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Figure 1. Definitions of Ry, R; and R, for the computation of third-order cumulants.
The plane is divided into three regions Ro, R, and Rj; R, includes the origin. Time-
and lag-recursive equations, and closed-form expressions are given in Theorems 3-6 and
Corollary 1. '

Figure 2. Computation of third-order cumulants using Theorems 2-4 and Corollary 1:
Scheme 1.

Figure 3a. For stationary random processes, third-order cumulants in the wedge 0 < j < i
specify cumulants elsewhere in the 2-D plane.

Figure 3b. For a process modeled as the output of a p-th order SSM, the triangular
region with vertices (0,0), (p,p) and (p,0) specify the third-order cumulants elsewhere in
the 2-D plane.

Figure 4a. Impulse response of tenth-order airgun wavelet.

Figure 4b. Third-order output cumulant of a tenth-order LTI SISO system. Cumulant
lags C3y(1,7), =9 <,7 <9 are shown.

Figure 5. Fourth-order output cumulant of a tenth-order LTI SISO system. Cumulant
lags, Csy(m,n, ko), =9 < m,n <9 are depicted in Figs. (5a)-(5j) for ko = 0,1,...,9.

Figure 6. Third-order output cumulant of a tenth-order non-stationary scalar process.
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Abstract

Time and lag recursive algorithms for the computation of the cumulants of the state
vector and the output process of a multiple-input multiple-output (MIMO) time-varying
state-space model (SSM) are derived by using a Kronecker product representation for the
cumulants of vector processes. The noise processes are not assumed to be stationary. Ele-
gant expressions are obtained when the SSM is time-invariant and in observable form. For
MIMO linear processes, closed-form expressions relating the output cumulants to the SSM
parameters and to the impulse response matrices are established. Symmetry relations for
the cumulants of vector processes are also discussed. Computational aspects are discussed
in detail; and some system identification issues are addressed.



1. Introduction

During the past few years, cumulants, which are phase-sensitive higher-order statis-
tics, have been used in a wide variety of signal processing and system theory problems,
[5]-9], [13], [15], [17], [19]-[26]. They are useful in the analysis and description of non-
Gaussian processes, and non-minimum phase and non-linear systems. Current results in
cumulant-based system modeling and identification are largely limited to stationary scalar
processes and ARMA models (which include AR and MA models as special cases).

In this report, we focus our attention on the computation of the cumulants of the
output of multiple-input multiple-output (MIMO) linear systems. The kth order cumulant
of a p-th order vector process has been defined via a collection of p*~! (p X p) matrices in
(22] and [13]. We adopt and extend the Kronecker notation of [23] and [9] in which the
k-th order cumulant is represented as a p*-element vector. We develop a unified approach
that handles non-stationary input processes and time-varying system parameters. Finally,
when our linear system is described as a state-space model, we are able to exploit the
system dynamics so as to obtain lag- and time-recursive expressions for the output cumu-
lants. Although some of our derivations are for second-, third- and fourth-order cumulants,
extensions to cumulants of other orders are straightforward. In practical applications, it
is not likely that cumulants of order greater than four would be used.

In Section 2, we describe the assumptions for our MIMO state-space model (SSM).
Section 3 provides some background on cumulants of scalar processes. In Section 4, we
use Kronecker products to define cumulants of vector processes. Sections 5 deals with
the computation of the state-cumulant vector. Section 6 deals with the computation of
the output cumulant vector; some applications in system identification are also discussed.
Computational details are discussed in Section 7. Simulation results are given in Section
8. Some useful results on Kronecker products are given in Appendix A. Proofs of most of
the theorems that are stated in Sections 3-7 are given in Appendix B.



2. The Model

Our MIMO SSM is described by

s(n+1) = @(n)a(n) + B(n)u(n) (1)
y(n) = ¥(n)a(n)+o(n) (2)

where z(n) € R™, w(n) € R™ and v(n),y(n) € R™.
Our modeling assumptions are:

(AS1) The input process, w(n), is zero-mean and non-Gaussian. We assume that w(n)
is independent of w(m), for n # m, but we do not assume that the components of
w(n) are mutually independent. We also assume that all relevant cumulants (and
moments) of w(n) are finite. Since w(n) is non-Gaussian, there exists a finite k > 2
such that its k-th order cumulant is finite and non-zero.

(AS2) The output noise process, v(n), is zero-mean and independent of w(n).
(AS3) The system is causal and exponentially stable.

(AS4) Matrices ®(n), B(n) and ¥(n) and the input noise statistics are known.
(AS5) E{z(0)} = 0.

The assumptions E{w(n)} = 0 and E{z(0)} = 0 guarantee that E{z(k)} = 0, Vk.
If either of these assumptions is not met, and the means are known, it is a simple matter
to remove the mean from the state vector z(k), and then work with a new zero-mean state
vector. The notation ®(n) indicates time-dependence; we have departed from the standard,
but more cumbersome, notation of #(n + 1,n). Obviously, some of these assumptions, i.e.,
(AS4), will be relaxed when we consider system identification issues in Section 6.

Our SSM, therefore, describes a MIMO linear system with time-varying parameters,
and non-stationary, non-Gaussian excitation. For ¢ > 0, the solution of the state equation

(1) is given by [14, p. 117]
i-1
a(nst ) = Aln +in)a(e) + 3 Alp +iyn ki £ DBE £ i) @)
i=0
where the state-transition matriz, A(n + i,n), is defined (for < > 0) by
An+in)=@n+i—-1)®(n+i—2).--B(n) (4)

with
Almn)=1TI (5)



The following identities are easily established:

An+1,n) = &(n)

Aln+1i,n) = A(n+i,n—1)8(n)

Aln+i,n) = ¥(n+i-1)A(n+i-1,n), i>0
An,m) = An,m+i)A(m+i,m), m<m+i<n

0O I O
— N N

Equation (3) may be re-written as

n-1

zin)= ]'Z_: A(n,k + 1)B(k)w(k) + A(n,0)z(0) (10)

which expresses the state-vector as the response of a time-varying system excited by the
input process, u(n), plus the transient due to the initial state z(0).

In the time-invariant case, we have A(n+i,n) = &'; and (3) becomes [16, eq. (2-17)]

z(n +1) = ®'z(n) + i@""j_lﬁ’w(n +7) (11)

=0



3. Cumulants: Scalar Processes

Let v = [v1,v2,...,v)" and z = [2(t), 2(¢ + 1), ..., 2( + tk—1)]*. Then, the k-th order
cumulant of the scalar random-process z(t) is defined [21, p. 871] as the coefficient of
(v192...v%) in the Taylor expansion of the cumulant-generating function, also known as the
second characteristic function, :

K(v) = In E{exp(v'z)} (12)

The k-th order cumulant of z(%) is thus defined in terms of its joint moments of orders up
to k. An equivalent definition in terms of partitions is given in [3]. For zero-mean scalar
processes, the second-, third- and fourth-order cumulants are given by

Cou(t;T) = E{y(t)y(t + 1)} (13)
Cay(tit1,t2) = E{y(t)y(t + t1)y(t +12)} (14)

and

Cu(titiy bz ts) = E{y(t)y(t + t1)y(t + t2)y(t + )}
— B{y(t)y(t + t1)}E{y(t + t2)y(t + ta)}
— E{y(t)y(t + t2)} E{y(t + ta)y(t + 1)}
— E{y()y(t + t3)} E{y(t + t:1)y(t + 12)} (15)

Note that the fourth-order cumulant of a zero-mean random process equals its fourth-
order moment less the fourth-order moment of a Gaussian random process with the same
autocorrelation. Other properties of cumulants of stationary processes are discussed in [24,
Ch II]. In accordance with (13), we will let Cyy(t + t1,%, — 1) denote E{y(t +t;)y(t +t2)}.

Brillinger and Rosenblatt [4] showed that the k-th order cumulant of the output,
y(n), of an exponentially stable SISO causal system, excited by an i.i.d. process, w(n), is
given by

Ciey(T1y +eey Th=1) = Tiew Y P(E)h(i + 1)+ B(i + Th-1) (16)
i=0
where g, is the k-th order cumulant of the input and k(:) is the system impulse response
(IR).

The focus of this report will be on the computation of the cumulants of the system
output y(n), both for stationary and non-stationary systems. In particular, our linear
model in Section 2 is described as a state-space model with time-varying parameters and
non-stationary inputs. One obvious method to compute the desired cumulant is to com-
pute the system IR, given the SSM triple (i.e., k(i) = ¥®*~'B, i > 0), and then use (16),
provided the system is L.T.I. and stationary. In practice, the infinite summation would
have to be truncated. Additionally, it seems redundant to compute the IR when the sys-
tem’s internal description is given. Further, we are interested in computing cumulants of

g ‘



time-varying, possibly MIMO, systems. Finally, since the state-variable model is recur-
sive, and since second-order statistics can be computed recursively, we expect to develop
recursive equations for the cumulants as well. In order to do this, we need to compute the

cumulants of the state-vector. Hence, even in the SISO case, we need to define cumulants
of vector processes.



4. Cumulants: Vector Processes

If y(t) is a vector process of dimension, say p, i.e., y(t) [v1(2), y2(2), -y wn(B)]',
we have two choices. We could let v; = [vi1,...,v]", 1 = 1,...,k, and y = [¢/(2),¥'(t +
t1); - ¥'(t + te_1)]’ in (12) (note that now, v and y in (12) are vectors of dimension pk).
Alternatively, we could define the cross-cumulants of the elements of the vectors and then
gather them into a single vector. Thus, if y(t) is zero-mean, analogous to (13)-(15), we
have

Cuw;(tim) = E{mi(t)y;(t +7)} (17)
Cy.‘,vj.w.(t; t, tz) = E{y;(t)'yj(t + t1)ye(t + t2)} (18)
which is the third-order cross-cumulant of (y:(t),y;(¢ + 1), y(¢ + £2)). Further,

Cuimsmm (it tayts) = E{yi(t)y;(t + t1)ye(t + t2)u(t + t3)}
E{yi(t)y;(t + t1)} E{we(t + t2)ui(t + ta)}

— E{yi(t)ye(t + t2)}E{ui(t + ta)y;(t + t1)}

— E{u(O)u(t + ta)}E{y;(t + t1)ye(t + t2)} (19)
which is the fourth-order cross-cumulant of (y:(%),y;(t + 1), ye(t + t2), wi(¢ + t3)), where
i,3,k,{ =1,...,p. Note that when'i = j =k =1, (17)-(19) agree with (13)-(15).

Just as the cross-correlation of two random vectors is a collection of the cross-
correlations of the scalar components of the random vectors, the (cross-)cumulants of
random vectors are (ordered) collections of the cross-cumulants of the scalar components
of the random vectors. If z,,...,z are p-element random vectors, then, a natural repre-
sentation for their cumulant, denoted by cum(zy,...,zx) is a k-dimensional array, whose
(%1592, ...y %) element is cum (@1, 2,55, .oy Thyiy )y 153k = 1,...,p, Where z;,, represents
the m-th element of the vector z;. Note that the scalar cross-cumulants are obtained
via (12); see also (17)-(19). We will find it more convenient to represent the k-th order
cumulant as a p* element vector as defined below, but first we need some notation.

Notation. If C is a p* element vector, we will let Clityi2ycesti]y B190enyie = 1yeuny Py
denote its ((i1 —1)p* (i = 1)p* 2+ - + ik)-th element. Essentially, the p*-element
vector is ‘treated’ as a k-dimensional array. Similarly, if M is a p* x p* matrix, we will
represent its ((i1 —1)p* (= 1)p* P+ i, (a — 1P+ (G = 1)pR 2 - +j;.)
element by M([21, ... 2k]y [J1y eeey Jk])s T2y eees Thy T2y eery Tl = Ly ueny P

Definition. The cumulant of the p-element random vectors, zi,..., 2%, denoted by cum
(z1,-.-,zk) is the p*-element vector whose [i1, ...,1x]-element is given by cum(z;;,, ..., T, ),
%1,--y2 = 1,...,p. In particular, the k-th order cumulant of the vector process y(n), i.e.,
cum(y(n),y(n+71), ..., y(n + Te_1)), denoted by Cpy(n; 71, ..., Tk—1), has cum(y;, (n), v, (n +
T1)y ooy Yiny (B + Th1)), as its [tg,21,...,%k—1]-th element, %9, ...,3_1 = 1,...,D.

The motivation for representing cumulants as p*-element vectors, rather than a
k-dimensional array is two-fold: first, it enables us to use the usual algebra of vectors
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and matrices for computational purposes; second, it allows us to exploit the algebra of
Kronecker products to obtain rather simple-looking expressions for the cumulants of vector
processes.

The Kronecker product approach handles the MIMO case easily and leads to rather
nice-looking formulae. We will let ® denote the Kronecker product operator. A short
review of Kronecker products and some useful results are given in Appendix A. The cu-
mulants of vector processes are compactly expressed via Kronecker products:

Theorem 1: The k-th (k = 2,3,4) order cumulants of a zero-mean p-element vector
process, y(n), are given by the p* vectors, Chiy, as

Cau(tir) = E{y(t)®@y(t+7)} (20)
Cay(titiytz) = E{y(t) @yt +t) @ y(t + 1)} (21)
Cy(titiitats) = E{y(t) @yt +t) @ y(t +1t:) @ y(t +1ts)}
- E{y()®@y(t +1)} @ E{y(t+t2) ® y(t + t3)}
— PYE{y(t) @ y(t +t2)} ® E{y(t +ts) ® y(t + t1)}
— BE{y(t)®y(t +1t:)} @ E{y(t + 1) @ y(t + t2)} (22)

where P, is the p* X p* permutation matrix given by

in which the (p* x p®) permutation matrix Uy, has unity entries in elements (G —1)p+
k,(k—1)p*+i],i=1,...,p* and k = 1,..., p, and zeros elsewhere. Matrix Upaxp is formally
defined in (104) in Appendix A.

Just as the correlation matrix of a vector process is an ordered collection of the cross-
and auto-correlation terms of the scalar components of the vector process, the cumulants
of vector processes should be ordered collections of the cross- and auto-cumulants of the
scalar components of the vector process. We have used Kronecker products to obtain such
a representation. Thus, rather than use E{y(¢)yT(¢ + 7)} for the usual p X p correlation
matrix, we use the p? x 1 vector C,, in (20).

The cumulants of random vectors satisfy the following properties:

CP1.] If A;, i = 1,...,k are constant r X p matrices, and z;, i = 1,...,k are p-element
]
random vectors, then,

cum (A121, ..., Agzi) = [A1 ® -+ ® Ag]cum (zy, ..., zx)

[CP2.] The cumulant vector is symmetric in its arguments in the following sense:
cum (21, vey k) = Uphmiinepi CUM (41 000y Ty B1y eeey Z5)

where the U matrices are defined in (104) in Appendix A.

8



[CP3.] Cumulants are additive in their arguments, i.e.,
cum (Zo + Yo, 215 +.y Z&) = CUm (o, 21, ..., 2x) + cum (Yo, 21, .- 2&)

[CP4.] If a is a constant vector, then

cum (a + 21, ..., 2) = cum (21, ..., Z)

[CP5.] If the random vectors {z;}%; are independent of the random vectors {y;}%_,, then,

cum (21 + Y1y ..oy Tk + Yo) = cum(zq, ..., zx) + cum (¥, ..., Yi)

[CP8.] If a subset of the random vectors {z;}%, is independent of the rest, then

UL By, vee5%5) =0

Properties [CP1] through [CP6] are generalizations of the corresponding properties
of the cumulants of random variables, [24, Ch II.2]. Properties [CP3]-[CP6] are obvious and
are independent of the particular representation we have chosen in our definition above.
Properties [CP1]| and [CP2] are proved in Appendix B.

When the process is stationary, we will drop the time index ¢ in Ciy(¢;...) (see
Theorem 1).

4.1 Equivalent Representations

Following classical second-order theory, the k-th (k = 3,4) order cumulants of
vector processes have been defined as a collection of p*~2 (p x p) matrices in [22] and
[13] (stationary processes only) and as p* X p (k = 3) and p? x p? (k = 4) matrices in [19].

In [22], the third-order cumulant is defined as the collection of p (p X p) matrices

O, m(t1,t) = B{y(t)y"(t + )¥Ym(t + 1)}, m=1,..p (24)

where Y,(t) = diag(ym(t), ..y ym(2)).
In [13] the third- and fourth-order cumulants are defined via

Cigm (t1st2) = E{y(t +t1)y" ()ym(t +t2)},m =1,...,p (25)
CICM (t1,ts,t3) = E{y(t +t1)y" (t)ym(t + t2)va(t + t3)}
E{y(t + t1)y" ()} E{ym(t + t2)ya(t + )}
— E{y(t + t1)ym(t + )} E{¥T (t)un(t + t3)}

— E{y(t +t1)yn(t + )} E{y" ()ym(t + £2)}
m,n=1,..,p (26)



" The cumulant matrix defined in (25) is the transpose of that defined in (24).

In [19], the diagonal slice of the third-order cumulant (i.e., {; = ¢; = 7 in (18)) is
defined as

Cg’:’;",’;l(t;r) = E{y(t + 1)y (t + T)ym(®)}, m=1,...,p (27)
and in mixed notation as the p? x p matrix
C3y” (t7) = E{y(t) ® [y(t + r)y" (¢ + 7))} ' (28)

Similarly, the diagonal slice of the fourth-order cumulant (i.e., t; = t; = t3 = 7 in (19)) is
defined as the p? x p? matrix
CL” () = Byl (t+7)@y(t+ )y (t+7)}

— E{y(t)y"(t+ 1)} ® E{y(t + m)y" (t + )}

- E{y(t) ® y(t+ 7)}E{y(t +7) @ y(t + 7)}"

— E{y(t) @ NE{y"(t + 7) @ y(t + )HI ®y" (¢ + 7)]} (29)
We note that the term yT(¢ + 7) ® y(t + 7) in (29) is the same as y(t + 7)y7(t + 7) since
y(t) is a column vector.

MW1

Let ngWI denote the p? x p matrix obtained by stacking the matrices C3{"},
m =1,...,p defined in (27). Let C{S™ and Cg be similarly defined. Then, using the vec
operator, which transforms matrices to vectors via column stacking [see Appendix A], we
obtain

vec [ngWI(t;‘r)] = Cgy(t+71;—71,0) (30)
vec [Cg{,w(t;'r)] = Cyy(t+7;—71,0) (31)
vec [Cﬂw(t;r)] = Cyg(t+7;0,—7,0) (32)
For stationary processes, we have
vec [CHW1(r)] = Cgy(-7,0) (33)
vec [ng“’(r)] = Cyy(—7,0) (34)
vec [Cﬁw(f)] = Cy(0,-7,0) (35)
vec [Cng(tl,tz)] = Csy(t2,t1) (36)
vec [C{FM(1),15,13)] = Cay(ts,tz,t1) (37)

The vec operator thus provides a convenient mechanism for converting the defini-
tions in [22], [13] and [19] to the definitions given in (21) and (22). We define an unvec, ,
operator which converts an mn-element vector into an m X n matrix, such that

UNVeC,.q[X] = Xmxn = Vee [Xpyn] = x (38)

We have thus established a one-to-one correspondence between our Kronecker product
representation in Theorem 1, and the various representations in [22], [13] and [19]. The
definitions in Theorem 1 are much more compact than those given in (26) and (29). Fur-
ther, there is a nice uniformity in the definitions in Theorem 1. Finally, note that Theorem
1, unlike the definitions given in [19], is not restricted to the 1-D diagonal slice.
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4.2 Linear Vector Processes

Let us now consider a linear vector process y(n), i.e.,

yn)= 3 H(n,k)uw(k) (39)

k=—co

where y(n) € R™, w(n) € R™ and H(n,k) € R™ x R™. We further assume that w(n) is
independent of w(m), n # m; hence, its cumulants are multidimensional Kronecker delta
functions, i.e.,

Crw(75 71y o0y Th1) = Tiw(n) 6(71) - 8(Th-1) (40)

where the input cumulant T}, is an n*-element vector. We also assume that the IR
matrices H(n,k) are absolutely summable so that the output cumulants are well-defined.
Then, the counterpart of Brillinger and Rosenblatt’s result in (16) is given by the following;:

Theorem 2. For the linear vector process in (39), with w(n) satisfying (40), the k-th
order output cumulant is given by

Ciy(n5 71y s Thee1) = Y, [H(ny3) @ H(n 4+ 711,1) @ -+ ® H(n + Tie—1, 1)) Thws (3) (41)

i=—o00

and in the stationary time-invariant case, when H(n,k) = H(n — k) and I'ky(n) = Tiw, by

Ch i) = T IEG) S HEL %) & 5B Emei)[Bhe (42)

i=—oc0

Proof. See Appendix B.

Since the Kronecker products of scalars are themselves scalar products, we see that
Brillinger-Rosenblatt’s result given in (16) is the special case of (42) for SISO causal linear

processes.

i



5. Cumulants of the State Vector

Using the Kronecker product approach, we will derive lag- and time-recursive equa-
tions for the k-th order cumulants of the state and output processes. For zero-mean pro-
cesses, the second- and third-order cumulants are identical with the second- and third-order
moments, and as such, are easily handled. The fourth-order cumulant, however, involves
not only the fourth-order moments, but also the second-order moments, and in this sense,
it is typical of higher-order cumulants. However, the results in Theorem 2 enable us to uni-
formly handle cumulants of all orders. Our development handles non-stationary processes
and time-varying state-space models and leads to recursive (in lag and time) equations.
Steady-state solutions are provided for the stationary time-invariant case. Recursive in
time and lag equations for the diagonal slice of the third- and fourth-order cumulant of
the state vector of an SSM are derived in [19] using a mixture of Kronecker product and
matrix notations.

5.1 Time-Varying/Non-Stationary Case

In this section, we provide various algorithms for computing the k-th order cumu-
lants of the state vector in (1). Closed-form expressions, as well as time- and lag-recursive
equations are derived. Proofs of all theorems are given in Appendix B.

Theorem 3. Kronecker state-cumulant vector, Cj.(n;iy,...,%-1), can be expressed, Vi,
I=1,...,k—1, in terms of its zero-lag values as follows:

Ciz(n; i1y ...y th—1) = [A(n,n—m)@A(n+i1,n—m)®: - @ A(n+if—1,n—m)|Che(n—m;0,...,0) (43)

where m = — min(0, %1, ..., 2k—1)-

Theorem 3 handles lags in the entire (k —1)-D space, —co <1} < 00,1 =1,...,k—1.
Note that for causal systems Ci,(l;0,...,0) = 0 for I < 0. Further, with m as defined in
Theorem 3, one of the A matrices in (43) is always the identity matrix, because A(n +
i,n + 1) = I; see (5).

Note that cumulants at positive lags (i > 0, ! =1,...,k — 1: m = 0) at time n are
expressed in terms of the zero-lag value at time n; however, cumulants elsewhere at time
n are expressed in terms of the zero-lag values at previous times n — m, m > 0.

Theorem 4. Kronecker state-cumulant vector, Ciz(n;iy,...,2-1), can be computed re-
cursively in its lag variables, 4;, [ = 1,...,k — 1, for 0 < m; < 1;, as follows:

Ckz(n;il, ---yik—l)
= [I@ A(TL + 1:1,77. + 1:1 —_— m1) R---® A(n + t'k_.]_,‘n +1:k_1 — mk_l)]
C;.,(n; I:]_ - my, ---:':h—l — mk_]_) (44)

Thus, by setting my =1 and m; =0, j = 2,...,k — 1, we get a one-step recursion in
the lag variable i,.

12



Theorem 5. Kronecker state-cumulant vector, Chiz(n;%1,...y%k-1), can be computed re-
cursively in its temporal variable, n, as follows, for 4, >0, I =1, ...,k — 1:

Cia(n +1;0,..,0) = ®4(n)Cie(n;0,...,0) + By(n)Tho(n) (45)

Ck,(n + 1; ‘i], veay ik_1)
=[®(n)®B(n+11) @+ @ B(n + tk-1)]Cha(n; 11, vy th-1) + D(nj 1, ..y ir_1) (46)

where
D(n;i1yeeyih-1) = [ I@ A(n+i1+1,n+1)®- - ® A(n +ik-1 + 1,7+ 1)] Br(n)Thw(n) (47)
and for any matrix M, M, is defined by
My=M, @M (48)

with M; = M.
Although (45) is a special case of (46), we have chosen to include it because, as we

shall soon see, the zero-lag cumulant plays a rather important role in the computation of
cumulants.

Some comments are now in order:

1. The 1-D diagonal slice is obtained when 4 =1, [ = 1,...,k — 1, in Ciz(njt1,.ccyip_1)-
The 1-D diagonal slice of third- and fourth-order cumulants of SISO processes have
been successfully used in several signal processing applications, see [8] and [20], for
example. In this case (i.e., 3; = 1), (43) simplifies to

Ciz(nityi) = [I® Ara(n+ i:n)]ckz(n; 0,..,0), i>0 (49)
Ciz(n;1y..y1) = [A(nyn + 1) @ Li1]Cie(n +4;0,...,,0), <0 (50)

2. 1-D slices occur when k — 2 of the k — 1 lag variables are fixed, e.g., i = 1; + my,
l=2,..,k — 1, where the m;’s are fixed, or when i, = m;, [ = 2, ...,k — 1, are fixed
and ¢, is arbitrary. Some simplifications may be expected in this case; for example,
(43), yields, for i,m; > 0,

Ckz(n; i1+ Mgy ., i+ mh-—-l)

=I®A(n+in)@ A(n+i+myn)®---® A(n + 1+ mp_1,n)]Cras(n;0,...,0)
=[I®I®A(n+i+myn+i)®- - ® A(n+ i+ mr_1,n+i)|Cra(nji,...,i) (51)

where we have used (43), (9) and property [P2] from Appendix A.

3. Equation (43) expresses all the cumulant lags explicitly in terms of the zero-lag cumu-
lants. Equation (45) provides a time-recursion for the zero-lag cumulant; we assume
that C.(0;0,...,0) is given. Equation (44) is recursive in one or more cumulant lags;
again, the zero-lag terms are required to initialize the recursion. Finally, for fixed
lags, (46) provides recursion in time.
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4. Equations (44)-(46) provide recursions in lag and time for the cumulant of the state
vector; however, these equations are valid only for non-negative lags (i; > 0). Corol-
lary 1 (below) shows that cumulants at negative lags at time n can be obtained
from cumulants at positive lags at times prior to n. Theorem 6 (below) gives a
simultaneous time and lag recursion for negative lags.

Corollary 1. Kronecker state-cumulant vector, Ci,(n;iy,...,ix_1), where at least one of

the (4;)’s is negative, can be expressed in terms of cumulants at positive lags and earlier
times, as follows:

Ck,,(n; i] yoeany ik—l)

k—j—1terms

= Upk—isnps Chz(1 + 4538541 — 850 eey Tkt — 85y =25, 81 — 85y ueeyBjm1 — 45) (52)
b5 < min(0;8y,ne oy $5- 05 8555 enyBR1)
————

j—1terms

where p = dim(z(n)), j = 0,1,..,k, and the U matrices are defined in (104) in Appendix
A.

Note that Corollary 1 naturally divides the k—1-D space into k regions of the form:

Ro: 0 <min(iy, iz, ipo)

Rl : il < min(O, ig, ceny ik-—l)
Rz . ig Smjn(O,il,ig,...,z'k_l)
Rk-—l . ik—l S min(O, 2.1, cany ?:k_z) (53)

Thus, in the case of third-order cumulants, we will find it convenient to divide the
(,7) plane into three segments: Ry which covers QP I (7,7 > 0); R; which covers QP II
and the part of QP III on and above the i = j line (i < min(0,7)); and R, which covers
the part of QP III below the ¢ = j line and QP IV (5 < min(0,¢)), (see Figure 1). Note
that according to (53), the origin is contained in all the Ry’s; further, for k£ = 3, the line,
1 = 7 <0 1s contained in both R; and R,. In order to avoid duplication, we have included
the origin only in Ry and the line, ¢ = j < 0 only in R;.

Since the system is causal, the Kronecker state-cumulant vector Ciz(n;21,...,2%-1)
is non-zero only whenn > 0, n+1¢ > 0,1 = 1,...,k — 1. Consequently, given cumulant
values in Ry for times 0 < n < N, all the non-zero cumulant values in regions Ry, ...., Rt_;
can be generated for all n < N. This is an important observation, since it considerably
decreases the amount of computation required to evaluate the cumulants at negative lags;
however, this requires storage of cumulant values in R,.

Equation (43) provides explicit expressions for the cumulants at negative lags. By
combining these with the time-recursion equation for the zero-lag term (45) and using (9),
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recursive equations (in lag and time) can also be derived in the same manner as for the
positive lags.

Theorem 6. The Kronecker state-cumulant matrix, Ciz(n; 1, ...,14_1), for lags inside R,
i.e., 5y < min(0,%y,...,%-1,%141,---,2k—1), can be computed recursively in both its temporal
\-—,—/

. I-1 terms
variable, n, and its lag variable, 7;, as follows:

Ck.’n(ny ils Lt ih L) ik—l)
=[@2nr-1)@®(n—-1+11)®@ - Q@¥(n—-1+4+4-1)QIR@P(n—1+i141)
®---® @(n -1+ ik—l)] Ck;-('n = 1; il, casy ?:1'._1, i( + 1, i[+1, cney ik—l) (54)

Equation (54) is simultaneously recursive in time and in the negative lag ¢;. Equa-
tions that are recursive only in time or in the negative lags can be obtained, but these will
involve inversion of ®(n). For example, for lags inside region Ry_;, where tx_; < 0,

Ciz(n5i1y ey iko1) = [Tk—1 ® 871 (0 4 ik-1)]Cha(n; i1, ooy T2, k1 + 1)
- e A(n+ i, n+ ik—1 + 1)} Br(n + tk—1)Thuw(n + ik—1)  (55)

This equation is derived in Appendix B.

Theorems 3-6 and Corollary 1 provide several ways of recursively computing the
state-cumulant vector in lag and in time. We discuss four schemes for the computation of
the third-order cumulant, stressing the inherent parallelism that should make such schemes
particularly amenable to parallel and systolic implementations:

e Scheme 1. (See Fig. 2) The zero-lag cumulant is computed recursively in time
using (45) in Theorem 5. At each time point, cumulants in Ry are computed via
lag-recursion, Eq. (44) in Theorem 4. Cumulants in R; and R; are obtained via (52)
of Corollary 1. This scheme requires the storage of cumulant values in Ry, but does
not require any computations to obtain the cumulants in R; and R;. This scheme
permits parallel computation of the cumulants in Ry at several time points.

e Scheme 2. At time n = 0, the lag-recursion, Eq. (44), in Theorem 4 is used
to generate all desired lags in Ry. The time-recursion equations, (45) and (46) in
Theorem 5, are then used to obtain, perhaps simultaneously in parallel, all desired
cumulants in Ry at the next time point. Cumulants in R; and R, are obtained via
Corollary 1, as in Scheme 1. This scheme permits parallel computation of several
cumulants in Ry, from one time point to the next.

e Scheme 3. Same as Scheme 1, except that cumulants in R; and R, are obtained
via the combined time-and-lag recursion equations given in Theorem 6. This scheme
does not require storage of the cumulants in Ry. Rather than use Theorem 6, one
could use the pure lag recursion equations, such as (55); this would permit parallel
computations in Ry, R; and R,;. However, this would also require inversion of the ®
matrix; additionally, (55) is more complicated than (54).
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e Scheme 4. Same as Scheme 2, except that cumulants in R; and R, are obtained

via the combined time-and-lag recursion equations given in Theorem 6. This scheme
does not require storage of the cumulants in Ry. Rather than use Theorem 6, one
could use the pure time recursion equations (counterparts of (55)); this would permit
parallel computations in Ry, R; and R;. However, this would also require inversion
of the ® matrix; additionally, (55) is more complicated than (54).

o If only 1-D slices of the third-order cumulant are required, then further savings in

the above schemes may be possible, for example, by appropriately using equations
(49)-(51).

As usual, we have a tradeoff between computational complexity and storage. The

method in Scheme 1 is depicted in Fig. 2. Several observations are in order (similar
observations, modulo appropriate changes, may be made for the other schemes):

Ik

All the cumulants in Ry can always be computed; if Cj.(n;0,0) reaches steady-state
(SS), all the cumulants in Ry also reach SS. This is a consequence of causality.

For n = 0, all the cumulants in R; and R; are zero; this is a consequence of causality
(hence, z(n) =0, n < 0).

R, fills up from right to left as the temporal variable n increases. From (52), we
note that at time n, R; has exactly n non-zero columns because n+: > 0 and 7 < 0.
[More generally, from (52), we note that for our causal SSM, cumulants in R; are
defined only for n + i; > 0 and i; < 0]. As n gets larger, the entire R; region gets
filled up; and when Cj.(n;0,0) reaches SS, so do all the cumulants in R;.

R, fills up from top to bottom, as n increases. It has only n non-zero rows, because
n+j > 0 and j < 0 [see (52) and the preceding item|. As n gets larger, the entire
R, region gets filled up, and when Cj.(n;0,0) attains SS, so do all the cumulants in
R,.

R, and R, computations are non-recursive in a single variable. Cumulants in R; and
R, use earlier values of cumulants in Ry.

Additional parallel processing schemes are possible in Ry, R; and R;.

. For the computation of k-th order cumulants, the (k—1)-D space is naturally divided

into k regions (see Corollary 1); hence, observations similar to those made for the
third-order cumulant would follow. Because of the extra dimensions, there is more
parallelism in computing the higher order cumulants than there is in computing the
third-order cumulants. Figure 2 would have k+1 rows, one for the zero-lag cumulant,
and one for each of the R’s, [ =0,...,k — 1.
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5.2 Stationary, Time-Invariant Case

When &(n) = &, A(n +i,n) = . Several simplifications occur in this case, e.g.,
(43) becomes

Ck,,(n; i;, ---,ik—l) [‘i’m ® @iﬁ-m ®-® Qii_l+m]ckz(n —m; 01 atey 0) : (56)

I®®" ®---® 3|8 Cho(n — m;0,...,0) (57)
where m = — min(0, 11, ...,%k-1); and, in Theorem 5,
D(n;i1yeeyiner) = [[ @ " ® - -+ @ 31| By(n)Thw(n) (58)

In the stationary, time-invariant case, [i.e., when ®(n) = ®, B(r) = B and
I'kw(n) = Crw)], when the state vector is in steady-state, the temporal index, n, can be
dropped from the cumulant notation Ciz(n;%1, ..., %k-1), 1.€., Csz(n;1,7) — Caz(3, 7).

Corollary 2. Steady-state Kronecker state-cumulant vector, Ciz(i1,...,2%—1), can be ex-
pressed in terms of its zero-lag values V ¢, l = 1,...,k — 1, as follows:

Crz(try ooy k1) = [B™ @ 811" @ ... ® B*-1%™] C.(0, ..., 0) (59)
where m = — min(0, %y, ...,%-1); and the zero-lag term, Ciz(0,...,0), is given by
Ciz(0,...,0) = [Ix — ®4) ' Bilrw (60)

Proof. Equation (59) follows directly from Theorem 3, and (60) follows from (45) in
Theorem 5. O

Equation (59), for k = 3, with 1,1, > 0, is also given in [7].

In steady-state, the Kronecker state-cumulant vector has a lot of inherent symmetry.
Recall, [24], that in the stationary scalar case, we have

CSz(i:j) = C3=(j:i) = Caz(_j,i = J) =
Caz(i —j,—J) = Cse(j — 1, —i) = Cau(—1,5 —1) (61)

Hence, all the cumulants in the plane can be computed from the cumulants in the wedge
{(3,7) : 1 > 0,5 <} (see Figure 3a). This is true in the vector case as well, as shown in:

Lemma 1. For a stationary vector process, the Kronecker state-cumulant vector, Cs.(%,7),
in the wedge, {(,7) : 1 > 0,7 < i}, specifies the cumulant everywhere on the plane, via

C3=(i’j) == [I ® UPXp]Ch(j’i)
= Up“'XpC3:e("'j,i '—J)
= Upxpll ® Upxp|Csa(i — j, —7)
= U%ypCsa(j — i, —i)
= Uﬁxp[‘[ ® Upxp|Caa(—1,5 — ) (62)
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where the p? x p* matrix Upx, and the p* x p* matrix Uy, are defined in (104) in Appendix
A.

Proof. See Appendix B.

More generally, the symmetry relations for k-th order cumulants are given by

Cka(ila ---;ik—l)
= Upr—ixpi Cha (3541 — By ey Bhm1 — 85, =855 81 — 15y ey bjm1 — 3;) (63)

where j = 0,...,k. Equation (63) follows directly from Corollary 1; it does not express all
of the inherent symmetries (compare (63) with (62), with k = 3); however, other symmetry
relations are easily derived.

Note that once the zero-lag SS values are obtained, SS cumulant values at all other
lags can be computed from (59) and symmetry relations such as those given in Lemma 1
for third-order cumulants. The p* x p* matrix (I — &) is guaranteed to be non-singular
because of the assumed stability of our SSM. Standard inversion techniques would require
on the order of p** flops. An alternative to explicitly inverting (I — ®;) is to use the
following iterative procedure:

Theorem 7. Iterating the equation
Ciz(n + 1;0,...,0) = 8,Ci(n;0,...,0) + Byl (64)

with respect to the variable n leads to the steady-state solution given in (60) of Corollary
2, for any finite-valued initial condition, provided ® has all of its eigenvalues within the
unit circle.

Proof. This result follows directly from [P4] in Appendix A. Equation (64) describes a
state-equation with step excitation; if the system is stable, steady-state is attainable. O

The number of iterations required for convergence of the algorithm given in Theorem
7 depends upon the eigenvalue distribution of ®.

The matrix ®* is a p* X p* matrix; thus direct evaluation of (64) would involve p*
units of storage; further, the computational complexity is O(p?**). In Section 7, we present
computational schemes that reduce the storage to p* elements, and the computational
complexity to O(p**?).

Yet another alternative to explicit inversion is to recast (60) as a matrix Lyapunov
equation. Let A = B = ®;,, for k even, and let A = ®(;11)/; and B = ®(x_,))2, for k odd.
Then, using the vec and unvec operators, we can rewrite

y=[I-A®B]'x
as the discrete Lyapunov matrix equation
Y -BYAT =X,
which can be solved in O(p**) flops.
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If the matrix @ is in one of the standard canonical forms, it has only (2p — 1) non-
zero blocks, of which p—1 are identity matrices. In this case, matrix ®; has only (2p —1)*
non-zero elements, of which (p — 1)* blocks are identity matrices. Hence, sparse matrix
techniques [10] may be used for the matrix inversion.

If the matrix @ is non-defective (i.e., its Jordan form is strictly diagonal) then,
we may exploit Kronecker product property [P4] as follows. Let ® = VAV ™! denote the
eigenvector decomposition of ®, where A is strictly diagonal. Then, using [P4] and [P5],
we obtain

(T — Bx) ™" = Va(le — M) (V)

Thus, when @ is non-defective, the effort required to compute the inverse in (60) is essen-
tially that required for inverting the px p matrix V. Further, if the matrix V is unitary (e.g.,
® has distinct eigenvalues), then, the explicit inversion of V is not required (V-! = V¥),
When the matrix ® is defective, either the iterative procedure given in Theorem 7, or the
discrete Lyapunov equation method must be used. See, also Section 7.
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6. Cumulants of the Output Vector

Given the SSM triple (&(n), B(n), ¥(n)), the impulse response matrices of the sys-
tem can be computed as H(n,k) = ¥(n)A(n,k + 1)B(n), n > 0 [see eqs. (10) and (4)],
and in the time-invariant case as H(n) = ¥®"~'B, n > 0. The output cumulants can then
be computed using the infinite summation in Theorem 2, (42). We will derive closed-form
expressions for the output cumulants directly in terms of the model parameters; this will,
incidentally, yield a closed-form expression for the summation in (42), and, hence, for (16).

6.1 Non-recursive Equations

In this section we will give closed-form expressions for the output cumulants in
terms of the SSM matrices.

6.1.1 Obvious Results

Theorem 8. The k-th order Kronecker output-cumulant vectors can be calculated as,
Ck,(n; Ty seny Tk_1) = [‘I’(n) ® ‘I’(n + 7'1) ®..0 'I’(n -+ n—l)]chz(n; T1, "':Tk—l) (65)

and in the steady-state, stationary, time-invariant case, as,
Cky(Tl,...,Tk_l) = \I’kaz(Tl,...,Tk_l) (66)

Proof. Follows directly from (2) and property [CP1]. O

Equation (66), for k = 3 is also given in [7].

Since we already have closed-form expressions for the Kronecker state-cumulant
vector, it is easy to compute the output cumulants using Theorem 8.

In the stationary, time-invariant case, Giannakis [5] notes that for SISO models the
positive lags of the cumulant slice c3y(m,n0), m > 0, n, fixed, can be obtained as the
impulse response of the SSM (®, g,), where ® and % are identical to those in the original
SSM (@,b,%), and g is expressed in terms of an infinite summation involving the impulse
response. Using Kronecker products, we can extend this result to arbitrary cumulant
orders and to MIMO models; further, we obtain closed-form expressions for the g matrix.
Since the k-th order cumulant is a function of (k — 1) lag variables, we have to freeze k — 2
of the lag variables. Our results are given in:

Theorem 9. For the model in (1) and (2), with SSM triple, (®, B, ¥), the Kronecker
output cumulant vector can be expressed, in the stationary time-invariant case, as the IR
of the SSM triple (®, G, ¥), as follows, for 7 > 0,1l =1,...,k — 2, and 74, > 0:

Cky('rh-"a'rk—l) = [Ik—l®‘I"I’ﬂ_l_1]ka.---.ﬁ_z (57)
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where

Gk:"l,----ﬂ-a = [@ QUP" R .. Yd™-2 @]Ckz(ﬂ, ...,0) (68)
= [‘I’k—l ®I]Ckz(fl$'"37-k—2:1) (69)

and
Ckz(O, ...,0) = [Ik - @k]-lBkPkw (70)

The I matrix in (67) is (ny x n,), whereas that in (69) is (n, x n.). For single-output
models, Ij,_; in (67) is the unit scalar.

Further, _
Ckv(Tlv mery Tk—l) = ‘II@TI_‘_IG‘!;'P:.-.-.T;—: (71)
where . g
Gk:ﬂ.---:ﬂ.-z = UINEC i1 [Gk;fz.---""h—z] = Cha(T1y s Th—2, 1)‘1’{_1 (72)
Cry(T1y ey The1) = unvec, i1 [Chy(T1y e Th1)] (73)
and B
Ckz(‘rl, ceey Th—2, 1) = unvecn_‘”t_; [C,,,('rl, veoy Th—2, 1)] (74)

Proof. Follows directly be applying the lag-variable recursion theorem to Theorem 8;
details are given in Appendix B. Equation (71) follows immediately from (67) by using the
definitions of the vec and unvec operators, which are given in Appendix A. O

Although Theorem 9 holds only for positive lags, similar expressions for other lags
may be obtained by making use of symmetry relations, such as those given in Lemma 1 for
the third-order cumulant. Equation (71) would seem to indicate that the two SSM triples,
(®,B,%) and (®,G, ¥) have the same observability space; however, this need not be true,
as is easily established in the SISO case.

Theorems 8 and 9 give closed-form expressions for the output cumulants in terms of
the SSM parameters; they also provide closed-form expressions for the Brillinger-Rosenblatt
result given in (16), and its MIMO extension in (42).

In the SISO case, the equations in Theorem 9 simplify to

C’W(T’ '"17’:—1) = d’@ﬂ-‘_lgk:ﬂ,---.ﬂ—z
where
ksl = [d’k—l ® I]Ckc(Tlg veey Th—2, 1)
6.1.2 A Less Obvious Result: Stationary Time-Invariant Case

Although we have time- and lag-recursive equations for the state-cumulants, the
equations in Theorems 8 and 9 do not lead to recursive equations for the output process,
since the matrices ¥ and ® will not, in general, be commutative. In this subsection,
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we will assume that the SSM matrices are time-invariant, and that the noise processes are
stationary. From Lemma 1, and its generalization, the k-th order cumulants of a stationary
linear process are specified everywhere, via symmetry relationships, by the cumulant lags,
Chy(#1, .-y tk-1) in the non-redundant ‘wedge’ 0 < i; < i; < ... < 44_y; see Fig. 3a for the
k = 3 case.

When the stationary process is a linear process, generated by a p-th order (p =
dim(®)) SSM, the non-redundant volume is given by 0 < i3 < iy < ... < G < p; see
Fig. 3b for the k = 3 case; cumulants elsewhere in the ‘wedge’, and hence elsewhere in the
volume, may be found via recursive equations as we show below.

Let a(A) = det(A] — &)™ = TP _,anA?"™, ap = 1, denote the characteristic
polynomial of ®; by the Cayley-Hamilton theorem, we have a(®) = 0. Hence, for 1,7,k > 0,
using (59) for k = 4, we find,

0 = U fIQ® o Q8 ®2*a(®)]C4.(0,0,0)
P

= U ) an[l® % @ & ® 48P "™|C4,(0,0,0)

m=0

P
= ‘ ‘1’4 E a,,.C.;_.,(i,j,k + p — m)

m=0 _
P
= E amc‘ly(i,j: k+ P m) (75)
m=0

where we have also used (66) from Theorem 8. Consequently,

P
Céy(i&j$p f k) = == Z amC4y(i,j,k +pi— m)s k>0
m=1

Given Cyy(4,7,k),0 < ¢ < j <k < p, all other cumulant values can, therefore, be computed
using the above recursion and symmetry properties. Although we have demonstrated this
only for fourth-order cumulants, extensions to other orders is obvious.

It would, therefore, be useful to develop an algorithm that provides all the cumulants
in the non-redundant region in one shot. We will now develop such an algorithm.

From (2) and (3), we obtain

m—1

y(n+m) = ¥(n+m)A(n+m,n)z(n)+¥(n+m) E A(n+m,n+3j+1)B(n+j)w(n+j)+v(n+tm).

=0
(76)
Let Y7(n) = [y(n), *(n-+1), oy (n-4p—1)], W () = fr(m)y (1), oy (b p—1),
and V7 (n) = [v¥(n),v*(n + 1),...,vT(n + p — 1)]. Concatenating (76), for m = 0,...,p — 1,
where p = dim(®), we obtain
‘I’{n)A(n,n)

¥(n+1)A(n+1,n)

Y(n)= z(n) + T(n)W(n) + V(n) (77)

;I'(n +p—-1)A(n+p—1,n)
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which we will compactly represent as
Y (n) = O(n)z(n) + T(n)W(n) + V(n) (78)

where the matrix T'(n) is block lower-triangular with the (m,j) block given by ¥(n +
m)A(n+m,n+j+1)B(n+j),j=0,..,m—1and m =0,...,p— 1; matrix T(n) has zeros
on the main diagonal.

We will now compute the cumulants of the vector process Y (n). Note that the
random vectors z(n), W(n) and V(n) on the right-hand side of (78) are mutually indepen-
dent. The zero-lag k-th order cumulant of each of the terms on the right-hand side of (78)
is readily computed via Theorem 2. From the way Y(n) has been defined, the zero-lag
cumulants of Y (n) yield the cumulants of y(n) at all lags in the non-redundant
region of support.

Using properties [P1] and [P2], causality of the SSM, the definitions of cumulants
of vector processes, and properties [CP1] and [CP5], we obtain from (78)

Crr(n) = Ok(n)Crz(n) + Ti(n)Ciw(n) + Crv(n) (79)

where Cpy, Ci., Ciw and Cjy denote the zero-lag cumulants of the vector processes Y(n),
z(n), W(n) and V(n). In the time-invariant case, we have O(n) = O, the observability
matrix for the SSM triple, {®, B, ¥}, and T(n) = T, where T is a lower-triangular block-
Toeplitz matrix, with (m,j) block given by ¥®™~-1B = H(m — j), where the H(n)’s
are the ny X n,, impulse response matrices for our SSM. The (3, ) element of H(n) is the
response of the i-th output channel to impulse excitation at the jth input channel. In the
SS stationary case, we obtain:

Theorem 10. The k-th order SS output cumulant vector Cy for a time-invariant, sta-
tionary SSM is given by

Cky = Ok[Ik = ‘pk]_lBkI‘kw o+ TkaW ek CkV (80)

Proof. The SS solution to (79) follows directly by using (60). O.

The steady-state solution in (80), for £ = 3 was given in [9] for SISO ARMA
processes. Equation (80) was also derived in [23] for the fourth-order cumulant of SISO
AR processes, with the SSM in observable form.

Theorem 10 gives us the SS zero-lag cumulant of the process Y (n); from the defi-
nition of ¥'(n) we see that Cyy does, in fact, give us all the cumulants of the process y(n)
in the non-redundant region 0 < i; < ... < i3-; < p, and its symmetric extensions in the
region, [-p+1,p— 1] x [-p+ 1,p— 1] X ... X [=p+ 1,p — 1], which is a hypercube of side
(2p — 1), centered at the origin, in the (k-1)-D space of the k-th order cumulant of Y (n).

The steady-state solution in (80) does not assume that the SSM is in any particular
form; in particular, it does not assume that the realization is minimal or even observable.
However, this solution involves the inversion of the matrix (I, — ®;). Explicit matrix
inversion may be avoided either by using an iterative procedure or recasting the equation
as a discrete Lyapunov matrix equation; for details, see Theorem 7 and the discussion
following it; also, see Section 7 for an efficient algorithm to compute Kronecker products.
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6.2 Time-Recursive Equations

From Theorem 5, (see also Theorem 7), the time-recursion for the zero-lag state-
cumulant is given by

Ck,(n + 1) = ‘I’;.C,.,(n) + BkI‘kw(n) (81)

If the measurement noise, v(n), is Gaussian, then Cyy(n) = 0, for & > 2. In standard
second-order developments, we usually assume that the covariance matrix of the initial
state z(0) is known. In our case, we will assume that the k-th order cumulant vector of
the initial state is known. Then, the state-cumulant can be propagated using (81), and
the output cumulant can be computed using (79). Note that (81) and (79) constitute the
state and output equations of a SSM, where the noise processes are replaced by statistical
quantities. If the eigenvalues of ® are );, then, we know that the eigenvalues of &,
are given by A; A;;...A;,. Thus, stability of the model in (1) assures us of the stability
of the propagation model in (81) and, hence, asymptotic indifference to the initial-state
assumptions. Time-recursive computation of the state-cumulant vector using (81) and the
output cumulant using (79) requires computation of the observability matrix and the first
p impulse response coeflicients of the original SSM in (1) and (2). Equation (79) does not
provide a time-recursive equation for the output cumulants.

Replacing n by n + 1 in (79), we have
Cky(n + 1) . Okaz(n -+ 1) + TkaW(n + 1) + C,w('n. + 1) (82)

If the SSM has time-varying matrices, then, (81) and (82) hold with time-varying Oy, Tk,
®, and By ; however, Oy is no longer an observability matrix [see (77) and (78)]. Using
(81) in (82), yields,

Ck}-(n + 1) = Ok@ka,(n) -+ O;,B;.I‘kw(n) “+ Tkaw(n + 1) -+ Ckv(n + 1) (83)

Comparing (79) with (83), it is evident, that for an arbitrary (®, B, H) triple, we cannot
derive time-recursive equations for Ciy(n+1) (because O and ® need not be commutative).
We will, therefore, assume that the SSM is in Kailath’s observability form, [14, pp. 93-94],
i.e., O = I and hence Oy = Ij. This, of course, tacitly assumes that the SSM is observable.
In this case, (with O = I), substituting for Ci,(n) from (79) into (83) yields

Cky(‘n + 1) = @k[Cky(n) — chkw(n) — Ckv(n)] -+ BkI‘k.,,(n) + chkw(n + 1) + C;,V(n + 1)
(84)
which, on simplification, leads to:

Theorem 11. If the SSM in (1) and (2) is in observable form, then, in the time-invariant
case, the output cumulant vector, Cry, can be computed recursively in time, as

C;,y('n + 1) = @;,C,,y(n) + @k(n) (85)
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where
@k(n) = TkaW(n =+ 1) - @kaCkw(n) + Ckv(‘n + 1) — @kckv(n) - BkI‘kw(n) (86)

The term ©(n) in (85) and (86) depends only on the k-th order cumulant statistics
of the input and measurement noises, and on the system impulse response; thus, (85)
describes a time-recursive method for computing the cumulants of the output process
y(n). If the noise processes are stationary, then ©4(n) is independent of n, i.e.,

Ok = (I — ®)(Tk Crw + Civ) + Bilkw -

Then, (85) resembles the state equation for a model excited by a constant non-random
input vector (step function excitation). The stability of this system, in either case, is
guaranteed by the assumed stability of the original model and the finiteness of the k-th
order cumulant of the input.

The recursive solution in (85) depends crucially on the assumption that the SSM in
(1)-(2) is observable and has been transformed to the observability form. Thus, given an
arbitrary state-space triple, we must first find the similarity transformation (the observ-
ability matrix) that converts the triple into the observability form. When, the state-space
model is, in fact, specified via an ARMA difference equation, then, the observable form is
obtained very easily. In the MIMO case, if

;‘Zi: A(k)y(n — k) = kzi:B(k)'w(n — k) (87)

then, the matrices for the observable form of the SSM are given by

B B T 0 ;
= S R o [F -
0 0 0 o o I H(p-1 0

—A(p) -A(p-1) -A(p-2) . . . -4(1) 553(19)) 0(88)

where the H(k)’s are the impulse response matrices. If the sum on the right-hand side

of (87) extends from 0 to p, as is usually assumed in a time-series model, the observation
equation (2) has the additional term H(0)w(n) on the right-hand side. In this case,
the expression for the k-th order output cumulant, Ciy(7i,...,Tk—1) in (66), involves the
additional term [H(0) @ H(71) ® -+ @ H(7k-1)]Tkw-

In the MIMO case, the A(k)’s and the B(k)’s in (87) are respectively n, x n, and
ny X n, matrices and the canonical representation given in (88) holds (see pp 685-90 and
791-806 in [21] for details); the elementsin ® , B and ¥ are respectively, n, X n,, ny X 1,
and ny X n,. The realization in (88) is observable, but not minimal [1]. Note that the
MIMO model is stationary (stable) if the roots of det(a(z)) lie within the unit circle [11,
p. 326], where a(z) = ;- A(k)z~* is the AR polynomial matrix (the a(k)’s are n, x n,
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matrices). The model is invertible (‘minimum-phase’) if the roots of det(3(z)) lie within
the unit circle [11], where B(z) = S{_, B(k)z~* is the MA polynomial matrix.

If the SSM matrices are time-varying, then the Kronecker state-cumulant vectors
can be computed using the lag- and time-recursive methods developed in Section 5 (see,
Fig. 2); the output cumulants can then be computed via Theorem 8. In the stationary
time-invariant case, all the output cumulants in the non-redundant region (see Fig. 3a)
can be computed in one shot via Theorem 10; cumulants at lags outside this region may
be computed via the recursion equation, [c.f. (75) for k=4] and the symmetry properties
of cumulants. When the SSM matrices are time-invariant, and the SSM is observable,
but the noise processes are non-stationary, then Theorem 11 may be used to compute the
output cumulants in the non-redundant region.

6.3 Applications

Parameter Estimation: Cumulant-Matching. One cumulant-based solution to the
SISO ARMA system identification problem consists of matching the output cumulants of
a proposed model to those of the observed output. In [26] (see also [15]) the spectrally-
equivalent minimum-phase (SEMP) model is first obtained via correlation-based tech-
niques. Since each of the p minimum-phase zeros may be reflected to its reciprocal loca-
tion outside the unit circle, there are 2° competing models. Then, the theoretical cumulant
values are obtained using the Brillinger-Rosenblatt result, (16), i.e.,

car(m,n) = > h()h(i + m)h(i + n) (89)
1=0
where, in practice, the upper limit on the summation is replaced by N > 0, to yield an
approximate value (justification: exponential stability implies decaying impulse response).
Finally, the squared error between the sample cumulants of the observed output,

¥ N
ca(msn) = 3 2 vG +m)yli +n) (90)

i=1

and the theoretical cumulant values given by (89),
s Z Z[CST(m,n) = E3v(m’n)]2 ’ (91)

is computed for each of the 2?7 models; the model which minimizes er is then declared to
be the true model. For this algorithm to work, the theoretical cumulants given by (89)
have to be computed for a large range of the lags, m and n.

This procedure requires the explicit computation of the impulse response for each
of the 27 proposed models, followed by evaluation of the summation in (89) for each
desired lag (m,n). With the model in the observable form, our steady-state solution
in (80) is computationally cheap. The matrix ® is fixed, since the AR parameters are
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assumed available; thus, the matrix inversion (for which we have indicated several efficient
methods) needs to be done only once. Further, the vector B is easily obtained for each of
the 27 proposed models, (compute the first p values of the impulse response). Thus, the
theoretical cumulant values for each of the proposed models are easily obtained, without
any approximations.

Parameter Estimation: Closed-form solution. When the SSM is observable and in
observable form, the model parameters may be estimated from the output cumulants.

Theorem 12. When the SISO SSM in (1) and (2) is time-invariant and in observable
form, the plant matrices ® and b can be estimated from the output cumulants.

Proof. Consider the k-th order output cumulant vector, Cry(71,...., Tk—1). Let 71,.cc., Th_2z
be fixed and let 7;,_; = 7; for convenience, we will denote the corresponding output (scalar)
cumulant by C(...,7), where the ellipses denote the fixed lags. From Eq. (71) in Theorem
9, we know that the output cumulant C(...,7) = ¥®"~!@G is the impulse response of the
SSM triple, {®,G,%}. Let M; and M, denote p x p Hankel matrices, with (2,7) elements
C(..,i+j—1) and C(...,i +j), i,j = 1,...,p. Then, we have [14, Sec. 2.2-2.3],

M, = O(%,%)C(3,G) (92)
M, = O(,8)8C(8,G) (93)

If the triple {®,G,%} is minimal, and has the same order as the original SSM triple,
{®,b,%} (which can always be arranged by a suitable choice of the fixed lags, i, ..., Tk—2,
see (8], i.e., we assume that this slice of the output cumulant slice is a ‘“full-rank’ slice),
then, hence, M, is non-singular, and the ® matrix may be obtained from

® = MM = O(4,8)807 (3, 9) (94)

Note that this yields the matrix & corresponding to the observable realization.

The vector b, corresponding to the observable form, can also be obtained from the

output cumulants via
b= C!Skm[Ik = @k]cky (95)

where the (p — 1) by p* selector matrix Si, has a p—1 by p—1 identity matrix in columns
mp*~! —p+1 through mp*~! — 1 and zeros elsewhere; and m = p—gq+1 > 1. The scalar a
is a scale factor which ensures that k(1) = 1. The derivation of (95) is given in Appendix
B.O

Since we assumed that the SSM is in observable form, the vector b in (95) contains
the first ¢ — 1 samples of the impulse response. If the underlying process is, in fact, an
ARMA process given by (87), then, the AR parameters may be directly read off from the
® matrix obtained in (94) [see (88)]. Once the IR coefficients have been obtained, the MA
parameters may be obtained from

n—1

b(n) =3 a(k)h(n —k), n=1,..,q (96)

k=0
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Equation (95) for the special case p = ¢ with m = 1, and using third-order cumu-
lants, was first given in [9], where & is obtained by applying Kung’s balanced realization
algorithm to Mj.

It may be shown, that the solution given by (95) is a state-space version of the
‘g-slice’ solution given in [25]. Theorem 12 requires knowledge of the MA order g; if the
order is not known, we could assume p = g, and use some criterion to determine whether
the estimated coefficients are zero (in which case, one would repeat the procedure with
g =p—1 and so on).

We expect that (95) can be extended to MIMO models as well. Estimation of the

parameters of a multichannel MA model is discussed in [13], where a non-obvious extension
of the SISO results in [6] is derived.
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7. Computational Aspects

In this section, we will let F, denote a general p x p matrix, rather than F, =
F ® F;_,, as elsewhere in this report.

In Theorems 2-12 we have equations of the general form
Cn=[F1®F2®"'®Fk]Co=GCo (97)

where the F’s are p X p matrices, the C’s are p* x 1 vectors and the subscripts o and
n are mnemonics for ‘old’ and ‘new’ respectively. In the time-varying case, it does not
make sense to store the time-varying matrix G, since the matrix G will vary both with the
time and the lag indices. A simple-minded way of evaluating (97) would be to compute
the matrix G as a Kronecker product of k¥ matrices, and then compute the usual matrix
product GC,. From the definition of Kronecker products, we see that computation of
the Kronecker product of k (p x p) matrices requires (k — 1)p** flops. Computation of the
matrix product GC, requires p** flops. Thus, computation of C,, from C, via (97) requires
a total of kp?* flops, which even for moderate values of p could be quite large (e.g., p=10
and k = 4, requires 4 x 10® flops).

The above approach, however, does not take into account the special properties of
Kronecker products. In the following, we develop a computational scheme that requires
kp**! flops. For the example above (with p = 10 and k = 4), the required computation
via the new scheme is only 1072, i.e., 0.1 % of that required by the simple-minded scheme.

Theorem 13. Let A be m xn and B be p X g. Further,let Y be mp x 1 and X be ng x 1.
Then,
Y=(A®B) X (98)

can be evaluated in np(m + q) flops, with np units of intermediate storage.

Note that direct evaluation of (98) requires 2mnpq flops (mnpq to evaluate D =
(A ® B), plus mnpq flops to evaluate Y = DX), and mnpq elements of storage for the
intermediate variable (D).
Proof. From the definition of Kronecker products, we may write (98) as

Y1 auB Cth P alﬂB Xl

Y annB apB .. a.B X
Y= :2 2: 2? : 2: :2 i (99)
Yom @mB @mB ... amnB X
where X;, i = 1,...,n, are ¢ X 1 vectors, and Y;,7 = 1,...,m, are p X 1 vectors. Thus, we
have

Y,' = Za.;ij, = 1, ey M (100)
j=1
where
Z;=8X; j=1.,n (101)
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are p X 1 vectors. Evaluation of each of the products BX; requires pq flops; hence, evalua-
tion of all the intermediate quantities Z;, j = 1,...,n, requires npq flops, and np elements
of storage. Once the Z;’s have been evaluated, evaluation of each Y; via (100) requires an
additional pn flops; a.nd hence, mnp flops to evaluate all of the Y;’s, i = 1,...,m. Thus,
evaluation of the expression in (98) may be done in np(m + q) flops, with np elements of
intermediate storage. O

Corollary 3. If 4;,i=1,...,k, are r X r matrices, and X and Y are r* vectors, then,
= [®f, 4] X (102)

can be evaluated in kr*+! flops, with r* elements of storage for the intermediate variables.
Proof. For k = 2, the result follows immediately from Theorem 13, with m = n = p =
d=7;

For k > 2, let A = A; and B = ®%,4; in Theorem 13; hence, m = n = r and

=g =r" Then, in Theorem 13, once the Z;’s are available, ¥ can be computed in
5 W
=

2= "“ flops. Now

Zj=BXj=A2®(A3®---®A;.)Xj

Hence, we can appeal to Theorem 13 again, with m = n =r and p = g = *~2 to evaluate
the Z;’s. Since there are r terms to be evaluated, we require r.r2.r*=2 = r*+! flops. We
continue the procedure until the kth step, where we will have to evaluate r*~! products of
the form Az, where A is r x r and z is r x 1; this step also requires 7**! flops. Thus, (102)
may be evaluated in a total of kr*t* flops.

Storage is required for the intermediate quantities, the Z;’s. From (100), we note
that the required storage is the dimension of the final output vector; hence, the required
storage is r* units. O.

We illustrate the procedure for k = 3 and k = 4: To evaluate Y = [A@ B® C|X

1. Let X = [XT, ...,XE]T. Further, let X; = [Xm , X7 ]T. Note that X, X;,i =1,..,p,
and X;;, ¢,j = 1,...,p, are respectively p*-, p>- and p-element vectors. Let Y and Z
be similarly partitioned.

2. Xis = COXiiz5 857 = 1yuies D
3. Z;; =Y 01 b X, 1,5 =1,...,p.
4. Y, =35 auyZ; i =1,..,p
Each of the last three steps requires p* flops.
To evaluate Y = [A® B® C ® D|X:
1. Compute Z; = [B® C ® D|X;, j = 1,...,p using the k = 3 algorithm.
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2. Evaluate Y,' = E?=1 a.;ij, f = 1, ey P-

The first step requires 3p* x p flops, and the second step requires p® flops.

The moral of the story is that to efficiently evaluate equations, such as (97), which
involve Kronecker products, one must exploit the special properties of Kronecker products,
rather than use straight-forward matrix algebra. The direct evaluation of (97) using matrix
products, requires kp?* flops and p?* units of storage. The algorithm presented above,
requires only kp**! flops and p* units of storage. Matrix representation methods, [19],
[22], require less computation and storage than the direct method, but substantially more
than the method presented above, because they cannot fully exploit the properties of
Kronecker products. In the stationary, time-invariant case, symmetry properties of the
cumulants may be exploited to further reduce the required computation and storage.
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8. Simulations

In Sections 3-6, we derived time- and lag-recursive equations for the cumulants of
the state and output processes of a SSM model. In this section, we use some of the recursive
equations to compute output cumulants.

Figure 4a shows the impulse response of a tenth-order model, taken from [18]; the
model parameters were obtained in [18] so as to fit the measured impulse response of a
Bolt standard test shot of air-gun model 600B-20 inch?, used in reflection seismology.

The SSM matrices given in [18] were converted to the observable form via MATLAB.
Then, assuming that the input excitation is i.i.d., with third-order cumulant, vs,(n) = 1,
eqs. (85) and (86) were used to recursively compute the output third-order cumulants in
the non-redundant region (see Fig. 3b), with C3y(0) = 0. Figure 4b shows the third-order
output cumulant Csy(n;1,5), —9 < ¢, < 9 at n = 200 (by which time the cumulants are
in steady-state). We repeated the above procedure to compute fourth-order cumulants,
with 74, = 1, and Cy4y(0) = 0. 2-D slices of the fourth-order cumulant, Cyy(n;1, j, k) with
k fixed and —9 <i,7 <9 are shown in Fig. 5, at n = 200.

Figure 6 shows the diagonal slice of the third-order output cumulant, C3,(n;i,1), n =
20,21,...,200, and —9 < i < 9. Here we assumed that the input process is non-stationary,
with v3,(n) = 0.9965" (such a model for the input is typical of reflectivity sequences in
reflection seismology, where the exponential decay roughly models absorption effects). An
exponential taper, s(n) = 1.0965", has been applied to the output cumulants shown in
the figure. Observe that, because v;,(n) approaches zero as n increases, Cay(n;i,1) also
approaches zero as n increases.
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9. Conclusions

Kronecker products were used to obtain a compact and uniform representation
for the cumulants of vector processes. This representation leads to elegant and easily
generalizable expressions for the state and output cumulant vectors of state-space models.
Further, the Kronecker product approach is computationally efficient compared to existing
matrix representation methods. Time- and lag-recursive equations for the cumulants of
the state and output processes of a MIMO SSM were derived using the Kronecker product
approach. Closed-form expressions relating the output cumulant to the SSM parameters
were also derived. Applications of these procedures to the SISO parameter estimation
problem were discussed.

Since control systems operate in real time, we conjecture that the recursive equations
developed in this report will be useful in developing state estimators based on higher-order
statistics, and even optimal controllers based on higher-order statistics.

Acknowledgements

The work described in this report was performed at the University of Southern
California, Los Angeles, under National Science Foundation Grant ECS-8602531. The
authors wish to thank G. Giannakis and W. Wang for stimulating discussions on this and
related topics.

33



References

(1] H. Akaike, “Stochastic Theory of Minimal Realizations”, IEEE Trans. on Auto.
Contr., AC-19, 6, 667-73, 1974.

[2] J.W. Brewer, “Kronecker Products and Matrix Calculus in System Theory”, IEEE
Trans. on Cir. Sys, CAS-25, 772-781, 1978.

[3] D.R. Brillinger, “An Introduction to Polyspectra”, Ann. Math. Stat., pp. 1351-74,
1965.

[4] D.R. Brillinger and M. Rosenblatt, “Computation and Interpretation of k-th order
spectra”, in Spectral Analysis of Time Series, B. Harris, Ed., John Wiley and Sons,
189-232, 1967.

[5] G.B. Giannakis, Signal Processing Using Higher-Order Statistics, Ph.D. Thesis,
U.S.C., 1987.

[6] G.B. Giannakis, “Cumulants: a Powerful Tool in Signal Processing”, Proc. IEEE,
Aug. 1987, pp 1333-4

[7] G.B. Giannakis, “A Kronecker Product Formulation of the Cumulant Based Realiza-
tion of Stochastic Systems”, Proc. Amer. Control conf., Atlanta, GA, pp. 2096-2101,
June 1988.

[8] G.B. Giannakis and J.M. Mendel, “Identification of Non-Minimum Phase Systems
Using Higher-Order Statistics”, accepted for publication in IEEE Trans. on ASSP,
1988.

[9] G.B. Giannakis and A. Swami, “New Results on State-Space and Input-Output Iden-
tification of Non-Gaussian Processes Using Cumulants”, Proc. SPIE Conf., San Diego,
CA, Aug. 1987.

[10] G.H. Golub and Van Loan, Matriz Computations, John Hopkins University Press,
Baltimore, MD, 1985.

[11] E.J. Hannan, Multiple Time Series, Wiley, New York, 1970.

[12] E. J. Hannan, “The Identification and Parametrization of ARMAX and State Space
Forms”, Ecnometrica, 44, 713-23, 1976.

[13] Y. Inouye, G. Giannakis and J.M. Mendel, “Parameter Estimation of Multichannel
Moving Average Processes”, Proc. ICASSP-88, 1252-55, New York, NY, 1988.

[14] T. Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980.

34



[15] K.S. Lii and M. Rosenblatt, “Deconvolution and Estimation of Transfer Function

Phase and Coefficients for Non-Gaussian Linear Processes”, Ann. Statist., v.10, 1195-
1208, 1982.

[16] J.M. Mendel, “Lessons in Digital Estimation Theory”, Prentice-Hall, New Jersey,
1987.

[17] J.M. Mendel, “Use of Higher-Order Statistics in Signal Processing and System Theory:
A Short Perspective”, Proc. 8th Intl. Conf. on Math. Theory of Networks and Systems,
Phoenix, AZ, June 1987.

(18] J.M. Mendel, J. Kormylo, F. Aminzadeh, J.S. Lee and F. Habibi-Ashrafi, “A Novel
Approach to Seismic Signal Processing and Modeling”, Geophysics, v46, 1398-1414,
1981.

[19] J.M. Mendel and W. Wang, “Recursive Methods for Computation of One-Dimensional
Cumulants”, Proc. American Control Conf., 2102-7, Atlanta, GA, June 1988.

(20] C.L. Nikias and M.R. Raghuveer, “Bispectrum Estimation: A Digital Signal Process-
ing Framework”, Proc. IEEE, v 75, pp 869-891, 1987.

[21] M.B. Priestly, Spectral Analysis and Time Series, Academic Press, London, 1981.

[22] M. Raghuveer, “Multichannel Bispectrum Estimation”, Proc. III IEEE-ASSP Work-
shop on Spectral Estimation and Modeling, Boston, 1986, 21-24.

[23] Y. Rosen and B. Porat, “The Computation of the Fourth-Order Cumulants of an
ARMA Process”, submitted to IEEE Trans. on ASSP, April 1987.

[24] M. Rosenblatt, Stationary Sequences and Random Processes, Birkhaiiser, Boston,
1985.

[25] A. Swami and J. Mendel, “Estimation of the Parameters of an ARMA System Us-
ing Only Output Cumulants”, presented at the Fourth IEEE ASSP Workshop on
Spectrum Estimation and Modeling, Minneapolis, MN, Aug. 3-5, 1988.

[26] J.K. Tugnait, “Identification of Nonminimum Phase Linear Stochastic Systems”, Proc.
23rd IEEE Conf. Decision and Control, pp. 342-347, Las Vegas, 1984; also in Auto-
matica, v.22 457-464, 1986.

35



Appendix A: Kronecker Products

The Kronecker product of a (px ¢) matrix A = {a;;} and an (mxn) matrix B = {b;;}
is the (pm x gn) matrix, {a:;; B}, denoted by A® B. The [(i; —1)m+1i3, (j1 —1)n+j,] element
of A® B is a(i1,51)b(i2,72), for iy = 1,...,p, j1 = 1,..,q, 42 = 1,...,m and jo = 1,...,n. A
review of Kronecker product theory may be found in [2].

We will find the vec operator [2] also useful; if A is m x n, then, vec(A4) is an
mn X 1 vector obtained from A by lexicographic ordering, i.e., column-wise stacking. Thus,
if A= [e1,...,Cq), then,

vec(A) = [¢}y ey )

We define an unvec,,,, operator which converts an mn-element vector into an m x n
matrix, such that

Unvecmn[X] = Xmyn => vec [Xpxa] = x (103)

We will let [®7,A(7)] = A(1) ® A(2) ® --- ® A(k).
We will need the following results from [2] (compatible matrix dimensions are as-
sumed):

[P1] (A+B)®(C+D)=A®C+A®D+ B®C + B® D; hence,

[f: A@) 8 (3 BG) = 303 146) ® BG)

j=1 i=1 j=1

[P2] (A® B)(C ® D) = AC ® BD; hence,
[1146) @ B} = ([T 46) @ ([T 561

and

[®7=1 A(3)][®7L B(3)] = ®L, A()B(3) -
[P3] (A® B)®(C®D)=A®B®C®D.

[P4] If ; is an eigenvector of A associated with eigenvalue )\;, and f; is an eigenvector of
B associated with eigenvalue p;, then, a; ® §; is an eigenvector of A ® B, associated
with eigenvalue A;p;.

[P5] (A® B)! = A' ® B! where A! denotes the pseudo-inverse of 4, and
(A® B)! = A*® B*.

[P68] vec(PAQ) = (Q* ® P)vec(A).
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[P7] If Ais p X g and B is m x n, then,
B ® A - Umxp(A ® B)Uq)(n

where the U matrices are permutation matrices. In particular, if A and B are column
vectors, (i.e., g = n = 1), then, B® A = Upxp(4 ® B). The (mp x mp) permutation
matrix Uny, is given by [2, eq. (4)]

m P

Unxp = Z Z ERx? ® ER™ (104)

i=1 k=1

where EJ*? is the m X p elementary matrix with unity in element (i,k) and zeros
elsewhere. Matrix Unxp, has unity values in elements [(i — 1)p + &, (k — 1)m + 1],
i1=1,...,m and k = 1,...,p. Furthermore,

Upyg = Uh =52

pXm pxXm °*

We will let A,y = A® A = Ar @ A, with A; = A; if A is a square matrix, then,
we will also let Ay = I. This differs from the A notation in [2].
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Appendix B: Proofs

Notation. If C is a p* element vector, we will let C[iy,72,...,0x], i1, ...,ix = i1
denote its ((i1 —)pF 1+ (G —1)pF2 4. + ik)—th element. Essentially, the pF-element
vector is ‘treated’ as a k-dimensional array. Similarly, if M is a p*F x p* matrix, we will
represent its (i1 — 1)1 + (i = 1)p*? + - + iy, (51 — L)pFL + (jo — 1)pF2 + - - + ji)
element by M([i1, ..., %], [f15 -+, Jk])s %1, s 2k J1y ooy Jk = 1,...,p. The length p will usually
be obvious from the context.

Theorem 1. We must verify that the elements of Cy,, k¥ = 2,3,4 defined in (20)-(22)
are the cross-cumulants of the vector elements as defined in (17)-(19) and that all possible
cross-cumulants are contained in them.

Concatenate (17) for ¢ = 1,...,p and j = 1,...,p, with j varying faster than 7, and
let Cyy(t;7) denote the resulting vector. Using the definition of Kronecker products leads
to (20).

Similarly, concatenate (18) for i = 1,...,p,j = 1,...,p,k = 1,...,p, with k varying
fastest and ¢ slowest. Let Csy(t;t1,12) denote the vector so obtained. Then, from the
definition of Kronecker products, we obtain (21).

The fourth-order case is a little bit more involved. In particular, note that E{y(¢)®
y(t+11) @ y(t +t2) @ y(t +t3)} yields the vector of fourth-order moments, not cumulants.
For convenience, we will rewrite (22) as

Mo = My — M, — PT M3 — P, M, (105)

where the terms M;, : = 0,1,2,3,4, are obvious. We must show that Myls, 3,851 =

cum(y;(t), yi(t + tl)s yk(t T t2)1 yl(t < tS))-
Using the definition of Kronecker products, we obtain

My, 5, k, 1] = E{yi(t)y;(t + t1)ye(t + t2)m(t + t3)} (106)

and

Mli, 5, k, 1] = E{yi(t)y; (¢ + 1)} E{wn(t + t2)y(t + ta)} (107)

From [P7], matrix Uy, has unity entries in elements ((j' — 1)p + I, (I — 1)p* + j'),
j'=1,.,p*and | = 1,...,p. Let ' = (j —1)p+k, j,k = 1,...,p. Then, the p% x p°
matrix Uy, has unity entries in elements ([7, k, 1], [, 7, k]). Hence, using the definition of
Kronecker products, permutation matrix P, = [I ® U,z2y,] is defined by

PP([i’j,k, l]s[zs z:]vk]) =1, Z',j,k,l= 1,---,P (108)

Now, if a permutation matrix P has unity entry in element (¢,j), and, if b = Pa,
then b(z) = a(j). Hence, if a and b are p*-element vectors, then,

b= Pya => bfi,j, k1] = ali, 1, ], k] (109)
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which follows from (108). Furthermore, if d = PTa, then, from (108) and (109), we have
d(i,1,3,k) = a(4, j, k,I) which may be re-written, via a permutation of the indices J, k.1, as

d= Pla = d[i,j,k,1] = a[i,k,1,j] (110)

Since Ms[i, k,1,j] = E{yi(t)y(t + t2)} E{wi(t + t3)y;(t + t1)}, we obtain, using (110),

(P Ms)li, j &, 1] = E{yi(t)yu(t + t2) }E{w(t + ta)y;(t + 12)} (111)
Now, Ma[i, 1,5, k] = E{y:i(t)i(t + ts)} E{y;(t + t1)yw(t + t2)}. Therefore, from (109),
(PoM4)li, 5, b, 1] = E{wi(t)un(t + ta)} E{y;(t + t1)un(t + 12)} (112)

.

From (105)-(107), (111) and (112), we can conclude that the [i,7,k,!] element of
the vector Cyy(#;t1,12,13) is indeed the fourth-order cumulant of {y:(t),v;(t + 1), va(t +
t2),yi(t+1t3)}. Hence, equation (22) is a valid representation for the fourth-order cumulants
of the vector process y(t). O

CP1. Let y; = Ayz;, i = 1,...,k and let C = cum (y1,...,y&). Further, let \;;; denote the
(7,1) element of A;. Then, from our definition in Section 4,

C[il,...,ik] = cum(yl,,-l,...,yk,,-.)
r P
= cum (Z A S ey Yy Ak;i..j.-’ck.:‘.)
an=1 =1
P P
= 3 oo D Myt iy fa CUML (21,5, 5 eovy Thes) (113)

n=1 k=1

where we have used [CP1] and [CP3] for scalar random variables [24, Ch I1.2]. From the
definition of Kronecker products, we have

(A1 ® -+ @ Ap)cum (21, ey Th) [F1y eovy k)

P P
=D 0 D0 Mgt ot Mgy UM (21 000y i) [G15 000y S

n=1 =1

P P
S Z g Z A1;:‘1,‘1'1 ek Ak;‘-i:jlcum(ml:jl yeeny 31:,_1',.) (114)
n=1

Ja=1

where the last equality follows from our definition in Section 4. Equations (113) and (114)
establish [CP1]. O

CP2. Let C = cum(zy,...,zx). Then, by definition,

C[il,...,ik] = cum(xl,,-l,...,zk_,-.) (115)
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From property [P7], the permutation matrix U ph=ixpi has unity entries in elements ((z —
1)‘1;;-1 +r,(r—1)p* 7 4i),i =1,.,p* 7, r = L.,p. Leti= (}1=1)p* 9" e (dpj—1) +1,
with 81y isdk—3 = Lu,pand | = (ll — I)PJ—I + -4 (IJ — 1) 41, with ly, ....;l; = 1,...yp;
Then, the permutation matrix U,s-j,,i has unity entries in elements
| OO S 2 TS T O W |
Hence,
Upb—jxpj C[il,...,ik_.j,lh...,lj]
= cum (31,11 3oy Tiliy Tigldyseeey zk,i._,‘)
= cum (zi+1.i1 1oy Thyig_jr TLlyy eery zj.lj) (116)
since the cumulants of scalar random variables are symmetric in their arguments. [CP2]

follows from (115) and (116). O

Theorem 2. Let 19 = 0; then,

C;m(t;ﬁ,---, Tk—l)
= cum (y(2), y(t + 71), -, Y(t + Th-1))

= cum (Z H(t + 1o, uo)w(uo)y ey 3, H(t + T, Uis )w(uk_l))

Ug—1

Z Z cum (H (% + 7o, uo)w(to)y «oey H(t + The1, Uk—1)w(vr-1))

Z Z (t+ 70,20) ® -+ - @ H(t + Th—1, uk—1)]cum (w(tg), ..., w(uk—-1))
E Z H(t-l-To,uo)@ "°®H(t +Tk_1,Uk_1)]Pm(u°)6(uo —‘I‘.l.]_) (uo-—uk 1)
=D [H(t,u) ® H(t + m1,u) ® -+ ® H(t + Ti-1, )] Tu(v) (117)

where we have used (39), [CP3], [CP1] and (40). In the time-invariant case, H(n,u) =
H(n — u), and (42) follows immediately from (117). O

Theorem 3. From (10), we have,
2(n) = 3 A(n, k + 1)B(k)w(k) + A(n,0)z(0)

k=0

where, by assumption, the random vector z(0) is independent of the w(7)’s. Hence, by
[CP5], the cumulant of the process z(n) is the sum of the cumulants, due separately to
the input and the initial state. We will use the subscripts zis (zero initial state) and zin
(zero input) to represent these two terms.
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Under zero-input conditions, the state vector is given by z(n) = A(n,0)z(0), n > 0.
Hence, we have ‘

Ckz,zin(n —m, O, seey 0)
= cum,i,(z(n — m),...,z(n — m))
= cum(A(n — m,0)z(0),...., A(n — m,0)z(0))
= (8120 A(n — m, 0)]C(050, ..., 0) (118)

where we have used [CP1].

Furthermore, with 7o = 0, and m = — min(ig, 1, ...,4k-1), We have

Cibsin{mitiyeonin=1)

= cumyin(2(n + io), ..., 2(n + x-1))

= cum(A(n, 0)z(0), A(n + 4,,0)z(0),..., A(n + tx—1,0)z(0))

[®?—:01A("' +11,0)]Ciz(0; 0, ..., 0)

[®f=0 A(n + i1,n — m)A(n — m, 0)]Cy(0;0, ...,0)

(@5 A(n + ity — m)][®13 A(n — m,0)]Cra(050, .., 0)

[®F A(n + 41,7 — M)]Che,zin(n — m;0,...,0) (119)

where we have used [CP1], (9), [P2] and (118).

The contribution due to the input term is obtained from Theorem 2, (with, H(n, k) =
A(n,k +1)B(k), k <n—1, m = —min(0,41,...,3k-1) and ip = 0), as

Ckz.zia(n; il g seey 1:k—l)

=Y [®ktA(n + i1, 5 + 1)B(5)] Tu(5)
=Y [®ka A(n + 41,5 +1)] Ba()Thu(5) (120)

= :®:‘=‘01A(n, +1i,n—m)A(n —m,j + 1)] By (3)Tkw(7)

=3 [®l5 A(n +it,n — m)] [R5 A(n — m, 5 +1)] Ba(§)Tiu(5)
= @} A(n +i1,n — m)| Ciezzia(n — m;0,....,0) (121)

where we have used property [P2], (9) and (120) to obtain the last equality.
Finally, from (119) and (121), we obtain

Che (R332, yik1) = [®F A(n + i1,n — m)| Ciea(n — m;0, ..., 0) (122)

which establishes the theorem. O
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Theorem 4. From (122), we have, with i = my = 0,and 0 < m; < 4, I = 1,...,k — 1
(hence, m = — min(ig, ..., 2%_1) = 0),

Crz(n581y 00eyth—1)
= [®?=_01A(n + 1, n)] Ciz(n;0,...,0)
= [®f=—ol~*4(n +i,n+ 4 —my)A(n + 4 — m;,n)] Craln:0,:..50)
=[S A(n + ity m + i — mi)| [®I) A(n + i1 — my,n)] Cia(n;0,...,0)
= [®:‘=—1A(n +i,n+ 14— m;)] Chrz(nii1 — M1y ey thy — Mp—y)
where we have used (9), property [P2] and (122). O

Theorem 5. First, we will establish the theorem for the zero-lag case. From the definition
of cumulants of vector processes, we have

Ciz(n +1;0,...,0) = cum(z(n+1),...,2(n +1))
= cum (®(n)z(n) + B(n)w(n),...,®(n)z(n) + B(n)w(n))
= cum (®(n)z(n), ..., 8(n)z(n)) + cum (B(n)w(n), ..., B(n)w(n))
= &,(n)cum (z(n),...,z(n)) + Be(n)cum (w(n),...,w(n))
— ‘i’k(n)Ck,(n; 0, 565 0) + Bk(n)I‘;,,,,(n) (123)

where we have used (1), [CP5] and [CP1].
From (122), we have, with i = 0, and 4y > 0, [ = 1,.,k — 1 (hence, m =
—mill(io, -",ik—l) = 0),

Crz(n + L i1, ey i—1)

e :®?;JA(R +14+id,n+ 1)] Ciz(n + 150, ...,0)

= [®=d A(n + 1+ it,n +1)] [8k(7)Che(; 0, .., 0) + Bie(m) Ty (m)]
= [@k=a A(n +1 + it,n + 1)8(n)] Cka(1; 0, ...,0) + D(it, vy k1)

= :®?=To1 Aln+1+ ihn)] Ciz(n;0y...,0) + D(41, eey tk—1)

= [®k=3@(n + i) A(n +it1,m)] Cke(15 0, 1, 0) + D(ity vy )

= [®?-:01'I'(“ + il)] [®?=_o144(‘"' + 1, ﬂ)] Crz(n50,...,0) + D(i1y eery t—1)
= [®}=2(n + )] Chalni ity oy ihct) + Dty or i)

where we have used (123), [P2], the definition of D(i1,...,1k—1) in (47), (7), (8), and (122).
0J;

Corollary 1. Follows immediately from [CP2], with z; = z(n), 2 = z(n + 1), ...,k =
z(n + ix-1), and our definition Ci,(n;ji1,...,5k—1) = cum(z(n),z(n +41), ..., 2(n + 1k_1)).
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Note that (52) holds for alllags. O

Theorem 6. With ¢ = 0 and m = —; < — min(Zo, ..., ti—1, {141, -+, tk—1), in (43) of
Theorem 3, we obtain,
Crz(n; ity ey tk-1)
[®!-0 A(n + i1, — m)]Cyg(n — )
= [®] <I>(n+u—1)A(n——1+u,n—m)]®IA(n+iJ,n—m)®
[®,_J+1‘I>(n + 4 — 1)A(n — 1 + i;,n — m)]Cgz(n — m;0,...,0)
= [®158(n +i1 - 1)]® 1 © [®f},8(n + i1 - 1)]
[®IZ3A(n+i1— 1,n — m)]® A(n + i;,m—m)® [®,_J+1A(n +14—1,n—m)]
Ciz(n — m;0,...,0)
where we have used (8) and [P2].
With m’ = —(4; + 1) < —min(d, ..., %1, %141, .-, 2k—1) (hence m' = m — 1) in (122), we
obtain,
Ope(n = Litigeentiotits + Likipts con thei)
= [®l0A(r—1+i,n—1-(m-1)]@A(n—1+i;+ 1,n—1—(m—1))
B[4 14(n — 1+ i1,n — 1 = (m = 1))]Che(n — 1 — (m — 1);0,....,0) .

Theorem 6 follows from the last two equations. O

Equation (55). From (43) of Theorem 3, we have for lags inside Rx_;, with io = 0 and
m=—tp_1 < — min(z'o, ...,ik_z),
Clip {1 8155045 Th21)
[®f:01A(n + 11,7 — m)|Cgz(n — m;0,...,0)
= [®f=0 A(n + i1,n — m)]®; (n — m)[Chz(n — m + 1,0, ...,0) = Bi(n — m)Tru(n — m)]
®,_01A(n +i1,n — m)®~(n — m)][Crz(n — m + 1;0,...,0) — Bg(n — m)Tiy(n — m)]
= [®F-LA(n +i1,n — m + 1)][Che(n — m + 150, ...,0) - Bk(n — m)Ty(n — m)]
= [Tx—1 ® @71 (n + ix—1)][®F-ZA(n + i1, n — m + 1)] ®A(n+ir1+1,n—m+1)
[Ckz(n — m+ 1;0,...,0) = Bi(n — m)Tkyw(n — m)]
= [Tk-1 ® 71 (n + ix-1)]Ckz(n; i1, vy k2, k1 + 1)
—[®1Z A(n + i1, + k-1 + 1)] B(n + ik-1)Tkw(n + ix-1)]
where we have used Theorem 3, (45) of Theorem 5, property [P2], (7), (8), m = —tx_
and (122), with m’ = —(t¢—; + 1) = m — 1 < —min(ig, ..., tk-2). O

Lemma 1. From the definition of the third-order cumulants of stationary random pro-
cesses, we have

Csz(i,7) = E{z(n)®@z(n+i)@z(n+j)}

43



E{z(n) ® Upxp[z(n + j) ® z(n +1)]}
[1 ® Upxp]E{z(n) ® z(n + j) @ z(n +14)}
[I ® prp]C3r(j1 z') (124)

where we have used [P2] and [P7]. Similarly, we obtain

Casliyi) = E{a(n) ®a(n+5)®z(n + )}
= UpeBla(n+7) @ (n) @ 2(n +1))
= UpypCaz(—4,1 — j) (125)
= Upxp[I ® Upxp]Caa(i — j, —7) (126)

where the last equality follows by using (124). Further,

Csulini) = E{a(n) ®a(n+i) @ a(n +j)}
= UpenE{z(n+1) @ a(n +j) ® 2(n)}

UseypCac(j — i, 1) , (127)
UZ ol ® Upxp|Caz(—i,j — i) (128)

where we have used [P7] and (124). Thus, all the identities in the Lemma have been
established. O

Theorem 9. Substituting for the Kronecker state-cumulant vector from (59) into (66),
we obtain for 1, >0,/ =1,...,k -1,

Ciy(ry s Ti-1) = IR I? Q... 8 D72 @ B™*1]C4,(0,...,0)
= [TRUI"Q®..Q Ud™2 @ Ud™-1|Cy(0,...,0)
IRI®..0 IQ ¥d™17!]
X[TQRUE" ®...Q UE™? ® &|Cy,(0, ...,0)
= [fi1 @ U™ Giiny,..mh s (129)

where

Gk;r;,...,r,,_g = [‘I’ ® vo™n R...Q Y Pr-2 ® Q]Ck:z:(O, eeey 0)
= [‘I’k-l ® I][I RIP'"R..0d" 2@ tI)]Ck,,(O, sy
= [‘I’k—l ® IICkI(le ceey Th=2, 1) (130)

where the last line follows from (59). O
Theorem 12. We will prove the theorem only for the third-order cumulant. Extension to
arbitrary orders is straight-forward. Let Ss,, denote the (p — 1 x p®) selector matrix which

has a (p — 1 x p — 1) identity matrix in columns mp? — p + 1 through mp? — 1 and zeros
elsewhere. The variable m will be fixed in the range [1,p — 1].
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Define the (p — 1) element vector
Bam = Sam(Iz — ®3)Cay (131)

Also let a(k) = —a(p+1—k), k =1,...,p. We need to show that the elements of fs,, are
proportional to the impulse response coefficients.

Using the definitions of Kronecker products, we obtain

- J alk), k=l;uaps t=Lunp—=1
—{ 0( ) else P A (132)
and
C3Y[(3—1)p2+(]—1)p+k]=03y(2—],k—j), z,],k=1,,p (133)
Hence,
S3mC3Y(Z') = C3y(m = p,Z —p), Z = 1, ey P — o] (134)
and, forz=1,...,p— 1,
Sam®3Cay (1)
P P P .
= 330 Sen®afi, (j — 1p? + (k — Up +[[Cay(G — k,1— k)
i=lk=1I=1
P
=Y a(k)Cy(m+1—k,i+1-k)
k=1
P
==Y a(k)Cay(m + k —p,i + k —p) (135)
k=1

where we have let k — p+ 1 —k and used the definition of a(k) to obtain the last equality.
Using (134) and (135) in (131), we obtain

P

Bam(i) = > a(k)Cay(m —p+k,i—p+k)

k=0
= ki a(k)Cay(m —i,p—t — k)
= 250 2 D a(BGAG +m A +p i~ B)
= s S HGIAG +m =) 3 alAG +p—i =B

= 0 Y AAG 1= 4 p—7)

=0

= oD BBk T e )

k=0
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where we have used (16) and (96), and let j + p — ¢ — k to obtain the last equality. Let
m=m =p—q+12>1in the last equation. Then,

q
Ban(i) = Ysw . b(k)h(k+i—p)h(k —g+1)
k=0
= Yaub(@)h(1)R(i +1—m) = b(g)h(i + 1 — m)
where we have used h(1) = 1. The last equation leads to

h(z) = ﬁsm,(;ai(r:r:)_ 1):

which establishes (95), where the scalar a™ = f5,,(7) = b(g). O

i=1,.,q—1=p—m (136)
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Zero-lag terms: Theorem 5 C(4;0,0) -

. % C(2;0,0 C(3;0,0 >
L2 £q.(a5) [FERO) Eq (45) [SREO £q 45) B Eq 45) o
n=0 n=1 n=2 n=3
Y
| — — — =7 Ry >
Region R, l
Theorem 4, Eq.(44) 1

Region R,
Corollary 1, Eq.(52)

Region R, 7 s /@’ .&/
Corollary 1, Eq.(52)

Figure 2
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Figure 4a. Impulse response of a tenth-order airgun wavelet

Figure 4b. Third-order output cumulant of a tenth-order LTI SISO system. Cumulant lags,

C (1)), -10 <1i,j < 10, are shown. i
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Figure 5. Fourth-order output cumulant of a tenth-order LTI SISO system. Cumulant lags,
C (m,nk), -10 <m.n <10, are shown in Figs. (5a)-(5j), for k=0,1,...,9.

Figure 6. Third-order output cumulant of a tenth-order non-statioanry scalar process
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