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3-D Motion Estimation Using a Sequence of Noisy Stereo

Images

Part I : Models and Motion Estimation

Abstract

We discuss a kinematic model based approach for the estimation of 3-D motion parameters
from a sequence of noisy stereo images. The approach is based on representing the constant ac-
celeration translational motion, and constant angular velocity or constant precession rotational
motion in the form of a bilinear state space model using standard rectilinear states for translation
and quaternions for rotation. Closed form solutions of the state transition equations are obtained
to propagate the quaternions in both constant angular velocity and constant precession models.
The measurements are noisy perturbations of 3-D feature points represented in an inertial coor-
dinate system. It is assumed that the 3-D feature points are extracted from the stereo images
and matched over the frames. Owing to the nonlinearity in the state model, nonlinear filters are
designed for the estimation of motion parameters. A performance bound for the motion param-
eters is calculated. Simulation results are included. In a companion report [19], uniqueness of

motion parameter estimates is established.



1 Introduction

A significant amount of work has been done in computer vision literature [1] for the estimation
of 3-D motion and/or structure parameters from a monocular sequence of images. Much of the
earlier work involved using two or three frames of noisy images. The nonrobustness and lack
of numerical stability of these two or three view monocular image based algorithms have been
noted by several researchers [1,2,3,4]. Some of these problems were partly alleviated using a long
sequence of noisy image frames [5,6,7,8].

In this report we develop robust kinematic model based algorithms for 3-D motion parameter
estimation from an arbitrarily long sequence of noisy stereo images. Only recently [3,8] this
problem has received some attention in the literature. The use of a large number of stereo images
improves on the robustness and numerical accuracy of the motion parameters. Our approach uses
models for the motion of the rigid object, the time evolution of this motion and the observation
of the object, as illustrated in Figure 1. The modeled motion has constant acceleration in
the translational components, and constant angular velocity or constant precession [8] in the
rotational components. As shown in Figure 2, the constant precession motion is modeled as the
instantaneous angular velocity of the object rotating w.r.t. a spatially fixed axis with a constant
angular velocity. Constant precession motion is an example of higher order rotation than the
motion of constant angular velocity.

When standard rectilinear states are adopted for translational motion, our motion model
results in a quadratic time evolution. The constant angular velocity motion or the constant
precession motion is propagated using quaternion representation. In the constant angular velocity
model, the combined translational and rotational motion is represented in the form of a state space
model with nineteen states corresponding to nine translational motion states, seven rotational
states, and three states which describe the position of the rotation center. Three more states
for precession are needed in the constant precession case. Due to the propagation of rotation,
the state space model tends to be bilinear. For the purposes of this report we assume that the
structure is known.

The measurements are modeled as noisy perturbations of 3-D coordinates of a physical point

on the rigid object represented in an inertial coordinate frame. The 3-D coordinates are assumed



to be obtained from the stereo pair. Although the ultimate goal is to characterize the noise
distribution using the error analysis of a typical stereo matching algorithm [9,10], for the purposes
of this report we assume the noise to be Gaussian. It is also assumed that matching of 3-D feature
points and establishing correspondence between the matching points have been accomplished [2].

The 3-D motion estimation problem is thus reduced to one of identifying the states of a dynam-
ical system with bilinear state model and trilinear measurement model. Due to the nonlinearities
present, an Extended Kalman Filter (EKF) [11,12] is used for motion parameter identification.
Our simulation results show that for heavy noise situations, i.e. when the noise level is more
than 14% of the object size, modifications of EKF such as the iterated extended Kalman filters
[11,12] may be required. Once the parameters or states in the motion model are estimated, pre-
diction and interpolation of missing measurements can be accomplished. An objective evaluation
of the robustness of our models w.r.t. additive Gaussian noise is obtained by generalizing the
Cramér-Rao inequality for the time-varying motion parameters. The closeness between this ob-
jective performance bound and the sample variances from simulations shows that the parameter
estimates are reasonably efficient.

One of the major questions to be answered in any motion estimation problem is the uniqueness
or lack thereof of motion parameters. A proof for the uniqueness of motion parameters in our

model is given in a companion report [19].

2 Models

The motion states/parameters are chosen to incorporate the general 3-D motion of constant
acceleration, and constant angular velocity or constant precession. As will be seen, the states
chosen will be different between the models for the unknown structure case and the models which

incorporate structure information.

2.1 Observation Noise Model

The observation noise model, which describes the way how noise comes into the measurements,
will be introduced.

It is well known that the 3-D coordinates of feature points can be decided from binocular



images, e.g. by stereo triangulation. Therefore the calculated 3-D coordinates of feature points
from the binocular images will be taken as the measurements in our models. Define

e inertial coordinate system I = arbitrary 3-D world coordinate system.
Thus either I; or I; defined in Figure 1 can be chosen as the inertial coordinate system I. Consider
a feature point P. Let

¢ (z,y,2)T = the noisy 3-D coordinates of P in I calculated from binocular images, which
are noisy, and

® (Ztru, Yerus Ztru) . = the true(noise-free) 3-D coordinates of P in I.
The measurements are taken at discrete time ¢;. With the measurement time ¢; expressed explic-

itly, the observation noise model is

$(t;) Itru(ti) Rz(ti)
y(t) | = | vt |+ | ny(t) (1)
Z(ti) ztru(ti) nz(tf)

where n;,ny,and n, are the noise components, assumed to be Gaussian processes with mean zero.

The observation noise model allows the possibility to ezploit overestimation in an optimal
way. If optimal treatments of noise and overestimation are desired, a model for the way how
noise comes into the system must be established. Under this model, optimal motion estimator
can be designed. Also the performance of the estimator can be analyzed in terms of the noise

model.

2.2 Object and Motion Model

The object and motion model, which describes the structure of the rigid body and the motion
of constant acceleration and constant angular velocity or precession, will be introduced. The
motion states/parameters will be chosen from the physical quantities in this model.

As shown in Figure 1, under the known structure assumption, there exists a structure coordi-
nate system S which is fixed on the rigid body, and in which the 3-D coordinates of every feature
point P are known. Let

e (Z5,Ys,25)T = the 3-D coordinates of P in S.



S facilitates the incorporation of structure information. S can also be used in the model of
unknown structure.

We assume that the underlying motion can be decomposed into a translation of a point O, which
is fixed on the object with a constant acceleration and a rotation w.r.t. Op with a constant
angular velocity or precession. Let

o w(t) = (wz(t),wy(t),w,(t))T = the angular velocity of the rigid body w.r.t. Oy with com-
ponents represented in [

e L = the rotation axis which is fixed on the rigid body and on which w(t) lies.

e object coordinate system B = the 3-D coordinate system fixed on the rigid body with the
origin Op, and with its coordinate axes oriented in the same direction as the coordinate axes of
S

o (z5,95,25)7 = the 3-D coordinates of P in B.

o d = (dg,dy,d,)T = the 3-D coordinates of O in S.

e (R, YR, zr)T = the 3-D coordinates of O, in I.

It is clear that the transformation between B and S is

zp(1;) zs(t;) d
w(t) | =] vs(t) | —| dy (2)
zp(t:) zs(t:) d,

This is due to the fact that B and S have mutually parallel axes. Let R be the 3 x 3 alignment
matrix that aligns the object coordinate system B with the inertial coordinate system /. Thus
R is a rotation matrix.

Then the transformation between I and B is

Teru(ti) zR(t:) zp(t:)
Yeru(t)) | = | yr(t:) | + B | w(ts) (3)
ztru(ti) zﬂ(t‘) Zb(tf)

Substitution of (2) into (3) yields the object motion model

mtru(ti) IR(t:’) xs(ti) dy
ytru(ti) = yR(ti) e R(tl) ys(ti) - dy (4‘)
ztru(ti) Zﬁ(ti) zs(ti) dz



where d;,dy, and d. are chosen to be the three motion parameters which describe the center of

rotation or precession.

2.2.1 Translational Motion States

The motion parameters which describe the translational and rotational parts of the underlying
motion will be defined. Closed form expressions for the time dependence of these parameters
will also be given. These closed form expressions will be used in the Kalman filter to reduce the
computational load.

Let

o 7 = (2R, YR, 2r)T = the position vector of Oy w.r.t. I and represented in I.

° (vz, vy, v:)T = the velocity vector of Op w.r.t. I and represented in I

S5
I

e g = (az,ay,az)T = the acceleration vector of Oy w.r.t. I and represented in I

Under the assumption of constant acceleration, we have

Ht) = ()
B(t) = aft) (3)
a(t) = 0

By direct integration, the closed form solution of this equation is obtained as

r(t2) = 2(t1)+ (t2 = t)u(ta) + (2 — t1)%a(t1)/2
v(t2) = o(t1)+ (f2 — ta)a(h) (6)
a(tz) = a(t)

where 2 g(%), yr(t), 2r(t), v=(), vy(t),v2(t), @z, ay, and a. are chosen to be the 9 motion states to

describe the translational part of the underlying motion.

2.2.2 Rotational Motion States

There are about eight commonly used alternatives to represent rotation [14]. The quaternion

[14,15,16,17] is one of these. The quaternion

q(t) = (q1(8), 2(1), a3(2), ga(1))”



is defined as the solution of the differential equation

(1) = Qfw(?)] ¢(1) (7)

where

1 Wz 0 —Wg _wy
Qw(t)] = 3 (8)
—Wwy  Wg 0 —w,
Wy Wy Wy 0 ;

The relation between ¢ and the “standard” rotation parameters (n,n2,n3,8)7 is

, = =0 -8 -7
2 = | nys8in T, N9 SIN ?, T3 S1N '—2—', CcOos T

where (11, n2, ng)T is the unit directional vector of the rotation axis of the alignment matrix R
and @ is the rotation angle of R.

The standard rotation parameters are not used as it is not easy to obtain a closed form
expression for time dependence.

After suppressing the time dependence, we get the alignment matrix R expressed in ¢ as

9 —q} - ¢} + 4} 2(q192 + q3q4) 2(q193 — q294)
R=| 2qe-q0) -G+6G-G+0G 2@+ anu) (9)
2(q193 + g294) 2(q293 — q1q4)  —@F — ¢ + 43 + 45

Case I. Constant Angular Velocity (w(t) = constant)

In this case, the direction of the rotation axis L does not change with time. If w is constant,
(7) is a system of first order linear time invariant differential equation with a closed form solution
[13],

q(t2) = exp[Q - (t2 — 1)] g(t1)
The above can be simplified to [6],[7]

— o — 1
|w](t2 11)_{_195111@_[(2 1)

2 i (10)

g(tg) = [I4cos

where I is the 4 x 4 identity matrix.



q1(t),q2(%),¢3(t), q4(t), Wz, wy, and w; are chosen to be the seven rotational states for the con-

stant angular velocity model.

Case II. Constant Precession

In this case, the direction of L is no longer fixed. As shown in Figure 2, L and the angular
velocity vector w(?) are assumed to be rotating with a constant angular velocity[8]. Define

® precession vector p= (pg, py,pz)7 = the angular velocity of w(t) (or L) w.r.t. Oy and with
components represented in /. Under the assumption of constant precession, p is a constant vector.

e precession axis L, = the axis on which Oy and the precession vector p lie. Under the
assumption of constant precession, the direction of L, does not change with time.

Since the angular velocity vector w(t) rotates with the constant velocity p, we have

w(t) = P(pu(t) (11)
where
0 —p, Py
P(_) = P- 0 —DPz (12)
—Py Pz 0

Using the standard approach in Linear System Theory [13], the closed form solution of (11) is

obtained as

w(t2)

= exp[P- (2 —t1)]w(t)
sin []£|(t2 —1 )] 1 —cos [Igl(tz - tl)]

= P?| w(t1)
’ 2l IpP?
n? 4 (1 —n?)cosd ning(1l — cos8) —nzsinf nyns(l — cos@) + nysiné
= ning(1l — cos ) + nasind n3 + (1 —n3)cosf nana(1 — cosd) — nysind | w(t1)

nins(1l — cosf) — nysind ngna(l— cos@) + nysind n%+ (1 —nf)cosd

= Oo(pit2 — t1)w(t1) (13)

where
- (PI Py Pz )T

n1, Mo, N — . =
(m1,m2,m0)" = (100 1o [



and
0 = pl(ta - 1)

It is shown, in Appendix I, that the closed form solution of ¢ is

q(t2) = @, (Li(h),g; ty — t1) q(t)

where
@, (Q(il),lj; iz = tl)
¢4 P3 —P2 ¢
_ —¢3 ¢4 &1 P2 [L;cos |Al(t2—t1 Q(J\)
$2 —p1  Ps ¢3 2 ‘Al
01 —¢2 —P3 P4
in which
& FEI' disg —lpl(t2—t1)
1 S
" B sin Telo=t) —|p|(t2 1)
¢3 - %Sln._lgl(;_h.).
on cos ————_lp[(t;_m
and
0 =y %, =i
, 0 = =
Q) =z

M My R 0
A= Az dys A2)T = w(t) -

]_|(t2 -1
2

)

(14)

(15)

ql(t),@(t),q;;(t),q4(t),wm(t),wy(t),wz(t),gx,Ey, and p_ are chosen to be the ten rotational

states for the constant precession model.

Remarks. In the model of constant angular velocity, there is one extra degree of freedom

involved in dg,dy,d., 2R, YR, and zg, because Oy is not uniquely defined. In fact, if the rotation

axis I does not change direction with time, any point on L can be chosen as the rotation center

Oy to decompose the underlying motion into a translational constant acceleration component and



a rotational constant angular velocity component as long as Oy is fixed on the rigid body. This
extra degree of freedom will be retained in order to avoid singularity. However, in the model

for constant precession, there is no such extra degree of freedom involved if I and L, are not

coincident.

3 Recursive Filter Formulation

Recursive filters [5,6,11,12] will be used to estimate the motion parameters from noisy measure-
ments. Both EKF and iterated extended Kalman filter (IEKF) are recursive estimators of the
parameters in a nonlinear system. The initial guess of the parameters is recursively improved
by EKF/IEKF as additional measurements are available. This feature is desired in tracking of
moving objects, since motion parameters can be updated using newly obtained measurements
without waiting for the collection of all data. The parameters to be estimated are allowed to be
time-varying and denoted by a n X 1 column vector z(t), called state vector. The time-varying

behavior of the states is required to satisfy the plant model

() = flz(t),u(t), t] + G(t)w(t) (16)

where u(t) is the deterministic input functions and w(t) a zero-mean white Gaussian noise process

with covariance kernel
E{w(®u(t+7)} = Q(1)8(r)

The measurements z at time ¢; are required to depend on the states according to the measurement

model _
2(t;) = hz(t:), t:] + v(t:) (17)

where v is a white Gaussian noise sequence of mean zero and covariance kernel

Ru(t,') , i =15
st ?f: tJ

E{u(t)2" (1))} = (18)

Once the plant and measurement models are specified, EKF updates the estimates Z for the true

state vector z by a series of equations introduced in the following [12]. Since the nonlinearity of

10



f and h is linearized by the first order Taylor series expansions, the following matrix definitions

are needed,

_af
_oh
=5z (20)
The estimate £(¢}) for z(¢]) immediately after the measurements at ¢; is obtained by
a(tF) = a(t7) + K (1) {2(t:) — & [a(67), 1]} (21)
where the gain matrix is
-1
K(t:) = P(7) B [t 207 )| { Hlti 267 )1P(7 ) H T [t 2(t7)) + Ru(t:)} (22)
The approximate covariance matrix is updated by
P(t}) = P(t7) - K(t)H" [t 2(7)1P(¢7) (23)

Then the estimate and the approximate covariance matrix are propagated from ¢}, & tF) and
PP P g i i

P(tf), forward to the next sample time ¢, £(#;;;) and P(t,), according to the following

differential equations

&(t)
P(1)

£ [2(2), u(t),1] (24)
Ft; 2(1)] P(t) + P()FT [t; 2(1)] + G()Q(1)GT (t) (25)

The initial conditions used to solve these equations are Z(t) and P(t}). If (24) has a closed
form solution, called state transition equation, the computation is simplified since no numerical
integration is needed to propagate £(t1) to Z(t;,,)-

If the noise level is very high, the EKF does not give satisfactory performance, and an IEKF
is needed. In the IEKF [12], (21) and (22) are replaced by setting &, equal to Z(¢;) and doing

iterations on

K@) = P(E)ET (2 {Hlts 2P B i ] + Ru(t)} (26)

Beir = B8+ K(t) {2(t) — Bl 6] — H(ti, &) [2067) - 2] } (27)

11



for kK = 0,1,...,N — 1 and then setting g(t:") = Zy. The iterations are stopped when the
improvement in Z; is less than a preselected small threshold.
The standard plant equation (16), measurement equation (17), and state transition equation

for our model are formulated in the following. These formulations are readily applied to both

EKF and IEKF.

3.1 Plant Equation

Case I. Constant Angular Velocity

Let z(t) = (1T(t),gT(t),gT,iT,gT(t),gT)T be the state vector whose components are formed

by the 19 motion states described previously. The plant equation (16) for the recursive filter is

obtained from (5) and (7) as

[ty [0s L 05 05 0 05\ [ 1))

v(t) O3 03 Iz O3 O O3 (1)
il a |_|0s 05 05 0 0 0 a -
| g Os Os Os O3 O ©Os d

q(t) oT oT 0T 0T Qw) OT q(t)
Ne /) \0s 05000 0 03)\ w)

a(t) £z(1)]

where (2 is defined in (8) , O3 is the 3 X 3 zero matrix, and O is the 3 X 4 zero matrix. Note that
the plant equation (28) has been put in the standard form (16) with u(¢) being a zero vector,

G(t) being a zero matrix, and f being a time-invariant function.

Case II. Constant Precession

Let z(t) = (QT(t),gT(t),g_T,dT,g_T(t),wT(t),ET)T be the state vector whose components are

formed by the 22 motion states/parameters described previously. The plant equation for the

12



recursive filter is obtained from (5), (7), and (11) as

() [0s L 05 05 0 05 05)( )

u(t) Os Ox Ii Oz O 05 0 u(t)

a O3 03 03 Oj 0 O3 O3 a
% d =| O3 03 O3 O3 0 O3 O3 a (29)

q(t) oT oT oT oT Q)] of of q(t)

w(?) 03 03 O3 O3 O P(p) Os w(?)
V2 /) \0s 050,00 0 05 05/)\ p )

(1) £[z(1)]

where P is defined in (12).

Remarks. In motion estimation in which structure information is not used, the states do not
contain d and g, because the structure coordinate system S should be defined appropriately and
a simple way to do this is to align S and I when ¢ = 0. In the model which incorporates structure

information, the states d and g are used to account for the initial position and orientation of §.

3.2 Measurement Equation

Let
° (xj(t;),yj(t;),zj-(t,-))T = the noisy 3-D coordinates of the j** feature point in I calculated
from binocular images at the measurement time ¢;.

o (245(1:),¥s;(t:), 255(t:))T = the 3-D coordinates of the j** feature point in S at ;.

13



From (1) and (4), the measurement equation (17) for EKF/IEKF is obtained as

s

( z1(t;) \ ( zg(t;) \ \ ( zs1(t;) — dg ‘ nz1(t;)
v (t:) YR(t:) R[q(t:)] ys1(t:) — dy ny1(t;)
z1(ti) zR(ti) zs1(ti) — d; na (t)
! = : i : + (30)
Tm (ti) zR(t:) Tam(t:) — dg Nam(ti)
ym(ti) yr(ti) Rlg(t:)] Ysm(ti) — dy nym(ti)
‘\ zm(t:) }, L\ 2r(t:) |\ \ Zsm(ti) —dz ) | Tzm (t:)
(%) hle(io, T

where ngj(t;),ny;(ti), n2;(t;) are Gaussian noise variables with zero mean, and m is the total
number of feature points at time ;.

Remarks.

1. m can be a function of ¢;, i.e. the number of feature points is not necessarily the same for
each measurement time ¢;.

2. The feature points may be chosen differently at different time ¢;.

3. Occlusion can be treated in a straight forward way because of 1. and 2.

4. The time intervals between two consecutive measurements need not be constant.

5. The variances of each noise components can be different. That is, the accuracy of each
measurement is allowed to be different.

6. The noise components can be correlated. The interdependence between the noise com-
ponents can be considered explicitly in EKF/IEKF through the measurement noise covariance
matrix R,(t;) in (18).

7. The noise distribution has been discussed by other authors. Blostein and Huang [10]
analyzed the noise distributions in the 3-D coordinates obtained by stereo triangulation. They
concluded that the noise levels in different coordinate directions ( horizontal, vertical and range)
are different. The measurement model (30) has the flexibility to account for different noise levels
if the variance of the noise in each coordinate direction is assigned a different value. Under
Blostein and Huang’s assumptions, the noise distributions obtained are not Gaussian. However,

Matthies and Shafer [18] report that using 3-D Gaussian distributions to model triangulation

14



error can lead to good performance in motion analysis. For the purpose of this report we assume

that the noise variables are distributed as Gaussian.

3.3 State Transition Equation

The closed forms of state transition equations will be given to propagate the states in the recursive

filters. The computation to propagate the states is simplified since no numerical integration of

(24) is needed.

Case I. Constant Angular Velocity

From (6) and (10), the state transition equation, which propagate (¢1) forward to Z(;

is

where

W) ) [ B
v(tiy) O3
a—(ti_+1) — O3
d(t7) 03
q(ti31) oF

w(tiy) ) \ O3

®(w; tryy

I
O3
O3
OT
O3

~i1)=

tf) Dt —tF)?/2 03 0 ga Yl
Lty —tf) 03 0 O3
I3 O3 0 O3
O3 I3 0 O3
a¥ OT &(wity, —tf) of
O3 O3 0
I, cosi("L— -+ T‘-'%TQ sm——-;| Wl ifw#0
Iy - otherwise

Case II. Constant Precession

15

Iy . | \Li(t;’-)

1+1)

r(tf) )
u(tf)
a(tf)
d(tf)
a(tf)

(31)



From (6), (14), and (13) the state transition equation is

tind \ [ B hlfna—-t) Llga—8P2 05 0 05 05\ [ 2(th) )
(1) O3 I3 L(tg,—tf) 03 O 03 03 o(tf)
a(t,) 03 O3 I O3 O 03 O3 a(t})
dti,) | = 03 O3 O3 I O 03 O; d(tf)
a(t1) oT oT T oT &, oT oT q(tf)
w(tiyy) O3 O3 O3 O3 O @& O3 w(th)
p(t1) /] \ Os O3 O3 O3 O 03 I3 p(tf) )
(32)

where ®; and ®; are defined in (14) and (13), respectively.

4 Filtering

The standard filtering algorithm is summarized as follows.

1.

Since the plant model (16) is given as (28) or (29), and the measurement model (17) is

given as (30), the linearized matrices F' and H are obtained from (19) and (20).

. The initial guess of the state vector is assigned to Z(¢7 ). The initial guess of the approximate

covariance matrix is assigned to P(t7).

. Seti1=1.
. At time t;, the measurement z(%;) is taken.

. At time ¢}, immediately after the measurement time ¢;, the estimate #(tF) for the state

vector is obtained by (21) and (22). The approximate covariance matrix P(t;) is updated
to P(t]) using (23).

If an IEKF is used, z(t}) is obtained by the iteration defined in (26) and (27), instead of
(21) and (22).

. At time 27, ,, immediately before the measurement time #;41, the estimate Z(¢;, ) is prop-

agates from £(t7) by the state transition equation (31) or (32). P(t;,) is obtained by

solving (25) using numerical integration [12].

16



7. Increase i by 1, then go to step 4 to incorporate new measurements.

5 Simulation Results

Computer simulations are used to investigate the models. The object studied is a rigid
transparent cube with corners on (£1,%1,+1) in the structure coordinate system 5. The
feature points are chosen from the corners of the rigid body. The object size is defined as the
maximum length between two feature points. The simulated measurements are generated
by the following scheme. First, the noise-free 3-D coordinates feature points in the inertial
coordinate system [ are generated by a computer program. Then independent Gaussian
noise variables with standard deviations o,0,, and ¢, are added to obtain the noisy mea-
surements in the x, y, and z directions of the inertial coordinate system I, respectively.
The time period between measurements is 0.5. The noise level in x-direction is defined as

o./(object size).

Two experimental results are shown in Figure 3 and Figure 4 corresponding to constant
angular velocity and precession rates, respectively. In each experiment, only 3 feature points
are used. The object size is v/2. The ordinates equal the differences between the estimated

motion parameter values and the true values.

Case I. Constant Angular Velocity

Figure 3 shows a typical sample path when o, = ¢y = 0.14 and ¢, = 0.35. It corresponds
to the noise level of 10% of the object size in x- and y- directions and 25% of the object size
in z- direction. An IEKF algorithm was used. This experiment can be interpreted as an
example for the case when triangulation is used to obtain the 3-D measurements. As it has
been noted [10] that in calculating the 3-D coordinates of features by applying triangulation
to stereo image pairs, the noise level in the z-direction is much higher than the ones in the
x- and y- directions. In this and the next experiment the initial conditions chosen to begin
the recursive IEKF computations were intentionally chosen to be quite far away from the
true values. The true and initial values used in this and the next experiment are given in

Table 1.

17



Case II. Constant Precession

Figure 4. shows a typical sample path when 0, = ¢, = ¢, = 0.14. This corresponds to the

noise level of 10% of the object size.

As can be seen, the quaternions converge within 3 frames. This fast convergence rate is
because only one stereo image pair is enough to determine the orientation of the object
at the measurement time when the image pair is taken if 3 noncolinear feature points are
used, as shown in [19]. It is also observed that, once the filter converges, the estimates reach
different accuracy : acceleration highest, velocity second, and position lowest in the trans-
lational components; precession highest, angular velocity second, and quaternion lowest in
the rotational components. A possible explanation is as follows: Since the measurements
are taken only at discrete times, the velocity is meaningless if only one time instant is con-
sidered. Thus the velocity can be considered as a quantity involved in at least two image
pairs at different times. By the same reason, the acceleration involves at least three image
pairs, angular velocity two, and precession three. If more image pairs are based, higher

ability to smooth out the noise is expected. Thus the above order of accuracy is formed.

Remarks :

(i) In the case of very highly deviated initial guesses, divergence is also observed, which is
a well known feature for EKF and IEKF. A batch algorithm can be used to start the filter

with better initial guess.

(ii) In the case of constant angular velocity, if started from other initial guesses, the filter
has the possibility to converge to other states which are indistinguishable from the “true”

states. This is an issue of the uniqueness of the motion states and is analyzed in [19].

(iii) In the case of constant angular velocity, since there is one extra degree of freedom
involved in r(t) and d, the estimates #(¢) and d are different from the “true” states, but

consistent with the “true”states. This is also analyzed in [19].
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6 Performance Bounds

The estimation process formulated can be conceptually separated into two stages: establish-
ing models to describe the underlying motion and measurements and applying an estimator
to estimate the model parameters. After the first stage, it is desirable to know what the
maximum obtainable accuracy of the estimates of the model parameters is. If the maximum
attainable accuracy is not satisfactory, the models need to be changed before the design
of an estimator. Once the estimator is designed, its performance can be compared with
the maximum obtainable accuracy to give an insight into the efficiency of the estimator.
Since variances quantify the accuracy of estimates if bias is small, the maximum obtainable
accuracy can be quantified by the greatest lower bound of the variances of the estimates.
In this section, this performance bound will be discussed using the Cramér-Rao inequality
[20]. The bound is expected to be time-varying since the motion states are functions of
time. The performance bound is intrinsic to the models, independent of the estimators

applied, and gives an indication of the noise immunity of the motion model.

6.1 Fisher’s Information Matrix

As needed in the Cramér-Rao inequality, the Fisher’s information matrix, which is time

varying, will be calculated first.
Recall that z(t) is the state vector at time ¢. Let
e measurement vector Z, = the collection of all measurements taken no later than t.
Then we have
Z, = h[z()] + s (33)

where n, is the noise vector. This can be seen as follows. From the measurement model
(30), the measurements at any time ¢’ are functions of z(¢') plus a noise term. But z(¢') is
a function of z(t) according to the state transition equations (31) or (32). Therefore the

measurement vector at t’ is a function of z(¢) plus a noise term, as shown in (33).
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The Fisher’s information matrix is calculated directly from the definition [20],

) = E{ ot CAES)

Tr g
[mmf@ | 2()] &(t)} (34)

where E is the expectation operator and f is the conditional probability density function

of Z; given z(t).

A detailed calculation of J(t) in the case of independent noise assumption can be found in

Appendix II.

6.2 Cramér-Rao inequality

The Cramér-Rao inequality for the variances of parameter estimates will be reviewed.
Assume that J(t) is nonsingular and #(f) is an unbiased estimator of z(¢). Then the
Cramér-Rao inequality says

E [(2(t) - 2(t)) (a(8) - #8)7] 2(0)] > T (35)

Because the inequality in (35) holds in the sense that the difference of the left and the
right hand sides is non-negative definite, the i** diagonal element of [J(#)]™" gives lower
bounds of the variance of the i** component of #(¢) given z(¢). These lower bounds are
called the Cramér-Rao lower bounds (CRLB). Expressions available [12] for CRLB of biased
estimators need to know the bias term explicitly as a function of parameters. In our problem,
we do not have explicit expressions for the bias term. Hence we are forced to use CRLB

for unbiased estimators.

If J(t) is singular, as the case in our model, then the above inequality needs to be modified.

Let

e z'(t) = the vector obtained from deleting the j** component of z().

e #/(t) = any unbiased estimator of /().

e J'(t) = the square matrix obtained from deleting the j** row and column of J(t).

Assuming that J'(t) is nonsingular, then we have
E (@) - #() @) - 2©)7|20)] 2 (@)™ (36)
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This can be obtained by following the same derivations of Cramér-Rao inequality in [20]

exactly except starting from the equality E [(z' — &)|z] = 0.
If more than one component of z(t) is deleted, the same result can be obtained.

Remarks.

(i) In the model of constant precession, J(t) is nonsingular. But in the model of constant
angular velocity, J(t) is singular because of the extra degree of freedom in the states r(t)
and d. Detailed discussion about the relation between the uniqueness of motion states and

the singularity of J(#) can be found in [19].

(ii) If neither J(¢) nor J'(t) is singular, the CRLB obtained by (36) is looser (smaller) than
the one obtained by (35). A brief explanation for this can be found in Appendix III.

6.3 Performance Bounds and Estimator Efficiency

The CRLB obtained above will be used as a performance bound for our model. The
following will be checked : (i) the bias of the output of EKF/IEKF. (This needs to be
checked since the CRLB obtained from (35) is for unbiased estimators.) (ii) the tightness
of the bound. |

(i) the bias of the output of EKF/IEKF used in our model.

Since the CRLB mentioned above is for unbiased estimators, it approximately offer a lower
bound only when the bias is small. Thus CRLB is expected to be a lower bound of the
output of EKF/IEKF because of the observed small bias shown in Figure 5, which is the
sample bias from Monte Carlo trials. ( In Figure 5, the ordinate equals the difference
between the sample mean from 50 Monte Carlo trials and the true states in the constant
angular velocity motion. 3 and 5 feature points are used. the object size is v/2. The noise
variance is 0, = g, = 0, = 0.2, which corresponds to the noise level of 14% of the object

size. The true and initial values of states used to start the filters are given in Table 1. )

As mentioned in [11], the local iteration in EKF/IEKF produces biased estimates, because

the mode of the posterior density is used for the conditional mean. But if the mean is close
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to the mode, the bias is small. As shown in Figure 5, after the filter converges, the biases of
the estimates for velocity, acceleration, and angular velocity tend to zero quickly. But the
biases of quaternions are relatively large, and behave as sinusoidal functions of time with
the period 47 /|w|, which is twice the period of rotation of the object. (Recall that +g and

—¢ describe the same rotation.)

(ii) the tightness of the bound

The CRLB and the sample variance from 50 Monte Carlo trials are quite close, as can be
seen in Figure 6. Therefore, it is believed that the CRLB gives very good lower bound for
the variance of the estimators of state. ( The parameters used in Figure 6 are the same as

those in Figure 5. )

Since there is one extra degree of freedom involved in states, according to the analysis in
[19], J(t) is singular. The first row and column of J(t) are deleted to form J'(¢). Then
the nonsingular matrix J'(¢) is used to compute the CRLB. The calculated CRLB and the
sample variances of the states obtained from 50 Monte Carlo trials starting from the same
initial guess are shown in Figure 6. As can be seen, the CRLB and sample variances are

quite close.
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Appendix I

In this appendix, the closed form solution (14) of the quaternion g(t) under the assumption

of constant precession is derived.
For clarity, the quaternions will be denoted by ", e.g. §, in this appendix.

The goal is to solve the following first order linear time-varying differential equation

i(t) = 2 [()] (1) (37)
where w(t) is obtained from (13).

We first (1) define the quaternion multiplication [14], (2) then do a change of variable to
reduce (37) to a time-invariant equation, (3) and solve the time-invariant equation to get
the solution. Intuitive interpretations of the derivations are given in the remarks at the end

of this appendix.

(1) definition of the quaternion multiplication [14]

If 7 and ¢ are two quaternions, the multiplication of # and ¢ are defined as

T4 —T3 T2 T1 #1 $s O3 —P2 ¢ 1
= t3’ Ty % T P2 _ —¢3 P4 H1 P2 T2 (38)
-T2 T1 T4 T3 ¢3 $2 —$1 b4 93 T3
—Ff —Fy —T3 Ty }q —¢1 —¢2 —P3 P4 T4
The conjugate of § is defined as -
i* = (—q1,—g2, — & (39)
¢ = (—q1,—92, -3, q4)
The unit quaternion I is defined as
I=(0,0,0,1)7
Equations (38) and (39) yield
§q=aq" =4’ (40)



and

et
>
1l
~»

E~1
Il

=1

(2) reducing (37) to a time-invariant equation (46)

Use the vector w(t) to define two quaternions

A w(0)
Wy =
0
and
) w(t)
W =
0
Also define

—|plt

; —|p|t —|p|t —|p|t
o(t) = (%'sin————lgl jrj—?"sin-«—IEI Pz in 2| ,CO8

2 |p|

A direct calculation shows that an equivalent form of (13) is

2 p| 2

- ¥ ax]
W= ¢ pd

It is obvious that (37) can be put into an equivalent form

T -
q= 59“‘-’1‘
As a change of variable, define
P= g
Post-multiplying both sides by $, we have
"=

dooie Lo
E‘E(T¢) 2"' 0
After the substitution of
d

2

X

(41)

(42)

(43)

(44)

(45)



into (45), we get
- | Sy - Nax) oa
9= 57 (05 -266") 6
After post-multiplying both sides by é and the substitution of
2'5@3* = (_pm _pys —Pz,O)T

which is a result of (41), we get the time-invariant equation

fwo-p )
: (46)

P =

[N

(3) final solution (14)

Note that (46) has the same form as (43), which is equivalent to (37). Therefore the solution
of (46) is

(1) = [Iq cos th T+ %Q(i) sin %I—t] 7(0) (47)
where
A=w(0)-p

and  is defined in (8). Then the closed form solution for ¢(t) is obtained from (44) as

i(t) = #(t)d(t) (48)

Setting ¢ = 0, we get the value for #(0) as

#(0) = 4(0) (49)

Summarizing (47), (48), and (49) into forms of matrix multiplication by the quaternion

multiplication defined in (38) gives the final solution (14).

Remarks.

(i) There is an intuitive interpretation for the derivation of the closed form solution. We
first find a new coordinate system, denoted as N, in which the angular velocity vector of

the rigid body is constant. The quaternion # used above actually describes the alignment
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from the object coordinate system B to NV, and ¢ describes the alignment from N to the
inertial coordinate system I. Thus the quaternion §, which describes the alignment from

B to I, equals the multiplication of # and ¢.

(ii) An intuitive understanding of (41) is as follows. When ¢ = 0, NV is aligned with I.
Furthermore, N rotates w.r.t. I with the constant angular velocity p- Therefore we can
write down the quaternion (f), which describes the alignment from N to I, directly either

from the result of Case I in Section 2.2.2 or by intuition.

(iii) The angular velocity vector of the rigid body relative to N is A = w(0) — p. This can
be seen as follows. Att = 0, the relative angular velocity of the rigid body to I is w(0).
The relative angular velocity of N to I is p. Thus we get the relative angular velocity of B
to N as w(0) — p. Notice that, relative to I, both N and w(t) rotate with the same angular

velocity p. Thus in N, the angular velocity vector of the rigid body is constant.

(iv) Equation (46) is a restatement of (iii). This can be seen by a comparison of (46)
and (43), both of which describe the time propagation of the quaternion representing the

alignment between two coordinates with constant relative angular velocity.

Appendix II

In this appendix, we give more detailed calculations of the Fisher’s information matrix J(t)

for the case of independent noises.

Assume that 0 < t; < t9 < ... < t; < ... < t; < t, and the measurements are taken at

t1,...,1 before t. For simplicity, define
e z = z(t), the state at ¢

e z' = z(t;), the state at measurement time ;

1

e 2! = the collection of all measurements at ¢;

e v' = the noise vector at t;

WA (ng,...,ng)T = the measurement vector which collects all of the measurements
before t.
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Putting the state transition equation (31) or ( 32) in a concise form, we get

z' = ®(t; — tiz)z (50)

where ®(?; — t;z) is the state transition matrix. Putting the measurement model (30) in a

concise form, we have
z' = hi(z') + o' (51)

From (50) and (51), the more explicit form for equation (33) is

z! B [®(t1 — t;z)z] vl
VA = ; +1 i (52)
g B [®(t - t;z)z) 2!
S—— N ~ A e—
VA by [2(1)] R

Let

o k% = the j* component of '

e m; = the number of components in ﬁi or the number of measurements taken at ¢;
° zj = the j** component of z!

° 1;;- = the j'* component of v'.

o f(Z]z) = the conditional density function of Z given z.

Assuming that v} are independent Gaussian random variables with mean 0 and variance

0;2, from (52), we have

2 sz = Zullll s
i O i
1 (G hird(e — t2)e])
= MIHEJ].:.[ 2‘.’!’ [ 20_;:2 (2.'1; - h';l[(I’(tl t!-_.)—]) ]
= ZZ (zj—hj-[@(t;—t;g)g])%(h;[‘b(ti—l‘;?_)ﬂ)
i=1 j=1 ==

Noticing that

B (s - hife (- 5)2))

le] = sl
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from the definition of the Fisher’s information matrix (34), we have

E{[%lnf(éla)r[%lnf(&la)] h}

m; Bh‘ T i
= ZZ - [am, —(®(ti - t;g)g)] [ZZ, < —(® (t: — t;g_)g)]

=1 j= 10

J(1)

Appendix III

In this appendix, we are going to show if neither J(t¢) nor J'(¢) is singular, the CRLB
obtained by (36) is looser (smaller) than the one obtained by (35).

The time dependence will be suppressed in the discussion. Assume that 2’ is obtained from
deleting k components of z. Because we can always rearrange the order of the elements in
z, without loss of generality, it is assumed that the last k& elements of z are deleted. That
is, J has the form

J' B

BT ¢

where C is a k X k matrix. Also note that if
)

J' B ¥ L
BE @ Ev .7

=

Jl =

where F' is a k X k matrix, then [20]
D=J"'4+J7'BFBT) (53)

J is positive definite, hence J~1 is also positive definite. F' is a square submatrix of J =
along the diagonal, thus F is ‘positive definite. There exists a k x k matrix G such that
F = GGT [21]. Therefore,
p-37 = JF'BFBEI
- (J’_IBG) (J"lBG)T,
which implies that the matrix (D — J' ~1) is positive definite. Thus the diagonal elements
of D are greater than the corresponding ones of J' =1 As aresult, J~! gives tighter bounds

than J'~ .
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constant constant Monte Carlo
angular velocity precession trials
(Figure 3) (Figure 4) (Figure 5 & 6)
initial initial initial
state true guess true | guess (| true | guess
zr(0) 4 2 4 3 4 2
yr(0) -3 -1 -3 -2 -3 -1
zgr(0) 1 0 1 0 1 0
vz(0) 1 0 0 il 0
vy(0) 0.8 0 1.8 0 0.8 0
v.(0) || -0.7 0 -1.7 0 -0.7 0
2 -0.3 0 -0.9 0 -0.3 0
a, || 02 0 1.2 0 0.2 0
a, 0.25 0 0.75 0 0.25 0
dy 2 0 0.5 0 2 0
d, 1 0 0.4 0 1 0
d, 1 0 0.2 0 1 0
q1(0) 0.2 0 0.2 0 0.2 0
g2(0) 0.1 0 0.1 0 0.1 0
7(0) | 0.5 0 0.5 0 0.5 0
2(0) || 0.837 1 0837 | 0 |0837| 1
wz(0) | 02 0 0.4 0 04 | 02
w,(0) || 0.1 0 0.3 0 03 |02
w,(0) || 0.2 0 0.4 0 -0.4 -0.2
Pe 0.2 0
Py 03 | 0
Pz 0.3 0

Table 1: True motion parameters and the initial conditions to start the IEKF in the simu-
lations of constant angular velocity motion and constant precession motion
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Figure 1 : Geometry of motion and measurement models
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