture image - 4 classes

problem in the digitizing process is ignored. This is justified since the size of
the LAO used to generate the features is significantly larger than the size of the
aperature used to digitize the image. With the sizes of LAOs we are using, only
a small fraction of the pixels in the LAO are affected by the mixture problem
from the digitizing process. The mixture problem in the digitizing process is
not present in an artificially constructed mosaic image, such as the test image
shown in Fig. 4.4a, since the individual texture regions are all extracted from

larger images containing a single texture.

6.2 Derivation of the Mixture Density

The approximate statistics of the feature points from a mixture of classes can

be derived in the following manner. The first step involves determining the
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conditional statistics of an individual feature point for a given proportion of
classes present in the local area used to calculate the feature value. The second
step is to determine the statistics of the collection of all features points in image
as a function of the proportion of the total feature points that are affected by

the mixture phenomenon.

6.2.1 Density of an Individual Feature Point

Assume we have a second stage LAO of the type described in Chapter 4 that
encompasses )M feature points that have been processed by the first stage LAO.
Also assume that the values calculated in the first stage are derived using a point
process or with an LAO small enough that any mixing of pixels from different
classes can be ignored. This means that the second stage LAO only contains
points from one of two classes. For purposes of calculation, assume that the
feature values from the first stage LAO are of dimensionality one and Gaussian

distributed with means p;, and covariance o?

1 € N(pp,0?) (6.3)

z3 € N(pa, o*%).

The following derivation of the density of the feature points can easily be ex-
tended to multi-dimensional features.

The second stage LAO is used to measure the sample variance of the pro-
cessed image points. The sample variance values are the feature values that are

used for doing the classification. Let the sample variance be given by
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where Z is the sample mean

L % ()
T=—> z\%. (6.5)
Mi:l

Let m; and m; be the number of points in the LAO from classes 1 and 2
respectively. Since there are only these two classes in the LAO, then m; +mq =

M. The points from the two classes are denoted as

2D i=1,...,m (6.6)

xé‘?)aj = 1'." SRR

Assume the means of the two classes are equal (u; = ), implying
E(z1") = B(2f") (6.7)

fori=1,...,my, and j = 1,...,m,. Then the sample mean of class 1 points,
#1, and the sample mean of class 2 points, Z,, are both be approximately the
same as 7, the sample mean of all the points in the LAO.

The output of the second LAO that is measuring the sample variance of the
feature points within the LAO is then given by

1 o

_ ) _ = \2 4 N ) =2
v = M_l(g(xl =)+ 2ok wz))

o omy—1 1 S0 _ -y my — 1 1S3 ,0 _ =y
- M—1(m1—1£(m‘ ) Rl v mz—lg(mz %)

(6.8)

where y; and y; are the sample variances of the points within the LAO from the
classes 1 and 2, respectively. This implies that the sample variance of all the

data in the LAO is a weighted sum of the individual sample variances.
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Since the distributions of z; and z; are Gaussian, then the distributions of
the sample variances, y; and y,, are Chi-squared (x?) with m; and m, degrees
of freedom, respectively [52]. The mean of the sample variances is thus the

variance of the samples

E(y:) = py, = 0} (6.9)
and
B Ml ol o
The variance of the sample variance is given by
o, = E(y- E(y))’ (6.11)
- (Gt S (ot v ) om
= (B oD+ T - o)

= (222) B - od) + (2=2) B - o)

S R ) (613)

Since the points in class 1 and class 2 are independent, the last term is equal to

zero. The resulting expression for the variance of the feature points is

my— 1 2 m2+—1 .
a§=(M:_1) ajl+(M_1) s (6.14)

For my > 1 and my > 1, the x? distributions tend to be Gaussian due to the

central limit theorem. Let a represent the proportion of points in the mixture

from class 1

ms my — 1

= — = 6.15

* M~ M-1 Lo
1 - mgwmg—l
a = MNM_]_.
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The distribution of the output from second stage LAO is thus given by
p(yla) = N(auy, + (1 — @)uy,,a’0l + (1 — a)’ol, (6.16)
where p,, = of and p,, = o2. This represents the conditional distribution of

the individual feature values given the relative proportions of the two classes

present in the second stage LAO.

6.2.2 Density of a Collection of Feature Points

From the density of the individual feature points derived above, we can deter-
mine the density of the collection of feature values in the image for a particular
configuration of regions in the image. Let us assume we have applied the win-
dow described above to various positions in an image that contains two textures
separated by a boundary. This has the effect of calculating the feature values,
y, for a variety of values of a.

Let K be the total number of positions the LAO is placed in to calculate a
value of y. Depending on the position of the LAO, it may or not be affected
by the boundary. Let k; be the number of positions in which only class 1 is in
the LAO and let k; be the number of positions in which only class 2 is in the
LAO. This implies that k; + k» < K. Let 8, and 3, represent the fraction of the

positions in which only one of the classes is in the LAO

po= o
ko
B2 = Vrd (6.17)

where ) + 32 < 1.
The value of a in the expression for the variance density can be expressed

as a deterministic function of a discrete random variable, i. Let a(i) be the
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a(i)

A
1
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| | | ’
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LAO over LAO over LAO over
class 1 only both classes class 2 only

Figure 6.2: Typical plot of «(z) vs. i
fraction of the LAO covering class 1 for LAO position t,4 = du K The
random variable, 7, is uniformly distributed between 1 and K and

1.
P(i) =2, i=1,...,K. (6.18)

The density of y can now be written as

p(yla(?)) = N(a(@)py, + (1 — a(i))py,, a(i)’oy, + (1 — a(3))*eZ,).  (6.19)

Without loss of generality, we can order the K feature values, y, i =
1,..., K, such that the contribution of class 1 to y() is at least as large as it
is for y(*+1). This implies that a(7) is a monotonically non-increasing function.

For a typical image, a(z) may be shown in Fig. 6.2.
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The probability density of y is then given by

Py) = 3 p(ula@)PO)

1 K
= Egp(yla(z))
1 _kl ) K—ko K ‘
= E(Zp(yla(Z))Jr >, pyla(d))+ 3 p(yla(t)))
i=1 i=k;+1 1=K —ko+1
ok = ke
= o)+ f,-=§+1 P(yla(2)) + 2=p(v2)
1 #=h
= ﬁlp(m)-f-f > p(yla()) + Bap(ys) (6.20)
i=k1+1

where
py1) = pyla(i) =1)
p(y2) = plyle(i) = 0).
The resulting density has three components

1. A Gaussian part at y = y,, due to class 1.
2. A Gaussian part at y = y,, due to class 2.
3. A non-Gaussian part between p,, and p,, due to the mixture of classes 1

and 2.

Two special cases can be easily examined. If 8 + 8, — 1, this implies that
the overlap region is small in relation to the total area being examined. In this

case Eq. (6.20) reduces to

p(y) = Bip(y1) + Bap(y2). (6.21)
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If p1 = B2 = 0, this implies that all positions of the window are affected by the

boundary and Eq. (6.20) reduces to

1 K
p(y) = = 2_p(yla(i)). (6.22)

=1

Equation (6.20) can be simplified under certain circumstances. First, assume
p(y|a(i)) is Gaussian with the same second order moments for all values of i.
Secondly, assume that the the means of the p(y|a(i)) terms in the summation
are linearly distributed between p,, and p,,. This implies that the function a(1)

is linear between 7 = k;+1 = k; and ¢ = K —k,, and is defined over that domain

as
ofi) = K —(i+k)
K — (ki + ko)
—i 1— P,

Kl-Git8) 1=+ h) ()

The linearity of the function (i) is a reasonable assumption since in most case
the action of the texture boundary on the mixture density is symmetric. This
means that for every position of the window that encompasses some proportions
of texture 1 and texture 2, there is another position in which the proportions
are reversed.

If the number of terms in the summation is large (K — (ky 4 k2) > 1), then

the summation term can be approximated by an integration

dm g 3 pula)) = ——PtP)
K~k _ _1
i PO R v )
= ~(~ (& +8) [ plyla)da
= (1= (Bi+82) [ plyla)da (6.24)
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where p(y|a) is a Gaussian distribution with the mean a function of «

(vle) 1 (=)’ (6.25)
a) = e ¥ .
e V2roy,
The mean is described by the function
p(a) = apy, + (1 — a)py,. (6.26)
Changing variables of integration from « to u changes Eq. (6.24) to
1
Jm LS plel) m (- (B4 A) |, pvla)da
I—k1+1
(1— (51 + f2))
By -1 5'-:5)2
2 v/ du. 6.27
fp ) ,——% 1 (6.27)
Another change of variables from y to z where
y—H
z = 6.28
V2o, (6.28)
results in
K- kg (1 _ (ﬁ] +ﬁ2)) 1 b"#y] 5
lim — a(?)) = —V2¢ Vg ds
Kevoo I g_%—l P(yl ( Py — My ( "27r0'y) ( &") 9—;;9

o
= dz

(1=(B1+B)) 2 /yv;ff
2(##2 _“yl) \/_

(1= (B +52))
2(!‘-"‘92 - #!;1)

(o () or () o

where erf is the Gaussian error function defined as

y—Hy

2 .
erf(z) = h\/__ﬂ'/e e " dz. (6.30)
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The probability density of y for the simplified case just described is then
given by
e'rf (y—;s: ) - erf (y_;:;)

2(:‘“’3}2 — My, )

p(y) = Bip(y1) + (1 — (B + B2)) + B2p(y2)- (6.31)

Figures 6.3 and 6.4 are contour plots of a sequence of mixture densities for
the model just derived (Eq. (6.31)), and for the data present in the texture
mosaic features. Figure 6.4 represents an ensemble average of the distributions
of the feature data in a collection of classes that mix at a joint boundary and in
a collection of all feature planes. The mixing parameter, f; + B2, ranges from
zero to one in both plots. The y variable is plotted from lower left to upper right
and p(y) is plotted vertically. Each slice though the figure from lower left to
upper right represents a different value of 8; + ;. At the lower right side of the
contour plot is the case of 8; + f; = 1 which implies no mixing. At the upper
left is the case of i + f; = 0 which implies full mixing. For Fig. 6.4, the actual
distributions of the two classes present in the mixture have been normalized and
scaled along the y axis to move the means to locations that correspond to those

in the plot of the model results.

The mean of the random variable y using the probability density function of

Eq. (6.20) is given by

E(y) = f_m yp(y)dy

oo K—ky
= f_ (ﬁlp(yl)-i- E Py|a(3))+5zp(yz))
!.—-k1+1
= BB+ > Blyla(i) + AE@w)
s*—k1+1
1 K—k;
— 51}13;1 I{ Z E(yla(z))"'ﬁ?#yz (632)
i=k;+1
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Figure 6.4: Plots of feature data (p(y) vs. y) for various degrees of mixing
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By Eq. (6.19), the expected value of the p(y|a(i)) is

E(yla(d) = a(@uy, + (1 — ai))py, . (6.33)

The middle term in Eq. (6.32) can then be written as

LY L 3 o)t i 3
= E(yla(i)) = —w a(i) + —p (1 —a(3))
K i W K™ i=k1+1 K m£=k1+1
_ E=-(h+hk) [ =
- Ire Hy, + Jre s=§|-1 a(7)
yy = pyy, BB
= (1= (Bt B + =252 37 afi). (6.34)
‘£=k1+1

The summation term in the above expression is essentially averaging a(z) over
the domain k; +1 to K — k,. If we again assume that the function a(2) is linear
over this domain and ranges from one to zero, then the average value of « in

this domain is simply 1/2. The summation of the a(z) terms becomes

1 K-k 1 K=k
Ei=§i—1 a(z) N E‘i=§|-1 E
_ K —(ki+ks)
B . 2K
= 5(1=(Bi+5)) (6.35)
and Eq. (6.34) reduces to
1 K—ky 1
%, 2 BGla@) = (1= (B4 B + (i = )31~ (B + )
i=ky+1
= 1-(B+ ﬁz))ﬁ“;—ﬂ. (6.36)

The expected value of y is thus given by

By) = s+ (1= B+ pa) 22T ln 1 g,

Hyy + My, o (62 = ﬁl)(#m i P"yl)
2 2

. (6.37)
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The expected value of the output of the second stage LAO is thus a weighted
sum of the means that contribute to the mixture. The weights are determined
by the proportion of each class that is present in the LAO. This implies that
if f1 = f;, meaning that there are equal amounts of both textures in the area
being examined, then the mean of the mixture is midway between the individual
class means. If B, > B, then the mean of the mixture is shifted towards the
mean of class 2, and if #; > f;, then the mean of the mixture is shifted towards
the mean of class 1.

For a multi-dimensional feature space, the above derivation can be extended
to show that the expected value of the feature vector is a weighted sum of the
mean vectors of the classes within the LAO. In the feature space, the interpre-
tation is that the expected value of the feature vector y lies on the line segment
connecting the two class means.

The presence of data whose statistics are described by a mixture of proba-
bility densities can cause problems when used with a classification method that
assumes that each data point is based on a single statistical model. We have
seen that the expected location in feature space of the mixture points is some-
where between the classes contributing to the mixture. This is likely to cause
misclassification errors if points in this region of the feature space are closer to
the mean of a class not in the mixture than they are to the mean of any of
the classes contributing to the mixture. In this situation, a classifier method
based solely on measuring distance to means will incorrectly assign the sample
point to nearest class. For example, Fig. 6.5 is the feature space representa-
tion of the class means from Fig. 6.1. In this example, the number of classes is

four (N = 4) and the dimensionality of the features is two. The line segment
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Figure 6.5: Location of class means in feature space

connecting the means of classes 1 and 2 passes very close to the mean of class
3. Feature points on the boundary of classes 1 and 2 are likely to be closer in
feature space to the class 3 mean than to either of the means of classes 1 and
2. This is a problem that cannot be solved by a coordinate transformation such
as rotation or warping of the feature space. A rotation or warping may change
the direction or shape of the line connecting the means but can not solve the
problem since the distance functions used to do the classifying are also altered

by the transformation.
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6.3 Ideal Situations Which Minimize the
Mixture Density Problem

It is likely that the mixture density problem could be avoided if we were free
to select the dimensionality of the feature space and the location of the class
means. In many respects this is a similar problem to that encountered in the
design of a communication system. In the selection of signals to be used in a
digital communication system, one tries to pick a signal set that minimizes the
probability of error. This is commonly done by using orthogonal or antipodal
signals [53]. However, for a pattern classification problem the signals (class
means) are predetermined.

The mixture density problem is minimized if the class means were located
such that each class mean can be separated from the others in the feature space
with a single hyperplane. The hyperplane has to satisfy the condition that all
points lying in the plane are closer to at least one of the class means on one side
of the plane than they are to the single class mean on the other side. Under these
conditions we are guaranteed that no linear combination of the mean vectors
of the other classes can result in the expected location of a point being on the
same side of the separating plane as the single class. This assures us that the
resulting expected location of the point is always closer to one of the classes that
contributed to the linear combination.

For example, consider a case of four classes with three dimensional feature
vectors. The conditions described above are satisfied if the means are made
to lie equal distances apart on the vertices of a tetrahedron (Fig. 6.6). In this

situation, the expected location of a feature point resulting from the mixture of
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Figure 6.6: Optimum location for 4 classes in 3 dimensions

two or three classes is in one of the plane faces of the tetrahedron. A point in
one of the faces is always within % of one of the class means that contributed
to it, where d is the distance in the feature space between the vertices where the
class means are located. Regardless of where the point is in the plane face, the
distance to the class mean at the opposite vertex is at least d\/g. We are thus
assured that the point is always be closer to the mean of one of the classes that
was part of the mixture density.

It is important to remember that while the expected location in the feature
space of the mixture point may lie in one of these plane surfaces, the actual data
is distributed around the expected locations due to the variance of the data. This
means that some of the feature points may still be closer to an incorrect class

mean, even with the class means in the ideal locations as described above.
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6.4 Proposed Approximate Solution

The mixture density problem is inherent in any method of feature extraction
that uses an LAO for calculating features since the LAO can overlap more than
one class when analyzing the data. A proposed solution to this problem is to
use a multiple-pass algorithm rather than a single-pass algorithm for doing the
classification and segmentation. When using a single-pass classification method,
all points in the image must be assigned to one of the classes based on the data
available during that pass. There is no opportunity to leave a point unassigned
due to a lack of confidence in the potential assignments. By doing the classifi-
cation using a multiple-pass classifier, we have the option of delaying a decision
on the classification of a point. Points for which we do not feel confident about
making an assignment are temporarily placed into a “null-class” and are clas-
sified by the second stage of the classification process. The ability to avoid
making a final decision based on weak evidence allows us to delay the classifica-
tion until we have reason to be more confident about the decision. Delaying the
classification makes it possible to gather more information about the point in
question. By combining the information from several passes, the final decision
can be made based on a hierarchy of data including spatial information such as
the proximity of other points in the potential classes.

Use of a null-class during the preliminary passes does not increase the number
of correct classifications, but it decreases the number of incorrect classifications.
Eventually we must assign all points in the image to a class. The hierarchical
structure is proposed in hope that the points which are not classified at first

can be classified later with features that are more immune to the effects of
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the mixture density. The choice of features that exhibit some immunity to the
mixture density problem depends on the nature of the data being classified. For
image texture, natural candidates are features generated using a smaller window
which are less likely to overlap more than one texture. It is important to keep
in mind that while we have been referring to this procedure as a classification
process, it is also a segmentation process. Spatial information is being used
indirectly at this stage since the features are dependent on location in the image.

At the stage in the classification process in which the null-class region is used,
we are faced with what is essentially an N + 1 class problem. Either the point
should be classified to one of the classes in question or it should be classified to
the null-class.

Ideally, a Bayes decision surface that minimizes the cost of making a mis-
classification error can be used if the statistics of the mixture of two classes can
be determined. Not using the Bayes decision surface has several advantages. As
the derivation of the mixture density in Section 6.2 showed, even with several
simplifying assumptions the statistics of the mixture are not Gaussian, and the
decision surface can not, in general, be solved for in a closed form. Determining
the position of a point relative to the decision surface has to be approximated
and results in a higher computational cost. In addition, a Bayes classifier re-
quires that we determine the costs of making classification errors. The costs of a
misclassification error are not all equal. A point that is assigned to an incorrect
texture class does more damage than one that is assigned to the null-class since
there is a chance that the point can be classified correctly during the second
phase of the classification. We must therefore decide on relative costs to apply

to the two types of errors if we use a Bayes decision surface.
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For these reasons, a trade-off must be made between the degree of optimality
of the null-class region boundary and the speed of computation. The closer to
an optimum boundary that is used, the greater is the computation cost. The
following chapter describes some non-optimum null-class regions that have been

tested.
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Chapter 7

Null-Class Methods

Three different techniques have been examined for implementing the null-class
concept described in the previous chapter for doing hierarchical classification
and segmentation. While each technique has advantages and disadvantages in
terms of classification and computational performance, all of the methods are
basically similar in that they implement the null-class concept in the following

manner:

1. Prior to classifying the data, the a prior: statistics of the data is used
to determine the size and location in the feature space of the null-class
regions for each class, if any. If they exist, the null-class regions are defined

differently for each class according to the data.

2. Using the classification algorithm described in Chapter 5, the image data

points are temporarily assigned to one of the classes.

3. The location of the point in the feature space is compared to the location

of the null-class region for that class. If the point is inside the null-class
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region, it is assigned to the null-class. If it is not in the null-class, it is left

in the class determined by step 2.

The primary differences between the following methods are in the shape
and size of the null-class region that is used for each class. These methods by
no means represent an exhaustive list of possible methods, but do illustrate a
relatively wide range of the type of null-class regions that can be implemented.
The methods described are all designed to guard against a mixtures of pairs of
classes. The concepts can be extended to higher dimensionality if we wish to

have a null-class that tests for mixtures of three or more classes.

7.1 Hypersphere Method

One of the simplest techniques for implementing hierarchical decisions is to
surround each class mean with a spherical neighborhood enclosing the area in
which we can be reasonably confident of a proper classification. Points that
fall within these hyperspheres are classified immediately to that class. Points
which are outside of all the hyperspheres are assigned to the null-class. The
radius of each hypersphere is class dependent and is selected so that most of the
points that may be from other classes or from mixtures fall outside the sphere.
Obviously, the radius of the hypersphere should be such that the sphere is
entirely contained within the normal Bayesian classification region as determined
by the discriminant functions. In the absence of any other restrictions, this
constrains the radius of the spheres to be the minimum of the distances from
the mean to the normal Bayesian boundaries. To try to protect against the

effects of the mixture density, an additional condition is placed on the radius of
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the spheres. The radius must be small enough that no line segment connecting
two other means passes through the sphere.

These ideas are illustrated in Fig. 7.1 which is an example of a four-class,
two dimensional feature space. The class means are denoted by the points By,
M, ete. The solid lines indicate some of the pairwise Bayesian class boundaries
which lie between each pair of classes. The dashed lines indicate some of the
line segments between means. For simplicity, the Bayesian class boundaries are
shown as straight lines perpendicular to the lines between pairs of class means.
In practice this is only be true if the covariance matrices were equal for all the
classes.

By examining the relative locations of the means and the line segments we
can see that p, and p, are likely to be unaffected by any mixture of the other
classes. For instance, none of the points along the lines between the pairs Hy—phso,
Moz, and p,—ps, are closer to p, as they are to one of the class means on the
endpoints of the line segments. The same applies for y, and the line segments
between the other means. However, some of the points along the line segment
Hi—p, are closer to g, than they are to either p; or p,. Therefore the size of
the region around p, is determined, in part, by the distance from ps to this
line segment. The same may also be true for the region around g, and must be
checked to determine the radius of the classification region.

The circles show the extent of the spherical regions after applying the two
criteria described above. Note that the maximum radius of each circle is de-
termined by the closest of the class boundaries and the line segments between
the means. By letting the hypersphere radius be such that both conditions are

satisfied, we are assured that (1) the hypersphere does not contain any part of
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Bayesian bgundaries
(not all shown)

Figure 7.1: Hyperspheres for implementing null-class

the feature space that was not originally a part of the region using the normal
discriminant functions, and (2) the expected position of any point resulting from
the mixture of two classes falls outside the sphere, placing it in the null-class. It
is important to remember that the line segments only represent the location of
the expected values of the points generated by the mixture of the class statistics.
The individual distributions of the points around each of the means assures us
that the actual features points cover a region around both of the means and also
around the line segment. The distribution of the points is determined by the

probability density of the mixture.

As previously described in Section 5.1 (Eq. (5.13)), the distance from a mean
to a point in the feature space can be measured by using the the Bayes classifier
discriminant function as an approximate distance metric. Under the assumption

of equal a priori probabilities, the Bayes discriminant function is equal to the
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Mahalanobis distance plus a class-dependent offset. The Bayes squared distance
is thus given by

D(ki,%) = gi(x) = Dis(p, %) + K; (7.1)
where

Dy (i %) = (x — 1) 57 (x — ) (7.2)

is the Mahalanobis distance and
I{g' = Ioglzgl. (73)

The covariance matrix, ¥;, is that associated with mean p;. The presence of
the constant, K, causes Dp(u;,x) to violate the requirements of a true distance
function since Dp(u;, p;) is not zero. By using the Bayes discriminant function
for the distance metric we are assured that all points on a boundary between
two classes are the same “distance” from both classes.

When we use this technique for measuring distance, the shape of each re-
sulting neighborhood is spherical only in the sense that the radius is constant in
all directions from a mean when using the corresponding Bayes distance. The
presence of the non-identity covariance matrix in the distance function causes
the actual neighborhoods to be ellipsoids rather than spheres when viewed in
Euclidean space. This also has the side effect that the Bayesian boundaries be-
tween the classes are plane surfaces in the Mahalanobis space but curved surfaces
when viewed in Euclidean space. Again, the covariance matrices for each pair of
classes determine the shape of the boundary between the classes. This creates
an unusual situation in which each mean is surrounded by a “hypersphere” that

is not spherical in the Euclidean sense. However, since this technique is simply
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an extension of the process that is used to do the classification, it appears to be
valid.

The boundary between two classes is determined by a pair of discriminant
functions. The distance from one of the class means to the point on the boundary
that lies on the line segment between the two means is found by first finding the
equation of the line segment. Assuming we have two class means, u, and g, as

in Fig. 7.1, a point on the line between them is given by
Xx=ap+(1-a)y, (7.4)

where 0 < a < 1. At the class boundary, the distance from p, to the point is

the same as the distance from the p, to the point,

D (pt1,%) = Dtz ). (7.5)

Both of these distances are functions of the covariance matrices of the respective
classes. The Bayes distance for class 1 is used to measure the distance from oy
to point x on the boundary, and the Bayes distance for class 2 is used to measure
the distance from g, to x. The distance from p; to X is not necessarily equal
to the distance from Mean|[2] to x if the Bayes distance function for class 1 is
used for both distances. The same applies to using the Bayes distance function
for class 2 for both distances.

Setting the discriminant functions (Eq. (7.1)) equal and substituting the

parametric expression for x (Eq. (7.4)) into it yields the quadratic equation
¥ (Apy — Apy) = a28p; + (Apy +log|Th| — log[So[) =0 (7.6)
where
Apy = (B — 1) ST (py — ) (7.7)
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Ap, = (- ﬂz)tE;l(ﬂl - Ky). (7.8)

If the covariances of the two classes are equal (Z; = £3) then Ay, and Ap, are
equal. The solution for « is then a = %, implying the boundary is midway be-
tween the means, as expected. In general the solution to the quadratic equation

is given by

_Apy kA Apy — (Apy — Apy)(log|S1| — log|))
N Apy, — Ap,

[}

(7.9)

This equation has two solutions, one of which is between zero and one and
can be used to determine the boundary point lying between . and g, on the
line connecting them. Once the location of this point has been determined,
the distance from the class mean to the point is found using the corresponding
distance function (Eq. (7.1)).

The distance from a class mean to a line segment between two other means
is found in much the same manner. Again referring to Fig. 7.1, we wish to find
the value of « that determines the point on the line between pq and p, that is
closest to the mean of a third class, p;. A point on the line between py and p,
is given by Eq. (7.4). As before, the the distance from g, to the point x on the

line between u, and p, is given by the Bayes classifier “distance”

Dp(ps, %) = (x — p3) T3 (x — pt3) + log |5 (7.10)
where the covariance matrix, 33, is that associated with mean f3. Substituting
the expression for x into the distance function results in a quadratic equation
in o

Dgp(ps3,x) = C‘-’z(l-"l - f-"z)tz:;l(»u'l — K3)
+ 20(py — p3)' T3 (g — pag)
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+ (B2 — 1)'S3 (g — p3) + log|Za). (7.11)
We wish to find the value of a that minimizes this distance. The derivative of
the distance with respect to « is given by
o = 20(m = 1) T3 (1 — 1) + 2(8y = 1) 5 (g — pg). (7.12)
Setting the derivative to zero and solving for « gives the result

_ (#3 - ”2):251(“1 - 1"2)-
(11 = 1) 251 (py — 1)

a

(7.13)

In many cases, the mean of the third class is closer to one of the means on the
ends of the line segment than to any of the points between the means. This is
the case of p, in Fig. 7.1 which is closer to g, than it is to the points between
py and p,. For these situations, the mixture density problem described above is
not serious and we ignore it. This situation can be detected by noting whether
the value of « lies outside the range of zero to one. In Eq. (7.13), if a is between
zero and one, then there is a point on the line segment closer to p5 than either
Hy or g, and the coordinates of the nearest point are given by Eq. (7.4) using
the value of & just determined. The distance from g, to the point is found using
Eq. (7.11). This value is used in conjunction with the distance to the nearest

class boundary to determine the radius of the hypersphere around M-

7.1.1 Experimental Results

Table 7.1 shows the distances (in units of Bayes distances) from each mean to the
closest boundary and the class on the other side of that boundary for the texture
mosaic image. From the table we can see that classes 3 and 5 are apparently

very similar since their means are quite close together in the feature space. As
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Class on other side of

Class Distance M

17.1
9.6
3.8

27.1
3.8

22,9

23.6
9.6

0O =1 O Ot = W b
NH Ot W oy Ut 00 W

Table 7.1: Distance to nearest class boundary (31x31
features)

a result, the hyperspheres around the means of these classes are quite small and
this causes many of the points from those classes to remain unclassified after
the first classification pass.

Table 7.2 shows the results of the test for the proximity of a line segment
between two other means. The table lists the distances from each mean to
the nearest line segment which satisfies the mixture density problem criterion
described above.

The radius of the local area hypersphere is the minimum of the nearest
boundary distance and the nearest line segment distance. By comparing the
results shown in Tables 7.2 and 7.1 we can see that only class 6 has a line
segment closer to its mean than a class boundary. For all other classes, the
radius of the hypersphere was determined by the distance to the nearest class

boundary.
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Class Distance Classes on line seg-
ment
1 31.5 3-7
2 11.1 3-8
3 4.5 1-5
4 52.6 5-6
5 7.5 3-4
6 15.4 1-4
7 109.9 1-5
8 340.1 1-4

Table 7.2: Distance to nearest line segment connecting
two classes (3131 features)

Figure 7.2 shows the result of classifying the texture mosaic using the Bayes
classifier on the 31x31 features with the null-class implemented using the hy-
perspheres around each class mean. The areas of the image that are black are
the areas that were not classified due to the feature point not being inside any of
the hyperspheres. The areas of the image along the boundaries between textures
have been left unclassified in most cases. Note that the regions corresponding to
classes 3 and 5 have a large portion of the points not classified as a result of the
small sizes of those hyperspheres. Table 7.3 lists the results of this classification.
As expected, the portions of the image consisting of small texture regions have
a greater number of unclassified points. The most promising result is that the
number of incorrectly classified points have been kept to acceptable levels even
in the small regions. While it is preferable to classify these points to the correct
class, leaving them unclassified is better than having them classified incorrectly.
The basic idea is to minimize the damage done by the large-feature classification

operation since the points can always be classified later.
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Figure 7.2: Classification of 31x31 features using hy-
persphere neighborhoods

Region | Correct Incorrect Not classified
Overall 38.7 1.9 59.4
128x128 54.1 1.0 45.0
64x64 38.6 1.3 60.2
32x32 12.7 2.1 85.2
16x16 3.7 6.8 89.4

Table 7.3: Hypersphere classification results (31 x 31 fea-
tures)



7.2 Hyperplane Method

The major drawback of implementing the null-class region using hyperspheres
is that they are overly restrictive. An example of this is shown in Fig. T.1.
Consider the point x which is significantly closer to the mean of class 1 than it
is to the mean of any other class. There appears to be little doubt as to which
class the point should be assigned. However by implementing the null-class test
as described above, the point is left unassigned. The spherical shape of the
region forces points to be left unclassified that are on the opposite side of the
mean from the mixture density line and are almost certain not to be the result of
mixing classes. To avoid this problem, it is necessary to use a region that is not
omnidirectional but instead conforms better to the surrounding class mixtures.
One way to do this is by to create an arbitrarily shaped classification region for
each class using hyperplanes in much the same way that the Gaussian decision
surfaces are formed. By using plane surfaces we are free to have either a closed
(finite volume) or open (infinite volume) region depending on the distribution of
the class means. The hypersphere regions were, by nature, closed regions. One
significant difference between the two methods is that is that for some classes
no hyperplanes are needed if all the expected locations of mixture points are
outside of the normal class boundary.

Finding an acceptable method for determining the placement of the hyper-
planes is important for making this technique work. When doing the classifica-
tion, the hyperplanes are used in exactly the same way as the normal Bayesian
boundaries in that a point must be the correct side of all the surfaces in order to

be classified to a particular class. The classification problem has now grown to
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where we wish to be able to separate each class from the other classes and from
all the pairs of mixtures that may be present. Thus the mixture density points
may be considered as members of a “pseudo-class” which must be separated
from the true class. As with the normal decision surfaces, the placement of the
hyperplane in the feature space is such that the mean of the mixture density
pseudo-class and the mean of the true class are on the opposite sides of the
plane. A separate hyperplane must be used for each mixture density class that
may affect a certain true class.

Whether or not a class may be affected by a mixture density can be deter-
mined prior to classification by examining test points from the various mixture
classes. For each class, we must test mixtures of all possible pairs of the other
class means to determine whether the mixture of any two classes may be mis-
taken for the class in question. This is done by classifying a sample of points
along the line segment between the two means. Depending on the proportion of
each class in the mixture, the expected location of the mixture point is some-
where along this line segment. If the number of points on the line segment that
are classified to the class in question is below some threshold, then we can as-
sume that that particular mixture is not a significant problem and a hyperplane
to separate that particular mixture from the true class is not needed. The num-
ber of separating hyperplanes for each class is very data-dependent. A class that
lies in the midst of several other classes in feature space may need several, while
an outlying class away from all others may not need any. In many cases some
of the hyperplanes may be redundant in that one or more planes are not really

needed because of the presence of another. Once we know which hyperplanes
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are needed to separate a true class from a mixture, the location and orientation
of the planes can be determined.

This idea is illustrated in Fig. 7.3. In a three-class, two dimensional feature
space shown, we wish to separate class 3 from the mixture of classes 1 and 2.
While it may be possible to determine the optimum position of the separating
hyperplane relative to the p;—p, line segment based on the density of the mix-
ture, for now we simply assume that the plane is located a fraction € of the
distance from the p1,—p, line segment to the mean p, as shown in Fig. 7.3. A
value of zero for € implies that the line segment lies in the separating hyperplane.
In the absence of any information about the shape of the mixture density, the
natural orientation for the hyperplane is to make it normal to the line between
t; and the nearest point on the g,—p, mixture line as shown. This assures us
that the mixture line and the plane do not intersect and that the entire length

of the mixture line is on the opposite side of the plane from M.

Determining whether or not a point should be classified or left in the null-
class is done in two steps. First, the normal Bayesian classification is done
to determine the class to assign the point to if the null-class were not being
used. If any hyperplanes have been define for this class then the position of the
point is examined to see if it is within the restricted classification region for the
suggested class. If it is, it is assigned to that class. If it is not, it is assigned to
the null-class. The first part of this method is done in exactly the same manner
as a normal, unrestricted classification. In a normal classification, the means are
determined from the data and the quadratic surfaces that make up the pairwise
class boundaries are the locus of points equidistant from the pair of means using

the Bayesian distance described previously in Eq. (7.1).
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Bayesian boundaries

,/ (not all shown)

Separating
hyperplane

Figure 7.3: Sample feature space for hyperplanes

The second part of the null-class test is done in much the same manner.
We know the location of the mean in question and the desired location and
orientation of each of the hyperplanes. We can therefore work backwards to
determine the location of a mean for the pseudo-class, which when tested against
the mean in question, generates the desired boundary plane. This “pseudo-
mean” is used as a mechanism to form a discriminant function for separating
the mean from the mixture points. The “pseudo-mean” for separating class 3
from the mixture of classes 1 and 2 is shown in Fig. 7.3 as pp.

One pseudo-mean is determined for each hyperplane we wish to generate.
Once the pseudo-means are determined for each class, the point can be classified
exactly as before except it is being classified to either the true class or one of the
associated pseudo-classes. If the classification result is one of the pseudo-classes

this implies that the point is outside the restricted class region and it is placed
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in the null-class. If the result is the true class, this implies that the point is
inside the region and it is classified to that class.

The proper location of the pseudo-mean may be found using the results ob-
tained in the previous section. Eqgs. (7.13) and (7.4) gave us location of a point
on a line segment nearest to another mean. As with the hyperspheres, the dis-
tance function used is the Bayes distance (Eq. (7.1)). Since the constant term in
the Bayes distance is class dependent, it can be dropped in this situation since
we are only considering distances from a single true class and the constant is
in all terms. With the constant term removed, the Bayes distance becomes the
Mahalanobis distance (Eq. (7.2)). Since the distance function is non-Euclidean,
this implies that the “planes” are actually curved surfaces if examined in a Eu-
clidean space. This is the same warping that caused the spherical neighborhoods
described in the preceding section to actually be ellipsoids in a Euclidean space.
As with the spheres, the warping is due to the presence of the non-identity
covariance matrix in the function used to compute the distance.

Using Egs. (7.13) and (7.4) we can find the location of the point x on the
H1—H, line segment that is closest to p;. We wish to find the location of the
pseudo-mean, pp, that results in the hyperplane being located in the desired
place. Since the same covariance matrix is used for both the true class and the
pseudo-class, the boundary plane between them is located midway between the
means and oriented normal to the p;—pp line segment. If we let d, represent

the distance from g, to the plane, then

dy = 5 Dui(big, ip). (7.14)
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Assuming the distance from g, to x is denoted by d,, then
dy = (1= €)dz = (1 — €) Das(p1g, X). (7.15)

Combining the two expressions for d, and expanding the terms for the Maha-

lanobis distance yields

(#’3_""}-’

5B () = (1 — (ks — X)7Z5 (1 — (s — X)) (7.16)

Solving for pp results in

pp =2(1 = €)(x — p3) + p5. (7.17)

This expression can also be derived by just scaling the appropriate vectors. The
vector from p; to the point x is given by x — p;. The vector from s to the
plane is this vector scaled by (1 —€) or (1 — €)(x — ). If we now scale this
vector by a factor of two the result is the vector from g, to the desired location

of pp. Finally, adding it to p; gives the location of up or 2(1 —€)(x — pg) + ps.

7.2.1 Experimental Results

Table 7.4 shows the results of classifying points along the various line segments
between pairs of class means for the texture mosaic. For each class, the table
lists the line segments that had points classified to that class and the percentage
of points for which this happened. The percentage value indicates how much of
the line segment passes through that class region.

These results confirm what we have been seeing in the classification results.
Texture 6 is most affected by the mixture problem since it is nearest to the

mean of all the feature points. Conversely, texture 8 is isolated from the others
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Class

Line segment

Percent of Points

1
2

]

7
8

6-7

5-8
none
none

5
27
37
33
39
29
51
11
34
30

4

27
44
17
24
26
24
30
10
27
27
4
22

Table 7.4: Results of classifying test points along line segments between pairs

of class means
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and is not affected by the mixture problem as we have modeled it. Texture 2
lies somewhere between texture 8 and the others. As a result of this, all the
mixtures that are a potential problem for texture 2 are combinations which
include texture 8. This is why the border areas of the texture 8 regions are
consistently classified to texture 2.

Figure 7.4 is the result of classifying the texture mosaic using the Bayes
classifier on the 31x31 features with the null-class implemented with the hyper-
plane technique described above. In this example, the value of € was 0.4, thus
the hyperplane was situated 40% of the distance from the mixture line to the
mean. As with the hypersphere results (Fig. 7.2), the areas of the image that
are black are the pixels that have been left unclassified. Visually comparing
Figs. 7.2 and 7.4 we can see that the hyperplane performed better in the larger
128x 128 regions. Substantially more of regions 3 and 5 have been correctly clas-
sified with this technique whereas much of these regions were left unclassified
with the hypersphere technique.

Table 7.5 lists the results of this test. The number of incorrectly classified
points for each region size is greater than with the hypersphere method since
this is by design a less restrictive method. We are faced with a trade-off between
a higher correct classification rate and a lower incorrect classification rate. If we
wish to have a greater number of points classified during the first pass, then we
run the risk of having them classified incorrectly. If we set the requirements for
letting a point be classified too stringent, then too many of the points are not
classified. Since the results of the large operator classification are used when
performing the second classification with the small operator, it is important that

at least some of the points be classified during the first pass.
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Figure 7.4: Classification of 31x31 features using hy-
perplane neighborhoods

Region | Correct Incorrect Not classified
Overall 60.8 13.1 26.2
128x128 76.4 7.7 15.9
64x64 63.8 14.2 22.0
32x32 36.3 19.5 44.3
16x16 16.6 25.9 57.5

Table 7.5: Hyperplane classification results (31x31 fea-
tures), e = 0.4



7.3 Hypercylinder Method

Both of the previous methods suffer from the same problem in that an excessive
amount of the feature space is allocated to the null-class. In the decision process
using the hypersphere method the feature space was divided into a finite volume
region around the mean and an infinite volume region for the null-class. With the
hyperplane method, each plane divided the feature space into two half-spaces,
one for classification and one for the null-class. Depending on the orientation
of planes, the null class is either a finite or infinite volume in the feature space.
The infinite volume of the null-class can often cause too many points to be left
unclassified. In a sense these methods are too conservative in deciding whether
or not to commit to a class assignment for a particular point.

The third method to be described is a natural extension of the first two
methods. The hypercylinder method divides the feature space into a finite
volume region for the null-class and an infinite volume region for classification.
In this method, the null-class region is a cylindrical volume that has the line
between two class means as its axis. Figure 7.5 shows a three class feature space
in which the mixture of classes 1 and 2 must be separated from class 3. The
null-class has been implemented using a cylinder aligned along the line between
classes 1 and 2. This shape of this null-class region using the cylinder can be
compared with that obtained using the hyperplane method shown in Fig. 7.3.
From an intuitive sense, using the cylinder is preferable since it is more closely

matched to the expected shape of the mixture density.

As with the previous methods, the computational cost can be reduced by

doing as much work as possible before actually classifying the data. The class

88



Bayesian boundaries
(not all shown)

Null class
cylinder

Figure 7.5: Sample feature space for hypercylinders

means and class covariances (known a priori) can be analyzed to determine
which of the possible mixture pairs conflict with a particular class. This is
determined in the same manner as for the hyperplane technique. Points along
the line segment between pairs of class means are classified to determine which
classes are affected by the mixing of the statistics. As with the hyperplanes, if
a significant number of points along the line are classified to a third class, then
this pair is checked later for any point initially assigned to that class. If none
of the points along the mixture line are assigned to that class, then there is no
need to check this mixture pair. This technique for determining whether or not
to test a mixture pair is easy to implement but does have one drawback. Unless
the mixture line actually passes through the classification region for a class, no
test is made. It is conceivable that a mixture pair may not be tested if the

line passes very close to the region but does not actually intersect the region.
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The alternative is to not bother with a criterion for whether or not to check a
mixture pair but to simply check every mixture pair for each point classified.

The only parameter that must be determined when using cylindrical regions
is the radius of each cylinder. Since the distances are measured in the non-
Euclidean feature space, the radius is calculated in a manner that reflects the
the shape of the mixture density. This is achieved by measuring the distances
with the Mahalanobis distance as in the previous methods. The cylinder radius
is specified in units of Mahalanobis distance. This is similar to specifying the
radius in units of standard deviation.

For the classified points, the test for membership in the null-class is somewhat
simpler with this method than with the hyperplane method. For a point x that
is classified to a particular class, a test is made to determine if the point is
inside the null-class cylinder for any of the preselected mixture pairs for that
class. This is done by finding the distance from the mixture line to the point and
comparing the distance to the cylinder radius for that mixture pair. Egs. (7.13)
and (7.4) are used to find the location of the point z on the line segment between
the two means that is closest to x. The distance between the points z and x
is found using the Bayes distance (Eq. (7.1)). This is repeated for all mixture
pairs associated with the class. If the point is outside of all the cylinders then
it is assigned to the original class. If the point is in the interior of any of the

cylinders, then it is assigned to the null-class.

7.3.1 Experimental Results

The criterion used for selecting the mixtures which must be checked for this

method is the same as that for the hyperplane method. The results that were
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Figure 7.6: Classification of 31x31 features using hy-
percylinder neighborhoods

shown previously in Table 7.4 for the hyperplane method for the classification
of points along the line segments between class means are also used to select
mixture pairs to check for the hypercylinder method.

Figure 7.6 is the result of classifying the texture mosaic using a Bayes clas-
sifier on the 31x31 features with the cylindrical null-class. The cylinder radius
was set to a Mahalanobis distance of 3. The black areas of the image are the
pixels that were left unclassified.

Table 7.6 lists the results of the this test. The percent of incorrectly classified
points has decreased in the larger regions as compared to the results with the hy-
perplanes method. The number of correctly classified points has also decreased

but this is acceptable since we can classify these points at a later stage.
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Region | Correct Incorrect Not classified
Overall 45.3 8.7 46.0
128x128 | 56.2 4.0 39.8
64x64 49.4 7.0 43.6
32x32 27.5 18.0 54.5
16x16 11.2 21.9 66.9

Table 7.6: Hypercylinder classification results (31x31
features), r = 30

7.4 Computational Complexity

The computational complexity of the three null-class methods described above
varies significantly. The complexity can be examined for both the analysis that
is done before the data is classified and for the data classification. The major
problem with the above methods for implementing the null-class is that each
class in the feature space can potentially be affected by a line segment between
any pair of other class means. For an image with N texture classes, the number
of line segments that must be tested for each class is (N — 1)(N — 2)/2. The

total number of potential line segments is thus given by

(N —-1)(N -2)

Ny =N 5

(7.18)

which implies that in a worst case situation, the number of tests grows as the
cube of the number of classes.

A reasonable metric to use in comparing the three techniques is the num-
ber of times a distance in the feature space must be computed. Finding the
Mahalanobis distance between two points involves calculating a quadratic vec-
tor equation. The time required to do this type of calculation overshadows

any scalar operations or linear vector operations such as adding two vectors.
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In some cases, multiple quadratic vector quantities must be calculated to de-
termine a single distance value. In the discussion below, let Tp represent the
computational cost of doing one quadratic vector calculation.

For the pre-classification data analysis, the hypersphere method must calcu-
late the distances from the class means to the Bayes class boundaries and from
class means to the line segments. The distance to the Bayes class boundaries
involves three quadratic vector quantities: two in the calculation the value of «
(Eq. (7.6)) and one in calculating the distance from the mean to the point de-
termined by the value of a. This must be done for each of the N —1 boundaries,
for all N classes for a total cost of N(N — 1)3Tp. The distance from the class
means to the line segments is similar and it also requires three quadratic vector
calculations. However this distance must be calculated for all line segments so
the cost is N(N — 1)(N — 2)3Tp/2. The sum of these two values determines
the result for the hypersphere pre-classification analysis. The hyperplane and
hypercylinder methods are basically the same in the pre-classification phase in
that both must determine which line segments pass through a particular region
in the feature space. For each of NV classes, all (N —1)(N —2)/2 line segments are
examined by sampling points along the line. Each point must be classified, with
a cost of NTp, the cost of measuring the distance from the pixel to each class
mean. If N7 point are tested on each line segment, the total pre-classification
cost for both methods is N(N — 1)(N — 2)NrNTp /2.

The computational cost of doing the classification is highly dependent on the
data. It can range from a worst case to a minimum as set by the classification
algorithm with no null-class tests. The minimum per pixel cost for the nearest-

mean classifier is simply NTp. For the hypersphere method there is essentially
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Method Pre-classification Classification
Best Worst Typical

Hypersphere NN-AjpTp 0 0 0

2

Hyperplane Nz(N_l)U;_z}NTTD 0 (N-1)(N-2)Tp ?‘2 Ip 2.86Tp

Hypercylinder | ¥ Q(N_l)(f_z)NTTD 0 M%r__—% 8.63Tp

Table 7.7: Summary of the computation complexity of
three null-class methods

no further cost since only a scalar comparison of the minimum distance versus
the sphere radius must be done. For the hyperplane, the worst case is testing
the distance to the maximum possible number of pseudo-means, one for each
line segment. This additional cost is given by (N — 1)(N — 2)Tp/2. For the
hypercylinder, the worst case is having to test a cylinder for each line segment.
Each test requires three quadratic vector measurements: two in finding the
nearest point on the line segment and one in finding the distance from that
point. The worst case addition cost is thus given by (N — 1)(N — 2)3Tp/2.
Table 7.4 summarizes the results of best and worst cases, and indicates a
more likely cost based on the number of cases that had to be checked in classi-
fying the texture mosaic. The table values for the classification phase only show
the addition computational cost of the null-class test beyond the normal cost

for the nearest-mean classification algorithm.
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Chapter 8

Spatial Cohesion

In the discussion of classification vs. segmentation algorithms in Chapter 2, it
was pointed out that the goal of image segmentation is to group the pixels into
spatial regions. This is based on the assumption that the objects of interest in
the image occur in relatively compact, connected regions of some minimum size
as opposed to scattered and disconnected regions. The classification techniques
we have used so far are all based on the features for an individual pixel. The
classification decision for one pixel is not dependent on the decision made for
any neighboring pixel, nor is any consideration made of the spatial arrangement
of the data. To proceed from a classification of the texture data to a segmenta-
tion, information about the spatial arrangement of the pixels must be used. For
example, if a point is believed to belong to class 1 but all the neighboring pixels
in a surrounding region have been classified to class 2, then we should strongly
consider classifying the pixel to class 2. A drawback to making a decision of
this type is that no matter how we go about taking the surrounding neigh-

borhood into consideration, situations can always be constructed that result in
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segmentation errors and it would have been better off to ignore the neighboring

pixels.

8.1 Simple Cohesion

To implement the use of spatial information, we need to measure the extent
that a pixel matches its neighbors. This can be described as a type of cohesion
measurement. This use of the term “cohesion” should not be confused with the
term “coherence” as used in signal processing and analysis applications [54]. In
the case of image texture, a pixel whose classification matches that of all of its
neighbors in a surrounding area can be said to be maximally cohesive. A pixel
that does not match any neighbors is non-cohesive. One of the simplest possible
cohesion measurements is to count the number of pixels in some surrounding
neighborhood that are classified to the same class as the pixel in question. If the
pixel class assignments at point (z,y) are given by H(z,y), then the cohesion,
C(z,y) is given by
nn
Cla,y) = 3. 3. 8(H(z +i,y +j), H(z,y)) (8.1)
i=—n j=—n

where the Kronecker delta function is given by

sap =] @ Tt (8.2)

0 otherwise.

Figure 8.1 shows the result of measuring the cohesion of the classification results
shown in Fig. 5.1b, which used the 31x31 features with no null-class. The
cohesion of each pixel has been measured within a 15x15 neighborhood of the

pixel. Maximum cohesion occurs when all 224 neighbors match the center pixel;
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this is indicated by the lightest parts of the image. Minimum cohesion occurs
when none of the neighbors match the center pixel and is indicated by the

blackest parts of the image.

8.2 Multi-Class Cohesion

In a multi-class problem, a simple measurement of the degree of neighborhood
cohesion is not sufficient to help the classification results. In a two class problem,
low cohesion indicates that the pixel should perhaps belong to the other class.
However, with more than two classes the cohesion measurement describe above
does not indicate which of the alternative classes to select. A more useful piece of
information can be obtained by measuring a set of cohesion values between the
center pixel and its neighbors for each possible class assignment for the center
pixel. The resulting vector of cohesion values (one for each class) is essentially
a histogram of the pixels in the local neighborhood. It can be referred to as a
cohesion histogram in which the value in each histogram bin is a measure of the
cohesion of the center pixel with the pixel around it under a different assumption
for the center pixel’s class assignment. The kth element of the histogram vector
at point (z,y) represents the cohesion of that point with neighboring pixels in
class k and is given by
n n
Ci(e,v) = 3 3 8(H(z +iyy +3), k). (8:3)
i=—n j=—n

This is basically a generalization of Eq. 8.1 to include all possible class assign-
ments for the pixel at (z,y). If that pixel is assigned to class k, then the kth

element of the cohesion histogram vector is equal to the result of the simple
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cohesion calculation
Ci(z,y) = C(z,y). (8.4)
Figures 8.2 and 8.3 show the results of measuring this cohesion histogram in a
15x15 window for classes 1 and 6 respectively of the classification results using
the 31x31 features with no null-class. These two classes have been selected
as examples since they represent a best-case and worst-case situation. The
histogram results for class 1 are about what one expects with the bright areas
showing where there is strong evidence of class 1 being present. The results
for class 6 demonstrate one of the problems that can occur when measuring
the cohesion histogram . Class 6 is heavily affected by the mixture density
problem previously described. The result is that the cohesion for class 6 is
excessively high in the areas with small regions. The cohesion histogram is useful
for determining which class assignment is most likely for a pixel based on the
neighboring pixel class assignments. A histogram with one bin that is dominant
indicates a strong likelihood for that class. Conversely, a histogram that has an
approximately uniform distribution of values indicates that no information is to

be gained by observing the class assignments of the neighboring pixels.

The cohesion values described above are measured for each pixel using the
class assignments of all the pixels within a window around the pixel. Since
the cohesion must be recomputed for each position of the window and the win-
dow is different for each pixel in the image, measuring the complete cohesion
histogram is a computationally demanding process. However, for a reasonably
large window (say on the order of 15x15 or larger), a shift of one pixel vertically
or horizontally does not appreciably change the data within the window. This

fact can be utilized by calculating the cohesion values on a block basis rather
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Figure 8.1: Pixel cohesion in a
15x15 neighborhood

Figure 8.2: Cohesion histogram - Figure 8.3: Cohesion histogram -
15x15 neighborhood, class 1 15% 15 neighborhood, class 6
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than an individual pixel basis. The image is considered to be subdivided into
rectangular blocks whose size is some fraction of the desired window size. The
cohesion values are first calculated within each block and then the values from
the proper blocks are combined for the final result. Figures 8.4 and 8.5 are
the results for measuring the cohesion for classes 1 and 6 of the same image as
before with the cohesion measured in a 5x5 neighborhood of blocks, where the
dimensions of each block are 4x4 pixels. This gives an effective window area of
20%20 pixels. Some sensitivity to rapid variations in class assignments is lost
when using a block method as opposed to a pixel method. However for the

manner in which we use the cohesion histograms, the block method is sufficient.

8.3 Using Spatial Cohesion Information

When using the results of a spatial cohesion measurement it is important to
understand the type of errors that can occur. For example, suppose we measure
the cohesion in two regions of an image containing only two classes of pixels
(Fig. 8.6). In one region the class assignments happen to alternate along rows
and columns, much like a checkerboard. The classes in the other region are split
down the middle into two separate, homogeneous blocks. It should be pointed
out that if a texture classification produced results like the checkerboard pattern
of region 1, this would indicate that the LAO used to generate the classification
features was too small since the checkerboard pattern is in itself a texture. An
LAO two times larger would be better suited to generating the features.

Both regions of Fig. 8.6 have the same number of class 1 and class 2 pixels.

Therefore making a count of neighborhood pixels around the pixel in question
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Figure 8.4: Cohesion histogram - 5x5 neighborhood of
4x4 blocks, class 1

Figure 8.5: Cohesion histogram - 5x5 neighborhood of
4x4 blocks, class 6
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Figure 8.6: Two regions of image containing two classes

gives identical cohesion values for both regions. This result is opposite the intu-
itive notion of assigning a lower cohesion value to the checkerboard-like region
since the pixels are more scattered. This implies that a cohesion measurement
should be sensitive in some way to the arrangement of the neighboring pixels. To
state this in another way, the cohesion measurement for a pixel should take into

account the cohesion value of neighboring pixels, not just their class assignment.

One example of trying to make use of the spatial arrangement of the pixels in
the surrounding region is used by Keller [55] in calculating the cohesion values
for use in what he calls a Lysing process. The cohesion method he describes
is for use on a two class image in that it calculates the cohesion for both the
class to which the center pixel belongs and the other class. The cohesion values

are based on the neighboring pixels in a 7Xx7 region centered on the pixel in
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question. The cohesion calculation is done in two steps. First, each pixel in the
central 5x5 region that belongs to the class under consideration is examined to
see how many of its neighboring pixels are also assigned to that class. A second
count is made of the possible neighbors of the pixels in the 7x7 perimeter of the
block (outside the 5x5 but within the 7x7 region). This includes an estimate
of the number of neighboring pixels that might lie outside the region under
examination. The probability of their existence is based on the number of pixels
of that class that are within the region. The final cohesion value is the first
sum (neighbors of the pixels in the 5x5 block) minus the second sum (neighbors
outside the 5x5 block). The calculation is done the same way for both classes.
An advantage of this method of calculating cohesion is that the arrangement of
the pixels in each class that lie in the surrounding region has a significant effect
on the cohesion value. A checkerboard arrangement yields a smaller cohesion
value than a block shape.

When calculating the cohesion histogram, the presence of points that are
assigned to the null-class must also be accounted for. Points in the image that
were assigned to the null-class during the classification using the first stage LAO
are not counted when measuring the cohesion histogram. Since the histogram is
used to guide the final classification of these null-class points, it should only be
based on classification results with a high probability of being correct. Pixels
that have a low probability of a correct classification should have been assigned
to the null-class. These points are excluded from the cohesion histogram calcu-
lation and do not have an effect on the spatial information. Thus we redefine the

cohesion for class k as the kth element of the cohesion histogram vector given
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by

Ci(z,y) = i Xn: 9z +i,y+7)6(H(z +1i,y + j), k) (8.5)

t=—n j=—n

where the function g(z,y) is 0 for points in the null-class and 1 for points not
in the null-class.

Figures 8.7 and 8.8 show the same cohesion histogram planes as Figs. 8.4
and 8.5 except that the histogram is based on the classification results using the
hypercylinder method of generating the null-class. The most obvious differences
can be seen in the the lower right portion of Figs. 8.5 and 8.8 where the region
sizes are quite small. Figure 8.5 shows a significant amount of high cohesion
pixels in this area. However this is due to many of the the pixels being classi-
fied to the “default” class as a result of the mixture density problem that was
discussed in Chapter 6. This has resulted in high cohesion values that are based
on very questionable pixel classifications. The cohesion of these same points is
much lower in Fig. 8.8 since the use of the hypercylinder null-class resulted in
many of these same points being classified into the null-class and are therefore
not part of the cohesion measurement.

By using the results of the null-class test, we are also provided with some
protection against assigning the same cohesion to regions that have the checker-
board and block distributions as described above. It is unlikely that pixels would
be classified into the checkerboard pattern if the null-class test has worked prop-
erly since this type of pattern indicates a large amount of mixing of the class
statistics. Most of the pixels are likely to be placed in the null-class. The re-
sulting histogram would show a low count for all classes and be different from

the histogram for the block distribution.
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Figure 8.7: Cohesion histogram - 5x5 neighborhood of
4 x4 blocks, with null-class exclusion, class 1

Figure 8.8: Cohesion histogram - 5x5 neighborhood of
4 x4 blocks, with null-class exclusion, class 6
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An underlying basis for using cohesion measurements such as these is that
small, isolated regions are not likely to occur in images and should be removed
if encountered. A small region should return a low enough cohesion value to
cause subsequent processing to reclassify its members to the class of the sur-
rounding region. The cohesion measurement is one component of the hierarchy
of information that must be combined to determine the final class assignment.

By examining the values in the cohesion histogram, we can determine the
presence of nearby regions that are of both sufficient size to warrant considera-
tion when classifying points between them. The cohesion of the pixel with each
potential class in the surrounding neighborhood is used to determine which class
assignments are most likely to be correct on the basis of having a high cohesion
for that class assignment. Similarly, the cohesion measurements are used to
eliminate from consideration certain classes with low cohesion.

Obviously, the size of the area used for calculating the cohesion histogram has
a significant impact on this process. At a minimum, the cohesion measurement
should cover enough spatial area to detect the presence of any nearby regions
with a significant proportion of pixels classified. If the area is too large, it
may encompass other regions that do not actually border on this particular
unclassified area. If the area is too small, the classified regions nearby are never
found. This use of spatial information is described in the next chapter. By using
the spatial information in this way, we can compensate for the typically high
error rate that occurs when classifying the data using only the features generated

with the smaller LAO, and this results in a better overall performance.
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Chapter 9

Segmentation Process

9.1 Hierarchical Segmentation

In a segmentation problem with a variety of information sources, a major con-
sideration is how to combine the information in such a way achieve the optimum
results. In a hierarchical decision process, certain pieces of information are con-
sidered before others and may determine the manner in which information lower
in the hierarchy is used. In a non-hierarchical decision process, all the sources
of information are used, although they may have different degrees of influence
on the final decision.

Keller [55] describes a hierarchical decision method for implementing his
Lysing process in a two-class problem that is used to decide whether to use
the original class, switch to the other class, or reclassify based on some new
criterion. The available information consists of the cohesion values of the two
classes and the values of the pixels in a local neighborhood. To summarize his

decision process, if the class of the center pixel is cohesive and the other class is
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not cohesive, replace the center pixel with the median of the neighboring pixels
that are in the center class. If the center class is not cohesive and the non-center
class is, replace the center pixel with the median of the neighboring pixels that
are in the non-center class. If both classes are non-cohesive, replace with the
median of all neighboring pixels. If both classes are cohesive, replace with the
median of one of the two classes depending on the number of neighboring pixels
in each class. This represents a hierarchical decision process since the values
of the neighboring pixels that belong to one of the classes are not considered if
that class is non-cohesive and the other class is cohesive.

The multi-resolution classifying scheme discussed in the previous chapters

provides us with the following sources of information:

e The classification choice using features generated using the large LAO

(including the null-class).

e The cohesion histogram giving spatial information about the surrounding

area.

* The classification choice using features generated using the small LAO.

As we have seen in previous sections, all of these are prone to error under
certain conditions. However we also have available our knowledge of how these
parameters are likely to perform in different areas of the image. By using this
knowledge when combining the above information, the decision process can be
made less sensitive to lack of performance in any single parameter.

The basic hierarchical segmentation process is shown in Fig. 9.1 and can be
stated as follows: If a point was not classified using the large LAO features (it

was assigned to the null-class), classify the point using the small LAO features,
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Figure 9.1: Block diagram of hierarchical segmentation process

with the cohesion histogram used to influence the classification by eliminating
certain classes from consideration for the final choice. Humans appear to do
this type of operation when classifying regions of texture in a scene. A human
instinctive restricts the choice of class assignments based on the surrounding
regions. If we see a large, homogeneous region to the left that we have decided
is sand and a similar region to the right which seems to be wool, we tend to
classify the points between them as either sand or wool but not tree bark, even
if it looks a lot like bark.

One of the goals of the segmentation process is to eliminate small, isolated
regions from the final output by merging them into a neighboring region. While
the altering of a small region is often the correct action to take, it is also possible
that in many cases the region should not be changed. This problem is not unique

to this method but occurs in any segmentation technique that must decide
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whether a small region of one class belongs to a large region of another class
that surrounds it. Any segmentation scheme has an implicit minimum region
size. Regions that fall below the threshold are merged into the surrounding
region. This can occur for small, isolated regions and for protuberances of a
larger region. Use of the cohesion results can leave corners or other narrow
extensions of regions rounded off or otherwise reshaped since these pixels may
lack sufficient cohesion to warrant being left intact. This is in part due to the
size and shape of this type of region, leading to low cohesion, and also because
it is likely that many of the pixels were classified into the null-class due to the
mixture density effects of the boundary. The combination of these effects results
in a significantly lower value in the cohesion histogram. A hypothetical example
of this can be seen in Fig. 9.2 where region 2 becomes too narrow for the large
LAO features to accurately classify it. The cohesion measurements taken in the
region 2 area would not indicate a high cohesion for class 2 in the surrounding
area. In this case all of the points in this part of region 2 would probably be
classified to either textures 1 or 3 and the resulting classification might look like

Fig. 9.3.

9.2 Non-Hierarchical Segmentation

To properly evaluate the results of the hierarchical segmentation using multiple
size operators, a comparison must be made with the results of a non-hierarchical
segmentation based on single size operators. This is done using the results
of the full classifications (no null-class) that were described in Chapter 5 and

shown in Figs. 5.1b, 5.1c, and 5.1d. These represent classification of all the data
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Figure 9.2: Hypothetical texture image
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Figure 9.3: Resulting classification
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using 31x31 features, 15x15 features, and both sizes simultaneously. Three
cohesion histograms are calculated from these results in the same manner as
they were calculated from the results of the three null-class classifications. The
only significant difference is that the sum of the pixel counts in the cohesion
histogram bins for each block of pixels is the same for each block and is equal to
the number of pixels being analyzed in the local area. This is because no pixels
were excluded from the histogram count due to being in the null-class.

The decision process for the multiple resolution operators, hierarchical seg-
mentation was described on page 108. The equivalent decision process for as-
signing pixels to a texture class with a non-hierarchical segmentation technique
is shown in Fig. 9.4 and can be stated as follows: For all points in the image,
classify the point using the features, with the cohesion histogram used to influ-
ence the classification by eliminating certain classes from consideration for the
final choice. There are some significant differences between the two segmenta-
tion methods. Both classification phases of the non-hierarchical segmentation
use features based on the same size LAO. This implies that we are actually
classifying the data twice with the same features, once to provide input for cal-
culating the cohesion histograms, and later to select the final assignment for
each pixel. The second major difference is that the coherence histogram is used
to determine the final class assignment for all pixels, rather than just those
assigned to the null class by the first classification.

The segmentation method just described obviously does not represent an
effort to develop the best possible segmentation method that uses information
from single resolution operators in a non-hierarchical manner. It is designed to

operate in a similar manner on some of the same information that is used in the
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Figure 9.4: Block diagram of non-hierarchical segmentation process

more sophisticated hierarchical segmentation method so as to make comparisons

between the two approaches possible.

9.3 Decision Methods

Implementing the hierarchical segmentation process basically involves the selec-
tion of the criteria for classifying points using the large LAO features and the
design of the class elimination rule for making the final decision on the class
assignment. For implementing the non-hierarchical segmentation process, only
the class elimination rule is needed since the classifier does not use a null-class.
Various methods for determining whether or not to classify a point were dis-
cussed in Chapter 7. This chapter discusses a variety of methods that have

been tried for the class elimination rule. There does not appear to be any solid
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quantitative way to develop a decision rule. The differences in the techniques
described here are mostly small, evolutionary changes that were made to avoid
various problems that appear with each new version. The same rule is used for
both the hierarchical and non-hierarchical segmentation processes.

The results shown in this section are all based on the texture energy fea-
ture generated with 31x31 and 15x15 standard deviation operators. For the
hierarchical segmentation results, the classification using the large LAO features
was done using the three null-class methods previously described (hypersphere,
hyperplane, and hypercylinder). For the non-hierarchical segmentation results,
full classifications were done with the two sizes of features and both sizes to-
gether. The cohesion histogram was calculated using 8 by 8 blocks with an LAO
size of 5 by 5 blocks (40 by 40 pixels). These parameters were chosen since they
appeared to result in the most promising intermediate data.

The following sections describe a variety of decision methods that have been
used to segment the image using both the hierarchical and non-hierarchical
process. Most of the discussion of the decision methods concerns the effect of
the on the hierarchical process. Each section describes the method used and

presents results in three forms.

e The final segmented images are shown for each of the three hierarchical
segmentation methods. The results of the non-hierarchical segmentation
are not shown in image form. However, a sampling of some of the non-
hierarchical segmented images are shown in Section 9.4 with a summary

of the results.
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e The percentage of correctly assigned pixels are listed in a table. Values
are listed for the overall image and for the four sizes of regions in the
image. The tables contain the results for both the non-hierarchical and

the hierarchical segmentation processes.

o The results listed in the table are graphed showing the performance in
each of the four sizes of regions in the image. The plots show the results of
the hierarchical segmentation using all three null-class methods, the non-
hierarchical segmentation at two resolution sizes, and the classification at
two resolution sizes. The results of the non-hierarchical segmentation and
the classification using the 31x31 and 15x15 features together are not
graphed since the results are very close to those obtained with the 31x31

features alone.

9.3.1 Method 0: Ignore histogram

Probably the simplest way to implement a decision rule is to ignore the cohesion
histogram altogether. With this method, the final segmentation choice is solely
a function of the large and small LAO classification choices. If a pixel is clas-
sified into one of the texture classes by using the large LAO feature, then that
class assignment is the final assignment. If the pixel is placed in the null-class,
then the final assignment of the pixel is the classification using the small LAO
features. This method ignores all spatial information such as that available from
the cohesion histogram. For this reason, this method does not really qualify as
a segmentation of the image since it is not making use of any spatial informa-

tion in deciding on the final assignment of the pixels. For the non-hierarchical
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method, the results are the same as with a simple classification of the data. The
results of using this rule are shown in Table 9.1 and Figs. 9.5 and 9.6. Compar-
ison with the the single size operator classifications show that this method does
provide an improvement in many areas of the image. However, since the spatial
information was ignored, there is little improvement in shrinking or removing

the false regions that appear between correct regions.

9.3.2 Method 1: Fixed number of classes

For the pixels that are originally classified into the null-class, the cohesion his-
togram data can be used to implement a variety of more sophisticated decision
rules. Generally the goal here is to use the spatial information contained in the
histogram to shrink or eliminate some of the smaller regions. A typical rule
to follow might be to only allow assignment to a limited number of the more
dominant classes as indicated by the histogram values. Intuitively this makes
good sense since we want to assign the pixel to a class that already exists nearby
in the image.

Table 9.2 and Figs. 9.7 and 9.8 show the results of implementing a relatively
simple decision rule that makes use of the information in the cohesion histogram.
In this case, the final segmentation choice for pixels not classified when using the
large features is limited to assignment to either of the two most dominant bins
as determined from the cohesion histogram. We can see that this rule leads to
problems in the areas of the image where there are small regions. The mixture
problem discussed in Chapter 6 is very prevalent in these areas since the regions
are virtually the same size as the LAOs being used to generate the features.

There is very little chance of ever improving the segmentation accuracy for the
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(c) Hyperplanes (d) Hypercylinders

Figure 9.5: Method 0: Ignore histogram
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Accuracy (%3

Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cylinder
15x15
Overall 68.1 69.9 68.5 2.7 73.6 71.4
128x 128 83.2 78.2 83.4 82.7 85.6 81.6
64 x64 70.2 71.6 70.8 72.2 75.3 74.9
32x32 48.4 58.1 48.5 58.8 57.1 56.0
16x16 23.5 449 24.2 43.7 39.1 39.0

Table 9.1: Method 0: Ignore histogram
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Figure 9.6: Graph of results for method 0
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data in regions of this size without going to a smaller LAO for feature generation.
The null-class methods discussed in Chapter 7 created null classes for guarding
against mixtures of pairs of classes. In the areas of the image where the texture
regions are very small, many of the feature points are based on the mixture of
more than two textures, which the null-classes are not designed to detect. Many
of the pixels in these areas of the image are assigned to the class that has its
mean closest in the feature space to the expected location of these higher-order
mixtures. The overall effect is that of having a default class for pixels in areas
where there are small regions.

Even with an effective method for detecting mixture points, a significant
number of points are incorrectly assigned to this default class by the classification
using the large LAO features. The cohesion histogram bin for that class can
contain a significant value. This same bin often turns out to be dominant for
most pixels in this general area of the image. Since this dominant class is usually
incorrect, limiting the classification to this class and perhaps one or two others
generally results in poor performance in the areas of the image containing small
regions. While this decision method has helped somewhat, it is obvious that the

choice should not always be limited in such a simple-minded manner.

9.3.3 Method 2: Adaptive Threshold

A variation on the above method is to allow classification to any class that
has its histogram value above a threshold. However, setting an absolute level
for the histogram threshold leads to problems. In many places in an image,
none of the classes exceed this value leaving no classes eligible for classification.

More common are places where only one class exceeds the threshold, making
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(a) Gray-level texture map

(c) Hyperplanes (d) Hypercylinders

Figure 9.7: Method 1: Fixed number of classes
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Accuracy (%D

Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cpylinder
15%x15
Overall 70.3 73.8 70.3 75.1 75.5 74.6
128x 128 85.3 83.3 85.3 89.1 88.4 89.0
64 x64 73.5 76.8 74.6 82.1 78.1 78.4
32x32 50.5 65.3 48.3 50.5 60.4 54.9
16x16 24.0 38.0 23.8 29.1 33.6 29.3

Table 9.2: Method 1: Fixed number of classes
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Figure 9.8: Graph of results for method 1
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the resulting classification a function of only the large LAO features. A possible
way to avoid this situation is to set the level as a fraction of the largest value in
the histogram. In theory, this will result in more classes being considered while
simultaneously eliminating the least likely classes. The result of not allowing
classification to any class with less than 25% of the maximum value in the
histogram is shown in Table 9.3 and Figs. 9.9 and 9.10. The results show a slight
improvement in the larger regions but a decrease in performance in the small
regions. The 16 by 16 regions are classified very badly, with most pixels classified
to the same class. This is probably due to the spatial cohesion calculation not
finding many points that were assigned to something other than the null-class.
The resulting histogram may not have any other classes above the threshold

determined by the dominant class.

9.3.4 Method 3: Conditional fixed threshold

It becomes obvious when testing decision methods is that it is wrong to always
try to eliminate certain classes from consideration based on the data in the
cohesion histogram. There should be circumstances under which all classes are
considered. This should occur in areas where there are very few previously
classified points. If the concentration of classified points is sparse, it is likely
that the classifications are incorrect and the values in the histogram can be
treated as worthless. In this situation, comparing the histogram values against
the dominant values as used in the previous method results in the classification
being limited to a small number of incorrect choices. To avoid this situation,
a test can be made on the histogram data to determine if any limits should

be placed on the classification. If the data in the histogram does not pass this
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(c) Hyperplanes (d) Hypercylinders

Figure 9.9: Method 2: Adaptive threshold
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Accuracy (%D

Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cylinder
15x15
Overall 68.9 73.4 69.1 76.2 75.5 74.6
128x 128 84.7 83.4 84.6 90.3 88.6 89.7
64 x 64 70.7 4.7 71.4 84.8 78.6 76.9
32x32 49.0 59.5 48.7 52.1 59.8 53.9
16x16 21.8 44.1 22.3 26.7 32.3 30.3

Table 9.3: Method 2: Adaptive threshold
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Figure 9.10: Graph of results for method 2
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test, then the histogram is ignored and all classes are available for the final
assignment.

Table 9.4 and Figs. 9.11 and 9.12 show the result of applying a test of this
type. The test for this method is based on a fixed threshold rather than a
threshold that is a function of the data. Final classification is allowed to any
class that has a histogram value greater than 25% of the maximum possible
value. However, if the number of allowed classes is less than 2, then all classes

are allowed for final classification.

9.3.5 Method 4: Conditional threshold with fixed

number of classes

Another way to avoid an overly restrictive final classification is by testing the
value in the dominant bin against a somewhat high threshold. If the value
in the dominant bin does not exceed the threshold, then all classes must be
considered. Table 9.5 and Figs. 9.13 and 9.14 show the result of using this
rule. Here, assignment was allowed to all classes unless the dominant histogram
value exceeded 50% of the maximum attainable histogram value. This implies
that all classes were allowed in areas where less than 50% of pixels in the local
neighborhood were assigned to the same class. In areas where the dominant
class was over the 50% threshold, assignment was limited to one of the two

most dominant classes based on the values in the histogram bins.
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(c) Hyperplanes (d) Hypercylinders

Figure 9.11: Method 3: Conditional fixed threshold
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Accuracy (%2

Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cylinder
15x15
Overall 69.6 72.0 69.9 72.7 74.2 71.6
128x128 84.8 80.7 84.7 82.7 86.1 81.8
64 %64 72.1 4.4 73.6 74.2 76.4 75.1
32x32 49.6 62.2 49.2 58.8 57.7 56.2
16x16 23.9 42.1 24.1 43.7 38.6 39.0

Table 9.4: Method 3: Conditional fixed threshold
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Figure 9.12: Graph of results for method 3
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(¢) Hyperplanes (d) Hypercylinders

Figure 9.13: Method 4: Conditional threshold with fixed number of classes
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Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cylinder
15x15
Overall 68.6 71.5 68.9 72.9 74.0 71.6
128x128 83.7 80.4 83.8 83.1 86.1 82.0
64 x 64 70.5 73.7 T1.4 74.3 75.6 75.0
32x32 48.7 58.5 48.7 58.8 57.2 56.0
16x16 24.1 449 24.3 43.7 39.2 39.0

Table 9.5: Method 4: Conditional threshold with fixed number of classes
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Figure 9.14: Graph of results for method 4
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9.3.6 Method 5: Conditional threshold with variable
number of classes

A variation on the above rule is shown in Table 9.6 and Figs. 9.15 and 9.16.
In this method, if the dominant histogram value exceeds the threshold of 50%
of the maximum attainable value, classification is allowed for any class that has
a histogram value above 15% of the same maximum. If the dominant histogram
value is not above the 50% threshold, then classification is not restricted and any
class may be picked for the final assignment. This differs from the previous rule
in which only the two most dominant classes were allowed. By adjusting the two
thresholds, the number of alternative classes allowed can be varied. This type
of rule appears to be better than most. It includes capabilities to avoid most of
the problem situations that have caused trouble for the earlier methods. Visual
inspection of the image shows that it does a reasonably good job of reducing
the size of the false regions between the true regions, and does not increase the

number of error in the middle of the large regions.

9.4 Summary of Test Results

Figures 9.17 shows some of the output images from the non-hierarchical seg-
mentation process. These are shown for purposes of comparison with the corre-
sponding output images of the hierarchical segmentation process.

Table 9.4 summarizes the performances of the six methods described above
for segmenting the entire image. The above decision methods are by no means
a complete set. By changing the decision rules slightly, or modifying the thresh-

olds, one can generate any number of different decision processes. In above rules,
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(c) Hyperplanes (d) Hypercylinders

Figure 9.15: Method 5: Conditional threshold with variable number of classes
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Non-hierarchical Hierarchical
31x31 15x15 31x31 + | Sphere Plane Cylinder
15x15
Overall 68.6 72.4 68.9 73.0 74.2 71.8
128x 128 84.2 82.0 84.3 83.2 86.4 82.2
64 x64 70.4 74.1 1.2 T4.4 75.8 75.3
32x32 48.6 58.5 48.7 58.8 57.2 56.0
16x16 22.8 44.9 23.3 43.7 39.2 39.0

Table 9.6: Method 5: Conditional threshold with variable number of classes
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Figure 9.16: Graph of results for method 5
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(c) 31x31 and 15x15 — Method 4 (d) 15x15 — Method 5

Figure 9.17: Non-hierarchical segmentation results
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only one or two courses of action were allowed, such as “restrict classification
to these classes” or “allow classification to any class”. More complicated rules
could be devised that use more than two alternatives.

The above tests illustrate that flexibility is the most important requirement
of the decision rule. The rule must not place too much emphasis on information
that is not accurately known. This is best achieved by avoiding any relative
comparisons between the information in the spatial cohesion histogram bins.
Implementing rules such as “if bin n is three times larger than bin m, then do
not allow classification to bin m” are bound to fail since bins n and m could have
a counts of 3 pixels and 1 pixel, out of a possible maximum of several thousand.
All information in the histogram bins must be considered on a absolute basis

against the maximum values that could occur under best conditions.

9.5 Tests on Non-Rectangular Mosaic

The same mosaic has been used in all the classification and segmentation ex-
periments described above. This design of this mosaic, described in Section 4.2,
is based on rectangular regions with vertical and horizontal class boundaries.
The classification and segmentation processes are also based on rectangular re-
gions. The features are generated with rectangular LAOs that are aligned with
the rectangular regions in the mosaic. The cohesion measurement described in
Chapter 8 is also based the classification results in a rectangular region. This
does not necessarily mean that the rectangular regions in the mosaic are the
optimum shape for the feature generation and cohesion technique. However, it

does mean that the results using this mosaic do not give any indication as to how
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Classification 3131 15x15 31x31 +
15x15
68.1 69.9 68.5
Non-hierarchical 31x31 15x15 31x31 +
Segmentation 15x15
Method 0 68.1 69.9 68.5
Method 1 70.3 73.8 70.3
Method 2 68.9 73.4 69.1
Method 3 69.6 72.0 69.9
Method 4 68.6 71.5 68.9
Method 5 68.6 72.4 68.9
Hierarchical Sphere Plane Cylinder
Segmentation
Method 0 72.7 73.6 71.4
Method 1 75.1 75.5 74.6
Method 2 76.2 76.5 74.6
Method 3 72.7 74.2 71.6
Method 4 72.9 74.0 71.6
Method 5 73.0 74.2 71.8

Table 9.7: Results of classification and segmentation of
texture mosaic (percentage of correctly assigned pixels)
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the same methods work on non-rectangular regions or regions with non-vertical
and non-horizontal boundaries as are found in more natural images.

To test the effect of non-horizontal and non-vertical texture boundaries, a
second mosaic is used that has many of the properties not found in the first
mosaic. The new mosaic is shown in Fig. 9.18a with the maps of the texture
regions shown in Figs. 9.18b and 9.18c. This mosaic contains the same eight Bro-
datz textures that were present in the first mosaic (Table 4.1). The textures are
present in the image in approximately equal proportions. The mosaic consists of
three basic regions. The upper-left portion contains three textures in an arrange-
ment similar to that shown in Fig. 9.2 where two texture are converging along
curved paths. The upper-right portion of the new mosaic contains regions with
non-vertical and non-horizontal boundaries, both straight and slightly curved.
The bottom half of the image is made up of the eight textures in irregularly
shaped regions of approximately equal size.

As described in Section 4.2, the textures used in the original mosaic were
obtained by extracting 128x128 pixels regions from 512x512 pixels scanned
images, and the a priori statistics were based only on the data in these regions.
For generating the new mosaic, the 512x512 scanned images were used and data
was extracted from various parts of the images as dictated by the region map
(Fig. 9.18b). For classifying and segmenting the new mosaic, the same set of
estimated statistics are used as was used for the original mosaic. This implies
that the statistics are not entirely accurate for the new mosaic since much of the
new mosaic consists of pixels that were not included in the previous statistics

calculation. To a certain degree, this is similar to what would happen with a
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real image, where the classifier is based on available test data but must classify
data that is slightly different.

The results for a full classification (no null-class) with 31x31 features, 15x15
features, and both 31x31 and 15x15 feature together are shown in Fig. 9.19.
These results correspond to that shown in Fig. 5.1 for the original mosaic. The
numerical results for the classification are listed in Table 9.8. Figures 9.21, 9.22,
and 9.23 show the results of doing the classification with the null-class tests
described in Chapter 7. These results correspond to those shown in Figs 7.2,
7.4, and 7.6 for the original mosaic.

The cohesion histograms for the new mosaic are calculated the same way as
with the first mosaic. The cohesion results are used to calculate the same set of
final images that were shown above in this chapter for the first mosaic. These
represent all combinations of the three null-class methods and the six decision
methods for both the hierarchical and non-hierarchical segmentation. The nu-
merical results are listed in Table 9.8. A sampling of some of the final images

processed by the hierarchical segmentation methods are shown in Figures 9.24

The results with the non-rectangular mosaic lead to the conclusion that the
quality of the segmentation is not greatly affected by the lack of vertical and
horizontal texture boundaries. An unexpected result is that there appears to
be little correlation between the how well the segmentation process performs in
certain areas and how well a human observer performs when trying to find the
same texture boundaries. Some of the boundaries that the process has the most
trouble with are easy for a human to find, and vice-versa

All of the methods resulted in very poor performance in selecting the correct

class for the middle region of the three in the upper left corner. Note that
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(b) Numerical texture map (c) Gray-level texture map

Figure 9.18: Nonrectangular texture mosaic image and
reference maps
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(b) Classification results — 31x31
features

p )

(c) Classification results — 15x15 (d) Classification results — 31x31
features and 15x15 features

Figure 9.19: Classification results for mosaic image with
non-rectangular regions
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Figure 9.20: Gray-level texture Figure 9.21: Classification with hy-
map persphere null-class

Figure 9.22: Classification with hy- Figure 9.23: Classification with hy-
perplane null-class percylinder null-class

140



(c) Hypercylinder — Method 4 (d) Hyperplane — Method 5

Figure 9.24: Non-rectangular mosaic segmentation re-
sults
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Classification 31 x31 156%15 31x31 +
15x15
70.7 65.7 70.1
Non-hierarchical 31x31 15x15 31x31 +
Segmentation 15x15
Method 0 70.7 65.7 70.1
Method 1 72.5 71.4 72.0
Method 2 71.6 70.7 712
Method 3 71.9 68.4 71.1
Method 4 1.2 68.3 70.8
Method 5 71.4 69.4 71.0
Hierarchical Sphere Plane Cylinder
Segmentation
Method 0 68.8 72.0 70.3
Method 1 75.3 76.0 75.2
Method 2 75.0 76.3 75.7
Method 3 68.8 72.4 70.4
Method 4 69.2 72.7 70.7
Method 5 69.3 72.9 70.9

Table 9.8: Results of classification and segmentation of
non-rectangular texture mosaic (percentage of correctly

assigned pixels)
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the boundary between the middle and top region was determined relatively
accurately, but that the middle class was selected incorrectly on the lower side
of the boundary. Problems also exist at the edge of the image, most noticeably
along the right side of the lower edge. This is also present in the first mosaic
but not to this extent. The computation of the features at the edge of the image
is done somewhat differently due the the lack of image data and this mosaic
appears to be very sensitive to the situation.

When comparing the overall percentage of correctly assigned points, the re-
sults for the second mosaic are not significantly different from those obtained
with the first mosaic. However, this is somewhat misleading since the regions
in the second mosaic are generally larger than those in the first mosaic and
this should improve the overall accuracy. Since the segmentation accuracy in
this mosaic is not significantly improved over that achieved with the first mo-
saic, this implies that the combination of the non-rectangular boundaries and
the non-optimum statistics are slightly detrimental to the performance of the

segmentation.
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Chapter 10

Summary and Conclusions

10.1 Summary

In this dissertation a method for segmenting images on the basis of texture
was developed that combines the results of texture classifications done at more
than one resolution. The multiple resolution classification data is combined
in a hierarchical manner that achieves a better performance than is possible
with either single resolution features or with nonhierarchical, multiple resolution
methods. A major component of the segmentation is the detection of feature
points that are affected by the nonstationarity of features generated from a
mixture of texture classes.

Chapter 2 presented a overview of the texture segmentation problem. Image
texture segmentation is broken down into individual processes of feature gen-
eration, classification, and segmentation. A review of past work in these three
areas described several types of texture features that have been used in the past.

Classification algorithms were briefly categorized and compared. A significant
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amount of work has been done by others on segmenting images based on gray
level information. The types of algorithms used are discussed including the
region-merging and region-splitting methods. Multiple resolution approaches
such as the those based on image pyramids are discussed in more detail.

The motivation behind the use of multiple resolution operator is described
in Chapter 3. The size of the local area operator (LAO) used to generate the
features has a significant effect on the way the resulting features perform in dif-
ferent parts of the image. Large operator work better away from texture bound-
aries while small operators are preferred when near a boundary. The manner in
which the multiple resolution features can be combined in a hierarchical manner
is described.

The features to be used in the classification and segmentation are described in
Chapter 4. The features are based on the “texture energy measures” developed
by Laws [22]. These features essentially measure the energy in the output of
a matched filtering operation in a local area around the pixel. The filters are
designed to be sensitive to the types of intensity variations commonly found in
image texture.

Chapter 5 discusses the pattern classification algorithm used to assign the
image pixels to a texture class. The distribution of the features is assumed to be
Gaussian and the image pixels are classified using a Bayes classifier based on first
and second order moments estimated from the image data. Results are shown
and compared for classifications using two sizes of operators. In addition, results
are shown for a classification of the test image using features at both resolutions

simultaneously in a non-hierarchical manner. The use of both sizes of features
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at the same time does not significantly improve the classification performance
over that achieved with a single size operator.

The cause of the problem in using large operator near a texture boundary
can be traced to the nonstationarity of the class statistics in the boundary area.
Chapter 6 examines the nature of this problem. The larger the LAO, the more
likely that it encompasses data from more than one class, resulting in features
based on a mixture of the statistics from the classes present. An expression
for the the probability density of the mixture is derived. An example is shown
indicating a good agreement between the model of the mixture statistics and
those measured in the actual data.

Chapter 7 presents proposed methods for dealing with the problem of the
mixture densities. The methods are based on a common approach of using the
a priori statistics of the class data to develop a test for detecting the presence of
feature points that are likely to be the result of a mixing of the classes. The test
is incorporated into a standard Bayes nearest-mean classification algorithm by
assigning probable mixture points to a null-class for later classification. Three
tests are examined: hypersphere, hyperplane, and hypercylinder. Each test
implements a different shape of null-class in the feature space. Pictorial and
numerical results are shown of classifying the test data with each method. The
computational complexity of each methods, both for the initial analysis of the
statistics and for the classification of each pixel, is discussed and compared.

Spatial information about the distribution of the texture classes in the area
around each pixel is necessary to do a segmentation of the data. The manner in
which the spatial information is obtained is described in Chapter 8. A measure of

the similarity of a pixel with the neighboring pixels called “cohesion” is defined.
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The spatial information about the cohesion of a pixel with the neighbors in
multiple classes is calculated and stored in a vector of cohesion values called a
cohesion histogram.

Chapter 9 describes the technique used to determine the final segmentation
of the textures. The results from the classifications at two resolution sizes and
the spatial information in the cohesion histogram are combined to determine
the final choice for a texture class assignment. Six hierarchical methods for
determining the final segmentation are described. The methods differ in the
manner in which the spatial information is interpreted and used to control the

class selection.

10.2 Conclusions

The results shown in the previous chapters have demonstrated that using mul-
tiple resolution operators in hierarchical manner can improve the performance
of the segmentation. The numerical improvement in the segmentation accu-
racy is slight in many cases but it is consistent. The improvement in the visual
appearance of the final images are generally noticeable to a human observer.
An accurate method for detecting mixture points is the key component of
the hierarchical process. The three null-class methods described in Chapter 7
all provide an acceptable level of performance. All three have demonstrated the
capability to increase the segmentation accuracy when used in the hierarchical
process. The hypersphere, hyperplane, and hypercylinder methods are mostly
ad-hoc with little theoretical basis. It is possible that better results can be

achieved with a test that is more closely customized to the shape of the optimum
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null-class. However it appears that any attempt to implement such a test would
significantly increase the computational load for classifying each pixel even more.
It seems unlikely that a more complicated test would improve the segmentation
enough to warrant the cost. The current set of test are suggested as a trade-off
that has acceptable performance, both in performance and speed.

The increases in computational cost in implementing the various null-class
methods and the decision rules described in Chapter 9 are significant. For
many applications of image segmentation, it is questionable as to whether the
performance improvement is worth the extra computational cost. In circum-
stances where an optimum feature set can be carefully selected, it is likely that
a greater improvement at a lower computational cost can be achieved by using
a better feature set. However, there are many real world applications of image
segmentation where the selection of the optimum feature set is either difficult or
impossible. In these situations, the extra computational cost of implementing
the techniques described above may be justified.

One area that could be investigated further is the development of a more
sophisticated manner of measuring the cohesion in the local areas. The method
described in Chapter 8 is somewhat simple-minded and could almost assuredly
be improved upon. The same is probably true for the decision rules presented
in Chapter 9. Most of these rules are not based on any firm theory but evolu-
tionary changes over previous rules in an attempt to improve the segmentation

performance.
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