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Abstract

For independent Poisson observations having a complete/incomplete data represen-
tation, a generalized expectation-maximization (GEM) algorithm is developed for Baye-
sian reconstruction based upon locally correlated Markov random field priors in the form
of Gibbs functions. For the M-step of the algorithm, a form of coordinate gradient ascent
with an initial step-size resembling that of the EM likelihood algorithm is employed.
Implementation closely follows that of the EM likelihood algorithm In addition, as the
prior tends towards a uniform distribution, this algorithm reduces to the EM likelihood
algorithm. Three different Gibbs function priors are examined. The generalized EM
Bayesian approach is applied to estimating the 3-D image parameters in the Poisson

model of single photon emission computer tomography (SPECT).

1. Introduction

The maximum likelihood (ML) approach to estimation is equivalent to a maximum
a posteriori (MAP) approach in which the prior is assumed uniform over the feasible
parameter space. While a ML approach to emission tomography has received consider-
able interest since the application of the expectation-maximization (EM) formulation by
Shepp and Vardi [16], in practice two drawbacks are encountered: 1) due to the ill-
conditioned nature of the reconstruction problem, reconstructions tend to take on an
increasingly, non-smooth quality as the ML solution is approached; 2) convergence can be
increasingly slow as the ML solution is approached. These drawbacks are often compen-
sated for by initializing the algorithm with a smooth estimate and terminating the algo-
rithm before convergence [7),[18]. Alternatively, a regularization approach to the prob-
lem has been taken by Snyder and Miller in [17] and Miller, Snyder, and Moore in {12].
A Bayesian approach based on a particular Gibbs prior, which we examine later, was
taken by Geman and McClure. In [5] they impose the constraint that the unknown image
pixels take values from a known interval and use gradient ascent to arrive at 2-D MAP
estimates. In [1], Besag reported that his ICM algorithm had been applied in a prelim-
inary way to gamma camera scans, but no details were provided. The ICM algorithm [1]
is equivalent to coordinate descent [11] of the negative log of the posterior function. This
approach updates a single pixel at a time by maximizing a univariate function which is

conditioned on all data values to which that pixel contributes, all pixels which contribute
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to those data values, and all neighbors of the pixel to be updated. In emission tomogra-
phy, each source pixel contributes to many data values so that this algorithm can be
more computationally demanding than the approach presented in this paper. More
recently, several authors have investigated Gaussian and Poisson priors applying the EM
approach to generate Bayesian reconstruction algorithms. Liang and Hart examined
uncorrelated Gaussian and Poisson priors in [6] and in section 2 of [10] and correlated
Gaussian priors in section 3 of [10]. The algorithms developed in those sections initially
follow an EM derivation. However, in order to develop a closed form M-step, they replace
a set of parameters in the prior distribution with a set of uncomputed image pixels
values. Since this does not result in a true EM algorithm, as noted in [9], the question of
whether the posterior distribution is increased at each step and the question of conver-
gence for all possible data sets remain open. Their algorithm was shown to out-perform
the EM likelihood algorithm in a 1-dimensional simulation in [10] and later in 2-D simu-
lations in [6]. Levitan and Herman [9] derive a valid EM algorithm for an uncorrelated
Gaussian prior and demonstrate a marked improvement over ML estimates in 2-D simu-
lations. For the mean of the prior distribution Levitan and Herman used a smoothed
filtered-backprojection reconstruction. Since it is generally accepted that the structure of
images is one of non-stationary mean and local correlations [14), their prior satisfies the
first of these two important image attributes. Markov random fields [14], described by
Gibbs distributions, capture the property of local correlation and do not require

specification of the mean.

For independent Poisson data with a complete/incomplete data representation, we
develop a generalized EM algorithm for Bayesian reconstruction based upon locally corre-
lated Markov random field priors in the form of Gibbs functions. For the M-step of the
algorithm, a form of coordinate gradient ascent with an initial step-size resembling the
EM likelihood algorithm is employed. Implementation of this algorithm closely follows
that of the EM likelihood algorithm. In addition, as the prior tends towards a uniform
distribution, this algorithm reduces to the EM likelihood algorithm. The reconstructed
image pixels are not constrained to any interval as in [5] and no approximations as in
[6],]10] are used. Three different Gibbs function priors are examined. We apply this gen-
eralized EM Bayesian algorithm to estimate the 3-D image parameters in the Poisson

model of single photon emission data.

A Note on Notation: In the following sections we represent vectors with emboldened

lowercase characters and matrices with emboldened uppercase characters. Subscripts are
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used to indicate a particular element of the vector or matrix. Vector superscripts are used

to indicate the particular iteration at which the vector has been computed.

2. The Generalized EM Approach to Bayesian Reconstruction

The probability distribution of the image vector X conditioned on the data vector y

is formulated using Bayes rule.
N) (N
Iy)

The ML approach is to treat f(y) as a constant for a particular data vector y, to treat
the prior distribution f(\) as uniform over the acceptable parameter range, and to define
the likelihood function as any monotonic function of f(y |)\), e.g. logf(y |\). For Baye-
sian estimation, again f(y) is a constant for a given data vector, but some a priori infor-
mation is incorporated by specification of the prior f()\). Bayesian reconstruction thus

requires solution of the problem
MEX B |y) = logfly IN) + logf(N) 1)

Bayesian estimation offers a potential for reconstruction improvement when prior distri-
butions, more meaningful than the uniform distribution, can be defined. In image recon-
struction, priors are sought which lend increased probability to realizations which feature
segmented, slowly changing regions and decreased probability to highly erratic images.
Such image models should incorporate local interactions while allowing abrupt changes
across edges or region boundaries. Gibbs functions, which will be used later in this paper,

have been demonstrated to be useful in this application [1],[4].

The EM algorithm as presented by Dempster, Laird, and Rubin [3] is a general
approach to iterative optimization of likelihood or Bayesian functions when the data can
be formulated in a complete/incomplete framework. A complete/incomplete data formu-
lation is applicable when data is missing or when the problem has a more natural formu-
lation in terms of a set of unobserved data. At each iteration, the EM approach requires
two steps: an expectation step (E-step) followed by a maximization step (M-step). Often,

these two steps can be combined into one.

Let x be the vector of complete but unobserved data and y the vector of incom-
plete, but observed, data. In order to apply the EM approach, the relationship between
the complete data and the incomplete data must be a many-to-one mapping. Each reali-

zation of x must correspond to only one possible realization of y, while, many different
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realizations of x may correspond to the same y. That is, given a realization %, only one
particular realization ¥ has non-zero probability of having occurred. Given a realization

¥, there is a feasible set {x}, with non-zero probability of having occurred.

It then follows, that due to this many x to one y mapping

fxy ) _ Jx 1N I(x)
S ) Ty N

where I,(x) is the indicator function which is equal to 1 if x results in y and equal to 0

J(x lyN) = (@)

otherwise. In addition, for any \*

E{logf(y IN) |yM} = [ logf(y INAix [y )dx = logf(y ) (3)

Yy

Combining (2) and (3) gives
log/(y I\) = Ey{log/f(x |N) |[yA*} — E {logfix ly)) |y2t} (4)

a function of A and y. It follows that with a complete/incomplete data formulation,
E {logf(x |)\) Iy)\" } and E {logf(x |y}\) |y)"’ } are each functions of \* but their
difference is not. Substitution of (4) into (1) results in an expression for B(\ |y) given a

data vector y
B(\ly) = QA M) — E,{logf(x IyM) |y>*} (5)
where Q(X |M\*) = E,f{logf(x |N) [yX*} + log/ (3)

To clarify how the EM approach works, we first note that from Jensen’s inequality [15] it
holds for any M+1 52 \¥

E {logf(x lyN*1) [y }<E, {log f(x [y \F) [y ¥}

with equality if and only if logf(x |[yA*!) = logf(x |y\*) almost everywhere [3],(19]. It
follows  that a  sufficient condition for B(\*'|y)> B\ |ly) is
QN1 NE) > Q(M\* |\*) since the second term on the right-hand side of (5) is

guaranteed, from Jensen’s inequality, not to decrease.

Beginning with some initial estimate A’ > 0 the EM Bayesian algorithm thus con-

sists of the two steps:

The E—step: form E,f{logf(x |\) |y\*} (6)

The M—step: solve m;.x QM IN) = E, {logf(x |\) [y !} + logf()) (7



-5-

If the M-step is carried out to a global maximum of the E-step, the approach is termed
an EM algorithm. If the M-step is only carried out to ensure QA%+ |A*) > Q(AF |\F)
the approach is termed a generalized EM (GEM) algorithm.

We note here that a maximum of the posterior distribution (4) is not obtained by a
single M-step since the M-step only involves maximization with respect to a portion of
the posterior distribution with the guarantee that the remaining portion is increased but
not maximized. This is also the key to why the EM/GEM approach is not guaranteed to
achieve a global maximum even if the M-step involves a global maximization [19]. As
shown above and in [3], an EM/GEM approach ensures an increase in B(X |y) so that,
for B(\ |y) bounded from above, convergence to some B® is assured. Continuity of
Q(X |\¥F) with respect to both X and \* is sufficient to ensure that all limit points of the
sequence {\¥} are stationary points of B(\ |y) [19]. In general, if B(\ |y) is not unimo-
dal and the set of stationary points contains points which are not local maxima, the
EM/GEM approach at best only assures convergence of the sequence {\*} to a stationary
value. As Wu states [19], this should not be suprising since in such 2 case no general
optimization algorithms are guaranteed to converge to local maxima. Outside of a single
exception, no added convergence result is obtained by an EM versus a GEM approach.
This exception, which is only of theoretical interest, is provided by Wu [19]. It occurs
when it can be demonstrated that any stationary point which is not a local maximum is
additionally not a global maximum of the E-step. Since the M-step of an EM algorithm
requires global maximization of the results from the E-step, the EM M-step would not
arrive at a stationary point which was not 2 local maxima under the above condition.
The difficulty in verifying this condition, were it in fact to hold true for a given problem,
makes this condition mainly of theoretical interest. From a practical viewpoint, the
question of whether to carry out a global maximization versus an increase within the M-
step is solely one concerned with increasing the per-iteration convergence speed at an
increased per-iteration computational cost. For a complete treatment of the EM/GEM

approach and its convergence properties see 3] and [19].

Optimization of likelihoods or Bayesian functions with independent priors may
result in closed forms for the M-step [9). If the complete data x are independent, the
complete data are a linear function of the incomplete data, and the image pixels X are
treated as independent, the M-step only requires optimization of a set of univariate func-
tions. However, it is generally accepted that the structure of images of any content is

one of local correlation (14]. It would therefore seem more desireable to examine the use
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of locally correlated priors. When used with an EM approach, the use of correlated pri-
ors prohibit the existance of closed form solutions for an EM M-step. Performing each
EM M-step thus requires an iterative optimization of an N-dimensional function, N being
the dimension of A. What results is an iterative optimization algorithm within each
iteration of an iterative optimization algorithm. In this case, iterative maximization of
the posterior distribution by a method such as ICM [1] without using an EM formulation
would seem more sensible than an EM approach. The GEM algorithm presented in this

paper offers an attractive alternative to both of these approaches.

It should be noted that the use of a non-uniform prior distribution can induce local
minima as well as local maxima in both the posterior distribution and in the results from
an E-step of an EM formulation. Therefore, setting the gradient of the E-step equal to
zero and solving the resulting set of equations does not ensure a valid M-step and may
result in jumps which drastically decrease the posterior distribution. Alternatively, using
an approximation to achieve a closed-form M-step opens the question of convergence and
the possibility at any stage of decreasing the posterior distribution. We prefer a general-
ized EM approach since it guarantees a monotonic increase of the posterior function and
has proven convergence properties. Under this approach, each M-step may consist of 1
or more iterations of an algorithm to increase @ (X |\¥) without the requirement of max-
imizing it. We would expect the per-iteration speed of convergence to be slower for a
GEM versus an EM approach. However, where a closed form M-step does not exist, the
GEM approach may result in a greater increase in the posterior distribution for a given
amount of computation. This may often be the case since it is generally true that the
first iteration of an iterative optimization algorithm produces the largest improvement.
In this work, we perform Bayesian reconstruction using Markov random field priors in

the form of Gibbs functions.

3. Neighborhood Systems and Gibbs Function Priors

A discrete Markov random field (MRF) defined on a lattice is a collection of random
variables, corresponding to the sites of the lattice, for which the probability of a given
site value conditioned on the values of all other sites in the lattice is equal to the proba-
bility of the site value conditioned on the values at a small subset of the lattice sites.
This subset of the lattice sites is called the neighborhood of the given site. Let the set of
indices of sites in the neighborhood of pixel j be denoted N;. Then

PN IN:ing) = P(AjIN:ieN;)
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If A; is a neighbor of X; , then ); is required to be a neighbor of \;. Neighborhoods are
referred to as O' order, 1% order,.., N*! order. Figure 1 shows the O'* order, 1% order,
and 2°9 order neighborhoods for the 2-D lattice and the 1* order neighborhood for the
3-D lattice. By the Hammersly-Clifford theorem (1971) 2] a random field defined on a
lattice is a Markov random field if and only if its distribution function corresponds to a
Gibbs function. To define the form of a Gibbs function, we must first define a clique. A
clique is either a single site or a set of sites such that each site in the clique is a neighbor
of all other sites in the set. The clique types associated with each neighborhood are also
shown in figure 1. For a rectangular 2-D lattice and a 1** neighborhood shown in figure 1,
the cliques are sets of sites consisting of a single site or two horizontally or vertically

adjacent sites.

A Gibbs distribution is then a probability measure on the set of configurations {A\}

which has the form

1 —U!X!
=—e #

where B is a constant, K is the normalizing constant (partition function), and U()\) is

termed the energy function. The energy function has the form

U\ = §, Ve(d)

where C denotes the set of all cliques and V_(\), termed a potential function, is a func-

tion on clique ¢.

Gibbs functions provide a powerful class of correlated priors. The appeal of the
Gibbs prior is that it can be defined outside of the normalizing constant simply by
defining a suitable pixel neighborhood and potential functions on the cliques associated
with that neighborhood. The intent is to capture a desired property of the unknown
image by a suitable choice of these. For Bayesian reconstruction, the normalizing con-
stant, which depends on §, need not be calculated. The parameter 8 controls the degree
to which the modes of the Gibbs prior stand out. As f—++o0o the integral of the prior in a
small region about a mode tends toward the same value as that about any point so that
the distribution tends to the uniform. As f—0 the prior becomes increasingly more pro-

nounced about its modes. With a Gibbs prior, (1) becomes

mAX BN ly) = logfy N) — lz(:: v.()
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so that as f—+oo Bayesian reconstruction is unaffected by the prior, which tends to the
uniform, and reduces to maximum likelihood. In this work and in [4] and [5], acceptable
values for B were obtained by trial and error. Furthur, as shown in the result section, 8
values from the interval +o0o to some lower limit value can produce an improvement in
the reconstruction. Smaller 8 values produce a degradation due to an over-influence by
the prior. There is a need for statistical methods of determining optimal # values given

suitably normalized potential functions and the data set.

Pixel configurations of lowest energy are of highest probability. It is common to
choose energy functions which penalize configurations with neighboring pixels differing by
large amounts. The Gaussian prior with a diagonal covariance matrix H and mean
image m chosen by Levitan and Herman in [8] is also a particular case of a Gibbs prior

with a 0'"-order neighborhood. A 0"-order neighborhood has only cliques containing a
single pixel. The corresponding energy function is —%(X—m)TH()\—m) . For the work

in this paper, we have chosen a 1°* order neighborhood (Fig. 1). In [1}, a 1*-order neigh-
borhood is considered unrealistic for most applications. However, in three dimensions a
1*-order neighborhood results in 6 neighbors for every pixel versus 4 in 2 dimensions. As
results presented here indicate, a 1** order neighborhood in three dimension may be
sufficient for many applications. In this paper we examine the following three potential
functions. None of the resulting Gibbs priors impose any mean on the image. In each,

the potential function on cliques containing a single site have been defined equal to zero.
(1) Viyih) =0 = N)?

i

(2) Vg(xj;xi) = $+(x, _).)2
’]  }

(3) Va(hish;) =l°g(1 +()‘J+)")2)

The first is used by Geman and Geman in [4]. The second is equivalent to that used by
Geman and McClure in [5]. The third potential function is a compromise between the
first two. A plot of these three potential functions suitably normalized versus difference
between the two pixels in a clique is shown in figure 2. This normalization simplifies the
interpetation of the effects of the priors and enables some comparison for a given £ value.
The first potential function increasingly penalizes the separation between neighboring
pixels. In addition, it does so at an increasing rate as the separation increases. To

improve on this, we seek a potential function which penalizes separations within uniform
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regions without unduly penalizing the larger separations which we foresee occuring at the
boundary between two different regions of the image. A good example of such a boun-
dary is the region outside of the patient versus the region inside of the patient. The
second prior encourages neighboring pixels to be of similar value until they have become
separated through iterative reconstruction by a given threshold é . At this point the prior
allows furthur separation of their values at relatively small increase in the penalty. We
found that reconstructions of single photn emission images from very low total count
numbers benefitted from potential functions which increasingly penalize pixel separation

over the full range of separation values.

4. The Application to Emission Tomography

Reconstructing the distribution of a radioactively tagged compound in a patient is
important in assessing organ function and in assessing the efficiency of chemotherapeutic
drugs. Upon ingestion, a radiopharmaceutical either rapidly or gradually accumulates in
various regions of the body. As the radioactive atoms in the compound decay, ~-rays are
emitted. Some of these y-rays exit the body and are recorded by the imaging system. A
~-ray imaging system records each detected 4-ray into one of several hundred thousand
bins. The number of counts in each bin comprise the data. Corresponding to each bin is
a relatively small 3-D volume from which it can be said, with high probability, the emis-
sion originated. However, these 3-D volumes overlapp one other so that any point in the
source space may belong to 50 or more bins. Typically, several million ~-rays will be
detected and registered into several hundred thousand bins. The number of counts in
these bins can be shown to be conditionally independent Poisson random variables [8].
To determine the distribution of radiopharmaceutical, we divide the 3-D space viewed by
the imaging system into small volumes called pixels. By reconstructing the Poisson mean
of each source pixel, we characterize the distribution of isotopically tagged compound in

the patient.

An emission imaging system has a complete/incomplete data formulation in terms
of the observed but incomplete data y and complete data set {x;;} where y; represents
the number of counts in bin { and x;; represents the number of 7ray emissions from

source pixel j detected at bin ¢ [16]. Clearly, y; = })x;;. The complete data x;; are
i

well modeled as independent Poisson random variables with means P;;X; where X; is the

i1
mean of the total number of -ray emissions from source pixel j and P;; is the probabil-

ity that a y-ray emitted from source pixel j will be detected at camera bin 1. Thus,
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n, J) (PU j)

SN =TI I €
t 5 (xu)'

The logarithm of f(x |\) is a linear function of the x;;’s plus terms independent of X.
Therefore, for the E-step (6) we only need to compute E{x,; |yA¥} . The variables
{xi;:¢ = 1,.,N} are independent and Poisson with means Py X, . In addition,
3X;, =y; so that

7

Soea.xin [yNF) = flxa.xaw |yish)
The joint distribution of a set of independent Poisson variables z conditioned on their
E {zj}
YE{z;}

(13]. The expected value of a multinomial variable is equal to the probability in its class

sum is a multinomial distribution with probability in each class j equal to

times the total number of trials. Therefore, the joint distribution of {x;;:¢=1,..N} condi-

tioned on Y x;, =y; is
q

xa-xa [¥iiM) = i) e (71 where p;; Pk
J(xa-- :NIYn)‘) W#n) (min) h By = Zq)Psq :

E {x,, |y)\"}, which is the mean of class 7 of the multinomial distribution is equal to

P)l‘

LA

EPW g

y.*

The E-step can now be formed as

E {logf(x |\) |y)"‘ }= 2(—8.,- A+ b'}log)\j) + terms independent of X (8)
J

where a; =YP;; and bt = EZL’XZ’-

i i zq:P iq)‘q
If the P;;’s have been normalized as in [16], then a; =1 for all j. In forming @ (X [\*)
of (4) we can omit the terms independent of A since these do not aflect the M-step (7).
For the generalizad EM approach, the M-step is to find a M*! such that
QN1 |NE) > Q(\* [\F) where from (4) and (8)

QO = (23, + iog);) - 55 ©)
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The algorithm we present here is a generalized EM algorithm and it is explained in
the section to follow. It is formulated for the class of correlated priors represented by
Gibbs functions and its implementation closely follows that of the EM likelihood algo-
rithm. The algorithm performs a coordinate gradient ascent of @(X |M\¥) with an initial
step-size which resembles the EM likelihood algorithm for emission tomography [16]. We
note that this algorithm updates pixels sequentially and that updated values are used to
update the pixels that follow. Therefore, in step 2a below, the superscript has been omit-
ted from X; in V(X\;;X) because the neighboring pixels \; may consist of both updated
and un-updated pixels. At the k*! iteration, perform the following steps:

(1) For all image pixels, compute the usual EM likelihood algorithm [16] updated vari-
bt
ables ){:,M = —L where a; and b’} are defined as in (8).
aj

(2) To update the image, visit pixel sites sequentially. When visiting a pixel X;, do
(2a)(2d)

(2a) compute C; and C, where

V(N%
Cy = a;(—X%;+ ¥Miogk) — 2 (l;' )
1
Cy= FE V(X, t)éj)
N
(2b) Setax =1.
Compute X' = ¥M — -%-
aj
If X1 > 0 go to (2d)
If X! <0 compute @ = )F“f e,
Mt 1
)GJ- a'j

(2¢) Compute X1 =(1—a)X; + a{)@” - C: % }
¢

V(Xi ;)EJ:H)
p

If yes, update pixel 7 to X‘j” and visit the next pixel. If no, divide & by 2 and

(2d) Check if  a;(—¥! + X¥MlogkH!) — 5 > ¢y
why

return to step (2c).
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To further clarify the steps, when visiting a pixel j, step 2a computes two values
which are functions of the data and of the updated and un-updated pixels in the neigh-
borhood of pixel 5. In step 2b, if the step-size @ =1 results in a negative X‘}”, half the
step-size o which gives )l’;"' =0 is computed. Step 2c¢c implements a coordinate ascent
[11] step for the specified step-size, and step 2d ensures that the step-size & has resulted
in an increase in @ (X [AF). If @(X |A*) has not been increased, step [2d] cuts the step-size
in half. As f—+c0 , Co—0 and the pixels are updated by setting them equal to the EM
likelihood updated pixel values. Step 2d , which would then represent a check to ensure
the likelihood function has been increased, is always satisfied so that steps 2a, 2c, and 2d
are no longer necessary. As f—s+c0 , this algorithm thus reduces to the EM likelihood

algorithm.

Let us consider why this is a generalized EM algorithm. If step 2d ensures a mono-
tonic increase of Q (X |\¥) and step 2c is guaranteed to arrive at a )l‘;“ satis(ying step 2d,
then at the conclusion of the M-step Q(M\*!|\E}> Q(\* |\*) and the algorithm is a
generalized EM algorithm. Let the potential function on cliques containing a single pixel
be set to zero. For a 1* order neighborhood, specify a potential function V(); i)

evaluated on all cliques containing two pixels. The energy function has the form

-%-.ZCV()‘;;)‘J-) . Let N; denote the set of indices of pixels which are neighbors of pixel j.
ije

In order to show that (9) is increased at each stage, there are only two cases we must
consider: updating a pixel whose neighbors have not been updated in the present itera-
tion, and updating a pixel for which one or more of the neighbors have been updated.
Without loss of generality, let us examine steps 2a-2d for two pixels \; and X; which are

neighbors by writing @(X |\*) (9) explicitly in terms of \; and ) i

QNishjih: bwij |NE) = —a; N+ Bhlogh; —,,%V(AA;M - V()‘,;;x’) —a;\;+bilogh;
l#J"
S AL (—a\ +Hlogh)) — 5 YCsit) (10)
leN; B Iyss,5 pgeC B
Img p;g¥sory

Let us first visit pixel ¢ whose neighbors have not been updated. Step 2d ensures an
increase in the sum of terms 1, 2, 3, and 4 in (10), with no effect on the other terms.

Therefore, ¥*! satisfies
QUAF ke i i [NF) > QKXks 1wi,j M)

For the second case, let us then visit and update pixel § a neighbor of pixel 1 , step 2d
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furthur guarantees an increase in the sum of terms 4, 5, 6, and 7 in (10), with no effect

on the other terms. Therefore, X‘J?"l satisfies
QUXF X 1w g [NE) > QUMK Lwi 5 | NF) (11)

Each pixel that is updated according to step 2d results in an increase in Q(\ |X") and

from section 2, B()\ |y) is increased.

It remains to show that step 2c will result in an updated pixel satisfying step 2d.
Step 2c is a coordinate gradient ascent [11] of QX |\¥) initialized at \¥ . At each step of
a coordinate ascent algorithm, only changes to a single element X; are allowed such that
a monotonic increase in Q(X |\*) is achieved. Each element is addressed in some
prescribed order so that for bounded functions ultimate convergence to a stationary
value is assured. Let us take the case above, where X; has been updated to X;*! and we
wish to update X‘,-. A coordinate gradient ascent of Q()f,f"l;)(“,;)f;l#i,j |)"‘) takes the

form

X=X+ my S QORI AK twif M) (12)
J

where m; is any positive value. From (10)

9 ok bitui i ) a4 P 0 a(1 s _C2
ax‘jQ(x, ,)l’,,)t,:l#z,.) IX) a; + X‘,~ Cy=a;(—1+ x:j a,-) (13)

aX:
where C, is as defined in step (2a]. Let m; = a—". Since ¥ is constrained to be posi-
J

tive, 0<a<l, and a;>0, m; is positive. Substituting m; and (13) into (12) gives step
2. The step direction follows the j** coordinate directional derivative of
QUA ks 14,5 | \*) and the initial step-size is chosen to mimic the EM likelihood
algorithm. An increase in Q(X; l;)l‘j;)?; Iwt,j IX") is possible with a sufficiently small
step size if that derivative is non-zero. If the derivative is zero, step 2d is satisfied
immediately. Steps sizes which do not satisfy step 2d are cut in half so that the algo-

rithm quickly arrives at a step size increasing @ () [\F).

This GEM =algorithm monotonically increases @ (X |[\¥) and terminates at a point
M for which

SOk Iy =0if ;>0
[Q( I )]J—> <0ifx‘j=0 (14)
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for all j; i.e. at a point where the directional derivative in all feasible directions is less

than or equal to zero. From (4)
VB(A ly) = VQ(X IN') — VE,{logfx [y)) [y7*})
Since M\* maximizes E,{logf(x |[y\) ka"} (5), VE,{logf(x [y *) Iy)"‘} =0 [19]. This

holds regardless of whether or not X\ lies on a boundary. Therefore
VB(\* |ly) = VQ(M* |\F) and the algorithm terminates at a point A\* for which the
directional derivative of B(M |y) in any feasible direction is less than or equal to zero,

i.e. {\f} converges to a stationary point.

5. Results

The simulations we present model a 3-D single photon emission imaging system con-
sisting of a parallel collimated gamma camera with 48° pixels viewing a 3-D volume with
data collected from 48 different equispaced angles. Perfect collimation is assumed. A 3-D
source space consisting of 48% pixels is reconstructed. The Gibbs distribution potential
functions were defined as in section 3 for a 1* order neighborhood consisting of the 6
nearest neighbors. The neighbors of an interior image pixel consist of the pixels above,
below, and on all 4 sides totaling 6 neighbors. The missing neighbors of pixels located on
the side boundaries are assumed zero. A free boundary (4] is used for pixels on the top
and bottom planes of the 3-D reconstruction space. These pixels have fewer neighbors.
Pixels on the bottom layer of the 3-D reconstruction space have no neighbor below while

pixels on the top layer have no neighbor above.

Figure 3 shows the 3-D computer generated phantom used in our simulation study.
A total mean of 2 million counts were generated from this 3-D phantom. Figures 4, §, 6,
and 7 provide a visual comparison of the reconstructions from the EM likelihood and
GEM Bayesian algorithm with each of the three priors discussed in section 3. The recon-
structions displayed in these figures are the result of 50 iterations of each specified algo-
rithm. With more iterations, the EM likelihood reconstruction worsened furthur while
the GEM reconstructions remained unchanged. For these reconstructions f=1 and the
three potential functions were normalized as shown in figure 2. Figure 4, the EM likeli-
hood reconstruction, shows the excessive non-smoothness reported by many authors
[5],{7),19),{17],[18]. Figures 5, 6, and 7 show that all three Gibbs priors produced a consid-

erable visible improvement in the reconstruction.
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Figure 8 shows the L, norm error between the true source image and the reconstruc-
tion for 100 iterations of the EM likelihood algorithm and for 100 iterations of the the
GEM algorithm using the three different Gibbs priors in section 3. The GEM algorithm
initially reduced the Ly norm error as quickly as the EM likelihood algorithm. The EM
likelihood algorithm characteristically iterated away from the true source image after a
number of iterations while the GEM algorithm continued to reduce the L, norm error

until convergence.

Figure 9 shows the Bayes (likelihood) value at each iteration. This shows a mono-
tonic increase in these functions for the EM likelihood algorithm the GEM bayesian algo-
rithm. Figure 10 examines a range of 8 values. Here, the Ly norm error between the true
source image and the reconstruction for 100 iterations of the GEM algorithm using the
first potential function V,; with different values of B is shown. According to this cri-

terion, we found an improvement in the reconstruction for all values of #2>1.0.

These simulations were run in Fortran code on a Sun 3/110 workstation with a
floating point accelerator. Some improvement in the speed was achieved by setting the
parameter space to X;>¢>>0. where ¢ was chosen as some small value such as ¢ =.0001 .
If X\; equaled ¢ and the the directional derivative was negative along that coordinate, X;
was left equal to ¢ and the next pixel was visited. This reduced some of the time spent
computing small steps for small pixel values converging towards zero, a task particularily
time consuming as the algorithm converges. The EM likelihood algorithm required 48 sec
per 3-D iteration while the GEM algorithm averaged 63 sec per 3-D iteration. The 3-D
forward /back projections required the majority of the CPU time (47 sec per iteration)

while pixel updating filled the remaining seconds.

8. Conclusion

The GEM Bayesian algorithm we have presented can be used with any locally
correlated priors in the form of Gibbs functions and has the desireable theoretical conver-
gence of its generalized EM formulation. For 3-D images, such as those encountered in
emission tomography, this algorithm can provide an improvement over maximum likeli-
hood reconstruction at a nominal computational cost. This work shows that some
improvement can be achieved for a wide range of # values, but statistical methods for

optimizing the choice of this parameter are still needed.
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