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Abstract

The segmentation of textured imagery into homogeneous regions is an important and
difficult task in scene analysis. A satisfactory segmentation result should possess not
only good region interiors but also accurate boundaries. In response to these require-
ments, the main objective of this research is twofold. First, to improve textured image
segmentation results; especially along the borders of regions. Second, to take into
account the spatial relationship among pixels to improve the segmentation of region
interiors.

An improved method to extract textured energy features in the feature extrac-
tion stage is proposed. The proposed method is based upon an adaptive noise smoothing
concept which takes the nonstationary nature of the problem into account. Texture
energy features are first estimated using a window of small size to reduce the possibility
of mixing statistics along region borders. The estimated texture energy feature values
are then smoothed by a quadrant method which reduces the variability of the estimates
while retaining the region border accuracy.

For a supervised segmentation system, the estimated feature values of each pixel

are used by the Bayes classifier to make an initial probabilistic labeling. The spatial



constraints are then enforced through the use of a probabilistic relaxation algorithm.
Two probabilistic relaxation algorithms have been investigated and their results are
compared by computer simulation.

For an unsupervised segmentation system, the estimated feature values of a set
of subsampled pixels are used in a K-means clustering algorithm to estimate the class
statistics. The estimated class statistics are then used by the Bayes classifier to make an
initial probabilistic labeling. One of the selected relaxation algorithms is then applied
to enforce the spatial constraints.

Limiting the probability labels by probability threshold is proposed to make
the relaxation iteration more efficient. The trade-off between efficiency and degrada-
tion of performance is studied. Finally, an overview of the proposed textured image

segmentation system is provided and comparisons of overall performance are made.



Chapter 1

Introduction

An important task of an image analysis system is to segment the given image into
meaningful regions and to label the individual regions. Segmentation of the image into
regions can be done in many ways [1], [2]: from simple pixel classification methods
using gray levels and local feature values to sophisticated split-and-merge techniques
using statistical homogeneity tests. These segmented and labeled regions can then be
used for representation, description, and recognition.

There exist two major approaches to image segmentation: edge-based and region-
based. In edge-based methods, the local discontinuities are detected first and then are
connected to form longer boundaries. In region-based methods, areas of the image with
homogeneous properties are found, which in turn give the boundaries. The presence
of texture causes difficulty for both the edge- and region-based methods. Essentially,
our hypothesis that the objects consist of relatively homogeneous surfaces is violated,
and very few intensity changes now correspond to object boundaries. In edge-based
methods, we will get many edges due to texture that must be differentiated from object

boundaries; in region-based methods, we will get many small regions that correspond



to texture. Therefore, textured image segmentation is an important and difficult task.

1.1 Research Objectives

There are two main objectives of this research. First, to improve textured image seg-
mentation results; especially along the borders of regions. Second, to take into account
the spatial relationship of pixels in the process of solving textured image segmentation
problems.

This objective is motivated by the lack of effective algorithms for textured im-
age segmentation. By “effective” we mean that the segmentation should possess the
properties pointed out by Haralick [3] (see Chapter 2 for those properties). In order
to achieve this objective, we think the following ingredients are essential for a textured

image segmentation system:

e A set of texture features having good discriminating power.
e A segmentation algorithm having spatial constraints.

e Estimation of texture features taking the nonstationary nature of the feature
image planes into account. By doing this, the segmentation results along the

borders of the regions might be improved.

1.2 Organization of the Dissertation

The organization of the dissertation is shown in Figure 1.1. In chapter 2, definitions
of texture and segmentation are stated; properties of a good image segmentation are

pointed out; surveys of texture features and segmentation techniques are provided; past



work on textured image segmentation is tabulated; and an overview of the proposed

textured image segmentation system is presented.

In chapter 3, an improved method to extract texture energy features is discussed.
Laws’ textured image segmentation system is first reviewed, and one shortcoming of
Laws’ method is then pointed out. In order to overcome this shortcoming, an edge
preserving noise smoothing algorithm is introduced and its close relationship to feature
extraction is also discussed. The proposed feature extraction algorithm is presented in
detail. A Bayes classifier is then used to classify the pixels based upon their feature
values. A comparison of the classification accuracy between the original and proposed
feature extraction methods is presented.

The incorporation of spatial constraints into the segmentation algorithm is dis-
cussed in chapter 4. The weakness of classifying pixels based solely upon feature space
distribution is pointed out. A probabilistic relaxation method used to enforce the spatial
constraints is then introduced. Past research work on multispectral pixel classification
using probabilistic relaxation approach is reviewed. Two probabilistic relaxation al-
gorithms are proposed as the means to reduce the local ambiguities. To the best of
the author’s knowledge, no previous attempts have been made in using probabilistic
relaxation to solve the textured image segmentation problem. Simulation results using
the proposed algorithms are presented and discussed.

In chapter 5, a procedure for segmenting textured images without the need
for training prototypes is described. The interrelationships among the feature data is
first analyzed by a K -means clustering algorithm; the estimated class statistics from

the clustering algorithm is then used by the Bayes classifier to classify pixels. Issues
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related to clustering algorithm are discussed. The proposed algorithm for clustering
and cluster statistics estimation is presented in detail. Simulation results are given at
the end of the chapter.

The incorporation of spatial constraints into the unsupervised segmentation al-
gorithm is discussed in chapter 6. In addition, the effect of limiting the range of possible
patterns for classification to a smaller subset of classes is studied. Proposed algorithms
are described in detail. Finally, the simulation results are presented and discussed.

Chapter 7 provides an overview of the proposed textured image segmentation
systems. In previous chapters, issues related to different stages of a textured image
segmentation are discussed and algorithms are proposed for each of the stages. Chap-
ter 7 presents an integrated description of the proposed supervised and unsupervised
textured image segmentation systems in block diagram form. Some remaining issues
are discussed at the end.

Chapter 8 concludes the dissertation. A brief summary and discussion of future

research on the problem are given.

1.3 Contributions of this Research

The author’s original contributions of this research can be summarized as:
e The use of quadrant window method for texture feature smoothing.

e The use of probabilistic relaxation to enforce spatial constraints for textured

image segmentation problems.



e The use of texture energy features, clustering and probabilistic relaxation method

to solve the unsupervised textured image segmentation problems.

e The use of probability thresholding to speed up the relaxation iterations.



Chapter 2

Textured Image Segmentation

Segmenting a picture into appropriate subregions is one of the most important stages in
understanding the picture. These regions are generally areas homogeneous with respect
to a given property or satisfying a given predicate. Textured image segmentation uses
texture as the primary property to segment images. There are two issues that need
to be addressed in a textured image segmentation problem. One is finding effective
texture features that can distinguish one texture from another. The other is how to
use these features to segment the picture into subregions.

Texture can be defined as [4] a structure composed of a large number of smaller
similar sub-elements or patterns. Although each sub-element or pattern alone does not
give the impression of texture, the collection of a large number of them does. Texture
is a higher order image property, and depends on the statistics of pixels in a local
neighborhood. In order to exploit textural differences, it is necessary to define and
extract features that discriminate between textures. Section 2.1 provides a review of
commonly used texture features.

A segmentation is defined as a partition of X, which is a set, into disjoint



nonempty subsets Xy, Xs,..., Xy, such that
1. U‘ X; = X.
2. X;, ©=1,2,...,N,is connected.

3. P(X;) = TRUE for ¢=1,2,...,N, where P is a logical predicate defined

on a set of contiguous picture points.
4. P(X;UX;) = FALSE for ¢ # j, where X; and X; are adjacent.

Zucker [5] summarized the above conditions as follows : the first condition im-
plies that every picture point must be in a region. This means that the segmentation
algorithm should not terminate until every point is processed. The second condition
implies that region must be connected, i. e. composed of contiguous lattice points. The
third condition determines what kind of properties the segmented region should have.
The fourth condition expresses the maximality of each region in the segmentation.
Section 2.2 provides a survey of commonly used segmentation techniques.

What should a good image segmentation be? As Haralick [3] pointed out, a

good image segmentation should possess the following properties:

1. Regions of an image segmentation should be uniform and homogeneous with

respect to some characteristic such as gray level or texture.

2. Adjacent regions of segmentation should have significantly different values with

respect to the characteristic on which they are uniform.

3. Region interiors should be simple and without many small holes.



4, Boundaries of each segment should be simple, not ragged, and must be spatially

accurate.

To obtain property (1) and (2), proper selection of the features used in the
classification algorithm is essential. Spatial constraints are generally needed to improve
the region interiors as desired in the third property. The fourth property is a very

important one and no completely satisfactory results exist.

2.1 Survey of Texture Features

Texture analysis may be performed using a statistical or structural approach. The
statistical approach derives a set of local measurements for a given image over the space
domain or the corresponding frequency domain. Features based on these measurements
are then used for discrimination between textures. The structural approach assumes
that a set of primitive spatial unit patterns can be easily identified. It then defines the
texture as a combination of such primitives. The two methods can be combined in a
hierarchical way, where the stafistical procedure supplies the raw data for the structural

procedure. We will restrict ourselves to the discussion of the statistical approach only.

2.1.1 Autocorrelation

The autocorrelation function may be used to characterize textures. If the primitives are
relatively large, then the autocorrelation function will drop off slowly with distance.
If the primitives are small, then the autocorrelation function will drop quickly with
distance. If the primitives are spatially periodic, the autocorrelation function will

drop off and rise again in a periodic manner. Thus texture coarseness is reflected



in the autocorrelation changes. Directionality of the pattern can be detected by the
directional dependence of these functions.

Kaizer [6] used the distance at which the autocorrelation falls to 1/e of its peak
as a measure for texture coarseness. The autocorrelation function measure and the tex-
ture energy measure in Fourier domain are closely related because the autocorrelation

function and the power spectrum are the transforms of each other.

2.1.2 Relative Extrema Measures

Rosenfeld and Troy [7] and Rosenfeld and Thurston [8] conceive of texture not in terms
of spatial frequency but in terms of the number of edges per unit area. To detect mi-
croedges, small neighborhoods can be used. To detect macroedges, large neighborhoods
can be used. The local edge detector which Rosenfeld and Thurston suggested was the
quick Roberts gradient (the sum of the absolute value of the differences between diag-
onally opposite neighboring pixels). Thus a measure of texture for any subimage can
be obtained by computing the Roberts gradient image for the subimage and from it
determining the average edge density in the subimage. This measure can then be used
to classify textures.

Carlton and Mitchell [9] used a texture measure that counted the number of
local extrema in a window centered at each pixel. Using three thresholds called “low”.
“medium” and “high”, they produced three intermediate “gray level” pictures whose
values are the number of local extrema (averaged over a window) produced by that
threshold. These averaged number of local extrema can then be used to characterize

textures.

10



2.1.3 First Order Statistical Measures

The simplest measures are based on first-order statistics - that is, the probability of
single-pixel attributes. Some examples are mean and variance of intensity. More sophis-
ticated first-order measures are based on histograms of the individual pixel attributes.
These measures, even though they do not specifically use the spatial distribution of
the pixel attributes, are still useful for many naturally occurring textures. Davis and
Mitiche [10] used first order statistical measures in their model-driven iterative texture

segmentation algorithm.

2.1.4 Spatial Gray-level Dependence: Co-occurrence

Spatial gray-level dependence (SGLD) matrices are one of the most popular sources of
features. The SGLD approach computes an intermediate matrix of measures from the
digitized image data, and then define features as functions on this discrete intermediate
matrix. Given an image f(4,7) with a set of discrete gray level I, we define for each of

a set of discrete values of d and @ the intermediate matrix S(p,¢| d, ) as follows:

S(p,q | d,0), an entry in the matrix, is a count of the number of pixel
pairs with intensities p and g, for the given d and § values. Note that these

matrices are symmetric, as only the absolute value of d is used.

Haralick [11] and others suggested fourteen features to be computed from a

cooccurrence matrix. For instance, the first one, called an energy feature,

N N
f=223"[S(p.q|d,0))*. (2.1)

p=1g=1

11



This feature is a measure of uniformity of a region. For a uniform region, the cooc-
currence matrix contains a small number of large-valued elements, hence the sum of

squares is higher than it would be if all transitions were equally likely.

2.1.5 Texture Energy Measures
Texture energy in the Fourier Domain

If a texture is at all spatially periodic or directional, its power spectrum will tend
to have peaks for corresponding spatial frequencies. These peaks can form the basis
of features of a pattern recognition discriminator. One way to define features is to
partition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used. These bins, together with the Fourier power spectrum are used to define features.
If F is the Fourier transform of the image, the Fourier power spectrum is given by | F|2.

Radial features are given by

Viiis= f/|P(u,u)|?du dii; (2.2)

where the limits of integration are defined by
r2 <u? 0% <1}, (2.3)
where 0<uy,v<n-1. (2.4)

Radial features are correlated with texture coarseness. A smooth texture will

have high values of V.

., for small radii, whereas a coarse, grainy texture will tend to

have relatively higher values for large radii.

Features that measure angular orientation are given by

Viss, =f | F(u,v)[dudv, (2.5)



where the limits of integration are defined by
<A f
6 <tan™" (=) < 0;, (2.6)
v

where O<u,v<n~-1. (2:7)

These features exploit the sensitivity of the power spectrum to the directionality
of the texture. If a texture has many lines or edges in a given direction 6, |F|? will

tend to have high values clustered around the direction in frequency space 6 + 7.

Texture Energy in the Spatial Domain

Laws [12], [13] proposed an approach to measure texture energy in the spatial domain.
His approach to texture characterization consists of two steps. First the image is
convolved with a set of filters having a small region of support in the spatial domain.
These filters are called micro-texture masks, and their outputs are called micro-texture
features. These masks contain weighting coefficients needed in the two-dimensional
convolution process. The two-dimensional convolution of the image f(i,7) and mask

h(i,7) is given by the the relation

a b
9(i,5) = h(i,5)* f(i,5) = > D h(k,D)fG+kj+1), (2.8)

k=—al=-b

fori=0,1,...,N—1and j =0,1,...,N — 1, and the * denotes the two-dimensional
convolution. Laws’ micro-texture masks are designed to act as matched filters for
certain types of quasi-periodic variations commonly found in textured images. Typically
these masks are of size 5 X 5 or smaller and are zero-sum, resulting in an filtered image
which is zero mean. Figure 2.1 shows the coefficients of four micro-texture masks that

had the best discrimination power for the texture mosaic Laws used. Laws’ texture

13



mosaic is similar to ours as shown in Figure 3.8. Because the micro-texture features
are quasi-periodic, we expect strong variations about the mean output as a function
of mask position for masks that are matched to the local texture. Thus the relevant
information for texture discrimination is now present as the image variance of the

micro-texture feature planes.

[ =1 —~4 ~8 —~4 1] [ 1 -4 6 -4 1]
-2 -8 -12 -8 -2 -4 16 -24 16 -4
E5L5=| 0 0 06 0 0| R5R5=| 6 —-24 36 —24 6
2 8 12 8 2 -4 16 —-24 16 -4

| 1 4 6 4 1| | 1 -4 6 -4 1|

(-1 0 2 0 -17 (-1 0 2 0 -1
-2 0 4 0 -2 -4 0 8 0 -4
E585=| 0 0 0 0 O IL555=|-6 0 12 0 -6
2 0 -4 0 2 -4 0 8 0 -4

[ 1 0 -2 o0 1] -1 0 2 0 -1 |

Figure 2.1: Four of Laws’ micro-texture masks.

Second, macro statistical features are obtained over large windows (e. g. 15 x 15
or 31x31). The most useful statistics are the sample variances or sample mean deviation
of the micro-texture feature planes. The sample variance in the local windows of the
filtered image can be measured in a variety of ways. The true sample variance within

a 2n + 1 by 2n 4+ 1 window at point (i, j) is given by

i+n  j+n

oz(é,j)-(gnﬂ)z > 2 (a(k, D)= m(i,5))?, (2.9)

k=i-nl=j-n

where the mean, m(i, ), is given by

i+n  J+n
) = R .10
m(%]) (2?1 i 1)2 k;n l;n ( l (2 10)

14



Also, the local sample variance can be defined as

i+n  J+n
o2(i,7) = (2n+ TR k;n l—;zn(g(k ) = m(k,1))2. (2.11)

Because the output of the small convolution masks is theoretically zero mean,
the local variance may be approximated by assuming that the image is indeed zero

mean and averaging the squares of the points within the window
i+n  j+n 2

k=i—-nl=j-n

In Laws’ thesis a computationally more efficient statistic was used instead. This
statistic, called ABSAVE (or sample mean deviation), was computed as the mean

deviation within a macro statistical window

i+n  j+n
1) = Gy 2 2 lathD)= (i) (2.13)
Again, based upon the assumption that the mean is zero, the ABSAVE s(4, j) becomes
i+n  J+n
(i.1) = G T 2 2 lakl. (2.14)

Laws’ set of features have been shown to work as well or better than most
others in texture classification problems. However, when Laws applied the texture
energy features to the segmentation problem, only limited success was achieved. There
are considerable errors in the interiors of the large regions and the algorithm sometimes

performs badly near the borders between the textures.

2.1.6 Random Field Modeling

Random field models have increasingly been used to characterize digital images. For ex-

ample, Hassner and Sklansky [14] proposed using Markov random fields as probabilistic

15



models of texture. Kashyap et al. [15] assumed that the given N x N image charac-
terized by a set of intensity levels is a realization of an underlying random field model,
known as the Non-causal Autoregressive (NCAR) model. This model is characterized
by a set of parameters § whose probability density function, p;(#), depends on the class
to which the image belongs. It was shown that the maximum likelihood estimate 8 of 8
is an appropriate feature vector for classification purposes. Chatterjee and Chellappa
[16] assumed each texture is represented by a non-causal Gaussian-Markov Random
field whose parameters can be used for segmentation purposes. Modeling images or
textures as random fields enables stochastic filtering techniques such as hypothesis

testing, significance testing, and parameter estimating, to be used for segmentation.

2.2 Survey of Segmentation Techniques
Segmentation algorithms can be classified broadly into four categories:
1. Characteristic feature thresholding and clustering,
2. Region growing,
3. Edge detection, and

4. Estimation theoretic approaches.

This section briefly discusses each of these categories.

2.2.1 Characteristic Feature Thresholding and Clustering

Characteristic feature thresholding is useful when the objects of interest in an image

have a distinct property. In general, the threshold operator T'(#) can be viewed as a
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test involving a function 7' of the form

T(:,4,N(3,5), f(3,5)) s (2.15)

where f(i,7) is the characteristic feature and N (7, ) denotes some local property of
point (7,7), such as variance over a small neighborhood. Three types of threshold
operators exist: global, local and dynamic. A global operator is one in which the T'(x)
depends only on f(4,7). If T'(*) depends on both f(,5) and N(¢,7), then it is called
a local operator. If T'(x) depends on the coordinate values ¢, j as well as f(i,7) and
N(i,7), then it is called a dynamic threshold.

Clustering, the multidimensional extension of thresholding, is needed when a
single feature cannot distinguish the desired objects in an image. Clustering algorithms
group the points in the characteristic feature space into clusters. These clusters are then

mapped back to the original spatial domain to produce the segmented image results.

2.2.2 Region Growing

Region growing algorithms segment an image by merging groups of points. An image
is first divided into subsets of points. Subsets with similar properties are iteratively
merged, producing an image segmented into different regions. The algorithms differ
in their initial selection of subsets, their choice of properties, and their merging crite-
ria. Five commonly used techniques for region growing are the following: (1) regional
neighbor search, (2) multiregional heuristics, (3) functional approximations, (4) split

and merge, and (5) regional interpretation and semantics.
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2.2.3 Edge Detection

Edge detectors segment images based on the detection of edges, discontinuities char-
acterized by sudden changes in gray levels. There are two classes of edge detectors:
parallel and sequential.

A parallel detector labels each point an edge or non-edge point solely by using
the gray levels of neighboring points. Three methods of parallel detection are commonly
used. In the first, high-emphasis spatial frequency filtering, the image is simply high-
pass filtered. In the second, gradient detection, digital approximation to the ideal
gradient is used. In the third, functional approximation, ideal edges are modeled by
functions, an error criterion is established with these functions, and the actual edges
are found at location where the error is minimized.

A sequential detector labels a point an edge or non-edge point using the results
of previously classified points. Its success requires the existence of a good starting point

and the use of an effective rule to label a point based on earlier results.

2.2.4 Estimation Theoretic Approaches

In the estimation theoretic approach, a random field model is assumed for each textured
region along with a model for the occurrence of textured regions within an image.
During the estimation step we try to maximize the joint likelihood of the image data
with the underlying model. Therrien [17] used spatial linear filters driven by white
noise as models for textures and a pixel based maximum likelihood (ML) rule for
segmentation. He also showed segmentation results can be improved by using a estimate

of the regions based on a binary model for the region geometry. Therrien’s work was
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subsequently generalized by Cohen and Cooper [18]. They used Gaussian Markov
random field (GMRF) models for the individual textures and maximum likelihood
method to label windows. Chatterjee and Chellappa [16] also used GMRF to model

textures and a maximum likelihood rule to label the individual pixels.

2.3 Past Work on Textured Image Segmentation

There has been numerous previous work on the textured image segmentation problem.
In order to provide a quick survey, we use a table to summarize previous results.
Textured image segmentation approaches are characterized by two features: the texture
measure and the segmentation algorithm. Table 2.1 to Table 2.3 list texture features

and segmentation techniques used by various research workers.

2.4 An Overview of the Proposed Textured Image

Segmentation System

Our approach to segmenting textured imagery is based on the followin g three principles:

1. The problem of estimating texture features without destroying the boundaries
between regions is similar to the problem of smoothing a noisy image. Thus,
techniques used to smooth noise which do not blur edges may be extended to
the textured image segmentation problem to improve the accuracy along region
boundaries. The intent is to develop algorithms to verify this concept through

computer simulations.
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Researcher

Texture Measure

Segmentation Algorithm

Bajesy [19]

Fourier transform domain
texture energy.

Brice and Fennema algorithm.
Region merging used two
heuristics.

Pavlidis
and
Tanimoto [20]

Fourier transform.

Split and merge.

Carlton
and
Mitchell [9]

Number of local extrema.

Region growing.

Pavlidis . _— .
; Used pyramid to implement
and Co-occurrence matrix. ¥ :
Chen [21] a split and merge algorithm.
Pavlidis A sequence of decision problems
and Mean and variance. within the framework of a split
Chen [22] and merge algorithm.
Pavlidis Split z_md merge followed by
a'nd Mean and covariance. grouping alsorlthm uslﬂg
Chen [23] correlation coefficients and

region adjacency graph.

Mitchell et al. [24]

Number of local extrema
in a window and 4 ranges
of extrema size followed
by a local averaging.

Clustering in the four
dimensional feature space.

Laws [12] [13]

Spatial texture energy.

Recursive region splitting method.

Table 2.1: A Survey of Past Work on Textured Image Segmentation (I)




Researcher Texture Measure Segmentation Algorithm
Davis First-order distribution : : :
and of edge-Basell texture Iterative nonlinear smoothing

Mitiche [10]

features.

algorithm.

Knutsson
and
Granlund [25]

Local orientation and
frequency calculated from

quadrature filters.

Maximum likelihood classifier.

Total variation of gray

i;h:f?;% levels over a neighborhood Clustering.
of each point.
Deguchi Two dimensional non-
and causal auto-regressive Region growing.

Morishita [27]

model.

Coleman
and
Andrews [28]

Local edge density over
different region sizes.

Clustering. No spatial
information used.

Zucker et al. [29]

Using spot detector to

measure coarseness of
texture.

Thresholding.

Pietikainen
and
Rosenfeld [30]

Second order gray level
statistic.

Top-down/bottom-up linking
applied to a “pyramid” of
successively reduced reso-
lution version of a image.

Table 2.2: A Survey of Past Work on Textured Image Segmentation (II)
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Researcher Texture Measure Segmentation Algorithm
“;n.;b; r Laws texture energy Multiresolution and

Sawchuk [31]

features.

spatial information.

Bevington

and
Mersereau [32]

Mean and covariance of
Gaussian random field.

Approximation to a

maximum likelihood
estimator.

Therrien [17]

Spatial linear filters
driven by white noise

as models for the
textures.

Both ML and MAP
approaches were used.

Cohen
and
Cooper [18]

Individual textures are
modeled as Gaussian
random field.

Using ML estimation
scheme to label
windows.

Chatterjee

and
Chellappa [186]

Texture are modeled
as GMRF.

Using ML estimation to
label pixels.

Therrien [33)

ARMA model for texture.

Region transitions were
modeled by MRF. ML
and MAP estimation
were applied to estimate
segments.

Conners et al. [34]

Spatial gray level
dependence method.

Split-type approach.

Derin
and
Cole [35]

Gibbs random field.

MAP estimate of the
region process — a Gibbs
random field.

Table 2.3: A Survey of Past Work on Textured Image Segmentation (III)
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2. The spatial relationship of pixels should be taken into account in the process of
solving textured image segmentation problems. In our work we will try to use
both the global information in the feature space and the spatial organization of

this data in the image space.

3. We view the unsupervised textured image segmentation as a problem of cluster-
ing with spatial constraints incorporated. Since there are no training samples
available, a clustering technique is used to organize the patterns into clusters and
then the cluster statistics are estimated. The spatial information is then used to

improve the segmentation performance.

In chapter 3, a texture energy feature extraction method is proposed in order to
improve the performance along region boundaries. Laws texture energy features were
chosen because they have been shown to work as well or better than most others and
are also relatively easy to calculate.

Chapter 4 deals with the problem of how to incorporate spatial information into
our supervised image segmentor. The general idea of our approach is to label each pixel
probabilistically based upon the similarity measure in the feature space, then invoke a
relaxation labelling process to gradually bring in the spatial constraints.

Chapter 5 addresses the segmentation problem under the assumption that no
training samples are available. A K -means clustering algorithm is used to group the
patterns and to estimate the class statistics. In this chapter, the segmentation algorithm
does not take spatial information into consideration.

In chapter 6, An unsupervised segmentation system with spatial information

incorporated is developed. We use the class statistics estimated from chapter 5 as
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a starting point to assign pixel labels probabilistically, then the relaxation labelling
process is used to enforce the spatial constraints.

Chapter 7 is a detailed overview of our proposed textured image segmentation
system. All the previously proposed algorithms are integrated in this chapter to form
a complete system.

Chapter 8 concludes the dissertation. A discussion of future research on the

problem is given.
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Chapter 3

An Improved Method to Extract

Texture Energy Features

In this chapter we propose an improved method to extract texture energy features for
segmentation. We hope to improve segmentation results, especially along the borders
of regions. One important point is that we think more emphasis should be put into
the early stages of the segmentation process (such as feature extraction) in order to
improve the overall performance.

In section 3.1, we first review Laws’ approach to extracting texture energy fea-
tures and segmenting images. From this review we may identify several areas that still
need improvement. One shortcoming is that Laws’ method to estimate texture energy
features does not take the nonstationary nature of the problem into account. In section
3.2, we then introduce a quadrant smoothing method used by Jiang and Sawchuk [36]
for noise smoothing and show how it is closely related to the texture feature extraction
problem.

Once the connection between noise smoothing and feature extraction is made,
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the implementation and analysis of the quadrant method to smooth feature estimates
is discussed in section 3.3. A Bayes classifier is chosen to classify the pixels based upon
the feature estimates made in section 3.3. Issues and assumptions related to the Bayes
classifier are addressed in section 3.4. Section 3.5 provides an overall description of the
proposed algorithm. Simulation results and performance comparisons are presented in

section 3.6.

3.1 Laws Textured Image Segmentation System

As we mentioned in section 2.1.5, Laws’ approach to texture characterization consists
of two steps. First, micro-texture features are computed using 3 x 3 or 5 X 5 convolution
masks. Second, macro-statistical features are obtained over large windows. The most
useful statistics are local sample variances or averaged absolute value (ABSAVE) within
a macro-window of the micro-texture feature planes. These features were called texture
energy measures by‘ Laws.

Once these texture energy features are extracted, an optional feature selection
and extraction step was used to reduce the dimensionality of the classification process.
There are two kinds of feature selection and extraction methods depending on whether
the labeled prototypes for classes and their statistics are available or not. If the proto-
type labels are known, the multiple discriminant analysis method [37] may be used. If
the prototype labels are not known, a feature extraction procedure that is often used
is called principa.l components analysis [37]. We discuss both procedures here.

Laws described the following procedure for feature selection and extraction as-

suming that prototypes of textures are available:
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e A set of raw features were generated by the aforementioned two steps, i.e., con-
volving the micro-texture masks with the image and then estimating macro-

statistical features with a macro-window.

e A multivariate statistical method called a stepwise variable selection technique

[38] was used to select a subset of effective features from the raw features.

e Canonical discriminant function analysis [39] was then used to further compress
the discriminatory information by linearly combining those effective features se-
lected in previous step. For instance, Laws extracted four features out of the

original fifteen raw features and still retained most of the discriminating power.

e The output of the canonical discriminant analysis was a matrix of coefficients nec-
essary for transforming the selected features into canonical discriminant functions.
These functions are derived in such a way that they best exhibit the differences
among the groups. In general, the number of canonical discriminant functions is
equal to either the number of input variables or the number of classes minus one,

whichever is smaller.

A minimum distance-to-centroids classifier was then used to assign the label of test
observation. No spatial information was included in this procedure.

If labeled prototypes were not available, Laws used the different feature extrac-
tion method called principal components analysis. The absence of class membership
information of the training observations implies that the class-conditional parameters
can not be inferred from the data. In such a situation the only sensible approach to

feature extraction is take advantage of the general information-compression properties
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of the Karhunen-Loéve (K-L) expansion [40]. More specifically, a feature extraction
matrix W is constructed from the K-L coordinate axes, which are given by column

vectors wj, j = 1,..., D, satisfying

where I, is the covariance matrix. ¥, is defined as
Y= E((f“‘ "ﬁr)(f - ﬁiz)t)a

where & is the D-dimensional random feature vector and i, is the mean vector of 7.
Both & and 77, are column vectors. To retain most of the information in Z, vectors 1},

7=1,...,d,d < D, which form the columns of the feature extractor

must be selected in the descending order of magnitudes of their corresponding eigen-
values, i.e.,

AL ZAe w2 Ay Fiaa Aps

After the principal component planes were generated, the first three were then
input to the “Ohlander segmentor” algorithm [41]. The Ohlander segmentor is a region
based segmentor. Regions are split recursively based upon histogram analysis of the
feature values. It begins by defining a mask that initially covers all pixels of the image.
Given a mask, a histogram of the masked image is computed. The separation of one
mode of the histogram in the feature space from another mode is then followed. Pixels
on the image are then identified with the cluster to which they belong. If there is

only one feature space cluster, then the mask is terminated. If there is more than one
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cluster, then each spatially connected component of all pixels with the same cluster
is, in turn, used to generate a mask which is placed on a mask stack. During succes-
sive iterations the next mask in the stack selects pixels in the histogram computation
process. Clustering is repeated for each new mask until the stack is empty [3].

Figure 3.1 is a block diagram of Laws texture segmentor, where Fy, F,- -, F,
represent different micro-textured masks, Fy, Ey, -+, E, are the calculated energy fea-
tures. After the feature selection and extraction, feature vectors reduce to a lower
dimension ¢ which are then fed to the classifier for classification.

Laws’ set of features have been shown to work as well or better than most oth-
ers in texture classification problem. However, when Laws applied the texture energy
features to the segmentation problem, only limited success was achieved. There are
considerable errors in the interiors of the large regions and the algorithm sometimes
performs badly near the borders between the textures. One major reason for the seg-
mentation error along the region borders is due to the method of estimating the local
texture energy. As we recall, the macro statistical features are obtained by processing
the micro-texture feature planes with a nonlinear “local texture energy” filter. This
nonlinear filter was used to estimate the local sample standard deviation (or a similar
statistic approximated by the moving window average of the absolute values) of the
filtered image. Although such moving window operations are simple and fast, it intro-
duces significant errors along the region borders. The reason for this is the overlap of
the averaging window at texture boundaries. When this occurs, the resulting statistics
become the mixture of two sets of statistics. This mixture of statistics sometimes re-

semble another distinctly different texture class. In this case, the boundary pixels will
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be incorrectly classified as a third class different from the two inside the overlapping
windows.

One way to avoid the aforementioned problem is to estimate the sample stan-
dard deviation (or sample mean deviation) of the micro-texture filtered images more
carefully, We can perceive the process of getting the macro statistical features as the
problem of smoothing a noisy image. In noise smoothing we always face the following
problem: how to smooth noise without blurring the edges. There are many ways to
approach the noise smoothing problem, and we want to extend some of these concepts
to the feature extraction problem. A quadrant method has successfully been used by
Jiang and Sawchuk [36] in their noise smoothing work. Let us first take a brief look at

how quadrant method can be used to smooth noise without blurring edges.

3.2 Edge Preserving Noise Smoothing Methods

Consider a noisy observation given by

9(i,7) = f(zv.?)+u(313)s (3'1)

where the noise part, u(4,j), has zero mean and is uncorrelated with the signal f(4,j).
In addition, {u(i,j)} are pairwise uncorrelated. The Locally Linear Minimum Mean
Square Error (LLMMSE) estimator suggested by Kuan et al. [42] has the property
that it smoothes out noise in flat regions and leaves the observation unchanged in the

vicinity of edges. The LLMMSE estimator is defined as

Fi, ) = myti ) + 2D D g3y -y i,y (32)
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where my(i,j) and v,(i,j) are the local mean and local variance of the observation g
at (7,7), respectively, and v,(3, j) is the variance of the noise u(i, 7).

There are several ways to estimate the local statistics. In the next two sub-
sections, we review two of these methods: Kuan et al.’s method and Jiang-Sawchuk’s

method.

3.2.1 Kuan et al.’s method

Kuan et al. [42] used a (2m 4 1) X (2n + 1) 2-D local window to calculate the local
statistics. The local mean is defined as
i+m i+n

k=i—ml=j—-n

The local variance is defined as

i+m  J+n

(2m + 1)(2?’1 +1) = Z Z c(i—k,j—1)x[g(k,1) - mg(k,!)]z , (3.4)

i—ml=j—n

ve(2,7) =

where ¢(¢,7) is a weighting function.

There are two major points in the above equation. First, the local mean is
allowed to vary within the window for the calculation of local variance. Second, the
local window is not necessarily uniformly weighted. Since there is no physical support
on how these weighting factors should be set, they can only be chosen on a heuristic or

ad hoc basis. A Gaussian shaped weighting window is suggested in Ref. [42].
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3.2.2 Jiang-Sawchuk’s method

The local mean is defined the same way as before. For simplicity, a (2m+1) x (2m+1)

square window is used in the following expressions. Thus the local mean is

1 +m  +m . )
my(i,5) = Gmt 12 Zmz§m9(3+kaj+3)- (3.5)

Jiang and Sawchuk [36] proposed that the local variance vg(¢,7) be computed

by
vg(%, 7) = min [vg, (4, 1), vg, (45 5), Vs (4, 5), vy (4, 4)] (3.6)
where v, (4,7), vg,(%,7), vy, (4,7), and vy, (i, 7) are the four quadrant variances defined

by
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The locations of the neighboring pixels involved in the above four quadrant variances
are schematically shown in Figure 3.2. Note that the window sizes for calculating local
mean and quadrant variances are not necessarily the same. The performance of the
filter strongly depends on how the local windows are chosen and how the local statistics
are calculated.

The idea behind Eq. (3.6) is that when there is an edge near pixel (4,7) the
smallest quadrant variance has the best chance of being the most representative statistic

over those neighboring pixels around (¢, j) that do not appear across the edge.
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Figure 3.2: Location of the Four Quadrant Variances.

The estimated local mean and local variance are then used by the LLMMSE
filter. In the next subsection we describe another way to use the local variance in-
formation estimated by the quadrant method of Egs. (3.6) - (3.10) to perform edge

preserving noise smoothing.

3.2.3 Edge Preserving Noise Smoothing Using a Quadrant Method

Our method is to use the four windows that define quadrants around each pixel and
then replace the value of that pixel by the average gray level of the most homogeneous
neighborhood as determined by Eq. (3.6). If a window contains a sharp edge, the
variance of the gray level in that window becomes large. Here the quadrant variance
as defined by Eq. (3.6) are used to measure the gray level variability around a pixel
in order to find the most homogeneous neighborhood. For the convenience of future
reference to this method, we call it the Edge Preserving Noise Smoothing Quadrant
(EPNSQ) filter.

We can analytically derive the expression for the sample variance of a window

which overlaps two regions Ry and R,. Let us assume pixels in R; are random variables



Figure 3.3: When A Pixel Is Near the Border of Two Regions with Different
Means and Variances.

and variance o7 (see Figure 3.3). The sample variance of the neighborhood Sg which

includes both parts of R; and R, can be written as

Ny N3
1 . -
Sh=Fl (Xi-X)'+ 3 (X;-%), (3.11)
i, i

where N; and N; denote the number of points in Ry and R,, respectively, Ny+ Ny = N,

and X is the sample mean

e 1N
X=x Yo X;. (3.12)
i=1
The expected value of $% is

1 NoN
E(SB) ~ N0} + Naof + == (mq = ma)?). (3.13)

Similarly we can derive the expected value of the sample variance of the neighborhood
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S4 which is completely included in Ry
E(S3) =o0?. (3.14)

If E(S%) > E(S3), that is, 03 + (5#)(m1 — m2)? > o, the neighborhood containing

only R; is selected for smoothing. In most gray level images the above condition,
N
o5 + (—Nfl’)(ml - mg)? >0,

can be met.
From the above analysis we know why the EPNSQ filter can be used to smooth

noise while preserving edges. Some simulation results can demonstrate the effectiveness

of this EPNSQ filter.

3.2.4 Simulation Results

Figure 3.4 shows the simulation results of using a simple averaging filter and LLMMSE
filter of Eq. (3.2) to smooth a noisy image. Figure 3.4(a) is the original image. Fig-
ure 3.4(b) is the degraded image with a signal-independent additive white noise. The
signal-to-noise ratio (SNR) of the degraded image is about 6 dB. We define the SNR
as the ratio of the signal variance to the noise variance. The signal variance is defined
as the signal sample variance of the whole image. Figure 3.4(c) is the simple averaging
filter output which is the the degraded image convolved with a 7 x 7 uniform window.
The result of using the LLMMSE and quadrant method with m = 3 in Eq. (3.5) and
w = 4 in Eqgs. (3.7) to (3.10) for variance estimation is shown in Figure 3.4(d). The
sharpness of edges and the amount of noise smoothed out are better when compared

subjectively.
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subjectively.

The simulation results of using the EPNSQ filter is shown in Figure 3.5. Fig-
ure 3.5(a)(b)(c) are the original, degraded, and simple averaged images, respectively.
Figure 3.5(d) is the output of our EPNSQ filter with quadrant window of size 7 x 7.
The sharpness of edges and the smoothness of interior regions are quite impressive.

In the next section, we will discuss how to use the EPNSQ filter to smooth our

feature estimates.

3.3 Using the EPNSQ Filter to Smooth Feature

Estimates

Our problem on hand can be formulated as the estimation of the local sample variance
over regions having a mixture of statistics. The Way we propose is to first find the Laws
features by convolving the input image f(%,7) with a set of micro-texture filters, each
denoted by A(%, j) and having a form similar to the micro-texture filter in Figure 2.1 to

produce a set
96 =hG i) S )= 3 Y hmm)fGtms4n).  (3.5)

Each of the micro-texture filter output images are then processed by a 7 x 7 “local

texture energy” filter

i+n  j+n
0= G, 2 5 otk (3.16)

Now each pixel of s(i,7) is an estimate of the local sample standard deviation. By

using such a small window to estimate the local standard deviation, the variability of
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(a) Original Image (b) Noisy Image

(c) Averaging Filter (d) LLMMSE Filter

Figure 3.4: Comparison between an Averaging Filter and the LLMMSE Filter.
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(a) Original Image (b) Noisy Image

(c) Averaging Tilter (d) Quadrant Window Filter

Figure 3.5: Comparison between an Averaging Filter and the Proposed Filter.
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Figure 3.6: When A Pixel Is Near the Region Border At Least One of the
Four Windows Is Entirely Included in One Region.

The choice of window sizes used to estimate the local statistics is actually a
trade-off problem. Using small window sizes (e.g. 7 X 7), we can estimate the statistics
more accurately near the borders and in the small regions, but we have higher statistical
variability compared to the use of a large window due to the smaller number of data
points. On the other hand, using large window sizes (e.g. 15 x 15) provides more
data points to reduce the statistical variability of the estimates in the large regions,
but performs poorly near the borders between the textures and in the small regions.
We propose a two stage scheme with varying local window sizes (see Figure 3.7). A
small window size (e.g. 7 X 7) is first used to estimate the local statistics. Based
upon Laws’ study, using 7 X 7 macro statistical windows can provide a reasonably

good classification rate while avoiding some of the mixture of statistics along region
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borders. A larger window size (e.g. 15 X 15) EPNSQ filter is then used to provide
more smoothing power. Since region borders have already been accurately estimated
by the smaller macro statistical window, the EPNSQ filter should be able to identify
and smooth those homogeneous regions. The window size used by the quadrant filter

should be smaller than the smallest region size which we expect to segment accurately.

3.4 Bayes Classifier

After the texture energy features have been extracted, a classifier needs to be selected.
For purposes of our study, a Bayes classifier is used. According to the Bayes decision

rule, a point with feature vector & should be classified to class A; if and only if
P(Xi|Z) > P();|%) forall j#1, (3.25)
or equivalently, by Bayes rule
p(F|A)P(A) > p(E1X;)P(A;)  forall j#i, (3.26)

where p(Z|A;) is the class conditional probability density function for Z.

It is not always necessary to compare the actual probability functions as shown
above to make a decision. Instead, discriminant functions which satisfy the same re-
lationships may be used. If we assume the class conditional probability densities are
multivariate Gaussian with mean 77i; and covariance matrices ¥,,, the discriminant

functions may be defined as

9:(%) log(p(Z|A:) P(A:) = log(p(Z|Ai)) + log(P(A:)) (3.27)

- d
?1(5 — ) B33 (E ~ 77i) 5 log2m %log]E,\‘-|
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not sacrifice the region border accuracy, we now adapt the EPNSQ filter used for gray
level image smoothing to feature smoothing. Instead of smoothing the sample stan-
dard deviation at each point indiscriminately, the EPNSQ filter smoothes the sample
standard deviation estimates from a chosen neighbors that seem likely to belong to the
same region as the given point. The next question is how do we know the chosen neigh-
bors belong to the same region as the given point or not? Because our main concern is
to avoid averaging over region borders, the problem becomes one of finding a measure
which indicates whether there is a region border or not.

Since at this stage each pixel represents a local sample standard deviation, and
we know the sample variance can be used as a measure of the nonhomogeneity of
regions, with these two facts in mind we propose the use of “sample variance of sample
standard deviation” as the measure for the decision rule in our quadrant method. At
each pixel a set of four neighborhoods that lie on various sides of the point are examined.
Figure 3.6 shows an example with the given pixel near a boundary of a region border
and the locations of the four windows. The sample mean myw, and sample variance

vw, of Wy are defined by:

1

o 1 w—-1w-1 ) .
'mW1(3=J)= E Z 23(3"';‘:’3"_1}’ (3'17)
k=0 I=0

and
i

A - = .
ow, (6,7) = ) Z: [s(i + &, j _z)_mW:t(i!J)]z! (3.18)
k=0 0

J==

where s(i,7) represents the local sample deviation at location (¢,7). Similarly, the
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sample means and sample variances of windows Wy, W3, and Wy are defined as:

w=1 w=1
mw, (i,3) = = > 3 (i = kyj =), (3.19)
k=0 I=0
w—1w-1
mw, (i,5) = = Z dosli—k,j+1), (3.20)
k=0 =0
-1 w=1
mw, (i,§) = — Z Z s(i+k,j+1), (3.21)
UW;; i J)— iz 1—'k,j—f)—mw2(i,j)]2, (3.22)
vy (5, 7) = Z s(e‘ —kyj+1) — mw, (i, 5) (3.23)
k=0 =0
slgie wZ S (o4 kg 1) = min G )P (3.24)
k=0 [=0

Those windows that contain region borders generally have a higher variability intro-
duced by the edges. Thus we define our final texture statistic as the sample mean
mw,(%,7) (either Eq. (3.17), (3.19), (3.20), or (3.21)) corresponding to the sample vari-

ance vw,(%,7) which is the lowest among the four quadrants (either vw, (,7), vw, (4, ),

vW3(i,j), or vW4(i1j))'

3.3.1 Window Sizes

Another issue that needs to be addressed is the effects of using different window sizes to
estimate the local sample statistics. First of all, let us assume the class of textures we
are working with are those fine-grained textures typically used in our experiment. This
assumption is made because statistical methods are usually suitable for micro-textures,
i.e., textures with short correlation distance. Otherwise, methods such as structural or

structural-statistical [43] may be a better choice.
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+ log(P(X)), (3.28)

where d is the dimensionality of the feature set. The %Iog 27 term is common to all
functions and can be removed. For the case where the classes are present in equal
number, the a priori probabilities are equal for all classes and the log(P();)) term can

also be removed. This results in equivalent discriminant functions given by
9i(%) = (& — m;)'S3H(F — i) + log | Dy, - (3.29)
The Bayes decision rule then classifies a point to class i if and only if
9i(%) < g;(Z) forall j+#i. (3.30)

The classifier described above was implemented in our algorithm.

3.5 Proposed Algorithm Description

The following is a description of the proposed algorithm:

1. The textured image shown in Figure 3.8 is first convolved with a set of 5 X 5
micro-texture masks. In Laws’ work, a principal component transformation was
then used to allow selection of a working subset containing the most significant
transformed features. In our work, because feature selection is not our main
concern, a subset of four micro-texture masks, which correspond to the E5L5,
E585, L5S5 and R5R5 masks used by Laws (shown in Figure 2.1), are selected in
advance. The output of these four masks is used without performing any principal

component rotation or feature selection.
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2. Because the micro-texture masks are zero-sum, the resulting filtered images have
mean that are close to zero, and the local standard deviation may be approxi-
mated by averaging the absolute values within the window. In our work we used

a 7 X 7 window to estimate this statistic (see Eq. (3.16)).

3. The local standard deviation estimated by the 7 x 7 window in step 2 is now
smoothed by the EPNSQ filter. At each pixel, we examine a set of four neigh-
borhoods that lie on various sides of the pixel, then use local sample variance as
the measure of variability over each neighborhood, and replace the pixel by the
average of the neighborhood that has the lowest variance. This selects the neigh-
borhood that is most likely to lie entirely within a uniform region of the picture.
This EPNSQ filtering was applied to each of the four images representing the
feature plane outputs of the four original micro-texture masks. In this step we

use window size 15 X 15.

4. The estimated feature vectors are then sent to the Bayes classifier described in
section 3.4. Equal a priori probabilities for each class are assumed and means
and covariances for each class are estimated from the prototypes. The output of

the Bayes classifier is a gray level coded classification result.

The block diagram of the proposed scheme is depicted in Figure 3.7. Some of the

feature image planes smoothed by the EPNSQ filter are presented in the next section.
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3.6 Simulation Results

The test image used in our work is a texture mosaic (Figure 3.8)(a) which consists of
eight different textures: grass, water, sand, wool, pigskin, leather, raffia, and wood. The
texture images we have chosen are from an album by Brodatz [44]. All eight textures
are present in the image in squares of size 128 X 128, 64 X 64, 32 X 32, and 16 X 16. All
components are histogram equalized so that all textures have same first order statistics.
In other words, first order statistics alone are not sufficient for discriminating different
textures. Figure 3.8(b) is the gray level coded ground truth of Figure 3.8(a).

Figures 3.9(a), 3.9(b), 3.10(a), and 3.10(b) are the resulting E5L5, E5S5,
L5S5, and R5R5 feature image planes, respectively. These images have been scaled to
an eight-bit range for the purpose of viewing. Notice the location of the region borders
are generally very accurate and the interior regions are fairly uniform.

The Bayes classifier is then used to classify the estimated feature data. Fig-
ure 3.11(a) shows the gray level coded classification result using feature data estimated
by Laws’ method. The window size used for estimating statistics is 15 x 15. Note
the accuracy near some of the borders between textures is not very satisfactory. Fig-
ure 3.11(b) is a binary image of the classification result in which the black pixels
represent correctly classified ones, the white pixels represent misclassified ones.

Figure 3.12(a) is the gray level coded classification result using the proposed
algorithm to estimate the feature data. A 7 X 7 window is used for statistics estima-
tion and a 15 x 15 window is used for EPNSQ smoothing. Figure 3.12(b) shows the
binary image of the classification result in which the black pixels represent correctly

classified ones, the white pixels represent misclassified ones. Table 3.1 lists the correct
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classification rate of the overall image and of each sub-image containing regions of a
particular size. From Figure 3.12 and Table 3.1 we can see not only the correct classifi-
cation rate but also the accuracy along borders has been improved significantly (except
in the region containing 16 X 16 sizes, an area which is very difficult for a human to
discriminate).

For our test image, the chosen window sizes, i.e., 5 x 5 for micro-texture masks,
7 X 7 for macro statistics estimation, and 15 x 15 for EPNSQ filter, worked very well.
This sequence of window sizes may not be a good choice for all images. In other words,
to choose a appropriate sequence of window sizes is a data dependent problem. In the

process of choosing window sizes, the following guidelines must be considered:

e The window sizes for micro-texture masks are typically 3 x 3, 5 x 5, or 7 X 7,

depending on the spatial scale size of the micro-texture features.

e The window size used for macro statistic estimation should be large enough to
include a representative sample of the image texture. The coarser the texture the

larger the window size should be.

e The window size used for EPNSQ filter should be smaller than the smallest region

size in which we expect to have a good segmentation.
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(a) Texture Mosaic (D) Ground Truth

Iigure 3.8: Texture Mosaic for Experimental Work.

(a) E5L5 (b) E5S5

Figure 3.9: E5L5 and E5S5 Feature Image Planes.
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(a) L5S5 (b) R5R,5

Figure 3.10: L5S5 and R5R5 Feature Image Planes.

(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 3.11: Classification Results Using 15 X 15 Macro-statistical Window.
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(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 3.12: Classification Results Using Proposed Method.
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Region Sizes 15 x 15 7 x 7-15 x 15 EPNSQ Filter
Overall 72.9 76.6
128 x 128 B1.1 88.1
64 x 64 74.1 78.6
32 x 32 64.5 66.1
16 x 16 44.3 37.3

Table 3.1: Classification Accuracy (%) of Two Feature Extraction Schemes
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Chapter 4

Supervised Segmentation
Algorithm with Spatial

Constraints

The supervised segmentation technique we have so far censidered has primarily ignored
the spatial relationship between pixels. The weakness of classifying pixels based solely
upon feature space distribution is that the formation of clusters in the feature space does
not take into consideration the spatial distribution of points in the image. In addition,
the mapping of a single class label back to the image is only a gross representation of
feature space information, which loses the relationship of each point to other classes in
feature space. These observations suggest that if we want to obtain better segmentation
performance, we must make use not only of similarities among the pixels, but also of
their relative positions.

In this chapter, we will use the probabilistic relaxation method as a means to

enforce the spatial constraints into our segmentation algorithm. An introduction to



probabilistic relaxation is given in section 4.1. In this section we also review some past
work that uses relaxation in classifying pixels. Section 4.2 discusses how we estimate
our initial probabilistic labeling from the prototypes. In section 4.3, two probabilistic
relaxation algorithms used to update the labeling probabilities are included. Section

4.4 presents the supervised segmentation simulation results.

4.1 Probabilistic Relaxation Method in Pixel

Classification

The idea of effective use of cooperative processing through the mechanism of proba-
bilistic relaxation was first introduced by Rosenfeld et al. [45]. Probabilistic relaxation
is an iterative approach for using contextual information to reduce local ambiguities.

Let us first review some of the concepts involved in probabilistic relaxation.

4.1.1 Introduction

The probabilistic relaxation process involves a set of objects A = {ay,az,+-,a,} and
a set of class labels A = {A1,A2,+-+,Ax}. In pixel classification problems, the set of
objects in general is the whole set of pixels in the image represented in lexicographic
notation. For each object a; we are given a set of local measurements, which are used
as a basis for estimating the probabilities P;(A) of object a; having each label A. These

probabilities satisfy the condition

> P(A) =1, foralla;ed, and 0< P()\)<1. (4.1)
AeA

Suppose that the class label assignments of the objects are interdependent; in
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other words, for each pair of class label assignments a;eA and aje)’, we have some
quantitative measure of the compatibility of this pair, denoted by r;;(A,A’). There
are many ways to choose and to interpret the compatibility coefficients. Peleg and
Rosenfeld [46] suggested that compatibility coefficients may be either interpreted as
correlations or mutual information. Zucker and Mohammed [47] suggested rewriting
and modifying the relaxation in such a way that the compatibility coefficients had
the meaning of conditional probabilities. In subsections 4.1.2 and 4.1.3 we will show
previous work using different methods to derive the compatibility coefficients.

There are also many possible iteration schemes that can be used to update the
labeling probabilities based upon initial probabilities and compatibility coefficients.
The original relaxation iteration scheme developed by Rosenfeld et al. [45] is described
in subsection 4.1.2. Peleg [48] developed an improved probabilistic relaxation scheme
motivated by Bayes’ formula. Subsection 4.1.3 gives a detailed discussion of Peleg’s
work on pixel classification.

Some theoretical studies of the convergence properties of relaxation schemes
have been conducted in Haralick et al. [49] and Zucker et al. [47], but we will not
treat them here. There are several guidelines for evaluating the relaxation algorithms’

performance [1]:

o The sum of absolute probability differences ;.4 |[P*® (1) — P¥*I(2)| should

become small after a few iterations.

o The final probabilities should not be too far away, on the average, from the initial
ones; we would not be satisfied with the process if it converged to an arbitrary set

of final probabilities unrelated to the initial ones. Thus 37, 4 [Pi(k}(/\) - P‘-(O)(,\)|
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should not become very large.

o The entropy of the probabilistic classification after applying relaxation should be
less than the entropy of the initial one. In other words, we expect
=3 BPN)10g PR(N) < - 30 PPN 10g PO,
ieA ied

4.1.2 Rosenfeld-Hummel-Zucker’s Work

Rosenfeld et al. [45] have emphasized the importance of graph labeling and proposed
an approximate, iterative, parallel relaxation method as a solution to it. The prob-
abilistic relaxation approach was then used by Eklundh et «l. [50] in a multispectral
pixel classification problem. Their experiment was conducted on a color picture of
house. The picture was hand segmented into five regions, which were regarded as the
ground truth when evaluating results. The means and covariance matrices for the five
classes were then estimated. Initial estimates of the probabilities of membership in
these classes were made by assuming the clusters to be normally distributed, and using
the hand segmentation to define the prior probabilities P()) of the classes. Because
they assumed a normal distribution, i.e., the class conditional density function may be
written as

p(a]N) = exp(~5(F = )'Ta7H(F — ) - (42)

1
(27)1/2|T [/

The class probabilities were assigned to each pixel according to the formula:

__ pEnP)
FONE) = & @ P(Y) (43)

These probabilities were used as the initial probabilities P‘-(O]()\) = Fi(A|2).
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They defined the compatibility coefficients based on the mutual information of
the labels at neighboring points. The probability of any point having the label A may

be estimated by
. 1
P = =3 PO, (4.4)

and the joint probability of a pair of points having labels A and )\’ by
5 1 0 o
Piips(W V) = =SS PONBTI(Y)  sea, (4.5)
i
where n is the number of points, pixel i + § is a specific neighbor of pixel i, and A
defines the neighborhood about the particular pixel being considered. An estimate

of the mutual information that the contribution of A’ to the information about ) is

expressed as

i its( Ay A
Fyses(h, X = In Diits2) (4:6)
P(A)P(N)
Assume the events that cause
Piits(X, X) A, (4.7)

P(XN)P(N)
to be outside the range [¢7°,€°] can be ignored. Thus values of I;;15(A, \’) can be

considered to lie in the range [—5,5] and the compatibility coefficient is defined as
1
reigs( X )\’) = gf;';+5()\, A GeA, (4.8)

which lie in the range [—1,1]. The compatibility coefficients are fixed throughout the
process.

The compatibility coefficients can then be used to compute the updating factor

dP) = Zd,ﬁzn irs(X, NP (4.9)

SeA

o
=1



where A’ is a dummy variable of summation, d;;s are a set of neighbor weights that can
be used to give different neighbors differing degrees of influence in the neighborhood
function. Eklundh et al. chose all neighbor weights as a constant of 1 and A as
the 8-connected neighbors plus the central pixel (i.e. that under consideration). The

relaxation iterations have the form

PO +gP0)]
Sy PO +¢P ()]

B = (4.10)

In their experiment they iterated until the classification error was a minimum.

4.1.3 Peleg’s Work

Peleg [48] suggested that the compatibility coefficients r; ;+.5(}, \') should take the form

P;ips(A,N)

iips(ANA) = =2 €A,
Tiis6(A, ) POVEO)

(4.11)

and that a vector of probabilities be associated with every pixel. These probabilities
define a random variable representing the possible labels of the pixel. Probabilities
at neighboring pixels are used iteratively to update the probabilities at a given pixel
based on statistical relations among pixel labels. The advantage of this method is that
since the updating rule is analytically derived, all coefficients are defined, eliminating
the need to guess them. Peleg applied his relaxation method to a problem involving
pixel classification on the basis of color. Since it is closely related to our textured image
segmentation problem, a more detailed discussion is provided.

Let P‘-m)(,\) specify the initial probability estimates assigned to the classes at
pixel a;, based on the clustering results in color space. These probability estimates

are then updated. Let {ay,as,...,a,} be the n pixels in the picture, and let A be the
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set of possible labels for each pixel. We assume a priori uniformity over the picture,
so that the a priori probabilities P()A) are the same for all pixels. The a priori joint
probabilities P;;y5(A, A') also do not depend on the specific pixels, but only on the
relation between them. Given these uniformity assumptions, it is simple to compute
the coefficients r; ;15(A, A’) for the process from the initial probability assignment. The

a priori probabilities ’(A) are estimated by

; 15~ 0
PiA) = ;.-LP‘ (A). (4.12)
The estimates for the joint probabilities are

Piivs(M M) ZP‘”’ MPLN)  dea, (4.13)

where n is the number of points, pixel i + ¢ is a specific neighbor of pixel 7, and
again A defines the neighborhood about the particular pixel being considered. The

compatibility coeflicients are then defined as

FiirslAy A )= }3(,\)}5(/\’) deA . (4.14)

After finding the coefficients, the updating process can take place. For a specific i + ¢

we compute

k k k =
SERDO) = 32 PPN riirs(A ) BeA (4.15)
Alel
and
U‘+1]
A)

SUE4D) Siiys (

Giiys (A) = ety L7A% (4.16)
ZA‘(A 'St( t+6)(/\ )

here q( 1) s the new probability estimnate for the labels at pixel a; based upon the

previous estimates at @; and a;y5. For the case of using eight connected neighbors, the
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new P,-(H'l) will be the average of these eight estimates:
PEI0) = S gfH0) e (4.17)
el
The final pixel classification is the maximum-probability class for each pixel.
In the next three sections we will discuss how to apply the probabilistic relax-
ation method to our supervised textured image segmentation problem. To the best of
the author’s knowledge, no previous attempts have been made in using probabilistic

relaxation to solve the textured image segmentation problem.

4.2 Initial Probabilistic Labeling

Assume that a prototype of each texture under test is given, we may use the method
described in chapter 3 to generate the texture energy features. We define the mean

vector ), and covariance matrix Xy, of class A according to

12751 Ok11 Tki12 ' Okln

o Hik2 Ok21 Ok22 *°* Ok2n

Bae = | . I = : ¥ . : (4.18)
Hkn Oknl OTkn2 """ Oknn

We also assume that the distribution of n texture energy features has the form of an
n-dimensional multivariate Gaussian density, then the probability density function can

be written as

p(&Ak) = {QTF)U'Z‘E),‘PN exp( 2(37 A ) B, (F — [y, ) - (4.19)

In practice, the mean vector and covariance matrix for each class are unknown and

must be estimated from prototypes. Let iy, and £), be unbiased estimates of jiy, and
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£),. Then j1y, and By, are given by

R 1 :
fij = — Yzt J=1,2,...,n, (4.20)
) =
1 o R .
&kjm=EZ(mﬂ_ﬁkj)(:ﬂml_ukm) I=12y..0,m m=1,2,...,n, (421)
=1

where ny is the number of prototype samples in class Ax.

Assuming the a priori probability of each class P(Ax) is equal and the class
conditional probability density function p(Z|\r) is estimated as previously described,
then the a posteriori probability of assigning a pixel with feature vector 7 to class A

is given by
P(Z|Ak) P(Ax)
Lnyen PEIA)P(A;)

These a posteriori probabilities of each pixel may be used as the initial probability

Pi(M%) = (4.22)

labeling Pi(o}()\;,) and compatibility coefficients may then be calculated.

4.3 Two Relaxation Iteration Algorithms

Once the initial labeling probabilities of each pixel are generated, there are several
ways to iteratively update them. Two algorithins are chiosen here for detailed study:
Rosenfeld-Hummel-Zucker (RIIZ) and Peleg schemes. In our study we assume the set
of neighbors of a pixel to be the 8-connected neighbors.

The RIIZ probabilistic relaxation algorithmm may be summarized as follows:

1. The mutual information coeflicients are chosen to be the compatibility coellicients.
For each one of the 8-connected neighbors we use Eqs. (4.4)-(4.8) to calculate the
compatibility coefficients. The coeflicients r;;4s(A, A’) are fixed throughout the

iteration process.
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. With the initial labeling probabilities of each pixel and the compatibility coelli-

cients on hand, we may start the iteration by first computing the updating factor

k 1 ke .
=3 = 3 riigs (A X)PEMN) k=0, (4.23)
Sed by

where A is the set of 8-connected neighbors of the pixel under consideration.

. The updating factor is then used to compute Pi(kH)(,\) according to Eq. (4.10).

. Repeat steps (2)-(3) until the stopping criteria is met. In our case we specilied

the number of iterations in advance,

In next section we will present the simulation results of applying the RIIZ relaxation

algorithm to our textured image scgmentation problem.

. Since every pixel has eight neighbors, the new

Similarly, the Peleg probabilistic relaxation algorithm is summarized as follows:

. For each one of the 8-connected neighbors we use Eqs. (4.12)-(4.14) to calculate

the compatibility coellicients. The coellicients r; ;45(\, A’) are fixed throughout

the iteration process.

. The iterative updating process follows by using Eqs. (4.15)-(4.16). The q{kH)(/\)

1,146

is the pairwise eflect of one of the 8-connected neighborhood.

I’i{kH][/\) is the average of these

eight estimates as in Eq. (4.17).

. Repeat steps (2)-(3) until the stopping criteria is met. In our case we specified

the number of iterations in advance.

Simulation results of Peleg algorithm will also be presented in next section.

Al
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4.4 Simulation Results

The first test image is a texture mosaic (Figure 4.1(a)) which consists of four different
textures: grass, water, pigskin, and leather. All four textures are present in the image
in squares of size 128 x 128. Figure 4.1(b) is the gray level coded ground truth of
Figure 4.1(a).

We still use E5L5, E5S5, L5S5, and R5R5 as our four micro-texture masks. The
texture energy features are extracted by the method described in chapter 3. After
the features are extracted, the mean vector and covariance matrix of each class are
estimated by Eqs. (4.20)-(4.21). Table 4.1 shows the estimated mecan vectors and
covariance matrices of four texture classes.

The initial labeling probabilities for each pixel are calculated by Eq. (4.22).
Figure 4.2(a) shows the initial probability class labels for each pixel. The white pixels
in Figure 4.2(b) represent misclassified pixels, and the overall error rate is 3.12 percent.

We first apply the RIIZ relaxation algorithm to update the probabilistic classi-
fication. Table 4.2 shows the mutual information coeflicients obtained from the initial
classification. The row index is the class of the center pixel, and column index is the

class of the neighbor. The neighbor numbering convention in our work is as follows:

1 2 3
4 1 5
6 7 8.

Figure 4.3(a) shows the classification result of 50 iterations using the mutual informa-
tion coellicients as the compatibility coeflicients. Figure 4.3(b) is the corresponding
misclassified pixels. The error rate went down from 3.12 percent to 2.4 percent as

shown in Figure 4.5.
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Class 1:

2135.25
| 33627
V7| 1357.57
346.95

Class 2:
1870.31
| 35987
H2 =1 1568.77

910.32

Class 3:

2260.11

| 814
13 =1 1098.20
831.98

Class 4:

1239.23
| 24343
M= 9944 91
566.13

Table 4.1: Mean Vectors and Covariance Matrices for Four Texture Classes.

118030.70
s 3502.57
T —13461.62
—6747.39

53143.55
537.39
—11388.94
—87.65

70611.10
N 3619.78
3T 1 513745
—2067.59

26088.6G7
1376.89
—-20402.53
—1984.53

35602.57
1038.82
910.45
—146.85

537.39
1476.77
50H2.65

976.38

3649.78
1164.97
1084.15

236.87

1376.89
879.86
—-41279.33
—0686.43

—13461.62
940.45
26987.62
2764.14

—11388.94
H552.65
44351.40
—1877.91

5137.45
1084.15
13935.00
977.75

—-20402.53
—4279.33
247810.80
11116.73

—6747.39
—146.85
2764.14
2263.66

—87.65
976.38
—1877.91
8673.87

—2067.59
236.87
977.75

12565.73

—1984.53
—686.43
11116.73
5619.75
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0.247 -0.733 -0.389 -0.699
—-0.574 0.315 —0.587 —0.586
—0.431 -0.518 0.247 -0.776
—-0.901 -0.494 -0.808 0.271

Direction 1

0.249 -0.735 —0.446 —-0.702
—0.681 0.317 -0.661 —-0.582
—0.442 —0.547 0.248 -0.773
—-0.971 -0.594 -0.848 0.273

Direction 2

0.248 -0.583 —0.444 —0.686
—0.668 0.315 —-0.626 -0.475
—0.394 -0.509 0.246 -0.743
—0.953 -0.583 -0.859 0.273

Direction 3

0.249 -0.749 -0.405 -—0.852
—0.609 0.317 —-0.619 -0.618
—0.454 —0.649 0.250 -0.869
—-0.834 -0.502 -0.816 0.271

Direction 4

0.249 -0.596 —-0.456 —0.829
—0.749 0.316 —-0.657 -0.495
—0.406 -0.624 0.248 —0.815
—0.848 —-0.607 -0.870 0.273

Direction 5

0.248 -0.678 —0.391 —-0.958
-0.598 0.314 —-0.508 -0.596
—0.436 —-0.620 0.249 —-0.857
—0.690 -0.483 —0.742 0.269

Direction 6

0.250 -0.691 -0.440 -0.971
—-0.740  0.316 —-0.550 —-0.597
—0.440 -0.662 0.249 —-0.846
—0.702 -0.583 -0.771 0.271

Direction 7

0.248 -0.568 —0.431 —0.894
—0.740  0.314 -0.526 -0.489
—-0.385 —-0.595  0.247 —-0.804
—-0.696 -0.579 -—-0.772 0.271

Direction 8

Table 4.2: Mutual Information Coellicients as Compatibility Coellicients.



Similarly, we applied Peleg’s relaxation scheme to our problem using the same
initial labeling probabilities. Table 4.3 shows the compatibility coeflicients obtained
from the initial classification. The neighbor numbering convention is the sane as be-
fore. Figure 4.4(a) shows the classification result of 50 iterations using Peleg’s scheme.
Iligure 4.4(b) shows the corresponding misclassified pixels. The error rate went down
from 3.12 percent to 2.06 percent as shown in Figure 4.5.

From Figure 4.5 we can clear sce that the Peleg’s scheme converges much faster
than R1[Z’s scheme. In addition, both methods exhibit the desirable fact that most of
the error reduction occurs in the first 50 iterations or so and then the error decreases
slowly. The elfectiveness of iterative relaxation is demonstrated in Figure 4.4(a), which
shows that most isolated small islands in the initial classification are eliminated.

The second test image is a texture mosaic which consists of five different textures:
grass, water, pigskin, leather, and raffia (I'igure 4.6(a)). The fifth texture class, raflia,
is presented in the middle of the image as a tilted ellipse. From the second image we can
test how well the square quadrant window shape performs on different region shapes.
Figure 4.6(b) is the gray level coded ground truth of Pigure 4.6(a).

The initial classification based on labeling pixels with the maximum initial prob-
ability is shown in Figure 4.7(a). The white pixels in Figure 4.7(b) indicate the mis-
classified ones, the error rate is 4.93 percent. The square quadrant window shape works
very well on the middle region whose shape is a tilted ellipse. This result gives us an
indication that as long as the region size is much larger than the size of quadrant win-
dow then the square quadrant window shape works fairly well. Figure 4.8(a) shows the

classification result of applying 25 ilerations of Peleg’s relaxation scheme. Pigure 4.8(b)
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Direction 1

Direction 2

Direction 3

Direction 4

Direction 5

Direction 6

Direction 7

Direction 8

3.4377
0.0568
0.1157
0.0111

3.4738
0.0333
0.1095
0.0078

3.4499
0.0355
0.1392
0.0085

3.4652
0.0474
0.1031
0.0153

3.4739
0.0237
0.1313
0.0144
3.4535
0.0502
0.1126
0.0317

3.4865
0.0247
0.1107
0.0299

3.4591
0.0247
0.1159
0.0303

0.0256
4.8341
0.0750
0.0846

0.0254
4.8877
0.0648
0.0512

0.0543
4.8259
0.0785
0.0541

0.0236
4.8677
0.0338
0.0812

0.0506
4.8629
0.0441
0.0480

0.0337
41.8106
0.0451
0.0893

0.0315
4.8669
0.0364
0.0511

0.0583
4.8099
0.0509
0.0553

0.1432
0.0530
3.4448
0.0176

0.1076
0.0368
3.4580
0.0144

0.1084
0.0137
3.4154
0.0136

0.1319
0.0452
3.4905
0.0169

0.1022
0.0374
3.4547
0.0129

0.1417
0.0787
34757
0.02:45

0.1106
0.0639
3.4832
0.0211

0.1156
0.0721
3.4344
0.0210

0.0303
0.0532
0.0207
3.8827

0.0298
0.0545
0.0210
3.9161

0.0324
0.0931
0.0244
3.9138

0.0141
0.0455
0.0129
3.8814

0.0158
0.0840
0.0169
3.9131

0.0083
0.0508
0.0138
3.8487

0.0078
0.0506
0.0145
3.8823

0.0114
0.0866
0.0179
3.8801

Table 4.3: Peleg Compatibility Cocllicients.



is the corresponding misclassified pixels. The error rate went down from 4.93 percent,
to 3.5 percent.

As a comparison, we also process the second test image using Laws' feature
extraction method as described in chapter 3. The window size used to estimate macro
stalistical features is 15 x 15. Figure 4.9(a) shows the initial classification result with
an error rate of 7.2 percent. After 25 iteralions, the classification result is shown in
Figure 4.9(h). The error rate went down from 7.2 percent to 5.1 percent. From this
comparison, we can clearly see the performance is improved by using our proposed
method.

In summary, the following observations can be made from the simulation results.
First, probabilistic relaxation methods are an eflective means to incorporate spatial
constraints into segmentation algorithms. Second, probabilistic relaxation provides
most of the error reduction in the first 25 iterations or so, after that the error decreases
slowly. Third, Peleg’s scheme is usually converges much faster than RIIZ’s scheme.
Finally, the square quadrant window shape works fairly well on regions with arbitrary

shape provided that the region size is much larger than the size of the quadrant window.



(a) Texture Mosaic (b) Ground Truth

Figure 4.1: Texture Mosaic 1 for Experimental Work.

(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 4.2: Initial Probabilistic Classification Results.
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(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 4.3: Classification Result Aflter Applying RHZ’s Relaxation 50 Iterations.

(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 4.4: Classification Result After Applying Peleg's Relaxation 50 Iterations.
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(a) Texture Mosaic (b) Ground Truth

Figure 4.6: Texture Mosaic 2 for Experimental Work.

(2) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 4.7: Initial Probabilistic Classification Results of Mosaic 2.

72



(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 4.8: Classification Result After Applying Peleg’s Relaxation 25 Iterations.

(a) Initial Result (b) After 25 lterations

Figure 4.9: Classification Results of Mosaic 2 Using Laws’ Method.




Chapter 5

Unsupervised Segmentation by

Clustering

What we have discussed so far has been supervised segmentation; that is, there is
a supervisor that first teaches the system using a known set of prototypes; then the
system classifies new unknown data. In such systems we need a priori information to
form the basis of teaching. However, in many classification problems, there is little
prior informmation available about the data and the decision-maker wishes to make
as few assumptions about the data as possible. This restricts one to studying the
interrelationships among the data points to make a preliminary assessment of their
structure. Cluster analysis is one tool that attempts to assess the interaction among
patterns by organizing the patterns into groups or clusters such that patterns within a
cluster are more similar to each other than are patterns belonging to different clusters.

In this chapter we describe a procedure for segmenting textured images without
the need for training prototypes. Section 5.1 discusses the issues involved in using clus-

tering algorithms. A specific clustering algorithm for our textured image segmentation



problem is described in section 5.2. Section 5.3 presents some simulation results.

5.1 Introduction

The process of clustering can be stated as: find the regions Iy, Ry, -+, s such that
every &;,i= 1,2, -+, n, falls into one of these regions and no ; falls in two regions. The
¥y is the p-dimensional feature vector measured on the pattern. There are a large num-
ber of clustering algorithms that have been suggested. They can be broadly classilied
into one of two types: hierarchical or partitional. A hierarchical clustering technique
imposes a hierarchical structure on the data consisting of a sequence of clusterings.
Usually, the hierarchical clustering techniques expect that the data are available in the
form of a proximity matrix. A proximity matrix is an n X n matrix whose rows and
columns both represent patterns and whose entries measures proximity (similarity or
dissimilarity) between all pairs of patterns. The hierarchical clustering techniques can
be divided into two distinct classes, agglomerative and divisive. Agglomerative tech-
niques start with n singleton clusters and form the sequence by successively merging
clusters. Divisive techniques start with all of the samples in one cluster and form the
sequence by successively splitting clusters.

A partitional clustering technique organizes the patterns into a small number of
clusters by labeling each pattern in some way. Unlike hierarchical techniques, which
give a sequence of partitions, a partitional clustering technique gives a single partition.
A pattern matrix, an n X p matrix where each row is a pattern and each column denotes
a feature, is usually clustered in this way. The partitional clustering techniques may be

used with much larger problems than hierarchical techniques because it is not necessary
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to calculate and store the proximity matrix. Due to the large amount of data in images,

we use the partitional technique and discuss issues related to this type of clustering in

the next few subsections.

5.1.1 Initial Configurations

Anderberg [51] reviewed a variety of techniques which may be used to establish an

initial partition of the patterns. Some techniques used a set of M seed points as cluster

nuclei around which the set of n patterns can be grouped. The following methods have

been used to generate seed points:

3.

[$]

- Choose the first M patterns in the data set as the initial seed points.

. Label the patterns from 1 to n and choose the seed points such that they are

labeled n/M, 2n/M, ..., (M - 1)n/M, and n.

Subjectively choose any M patterns from the data set.

. Label the patterns from 1 to n and choose the patterns corresponding to M

different random numbers in the range 1 to n.

Generate M synthetic points as vectors of coordinates where each coordinate is

a random number from the range of the associated variable.

. Take any desired partition of the patterns into M mutually exclusive groups and

compute the group centroids as seed points.

. Choose seed points which span the data set, that is, most patterns are relatively

close to a seed point but the seed points are well separated from each other.



8. Take the overall mean vector of the data set as the first seed point; select subse-

quent seed points by examining the patterns in their input sequence and accept
any pattern which is at least some specified distance, say d, from all previously
chosen seed points; continue choosing points until M seed points are accumulated

or the data set is exhausted.

There are some clustering methods that use an initial partition of the patterns

rather than a set of seed points to begin with. The following methods have been used

to generate such partitions:

1. For a given set of seed points, assign each pattern to the cluster built around the

4.

nearest seed point. The seed point remain stationary throughout the assignment

of the full data set.

. Given a set of seed points, let each seed point initially be a cluster of one member;

then assign patterns one at a time to the cluster with the nearest centroid: after
a pattern is assigned to a cluster, update the centroid so that it is the true mean

vector for all the paiterns currently in that cluster.

. Using a hierarchical clustering method on one or more subsets of patterns to

generale an initial partition.

Various random allocation schemes could be used to generate an initial partition.

. The initial partition could be generated by the analyst using his judgement.

=1
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5.1.2 Normalization

Under some situations, our usual concepts of distance may bear no relation to the
problem. For instance, if two features are measured in units different from each other
and one has much larger numerical values than the other. This will cause the feature
with large numerical values dominating the distance calculations. One remedy to this
problem is to normalize the data prior to calculating the distance.

One normalization method is to find the range of values for each feature and
then normalize the feature by the range. This method considers only the extreme
values; an alternative approach is to use the standard deviations of the features as
the normalizing factor. Let of be the standard deviation of the kth feature then the
normalized variables are zj/ok. The standard deviation of the kth feature can be

estimated by first estimating the variance &7

X 1 & .
6F = > (zm - jix)?
=1

n—1%e
where fii is the estimated mean of the kth feature and n is the number of prototype

samples.

5.1.3 Similarity Measures

The similarity measure (or dissimilarity measure) is needed in the process of finding
natural groupings in a set of data, and is usually given in numerical form. The simplest

and most frequently used neasure is squared Euclidean distance,
D pos - — oS - 2y 3 -
dE(:ci-,a:j): (;r,-—a:j]!(a:,-—.tj}= |3:,‘—-:EJ'I2 ; (5.1]

in multidimensional Euclidean space.



An alternative to normalizing the data and using Euclidean distance is to use
some kind of normalized distance, such as the Mahalanobis distance [52]. The squared

Mahalanobis distance from &; to &; is in the form

where £7! is the inverse of the covariance matrix.

The similarity measure may also needed in describing the subregions correspond-
ing to clusters. For instance, a cluster can be defined by defining a set of centers
f1, 2, -+, fips and a measure of similarity d(7, fi;). A cluster is then the set of points

which are nearer to particular cluster center, that is
i = {F|d(7, @) < d(Z,fi;) forall j#i}. (5.3)
One similarity measure in which we are interested is tlie weighted Euclidean distance

d*(, ji;) = Z( x’ Liiy, (5.4)

F=1

The clusters are described by a set of M mean vectors and a set of M variance vectors.

5.1.4 Number of Clusters

The number of clusters can be assumed either known or unknown depending on how
much knowledge about the data we have beforehand. When the number of clusters is
unknown, various methods have been proposed to find the “correct™ number of clusters.
Ball and I1all [53] use merging and splitting to arrive at a final number of clusters. Thus
clusters having variances that are larger than a threshold will be split and clusters whose

means are separated by less than a threshold will be merged. The merging and splitting
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thresholds must be established a priori. A procedure for determining these thresholds
from the data has been developed by Fromm and Northouse [54].

Coleman and Andrews [28] proposed another approach that the intrinsic num-
ber of clusters is based upon a measure of the clustering quality represented by the

paraineter 8. The parameter § is defined as
B =18 ir(5g) , (5.5)

where tr(x) indicates “trace” or sum of the diagonal elements of a matrix, S is
the between-cluster scatter matrix, and S, is the within-cluster scatter matrix. The
between-cluster scatter matrix when the total number of clusters M is > 2 is defined

as
1M

Sp = '.EIE Z (ﬁm - ﬁ?O)(ﬁm - ﬁﬂ)t b (56)
m=1

where fip is the overall mean vector of the entire mixture, and is given by
1 n
fo=—-3 &, (5.7)
where n represents the total number of feature vectors to be clustered. The within-

cluster scatter matrix is based on the scatter of the data about the cluster means, and

is given by

Sw = ﬂ Z Sin ’ (58)

Smo=— D (&~ fim)(& = fim)" (5.9)

where i, is the mean of the m-th cluster, n,, is the number of elements in the m-th

cluster, and &; is an element in the m-th cluster. This parameter # passes through
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a maximum at the intrinsic number of clusters. The [{-means algorithm was used to
generate M = 2,3,4,--+,16 clusters. At each step, the J is computed, and the cluster
number which causes the 3 to achieve the maximum value is then used as the intrinsic
number of clusters.

When the number of clusters is known, a popular clustering method called K-
means is often used to form the clusters. This method is based on the minimization
of the sum of squared distances from all points in a cluster domain to the cluster
center. There are many diflerent algorithms to implement the A-means method, we
use Forgy’s algorithmn to illustrate the basic idea. Forgy [55], [51] suggests a simple

algorithm consisting of the following sequence of steps:

1. Begin with any desired initial configuration. Go to step 2 if beginning with a set

of seed points; go to step 3 if beginning with a partition of the patterns.

2. Allocate each pattern to the cluster with the nearest seed point. The seed points

remain fixed for a full cycle througl the entire data set.
3. Compute new seed points as the centroids of the clusters of patterns.

4. Alternate steps 2 and 3 until the process converges; that is, continue until no

patterns change their cluster membership at step 2.

The convergence properties of the A'-means method have been studied by Mac-
Queen [56]. The detailed proof of convergence is long and tedious. A very informative
sketch of the proof which shows that the squared-error based clustering methods actu-

ally converge is given by Anderberg [51].



5.2 Estimation of Class Statistics by a Clustering

Method

In this section we discuss a clustering algorithin that is used to estimate the class
statistics from the unlabeled samples in the texture energy feature domain. The overall
approach is depicted in the general flow chart of Figure 5.1. We assume that the texture
energy features at each pixel have already been computed and the number of classes is
known. If the number of classes is unknown, the method introduced by Coleman and
Andrews [28] may be used to identify it.

In order to reduce the computation time, the clustering algorithm works on a
subset of the data consisting of every fourth line and every fourth pixel of the feature
planes. A global normalization was then performed on this subsampled data set. Each
raw feature was normalized by its sample standard deviation to become a normalized
feature.

The M initial seed points were clhiosen based upon Ball and Hall’s approach, that
is, the first seed point is the overall mean vector of the data set, and the subsequent
seed points are selected by examining the patterns in their input sequence and only
the pattern which is at least some specified distance, say din, from all previously
chosen seed points are accepted. In our work the d,,;, is set to be one sample standard
deviation of the data set.

An initial partition is obtained by assigning patterns to the closest initial seed
point. The Euclidean distance is used for the similarity measure. The new cluster

center is simply the average of all the patterns assigned to that cluster. The iteration
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Figure 5.1: Flow Chart of the Overall Clustering A pproach.
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continues until either the process converges or the number of iterations exceeds a user-
supplied limit. Convergence is assumed to have been reached when the diflerence of
the means of all clusters from one iteration to the next is smaller than a prespecified
value 6. In our experiment § is set to 107°.

In our problem, the purpose of clustering is to learn the statistics needed for the
classifier from the unlabeled samples. Therefore, at the end of the clustering algorithm
we estimated the sample mean vector and covariance matrix from each cluster and then
pass them to the Bayes classifier. In the next section we will present some simulation

results based upon the algorithm described here.

5.3 Simulation Results

Figure 5.2(a) shows the first test image which is a texture mosaic consists of four
different textures: grass, water, pigskin, and leather. All four textures are present in
the image in squares of size 128 x 128. Figure 5.2(b) is the gray level coded ground
truth of Figure 5.2(a).

In order to visualize how patterns are distributed in the feature domain, we plot
the 2-dimensional scatter diagram in Figure 5.4 to Figure 5.9. Each diagram represents
the scatter plot of the four texture classes in the selected feature pair. The label
associated with each pattern is for illustration purpose only, the unsupervised classifier
does not need labeled training patterns available. Samples are taken from every fourth
line and every fourth pixel from the feature planes. From these plots we can clearly sce
that the patterns form clusters and that the clusters are reasonably well separated in

some of the feature pairs such as 555715 — R5R5715 and L5S5715 — R6RGT15. This
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gives us a good indication that the problem itself is well suited to a clustering algorithm.
In addition, each cluster seems to have a simple hyperellipsoidal shape, which indicates
the multivariate normal distribution assumption about the patterns for each class is a
valid one.

After we apply the clustering algorithm described in the last section to the data,
the statistics estimated for each cluster are shown in Table 5.1. DBased upon these
estimated cluster statistics and the multivariate normal distribution assumption for
each cluster, the Bayes classifier is then used to classify every pixel. Figure 5.3(a)
shows the result produced by Bayes classifier in gray level coded form. Comparing this
result to the ground truth we can generate a binary image, Figure 5.3(b), which shows
all the misclassified pixels in white. The error rate is about 3.68 percent, which is
slightly higher than the error rate of 3.12 percent obtained using a supervised classifier
as described in chapter 4.

Figure 5.10(a) shows the second test image which consists of five different tex-
tures: grass, water, pigskin, leather, and raflia. The gray level coded ground truth
of Figure 5.10(a) is shown in Figure 5.10(b). The statistics of each cluster learned
from the clustering algorithm are shown in Table 5.2. Figure 5.11(a) shows the classi-
fication result in gray level coded form. The misclassified pixels (white) are shown in
Figure 5.11(b). The error rate is about 4.23 percent, which is surprisingly lower than
the 4.93 percent thalt we have obtained in chapter 4. This means that the statistics
estimated fromn the clustering algorithm sometimes may even better than the statistics
estimated from training prototypes.

From the previous two examples we may conclude that the feature data sets we

o ]
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have on hand are fairly well-separated, thus the supervised and unsupervised results
are comparable. We also note from the scatter plots that even though classes are
reasonably well separated in some of the feature pairs, they still partially overlap in
the feature space. This overlap causes mislabeling of pixels. Another question concerns
the effect of subsampling of patterns used in the cluster analysis on the class statistic
estimates. We think it should not result in any noticeable dilferences of class statistic
estimates, since neighborhood pixels are highly correlated as a result of the large size
quadrant window smoothing operation.

Up to this point we have not enforced any spatial constraints to reduce the

ambiguities of labeled pixels. This will be the subject of the next chapter.
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(a) Texture Mosaic (b) Ground Truth

Figure 5.2: Texture Mosaic 1 for Experimental Work.

(a) Gray Level Coded Result (b) Misclassificd Pixels in White

Figure 5.3: Classification Results of Mosaic 1 Using Estimated Statistics.
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Class 1:

2186.33
.| 353.44
1= 1381.13

420.09

Class 2:

1849.99
.| 379.64
| 1565.02
907.04

Class 3:

2117.23
282.51
1042.02
789.73

Class 4:

1095.63

o= 204.95
2078.92

571.01

Table 5.1: Mean Vectors and Covariance Matrices for Four Texture Classes.
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(a) Texture Mosaic

Figure 5.10: Texture Mosaic 2 for Experimental Work.

(a) Gray Level Coded Result (b) Misclassified Pixels in White

Figure 5.11: Classification Results of Mosaic 2 Using Estimated Statistics.
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Table 5.2: Mean Vectors and Covariance Matrices for Flive Texture Classes.



Chapter 6

Unsupervised Segmentation

with Spatial Constraints

In chapter 5 we have discussed using clustering as a means to estimate statistics from
unlabeled samples. Based upon these estimated statistics, a Bayes classifier may then be
devised to classify pixels. One shortcoming of this method, as we mentioned in chapter
4, is that the spatial relationship has been ignored. In this chapter, we attempt to
incorporate spatial constraints into our unsupervised segmentation algorithm through
the use of probabilistic relaxation.

In this chapter, another area of interest is to study the eflect of limiting the
range of possible patterns for classification to a smaller subset of classes. From the
initial probability labeling of each pixel, we will see that many pixels have a very
small probability of assignment to certain classes. One way to limit this uncertainty
is through the use of probability thresholding. If we let 7> be a probability threshold
value, we then set label probabilities to zero if they are less than Tp. Based upon this

concept, an algorithm is developed and its elfectiveness is evaluated.
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In section 6.1 we describe the algorithm used to enforce spatial constraints under
the assumption that no training prototypes are available. Section 6.2 discusses the
issues related to limiting probability labels to a smaller subset of classes and describes
an algorithm to implement it. In section 6.3 we present the simulation results of the

aforementioned two algorithms.

6.1 Incorporating Spatial Constraints into

Unsupervised Segmentation Algorithms

Because there are no training prototypes available, the first step is to learn the statistics
from the unlabeled samples. The clustering algorithm described in chapter 5 may
be used to form clusters in the feature space. Once the clusters are formed then
the statistics such as mean vectors and covariance matrices for each cluster can be
estimated. We use these estimated cluster statistics as class statistics for our initial
probability labeling.

Knowing the cluster statistics and assuming that each cluster is multivariate
Gaussian distributed, then the probability of assigning pixel with feature vector Z to

cluster A; is given by
P(E| ) P(Ai)
Z,\,u\ p(F|A;)P(A;) 7

P(\|F) = (6.1)

wliere P(A;) is the a priori probability of each cluster. These a posteriori probabilities
of each pixel may be used as the initial labeling probability Pl-(o)()\) and compatibility
coeflicients may then be calculated.

Based upon the study we did in chapter 4, the probabilistic relaxation scheme
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developed by Peleg converges much faster than the original scheme. Hence we will
concentrate our study using Peleg’s algorithm. Let us summarize Peleg’s algorithm

here for convenience.

1. For each one of the 8-connected neighbors we use Eqs. (6.2)-(6.4) to calculate the
compatibility coeflicients. The coefficients r; ;15(A, A’) are fixed throughout the

iteration process. The a priori probabilities P(\) are estimated by

PX) = %Zﬂ: PO(\) (6.2)

i=1

The estimates for the joint probabilities are

I l !
Biivs(A,N) = EZP}”’(AJF}%(/\) SeA | (6.3)

where n is the number of points, pixel 7 + é is a specific neighbor of pixel i, and
again A defines the neighborhood about the particular pixel being considered.

The compatibility coeflicients are then defined as

Piivs(A N

riivs(A, A) = _’?% beA . (6.4)
2. The iterative updating process follows by using Eqs. (6.5)-(6.6). The qf'fié}()«) is

the pairwise effect of one of the 8-connected neighborhood.
Siits V) = 3 BPPLH N riias(A X)) bea, (6.5)

NeA
and
(&

alits ) s () : (6.6)

- (k1
2_MeA 5!..‘4-5’(*‘*')
(k+1)

here g; ;14" is the new probability estimate for the labels at pixel a; based upon

the previous estimates at a; and a;45.
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3. Because every pixel has eight neighbors, the new P‘-[k"'l)(,\) is the average of these

eight estimates as in Eq. (6.7).

1
PEDI) = 2 a7 () e (6.7)
SeA

4. Repeat steps (2)-(3) until the stopping criteria is met. In our case we specified

the number of iterations in advance.

In section 6.3 we will present the simulation results of applying the previously

described algorithm to our two texture mosaics.

6.2 Limiting the Probability Labels by Probability
Thresholding

One observation which we can make from the initial probability labeling process is that
many pixels have very low probabilities of assignment to some of the classes. This
suggests that it may be useful to limit the pixel classification only to those classes
whose probabilities exceed a given threshold. To be more specific, we may define Tp to
be a probability threshold, and let those initial probabilities vanish if their values are
less than T'p, thus restricting the choice of possible pixel labels.

One immediate advantage of probability thresholding is that the amount of data
to be processed during the following relaxation iterations decreases as a function of the
threshold settings. The higher the threshold setting is, less data needs to be processed.
On the other hand, once certain classes are suppressed, they will never reappear through

the use of probabilistic relaxation. This becomes a trade-ofl problem. Our goal is to
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study how different probability threshold settings affect the amount of data to be

processed and its classification rates.

The algorithm we use to study the effects of limiting the decision space by

probability thresholding is described as follows:

1.

92

Choose the value of probability threshold 7.

. Use the clustering algorithm described in chapter 5 to form clusters in the feature

space. Once the clusters are formed then the statistics such as mean vectors and
covariance matrices for each clusters can be estimmated, We use these unbiased

cluster statistics as class statistics for our initial probability labeling purpose.

. Based upon the estimated cluster statistics and normal distribution assumption,

the cluster labeling probabilities are assigned to each pixel according to:

L a(ENPQ)
PRI = & @ PO 05

where p(Z]A) is the cluster conditional density function

1o i oddi o
rep(-5E - M) E - ). (69)

1
Ao
PN = G,

We use the unbiased sample estimates 2y and 2y for iy and ¥y respectively.

. If any of the P(A|Z) is less than Tp, we set it to zero and then normalize the

nonzero probabilities.

From these thresholded initial probability labelings, a table of compatibility co-

eflicients may be generated.

. A mask for each class which indicates those pixels with probability zero or one is

then generated. This mask can be used to guide the relaxation process to work
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only on those pixels whose probabilities are not zero or one. In addition, the

amount of data needs to be processed can also be calculated from this mask.

7. With the initial probability labeling and compatibility coefficients on hand, we

can start our probabilistic relaxation process.

8. After each iteration or a few iterations the classification rate may be calculated.
We repeat the relaxation process until the stopping criteria is met. In our case

we specified the number of iterations in advance.

In the next section we present the results of applying this aforementioned algo-
- rithm with different probability thresholds to our two texture mosaics. By doing so,
we can quantitatively understand the effect caused by different probability thresholds,

and the results may help us in choosing the adequate threshold setting.

6.3 Simulation Results

Figure 6.1(a) and Figure 6.4(a) are the texture mosaics for this experiment. Each
consists of four and five textures respectively and they are identical to those used in
Figures 4.1 and 4.6. Figure 6.2(a) shows the initial segmentation result of the first
mosaic by method mentioned in chapter 5. The error rate is about 3.68 percent.
Figure 6.2(b) is the segmentation result after we applied 25 iterations of probabilistic
relaxation to the first mosaic. The error rate went down from 3.68 percent to 2.5
percent. The classification rates were recorded every 5 iterations and were plotted in
Figure 6.3.

Figure 6.5(a) is the initial segmentation result of the second mosaic. The initial
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error rate is 4.23 percent. After we applied 25 iterations of relaxation to the second
mosaic the result is shown in Figure 6.5(b). The error rate went down from 4.23 percent
to 3.02 percent. Similarly, the classification rates were recorded every 5 iterations and
were plotted in Figure 6.6.

As a comparison, we also process the second test image using Laws’ feature
extraction method as described in chapter 3. The window size used to estimate macro
statistical features is 15 X 15. Figure 6.7(a) shows the initial classification result with
an error rate of 7.55 percent. After 25 iterations, the classification result is shown in
Figure 6.7(b). The error rate went down from 7.55 percent to 6.66 percent. From
this comparison, we can clearly see the performance is improved by using our proposed
method.

Figure 6.8(a) shows the initial segmentation result of the first mosaic when the
probability threshold was set to 0.5 percent and after applying 25 iterations of relaxation
to the result shown in Figure 6.8(b). The total number of pixels to be processed is about
8.5 percent of the total processed if we do not set a threshold. This is a tremendous
saving of computation time, however, at the expense of higher misclassification rate as
shown in Table 6.1. If we increase the threshold to 1 percent, the initial segmentation
and the segmentation after 25 iterations are shown in Figure 6.9(a) and Figure 6.9(bh)
respectively. The number of pixels that needs to be processed decreased from 8.5
percent to 7 percent. The results for first mosaic are suinmarized in Table 6.1.

For the second mosaic we did the same experiments and the results are shown
in Figure 6.10 to Figure 6.11. Figure 6.10(a) and Figure 6.10(b) show the results

of initial segmentation and the segmentation alter 25 iterations respectively for 0.5
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percent threshold. The number of pixels that must be processed is about 5 percent of
the total pixels. Similarly, the results of initial segmentation and the segmentation after
25 iterations for 1 percent threshold are shown in Figure 6.11(a) and Figure 6.11(b)
respectively. The number of pixels to be processed decreased from 5 percent to 4
percent. The results for second mosaic are summarized in Table 6.2.

IFrom the above results we can draw some conclusions about the probability
threshold setting. First, even a very low threshold such as 1 percent reduces the com-
putation significantly and causes limited degradation of performance. Second, under
the circumstances that the computation load is of little concern or that the clusters are
not well separated in feature space then we should set the the probability threshold very
low (perhaps zero) in order to take full advantage of the spatial constraints. In other
words, the setting of probability threshold is a data dependent problem, therefore, data
analysis is needed before we can make a proper decision. For our data, the 1 percent

threshold seems to be a good choice.
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(a) Texture Mosaic (b) Ground Truth

Figure 6.1: Texture Mosaic 1 for Experimental Work.

(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.2: Classification Results of Mosaic 1 Using Estimated Statistics.
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Figure 6.3: The Error Rates of Mosaic 1.
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(a) Texture Mosaic (b) Ground Truth

Figure 6.4: Texture Mosaic 2 for Experimental Work.

(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.5: Classification Results of Mosaic 2 Using Estimated Statistics.
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Iligure 6.6: T'he Error Rates of Mosaic 2.
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(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.7: Segmentation Results of Mosaic 2 Using Laws’ Method.

(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.8: Segmentation Results of Mosaic 1 with 0.5 Percent Threshold.
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(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.9: Segmentation Results of Mosaic 1 with 1 Percent Threshold.

(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.10: Segmentation Results of Mosaic 2 with 0.5 Percent Threshold.
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(a) Initial Segmentation Result (b) After 25 Relaxation Iterations

Figure 6.11: Segmentation Results of Mosaic 2 with 1 Percent Threshold.
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Threshold setting

Percent of total pixels

Error rate after 25

(in %) to be processed iterations (in %)
0 100 2.5
0.5 8.5 2.67
1.0 7.0 2.74

Table 6.1: Summary of Probability Threshold Settings (in %) for First Mosaic

Threshold setting

Percent of total pixels

Error rate after 25

(in %) to be processed iterations (in %)
0 100 3.02
0.5 5.0 3.45
1.0 4.0 3.49

Table 6.2: Summary of Probability Threshold Settings (in %) for Second Mosaic
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Chapter 7

Overview of Textured Image

Segmentation System

In previous chapters, we have addressed issues related to different stages of a textured
image segmentation system and have described algorithms for each of the stages. The
purpose of this chapter is to tie these algorithms together to form a complete segmen-
tation system.

Section 7.1 provides an overview of the supervised textured image segmentation
system based upon the assumption that training samples for each texture are available.
If these training samples are not available then the problem becomes an unsupervised
one which is addressed in section 7.2. In sections 7.1 and 7.2 we also summarize the
observations and guidelines we made about the parameters setting for the supervised
and unsupervised textured image segmentation systems. Section 7.3 contains some
additional discussion of these segmentation systems along with some additional issues

to be considered.
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7.1 An Overview of Supervised Textured Image

Segmentation System

Figure 7.1 shows a block diagram of the proposed supervised textured image segmen-
tation system. The textured image is first convolved with a set of 5 X 5 micro-texture
feature extraction masks. Four micro-texture masks are selected beforehand for our
study. No principal component rotation or feature selection was performed because
our main concern is with segmentation given a set of features rather than selection of
an ideal set of features for a given type of image. A set of statistics which are the local
average of the absolute values of cach of the feature statistics within a 7 x 7 window is
then estimated for each pixel. These estimated local statistics are further processed by
the EPNSQ filter to reduce their variance.

The EPNSQ filter implicitly uses the assumption that the local statistics im-
age follows a nonstationary mean, nonstationary variance (NMNV) image model [57].
Basically, the NMNV model treats a 2-D image as a random field with nonstationary
mean and nonstationary variance. Thus, the EPNSQ smoothing algorithm attempts
to take the nonstationary nature of the problem into consideration by spatial selection
of the averaging region.

Based upon our simulation results, using the proposed feature estimation scheme
can provide us not only better correct classification rates but also more accurate region
borders for region sizes larger than 16 X 16. Tor large region sizes of our test mosaic,
i.e. 128 x 128, the improvement on the correct classification rate is about 7 percent.

For our test image, the chosen window sizes, i.c., 5 X 5 for micro-texture masks,
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7 x 7 for macro statistics estimation, and 15 x 15 for EPNSQ filter, worked very well.
This sequence of window sizes may not be a good choice for all images. In other words,
to choose a appropriate sequence of window sizes is a data dependent problem. In the

process of choosing window sizes, the following guidelines must be considered:

e The window sizes for micro-texture masks are typically 3 x 3, 5 X 5, or 7 X 7,

depending on the spatial scale size of the micro-texture features.

e The window size used for macro statistic estimation should be large enough to
include a representative sample of the image texture. The coarser the texture the

larger the window size should be.

e The window size used for EPNSQ filter should be smaller than the smallest region

size in which we expect to have a good segmentation.

In order to further improve the segmentation perforinance, we postpone our clas-
sification of each pixel until spatial constraints are incorporated. We use probabilistic
relaxation to enforce the spatial constraints. Each pixel is first labeled probabilisti-
cally based upon the similarity measure obtained in the feature space. I'rom the initial
probabilistic labeling, the compatibility coeflicients are determined. The probabilistic
relaxation is then used to update the labeling of each pixel iteratively until the stop-
ping criteria is met. Based upon our simulation results, after applying 25 iterations of
probabilistic relaxation about 30 percent of the misclassified pixels can be corrected.

In the process of using probabilistic relaxation techniques to enforce the spatial
constraints, we made the following observations. First, probabilistic relaxation methods

are an ellective means to incorporate spatial constraints into segmentation algorithms.
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Second, probabilistic relaxation provides most of the error reduction in the first 25
iterations or so, after that the error decreases slowly. Third, Peleg’s scheme is usually
converges much faster than RHZ’s scheme. Finally, the square quadrant window shape
works fairly well on regions with arbitrary shape provided that the region size is much
larger than the size of the quadrant window.

Probability thresholding may be used to reduce the computation time of each
relaxation iteration. The proper setling of the probability threshold is data dependent
and represents a trade-off between classification accuracy and efficiency. For our data, a
0.5 percent probability threshold can reduce the amount of pixels need to be processed
over 90 percent with a slightly higher misclassification rate.

From the simulation results we can draw some conclusions about the probability
threshold setting. First, even a very low threshold such as 1 percent reduces the compu-
tation significantly and causes limited degradation of performance. Second, under the
circumstances that the computation load is of little concern or that the clusters are not
well separated in feature space then we should set the the probability threshold very
low (perhaps zero) in order to take full advantage of the spatial constraints. In other
words, the setting of probability threshold is a data dependent problem, therefore, data
analysis is needed before we can make a proper decision. For our data, the 1 percent

threshold seems to be a good choice.
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7.2 An Overview of Unsupervised Textured Image

Segmentation System

Figure 7.2 shows a block diagram of the unsupervised textured image segmentation sys-
tem described in this thesis. As stated in chapter 2, we view the unsupervised textured
image segmentation as a problem of clustering with spatial constraints incorporated.
The statistics needed by the classifier may be learned from the unlabeled samples after
the clusters are formed.

The I{-means clustering algorithm is used to form clusters in the feature space.
In order to weight each feature equally, the raw feature data is first normalized as we
described in chapter 5. In our study, the clustering algorithm actually only works on a
subset of the data consisting of every fourth line and every fourth pixel of the feature
planes. The initial seed points were chosen based upon Ball and Hall’s approach. Once
the clustering process converges, the sample mean vector and sample covariance matrix
for each cluster are estimated. These statistics are then used by the classifier to assign
initial labeling probabilities. We applied the K-means clustering algorithm to the
sanie test images used for supervised segmentation, and found that the supervised and
unsupervised classification results are comparable. This probably occurs hecause the
feature data sets we have on hand are fairly well-separated, thus the statistics estimated
from the clustering algorithm are as good as those estimated from the training samples.

We also noted from the scatter plots shown in Chapter 5 that even though classes
are reasonably well separated in some of the feature pairs, they still partially overlap in

the feature space. This overlap causes mislabeling of pixels. Another question concerns
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the effect of subsampling of patterns used in the cluster analysis on the class statistic
estimates. We think it should not result in any noticeable differences of class statistic
estimates, since neighborhood pixels are highly correlated as a result of the large size
quadrant window smoothing operation.

After the class statistics are estimated by the clustering algorithm, a Bayes
classifier is then used to generate initial probabilistic labeling for each pixel. Similar to
the supervised segmentation system, we use the probabilistic relaxation technique to
iteratively incorporate spatial consfraints into our unsupervised segmentation system.
Based upon our simulation results, 97.5 percent and 97 percent correct classification
rates were achieved for the first and second texture mosaics, respectively.

The probability threshold procedure may also be applied to speed up the prob-
abilistic relaxation process for the unsupervised segmentation system. The conclusions
we drew for the supervised segmentation system regarding to the probability threshold

setting also hold true for the unsupervised segmentation system.

7.3 Discussion

As we mentioned in chapter 2, our texture analysis approach is basically a statistical
one. Roughly speaking, statistical methods are suitable for micro-textures, i.e., tex-
tures with short correlation distance. On the other hand, structural methods are more
suitable for macro-textures. In the previous chapters we assumed the statistical ap-
proach matches the nature of the textures under study. llowever, if we want to develop
a more general textured image segmentation system this assumption may not always

be true. Therelore, some kind of analysis needs to be done even before we can invoke
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our algorithms. One possible way is to perform a global statistical analysis first to de-
termine if the textures present are suitable for segmentation by a statistical approach.
If not, then a structural or a structural-statistical approach may be more effective.

Although Laws’ micro-texture masks are powerful in texture classification per-
formance, they were developed empirically. More study needs to be done to see if these
masks can be derived analytically, perhaps based on statistical models, or if there is a
even better set of masks. Ade [58] has proposed a set of “eigenfilters” which are derived
theoretically to characterize and classify textures. The performance of eigenfilters in
texture classification and segmentation remains to be seen. Similar work along this line
may provide us an opportunity to analytically derive a set of masks with comparable
or better performance.

In our work, the classification is based upon four texture energy features selected
beforehand instead of the four principal components derived from a higher dimensional
feature space. In other words, the feature selection step was omitted. The degradation
of performance, if any, that is caused by this omission is not clear. For the particular
texture samples used in this study, the degradation may be insignificant since they
are the same as those studied by Laws. We believe that the particular set of features
used in this work are robust in the sense that they should produce good discrimination
among other micro-texture samples having similar spatial scale size. Tor other types
of input data, other texture features (a different set of feature extraction masks) and
other features in general (gray-level, color, etc.) may be needed. Therefore, more study

is needed in this area.
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Chapter 8

Summary and Conclusions

The main objective of this research, as we mentioned in chapter 1, is twofold. First,
to improve segimentation results; especially along the borders of regions. Second, to
take into account the spatial relationship of pixels in the process of produced textured

image segmentation.

8.1 Summary

In order to achieve these objectives, our approach to the textured imnage segmentation

problem is based upon the following principles:

1. The problem of estimating texture features without destroying the boundaries
between regions is similar to the problem of smoothing a noisy image. Thus, tech-
niques used to smooth noise which do not blur edges are extended to the textured

image segmentation problem to improve the accuracy along region boundaries.

2. Both global information in the feature space and the spatial organization of this

data in the image space must be used.
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3. The unsupervised textured image segmentation problem may be viewed as one
of clustering with spatial constraints incorporated. Since there are no training
samples available, the clustering technique are used to organize the patterns into
clusters and then the cluster statistics are estimated. The spatial information is

then enforced to improve the segmentation performance.

In response to the first principle, we described an algorithm which has taken
the nonstationary nature of the problem into account during the feature extraction
stage. We have shown that the EPNSQ filter can be applied to smooth texture feature
estimates. We implemented this algorithmm and tested it on a texture mosaic which
consists of eight classes of textures. Based upon our simulation results, using the
proposed feature estimation scheme can provide us not only better correct classification
rates but also more accurate region borders for region sizes larger than 16 x 16. For
large region sizes of our test mosaic, i.e. 128 X 128, the improvement on the correct
classification rate is about 7 percent.

In response to the second principle, we described a supervised segmentation
system which consists of two stages. The first stage assigns probabilistic labeling using
the global information provided in the feature space. We realized that the weakness of
classifying pixels based solely upon feature space distribution is that the formation of
clusters in the feature space does not take into consideration the spatial distribution
of points in the image. Therefore, we explored the use of probabilistic relaxation to
reduce local ambiguities in the second stage. To the best of the author’s knowledge,
no previous attempts have been made in using probabilistic relaxation to solve the

textured image segmentation problem. The proposed system has been implemented
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and tested on two texture mosaics. Based upon our simulation results, after applying
25 iterations of probabilistic relaxation about 30 percent of the misclassified pixels can
be corrected.

In response to the third principle, we described a unsupervised segmentation
system which consists of three stages. The first stage learns class statistics [rom the
clusters formed in the feature space. A I -means algorithm is used to form the clusters.
The second stage assigns probabilistic labeling based upon the class statistics estimated
from the feature space. At this stage we only use the global information provided
in the feature space. The probabilistic relaxation is then used to enforce the spatial
constraints in the third stage. Good experimental results for unsupervised segmentation
are presented; in cases when the texture features are well-separated in feature space
they are comparable to supervised results. Based upon our simulation, 97.5 percent
and 97 percent correct classification rates were achieved for the first and second texture
mosaics, respectively.

We also proposed the use of a probability threshold to speed up the relaxation
iterations. The proper probability threshold setting is a trade off between segmentation
performance and speed. With some analysis of the data, the probability threshold
may be set with significant improvement in speed yet with limited degradation of

performance.

8.2 Possible Future Work

Some ideas for future work were presented in chapter 7. Let us brielly reiterate here:
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e For a more general textured image segmentation system, some kind of global
statistical analysis needs to be done in order to determine if the nature of textures
under study are suitable for segmentation by a statistical approach. If not, then

a structural or a structural-statistical approach may be necessary.

e More study needs to be done to see if micro-texture masks can be derived ana-
lytically or if there is a even better set of masks. Ade [58] has proposed a set of
“eigenfilters” which are derived theoretically to characterize and classify textures.
Similar work along this line may provide us an opportunity to analytically derive

a set of masks with comparable or better performance.

e Some investigation of the feature selection step omitted in our study is needed.
For an arbitrary input textures this feature selection step and/or feature extrac-

tion step may be indispensable.

e Robustness of the proposed supervised and unsupervised segmentation algorithms
needs to be investigated. In other words, we need to know how good it would

work on other textured images of similar spatial scale size.

8.3 Conclusions

The main objectives of this research have been accomplished. To improve the seg-
mentation results along the borders of regions, we have put our eflfort into the feature
extraction stage. To utilize the information from both feature space and image space,
we devised an algorithin that accomplishes it in two steps, i.e., assigning initial prob-

abilistic labeling based upon the global information provided in the feature space and



reducing local ambiguities by probabilistic relaxation based upon the local information
provided in the image space. The unsupervised textured image segmentation problem

is solved by clustering with spatial constraints incorporated.
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