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The red/black ordering scheme is often used to increase the parallelism of
iterative methods for solving elliptic PDEs. However, the convergence rates are
also affected, often adversely. This paper provides a unified approach, called the
two-color Fourier analysis, to study the convergence rates of iterative algorithms
for elliptic problems with the red/black ordering. This Fourier tool is used to
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relaxation (SOR) method, symmetric successive over-relaxation (SSOR) method,
preconditioned iterative methods with SSOR, ILU and MILU preconditioners and
multigrid (MG) methods. By comparing the convergence rates of algorithms with
the natural and red/black orderings, we show that although the red/black order-
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preconditioned iterative methods.
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1. Introduction

An important task of the research on parallel computation is to seek algorithms
which can be conveniently implemented on vector or parallel computers. One common
approach to obtain parallel iterative algorithms for the solution of partial differential
equations (PDEs) is reordering. By reordering, we rearrange the computational sequences
to increase the percentage of computations which can be done independently [27]. A cru-
cial issue associated with reordering is how the convergence rate of an iterative algorithm

is affected by a reordering scheme.

The multicolor ordering scheme for grid points provides more parallelism than the
natural rowwise or columnwise ordering scheme. It is well known that by using red and
black two colors to order the grid points in a checkeredboard fashion for the 5-point
Laplacian, we are able to separate the coupling between any two red ( or black ) points
so that the values at all red ( or black ) points can be updated simultaneously. Similarly,
four colors are needed to separate the coupling between grid points of the same color for
the 9-point Laplacian [1]{2][3]4]{20][22(23). On either vector or parallel computers, an
algorithm with the multicolor ordering is always easier to vectorize or parallelize than its
naturally ordered counterpart so that such a reordering is attractive for parallel imple-
mentation. There are numerous discussions on the implementation of iterative algo-
rithms with the red/black ordering on vector and parallel computers in the literature, for
example, [1](5](8][11](23](27](28][33).

In this paper, we examine how the convergence rate of an iterative algorithm is
affected by the red/black ordering. Our study includes the successive over-relaxation
(SOR), symmetric successive over-relaxation (SSOR), SSOR, ILU and MILU precondition-
ers for preconditioned iterative methods, and multigrid (MG) methods. The convergence
rates of these algorithms are analyzed by a unified approach called the two-color Fourier

analysis. Although the two-color Fourier analysis has been used in analyzing the SOR



and MG methods by the first author of this paper [20][21][23], we believe that results for
the SSOR iteration and the SSOR, ILU, MILU preconditioners are new.

Fourier or modified Fourier analysis has been used successfully to analyze numerical
methods for elliptic PDE problems for years. One can conveniently study the effects of
operators on Fourier modes if the numerical method of interest is applied to a simple
model problem which consists of a constant-coefficient PDE on a regular domain with
appropriate boundary conditions. The model problem for 2nd-order self-adjoint elliptic
PDEs is the Poisson equation on a square with Dirichlet boundary conditions. For the
model Poisson problem, the SOR iteration was analyzed with Fourier-like basis functions
by Frankel [18] and Young [30]. Brandt used Fourier analysis to study the error smooth-
ing property for multigrid methods [10]. Stiiben and Trottenberg performed a two-grid
analysis to analyze both the error smoothing and the coarse-grid correction with Fourier
basis functions [29]). Fourier analysis has also been applied to the analysis of the 5-point
or 9-point SOR iteration with the natural or multicolor ordering [3)20][22](23][24],
preconditioners for elliptic problems with the natural ordering [13], and problems arising

from the domain decomposition context [12][14].

Due to the multicolor ordering scheme, the resulting system of iteration equations is
not spatially homogeneous but is periodic with respect to grid points. Consequently, the
Fourier modes are not eigenfunctions for the multicolor system, and therefore a straight-
forward Fourier analysis does not apply. When these Fourier modes are operated by
periodic operators, there exists a coupling between high and low frequency components.
By exploiting the periodic property, we reformulate the conventional Fourier analysis as
a two-color Fourier analysis. From this new viewpoint, components in the high fre-
quency region are folded into the low frequency region so that there exist two, i.e. red
and black, computational waves in the low frequency region. The coupling between the

low and high conventional Fourier components is therefore transformed into a coupling



between the red and black computational waves with the same frequency in the low fre-
quency region. With this new Fourier tool, the spectral representation of operators with
the red/black ordering can be easily derived and interpreted. For the model Poisson
problem, the two-color Fourier analysis is exact for Dirichlet boundary conditions and,
with some modifications, is also applicable to periodic boundary conditions. The two-
color Fourier analysis can be generalized to the multicolor Fourier analysis which applies

to ordering schemes with more than two colors [22].

The determination of the optimal relaxation parameters of the SOR method with
the multicolor ordering and their corresponding convergence rates for both 5-point and
9-point Laplacian operators have been intensively investigated [3][22][23](24]. It is found
that if the relaxation parameters are appropriately selected, the numbers of iterations
required for the red/black and natural orderings should be of the same order. In the
context of MG methods, the red/black Gauss-Seidel smoother provides a better smooth-
ing rate than the lexicographical Gauss-Seidel smoother [29]. Hence, the red/black reord-

ering does not deteriorate the performance for these two types of algorithms.

However, the same conclusion does not apply to the SSOR iteration and precondi-
tioned iterative methods. The optimal relaxation parameter and its corresponding con-
vergence rate of the SSOR iteration highly depends on the ordering [7][19][32]. The
naturally ordered SSOR method has the same order of convergence rate as the SOR
method and can be accelerated to give an even faster convergence rate by the Chebyshev
semi-iterative or conjugate gradient procedure [9](19][32]. In contrast, for the red/black
ordering, it has been observed that the optimal relaxation parameter for the SSOR
method is 1 so that the resulting scheme reduces to a forward and backward Gauss-
Seidel relaxation which converges much slower [19]. Here, we use the two-color Fourier
analysis to analyze the red/black SSOR method and determine its optimal relaxation

parameter 1 analytically. We also perform a quantitative study of the eigenstructure of



the preconditioned Laplacian operator with the SSOR, ILU and MILU preconditioners.
The results indicate that the condition number of the preconditioned operator with the
red/black ordering is in general one order higher than that of its naturally ordered coun-
terpart. Hence, for SSOR and preconditioned iterative methods, the convergence rate is

greatly sacrificed in order to obtain more parallelism.

This paper is organized as follows. The two-color Fourier analytical approach is
described and the model problem is formulated accordingly in Section 2. Section 3
analyzes the convergence rates of the SOR and SSOR iterations. Section 4 studies the
eigenstructure of the preconditioned Laplacian operator with the SSOR, ILU and MILU
preconditioners. Then, we perform a two-grid analysis to understand the convergence
behavior of the multigrid method in Section 5. Section 6 compares the convergence rates
of iterative algorithms with natural and red/black orderings. Related research work and

extensions are given in Sections 7 and 8.



2. Preliminaries
2.1 Two-color Fourier analysis

Consider a 2D sequence u ; ¢ defined on a grid

O ={(jhkh):0<j k<M, M=%even} 2.1)
with zero boundary values, i.e. u; ; =0if j,k =0 or M. We can expand it with Fourier
series as

M-1M-1
U = {]l "Zg)l t g sin(émjh )sin(nwkh) . (2.2)

As usual we call grid point with index (j,k) the red or black point depending on whether
J+k is even or odd. The function u; ¢ at the red and black points defines two sequences:
the red sequence 4, ;; and the black sequence uy ;- They can be expanded in Fourier

series respectively as

Uy = 3 G gsin(Emjh)sin(nmkh),  j+k even, (2.3a)
(€meK,

Wik = X Gygsin(lmjh)sin(nmkh),  j+k odd, (2.3b)
(fl")EKs

where

K=K ={(Ener: cm<M-1,6, 121 oo n=M—-¢,1<¢< 1y,
and
- MM
It is straightforward to check that the Fourier coefficients g, tiyg_gpm—y in (2.2)

and @, ¢, @ ¢, in (2.3) are related via

“”] [ ][ o | emek, (2.4a)
ub-f.ﬂ uM fM—ﬂ

MM
U = Uy, &n) = (?,?) : (2.4b)

We can interpret (2.4) as follows. Through the red/black decomposition (2.3), the



component (M—§M—n) in the high frequency region is folded into the component (&m)
in the low frequency region so that there exist two computational waves in the low fre-

quency region. The original and the folded two-color Fourier domains are depicted in

Figure 1. Note also that K, and K differ only by a single element (%,%/!-) and, there-

fore, at the frequency (%,%) we have only a scalar & , ,, which is considered as the
M
K]

degenerate case.
2.2 Model problem: a two-wave formulation

Consider the discretized 2D Poisson equation on the square [0,1)% with grid spacing

h,

1 .
F( Yimtk Ui F U F e —duy )=, 1<k <M1, (25)
where M = % is even and u;; is given for 7,k =0 or M. Without loss of generality, we

only consider the case where u; ; is zero on boundaries, since a nonzero u; ¢ on the boun-
dary can always be moved to the right-hand side and treated as part of the driving func-
tion. In addition, since the driving term Jix with 7,k =0 or M does not appear in
(2.5), it can be viewed as zero. Consequently, the red/black Fourier series expansion (2.3)
for both u;; and f;, are well defined. By substituting (2.3) into (2.5) and relating the
Fourier coefficients of red and black waves, we can transform (2.5) from the space
domain into the red/black Fourier domain. It is a block diagonal matrix equation, in

which the equation for a nondegenerate frequency (&,7) can be written as

[ aE.n] [urf,, _ A -’jr.f,ﬂ] (2.6a)
—ag, “b,E.r; 4 fb,f,n '
where

oy = cos(émh )+eos(nmh) (2.6b)

2



Since (§,7) € K, 0 < g, < 1. Only the nondegenerate case will be considered in this

paper, since the degenerate case can be analyzed similarly and it in general does not
change the conclusion for each case.

We can use the familiar matrix approach to derive the same result. Consider a gen-

eral coefficient matrix with the red/black ordering expressed in block form
D, -C
-cT p |’

Let the singular value decomposition for D,, D; and C be

D, =UD,UT, D,=VD,VT, ¢ =UCVT,
where matrices U and V (with scaling constants) are defined by the two-color Fourier

series expansion (2.3). Then,

Uo
oV

is orthogonal and

D, -¢C D, -¢
_¢T p, W=|_ear 5, | 2.7

Since D,, D; and € are diagonal, (2.7) can be permuted to block diagonal form with

wT

2X2 diagonal blocks. For the system (2.5) scaled by — h%/4, D, and D, are identity

matrices and the 2X2 diagonal blocks are of the form
1 —ag,
-0, 1)

We will use the shift operator notation to represent various operators discussed in

where ag , is defined in (2.6b).

this paper, since the conventional matrix notation hides useful geometrical information of
variables defined on 2-D grids. For example, we express the local Laplacian operator A; ;

at grid point (jh ,kh) as



E E'+E E!
Aje=1- 222 :y+" ; (2.8)

where E; and E, are shift operators along the z- and y- directions. The system (2.5) can

therefore be written as

h2
Aj,k uj,k = - Tfj'k . (29)
We use A to denote the global operator which consists of local operators A; ;,
1 < j,k < M~—1 associated with zero boundary values. Besides, fi(t;',n) is used to denote
1 —ay,

Agn) = [ ] (ém ek, (2.10)

which is the coeflicient matrix in the frequency domain as given by (2.6). An equivalent

—ag, 1

point of view for the global operator A is to treat it as a homogeneous operator defined
on an infinite 2-D grid and to impose the zero boundary conditions by requiring that
input sequences be synthesized with Fourier components given by (2.3) only. By adopt-
ing such a viewpoint, the operator algebra [16] can be conveniently applied to manipulate

A while its frequency domain expression remains the same.



3. Analysis of SOR and SSOR methods

3.1 SOR iteration

For the model problem (2.5), the red/black SOR iteration can be written as

uli* =5, (Wl — P, il ) fJ.
uf i = 8y p(W)uf i — Pb,j,k(w)Tfj,k
where
‘(1—w+%(E,+E,'1+E, +Ey"l), (7,k) red
Srjpl@) =1, (7,k) black °
1, (7,k) red
SEJ,( )==< -1 -1 .
l—w+—-(E +E+E,+E; ), (7,k) black
are the local SOR iteration operators at red and black points, and
w (7,k) red , (7 ,k) red
Prj(w) = { 0, (7 k) black @ Dria(@) =1, (j k) black °

can be viewed as the local injection operators at red and black points scaled by the
parameter «. As before, we denote their corresponding global operators by S,, S;, P,

and P respectively.

By using the red/black Fourier series expansion (2.3), we can transform (3.1) from
the space domain to the frequency domain and obtain a block diagonal matrix equation.

For each nondegenerate frequency (€,7), the iteration equation can be written as

An+l
[A"’i’g] Sb €,n, S (E,ﬂ,(d) [ i1 ] el [ Sb (EJ”)W)P (E,ﬂ,(d) + Pb (E:ﬂ,“’) ] [f' eﬂ]
(XX}

’ "'
[ ] [—w wae,,] [ur” w
Wgy 1—w iy, Wog, w

where a; , is given by (2.6b).

{ r.E.n]
Focn)’ (3.2)



- 10 -

For the error, equation (3.2) is a homogeneous equation, and the error dynamic can

be completely understood by studying the SOR iteration matrices,

1—w waf,,, (3 8)

Srb (E"’lw) = 55("3;’7,‘*’) Sr(Ern’w) = (l—w)wae,,, 1—w+w2cv€2',, .
The objective is to find the optimal relaxation parameter w* which minimizes the spectral
radius p of the matrix S,; with respect to all possible £ and # and its corresponding spec-

tral radius.

To do so, let us first consider fixed € and 7. The spectral radius P n(w) of S',b(f,r),w)

can be found by solving the quadratic equation

| Newlw) — Ss(Emw) | =2E, — (2 — 2w + Pad e, +(1 —w)?=0,

so that
w—1, Wi, Lw<2
Penl®) = max | Agyfw) | = , (34)
d " worg yHuwPord —4(w—1)]% 0 < w< wt
2 ! = %¢9
where
Wep = 2

1 +(1—a€,,)"‘ '
From (3.4), it is easy to see that when 0 < Wep < 2, peqy < 1. In addition, the relaxa-

tion parameter w = wg, minimizes p;, which takes the value wWe g — 1.

Next, let us vary the values of £ and #, and determine the optimal relaxation
parameter for (§,7) € K. Since the procedure is standard, only the results are summar-

ized [23][31]. The optimal relaxation parameter is
. )

W = ]
1+ (1—0f, max)*

where Qg max occurs at the lowest frequency (€,7) =(1,1). Its corresponding spectral

Qg pmax = ag, = cos(mh) , (3.5)

max
(émek

radius is

Psor( red/black ordering ; Dirichlet b.c. ) =w* — 11 — 27h . (3.6)



211 -

With this optimal relaxation parameter «*, the eigenvalues of S,y are distributed along a
circle of radius w* —1 in the complex plane. The results in (3.5) and (3.6) are in fact

special cases of the general SOR theory by Young [30](31).
3.2 SSOR iteration

One SSOR iteration with the red/black ordering consists of one red/black SOR
iteration followed by one black/red SOR iteration. Hence, the corresponding iteration
matrix can be written as

5‘.'5501"’ (E;’hw) = S'r(f,ﬂ,w) S'b (Etﬂ)w) S'b (E;'LW) gr(E;"lw) ] (37)
where S, and 5, are given in (3.2). Note that we can rewrite the frequency domain
red/black SOR iteration matrix as

gb(f;n:w) é,(f,ﬂ,(d) =TI - W( I— wl:(&)”) )—l fi(f,ﬂ) y (38)
where I is the 2 by 2 identity matrix, fi(f,ﬂ) is the frequency domain Laplacian defined
by (2.10), and

. 0 O
L(f;’?) = ae'n 0 ‘
Similarly, the frequency domain black/red SOR iteration matrix can be written

gr(f:n:w) S'b (E:ﬂ,w) =I—-w ( I - wﬁ(f,ﬂ) )—l A('Srn) ’ (39)
where U(&n) = LT(€,n). Combining (3.7)-(3.9), we have

Sssor (Emw) =1 — (2—w) (T — wO(Em) )™ (1 —wi(€m) Y A(En). (3.10)
The optimal relaxation parameter is selected to minimize the spectral radius of Sgsop, or
equivalently, to maximize the smaller eigenvalue of the second term in the right-hand-
side of (3.10). It is easy to see that w(2—w) takes the maximum value when w=1. In
addition, it will be shown in Section 4.1 that w =1 maximizes the smaller eigenvalue
Agn— of the matrix

(I —wOEn)™" (1 —wh(En))tA(En),
for ({,n) € K. Thus, the optimal relaxation parameter is 1, with which the spectral
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radius of the SSOR iteration becomes

Pssor( red/black ordering ; Dirichlet b.c. ) = cos®rh ~ 1 — 7%h2 .

(3.11)
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4. Analysis of preconditioners

An important class of iterative methods for solving elliptic PDEs is obtained by first
preconditioning the system of equations and then solving the preconditioned system with
effective iterative methods [9). One such example is the preconditioned conjugate gra-
dient (PCG) method. It is well known that the rate of convergence of a preconditioned
iterative method depends on the condition number as well as the distribution of the

eigenvalues of the preconditioned system (7)[9).

For the model Poisson problem with the natural ordering, Chan and Elman [13]
used Fourier analysis with basis functions e*27/h ¢i2m8h (o Ghtain all eigenvalues of the
preconditioned Laplacian with the ILU, MILU and SSOR preconditioners. Here, we
analyze the eigenstructure of the model problem (2.5) with the red/black ordering. The
two-color Fourier analysis with basis functions sin(¢7jh )sin(nmkh) is used to determine
all eigenvalues of the preconditioned system. Note that different basis functions are
chosen for these two orderings. For the red/black ordering, since the stencils of iterative
operators are symmetric, either sine or complex sinusoidal functions can be conveniently
used as basis functions, and the resulting analysis is exact for Dirichlet and periodic
boundary conditions respectively. For the natural ordering, since the stencils of iterative
operators are usually not symmetric, only the complex sinusoidal functions can be con-
veniently used as basis functions. Such an analysis is exact for periodic boundary condi-
tions but in general not exact for Dirichlet boundary conditions. However, experimental
results indicate that the eigenvalue distribution of the preconditioned system is not sensi-

tive to the change of boundary conditions [13].

‘Three different types of preconditioners, i.e. the SSOR, ILU and MILU precondition-

ers, are studied below.

4.1 SSOR preconditioner
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Suppose that we define the local operators L;; and U;; as

ik = 4 Jda
’ %( E, +E'+E, +E), (j,k) black
\
(4 .
{;(E,+E,_1+Ey+Ey' ), (7,k) red
Uik = o, (j.k) black - (4.1b)

It is easy to see that their corresponding global operators L and U are related to A by
A =I—(L +U). Then, the global SSOR preconditioner with the red/black ordering

is in form [6)

@s=(I—-wL)(I—-wU). (4.2)
where w is the relaxation parameter. By using the two-color Fourier analysis, we can

transform it to the frequency domain

A 1 0 [1 - waf’,,] 1 — Wy
Qs(&n) = —wog, 1] [0 1 =1_ wag, 1+ w2a€" ) (4.3)
where &g, is defined in (2.6b). From (2.10) and (4.3), we find that the SSOR precondi-

tioned operator @s'A has the spectral representation

2 2 3
l—mé.n'*'“’zaf.n _‘”E.n"‘m(.n_“’zaf.n

A =1 . _
Qs (EmMA(Em) = | _ g g, 1—wa, , (4.4)

which has two eigenvalues
Mege=1-— %"“&“’(2_‘*’) - %af,n[aéz.n‘j@-“’)z —4w(2-w) + 4 % (4.5)

When 0 < w < 2, the eigenvalues A are not only real but also positive and, therefore,
Qs™'A corresponds to a symmetric positive definite (SPD) matrix suitable for the conju-

gate gradient method. The condition number & of the operator Qs™'A is determined by

K(QS—IA) = e"' . ’
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which is to be minimized by choosing an appropriate relaxation parameter 0 < w < 2,

To determine the condition number, it is convenient to rewrite (4.5) as

A(z,y) =1 —ZT%i';‘(xzyz—‘iy +4 )%,
where 0 <z =0¢, <land 0 < y =w(2— w) < 1. By taking the partial derivative
with respect to y for \,, we find that A\, and A_ are monotonically decreasing and
increasing respectively for given z. So, y =1 gives the smallest condition number and

the optimal relaxation parameter is 1. The corresponding eigenvalues in (4.5) become

| 1
Megs=1-— ?af.n + ?aérl . (4.6)

The maxima of Mg, . are 1, and the minimum of g, _ is 1 — cosmh) ~ 72h2, which

occurs at (§,7) =(1,1). Therefore, the condition number of the SSOR preconditioned

Laplacian is

—14y _ 1 1 _ 1l
HQs74) = 1 — cos’(wh) ~ mh? O(h2 ' (47)

The distribution of the eigenvalues Ag gt given by (4.6) is plotted as function of Qg in

Figure 2(a). The surface plot of the eigenvalue A, _ as function of (0,¢) = (émh,ymh) is

presented in Figure 2(b). Note that the condition number of the Laplacian is

1 +cos(mh) ., 4
1 —cos(mh)  n2p%’

Hence, for small h, the red/black SSOR preconditioner only

reduces the condition number of the original matrix by a factor of 4.

4.2 TILU preconditioner

An incomplete factorization for a matrix can be determined by imposing specific
sparse patterns and constraints for elements on the factorizing matrices as well as their
product. Since the construction of a matrix specifies not only a system of equations but
also an ordering scheme for the variables, the incomplete factorization highly depends on
the ordering. In this and the following sections, we study the spectra of two well-known

preconditioners, i.e. the ILU and MILU preconditioners, which are constructed based on
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incomplete lower/upper triangular factorization.

The ILU and MILU factorizations were originally defined in [25) and [17] respec-
tively. We summarize their definitions as follows. It is required for both the ILU and
MILU factorizations that the factorizing lower and upper triangular matrices have the
same sparse patterns as the lower and upper triangular parts of the original matrix.
Besides, the off-diagonal nonzero elements of the original matrix should have the same
values as the corresponding elements of the product matrix. The major difference
between them is that the ILU factorization requires that the diagonal elements of the ori-
ginal and product matrices be also the same while the MILU factorization requires that
the row sum of the product matrix differ from the row sum of the original matrix by a

small quantity 6 = ch?, where ¢ is a constant independent of A.

The factorizing operators generally have different coefficients associated with
different grid points due to the boundary effects. However, these coeflicients usually
reach their asymptotic constant values for the region sufficiently far away from boun-
daries. In the following analysis, we ignore the boundary effect and analyze the precondi-

tioned system with the asymptotic preconditioners.

For the ILU factorization, consider the local operators L;, and U;,

(
L l, (7,k) red
f k= .
! 1— %( E, +E;'+E, +E7'), (jk) black
(1~ Y5 4B 4B, + B, () red
Ujp =
’* % (k) black

With the red/black ordering, the global operators L and U correspond to lower and
upper triangular matrices. Since the operator Lig (or U; &) has nonzero coefficients for

the terms 1, E,, E;7}, E, and E;, the sparse pattern of L (or U) is the same as that of
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the original matrix A for the lower (or upper) triangular part. We define the global
operator ¢; to be the product of the lower and upper global operators,

QI = L U .
Let R = Q; — A . Then, R consists of the local operators

0, (5,%) red

R,'.k =
%( E.E, + EF'E, + E,E” + E,E[ ) + %( E2+E2+E?+E), (i) black

for points not close to the boundaries. Note that the operator (Qr)j + has the same
coeflicients as A;; (i.e. R;; = 0) for terms corresponding to 1, E,, E !, E, and E,
which constitute the nonzero terms for the sparse matrix A. Note that the sparse pat-
terns of L, U and @ described above consist with the sparsity conditions required by
the ILU factorization. We conclude that @ is the desired ILU preconditioner for the

Laplacian with the red/black ordering.

In the Fourier domain, we have

1 — ¢y

Qu(Em) [ : 0] T
n\s:n) = — O, 1 3 = 3 2 |’
o ile 2 — gy T+

Therefore, the ILU preconditioned operator @A has the spectral representation

1
1 3%

4 3
- =
QI—I(E)")A (f;”) = 4 32 "
0 ry (1—ag,)

which has two real and positive eigenvalues

4
)\E.,,=l,-3—(l—a£2.,,). (4.8)

The condition number of the ILU preconditioned Laplacian can be determined by

4 2
max | Mg, | max o (1 —ogy) —
- &n ' &3 i 1 L
K(QI IA)= - = =~ 2 =0( 2)7 (4.9)
m,m | Ay | min %( 1 - Olé",,,) mh ’

. 4 . .
where the maximum value 3 occurs when ¢, =0 and the minimum value
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%[l—cosz(rrk )| occurs at (€,1) =(1,1). By the ILU preconditioning, we reduce the condi-
tion number of A approximately by a factor of 4. The distribution of the two eigen-

values X\, (4.8) as function of ag, and the surface plot of the eigenvalue %{l—aé,,) as

function of (6,4) = (émh,nmh) are shown in Figures 3(a) and 3(b). The corresponding
plot of the natural ordering case can be found in (13], where the condition number of A

is reduced approximately by a factor 2(2+V?2).

4.3 MILU preconditioner

For the MILU factorization, consider the local operators L; and U;,

{
L 146, (7,k) red
',k :=‘
’ 1+6—11W—-;—(E,+E,“+Ey+E;‘), (5,k) black
1 - _ .
4I—W(E'z'*'l’:xl'f'Ey'i‘E'yl), (j,]&') red
Uik = | (j,k) black

where § = ch® The sparse patterns of L and U given above are the same as those for
the ILU factorization, but they have different weighting coefficients. The global operator
Qu is defined to be the product of the lower and upper global operators,

Let R = @y — A . Then, R consists of the local operators

Rjp =
s, (5,k) red
6+ 1:-_6 - %“l‘ %{ E‘E, + E:-'Ev + E’.Ey—! + E’-IE,-I ) + ILB( E"Z + E’-2+ Ey2+ Ey—?)] (j,k) black'

for points not close to the boundaries. Note that (@um)j e has the same coefficients as
Aji (Rjp =0) for terms E,, E,”!, E, and Ey", which are nonzero off-diagonal entries of

the matrix A. However, unlike the ILU case, the matrices A and Qu do not have the
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same diagonal entries. Instead, we find that the sum of coefficients of the local error
operator R; ;. equals 6. This implies that the row sums of matrices A and @y differ by a
quantity 8. By definition, @, is the MILU preconditioner for the Laplacian with the

red /black ordering.

The Fourier transform of @y gives

146 0 — Q¢n
Qu(&n) = 1
! _ I l+5 af —1
%n 1 1+6 0 ~ gy 146+ i:’,_é

Hence, the MILU preconditioned operator has the spectral representation

n E,ﬂ
Qﬁ'(f,n)fi(&n)=3(317) f1+—on 1+6 T35 ) el 1+6 )
— o, 146 — am !

which has the eigenvalues

2§1+6)+H1 —Q, n)(1+25)i[(1‘a€ n—200¢ n)2 + 4&30‘5 :7(2‘|‘6)],'s
2§1+68)(2-+94)

Note that if § =0 (ie. ¢ =0), @ (€,n) is a singular matrix which cannot be used as a

Mns = (4.10)

preconditioner. For ¢ > 0, since

4Paf (248 << (1-0},~26a} )2, (4.11)
as h goes to zero, we can simplify (4.10) as

N 26(1+6)+( l—af ,,)(1+26);i;(1—a€ ,,-26&5 ,,)
b 2182+

For small A and positive ¢, l—aé,,-—%ae,,, is positive. So, A¢, ;. and Agn— are the larger

and smaller eigenvalues respectively. Then, the condition number of the MILU precondi

tioned Laplacian is found to be

o "2‘}"‘ [ Mg | nézz.'x 6(1_‘1'&""'6)"'(1_“62.0)(1"‘6) 1
<Qird) = min | Ay, | ~ §2+8) ~ g = O "@ 12)
)

where the maximum value (1+8)* occurs when a;, = 0.
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For fixed h, the optimal parameter ¢ and the corresponding condition number
#{(@s'A) can be determined by solving (4.10) numerically. The condition number

k(@i'A) is plotted as function of the parameter ¢ with different A in Figure 4. For

small ¢ ( ¢ <5 ), the condition number behaves very close to as predicted by

1

ch?
(4.12). For ¢ >> 5, condition (4.11) is no more valid, and we see that k(@7 A) remains
approximately the same for a wide range of ¢. Thus, the condition number is not sensi-
tive to the selection of the relaxation parameter, as long as it is in the appropriate range.

For these values of 4 used in Figure 4, the optimal condition number is achieved when

¢ &3§. Thus, we know from the above analysis that the condition number of the origi-

nal Laplacian is improved approximately by a factor of 8¢ ~ 4. This improvement is

nz
about the same as that for the red/black ordered SSOR and ILU preconditioners.
The distribution of the eigenvalues ), . given by (4.10) with 6 =5k2 (je. c =5 )
is plotted as function of ag, in Figure 5(a). Note that the eigenvalue Ay is nearly a
constant. The surface plot of the eigenvalue A¢, , as function of (6,8) = (£mh k) is

shown in Figure 5(b).
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5. Analysis of the multigrid (MG) method

Multigrid (MG) methods provide one of the most effective ways for solving elliptic
PDEs. The multigrid iteration is often modeled by a (h,2h) two-grid iteration process so
that its mechanism can be easily understood. The efficiency of the two-grid (or mul-
tigrid) iteration is based on a simple idea - to treat error components of low and high fre-

quencies differently. Suppose that we partition the Fourier domain into two regions of

which the low frequency region contains 1 < &, 9 < -‘;—II and the high frequency region

contains % <éE<M-lor %/I- <n < M-1. The mechanism of the two-grid iteration

with the damped Jacobi or the lexicographical (naturally ordered) Gauss-Seidel smoother
can be easily explained. That is, the high frequency error is smoothed at the fine grid
while the low frequency error is corrected at the coarse grid. Thus, the study of the error
smoothing over the high frequency region provides a rough estimate of the convergence

behavior of the multigrid iteration. This is known as the smoothing rate analysis [10].

It is known that MG with the red/black Gauss-Seidel smoother performs better
than MG with the damped Jacobi or the lexicographical Gauss-Seidel smoother for the
model Poisson problem (29]. However, the efficiency of the red/black Gauss-Seidel
smoother cannot be appropriately explained by the smoothing rate analysis. To see this,

let us examine the red/black Gauss-Seidel iteration matrix in the two-color Fourier

domain,
0 a£'”
Srees (Em) = [ ]
RBGS 0 afzm

which is obtained from (3.3) with w = 1. The smoothing rate z is usually defined as

= max p[$ )] = cos¥(wh) ~ 1 — 7%h?,
[ (E.’I)EKM;AP[ rBGs(€,1)] (mh)

where

Ky ={(En): €, nel, X <e<m—ro M <pamy,
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and the maximum value occurs at £ = = M—~1. This shows that the red/black Gauss-

Seidel smoother has a very poor smoothing rate as compared to the natural ordering case

for which the smoothing rate is %- [10].

Since the smoothing rate analysis does not explain how the MG method with the
red/black Gauss-Seidel smoothing works, it is essential to perform a complete two-grid
analysis, which includes both smoothing and coarse-grid correction. A two-grid analysis
was performed by Stuben and Trottenberg by using modified Fourier analysis [29]. Here,
we use the framework of two-color Fourier analysis to analyze this method. Our objec-
tive is to give a clearer explanation of the physical mechanism behind this method rather
than to rederive the specific result obtained in [29]. We will show that the two-color
two-grid iteration process asymptotically reduces to a one-color two-grid iteration process

which is much easier to understand.
5.1 Framework of the two-color two-grid analysis

We summarize the two-grid iteration model, which is discussed in detail in [29], as
follows. Let L and Lo, be the 5-point discretizations of the Laplacian on grids €, and
Y. Consider the full-weighting restriction operator * from €, to €%, and the linear

interpolation operator Ig,, from €, to €, which are usually represented in stencil form

as
RIS r 1 1 f
16 8 16 4 2 4
s, | 1 1 1 4 1 1
. 5 4 5 , EA 5 1 > (5.1)
111 i 1 1
16 8 16 L 4 2 4 b

Then, 2 (h,2h) two-grid iteration matrix with the red/black Gauss-Seidel smoothing can

be written as

T = (Srses)” K (Sppes)” K =1 — 1 L, ,  (5.2)
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where [, is the identity matrix, », and v, are the numbers of presmoothing and
postsmoothing iterations. We want to determine the spectral radius p(T,**) and, more

importantly, to explain how the two-grid iteration (5.2) works.

In the current context, (§,7) is nondegenerate if 1 < ¢, 5 < % and degenerate if

€= % or = % We consider only the nondegenerate case, and the degenerate case
can be treated similarly [21). Let &, be the Fourier coeflicient of the error, and let #¢,
and 55,,, be the Fourier coefficients of the error defined at the red and black points

respectively. Through the iteration (5.2), four Fourier components €em CeM—n EM—tn
and &y_¢ ., With 1 <€, 7 < %, are coupled together. Hence, the spectrum of T,

can be analyzed by focusing on a subspace spanned by these four components. Stuben
and Trottenberg used the unit vector of these four Fourier components as a basis. Here,

we use a different basis obtained by

fn 11 0 0O tey
oy 0 0 —1 =1 &y cuoy
56.!1 1 -1 0 0 é&'.rf’
~be 0 —1 1] |éy-g My
where
(M —¢,7) it €27
] —
(f"’)‘{(e,M—n) it E<n

Note that the new basis is basically obtained by folding the conventional Fourier domain
into two-color Fourier domain as shown in (2.4), and therefore the above transformation
maps the coupled four Fourier components &;,, &¢ em—gn and Ey_gp—p into red

and black waves with indices (£,7) and (&' ,7 ) (Figure 6).

We choose the convention that each 4 X 4 frequency domain matrix describes a

mapping from a vector space spanned by
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. X . . r
(Pens —Teu » 0gn, —bey)
onto itself for the rest of this section. To simplify the notation, the abbreviations

o= cos€mh +cosnmh & = cos§’ mh +cosy wh
2 ’ 2 ’
B = cosémhcosnmh , B = cosé' whcosy wh |,

are used. We also omit the subscripts &, 1, & and % for @, &, # and B and the argu-

ments §, n for frequency domain matrices.
5.2 Analysis of elements for two-grid iteration

The building blocks for the two-grid iteration process (5.2) are analyzed in this sec-

tion. In the two-color Fourier domain, the red/black Gauss-Seidel iteration can be

= [12] 07 3. 2

where 0 is the 2 X 2 zero matrix, I is the 2 X 2 identity matrix, and

represented by

. a 0
0 &)’
In addition, the frequency domain matrices for operators Iy, Ly and L3 in (5.2) are
-1 J
¢ 4
vl et )
and
h2
Ly = 25 0=2"-p-1. (5.4b)

In (5.3) and (5.4), there is no coupling between vectors (#¢,b¢,)T and
(Pe:',,:,l;g )7 The coupling between them comes from the full-weighting restric-
tion and linear interpolation operations. The decomposition, commonly used in
the multirate signal processing context [15], is very useful for understanding the
physical mechanism of interpolation and restriction operators, and for deriving

their frequency domain matrices. Conceptually, we decompose the restriction
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procedure I}, into two steps.

Step 1: lowpass filtering ( or averaging ) at every point of £1,, where the weighting

coeflicients are specified by stencil [;2* of (5.1).
Step 2: down-sampling ( or injecting ) values from € to Q.
The interpolation operator I3, is also decomposed into two steps.

Step 1: up-sampling values from €y, to ;, by which we assign O to points which

belong to £, —,,

Step 2: lowpass filtering at every point of £, where the weighting coefficients are

specified by stencil I3; of (5.1).

It is relatively easy to find a frequency domain matrix representation for each of the

above steps. Combining them together, we obtain

148 0 2a 0O

R 0 14+ 0 2 .
oA _ 1 -1 &
=1 100xs| 96 o 148 o |=g+B 148 20 23],

0 2 0 148

and
1+8 0 1 148
N 0 148 © o 1 1 1 [1+8
B= 120 0 1+ﬂ o X3 1lo|=3]2 |
0 0 2&

Note that in the frequency domain the down-sampling operation adds the high f requency
component —fg ,» to the low frequency component feqn- This phenomenon is known as
aliasing [15]. On the other hand, the up-sampling operation duplicates the low frequency
component 7¢, in the high frequency region in the form of —Pg o, which is called imag-
ing [15]. The lowpass filters cascaded with the down-sampling and the up-sampling
operators are basically used to reduce the aliasing and imaging effects. For example, for

low frequency components with {mh and nmh close to 0, we have a &1, A~ 1, & ~ 0,
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and B~ —]. Hence, the aliasing and imaging effects occurring between (Fe_,,,éft,,)r and

(Fersbe )7 are substantially eliminated by the associated lowpass filters.

The product ig,.if" can be expressed as

Fy F
A Ah2h=%' F‘: F‘: , (5.5)
where
. | 8 (148)(1+B) & ar | 20(148) 2a(1+8)
Tla+sa+p) a4 0 TREIR T |oa14B)  2a(14h) |’
. 40® da&
Fr=li4a 4a

Therefore, from (5.2), (5.4) and (5.5), we obtain the the frequency domain matrix for the

coarse-grid correction operator

P n Kp 56
V= Ry Ry | (5.6)

where

% 1 5 1 P
K11=1"4—6[F12\7—Fu], K22=1—E[F21J—F22],
” -1 N 5 S
Kig=—FyJ=Fy], Ry =—f{Fpl-Fy.
46 46
The remaining task is to combine results of (5.3) and (5.6) so that the spectral radius

p(T;?%) can be determined.
5.3 Two-to-one wave reduction

The analytical determination of the eigenvalues of the two-grid iteration matrix 7' ok
is in general a difficult task since it is a 4 X 4 matrix. However, if the red/black Gauss-
Seidel smoother is used, the whole process is greatly simplified. When the first partial
step of the red/black Gauss-Seidel iteration, i.e. the Jacobi iteration at red points, is per-

formed, the values of the red points are updated by the values of their neighboring
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black points and their original values are totally discarded. As a consequence, the compu-
tational process that follows is only determined by the initial values of the black points.

This is clearly indicated by the first two zero columns in (5.3).

For the two-grid iteration process (5.2), let us temporarily consider the special case

(¥1,9) = (1,0). For such a simple case, we find that

0 KyJ+K,,J?

Fe2h _ .

Ty 0 KoJ+KyJ? (5.7)
and the spectral radius of T2 is

AT = p(RnJ+R J? (5.8)

The two-to-one color reduction is mathematically clear from equations (5.7) and (5.8),
namely, that (5.8) involves the evolution of black waves only. We can interpret its
corresponding physical mechanism as follows. The two-grid iteration process T2* con-
sists of two processes
Tip = RnJ+K )2, Ty = Ky J+R 5 J?
which describe the evolution from (bgy~bg )T to (req—re )7 and (bey—bg )7
respectively. Since the m-fold repetition of T}2 gives
( Thﬂ ) he = le T?z_l ’ K Th% )" o2 = Té"z )

the convergence of the two-grid method depends entirely on the process T' 29. Hence, the
two-color two-grid iteration process (5.2) can be equivalently characterized by the black-

wave two-grid iteration process.
For general (v,,v5), since
i 2h a2 pomaV &2k & 1,
AT mn,ve)] = p(SpiesKi'*Spbas) = AR Spbes) |

where the last equality comes from the fact p(AB) = p(BA), we can derive that

AT v )] = p(R ¥ ' 4+K 0 0%)

where v = v; + vy. Let us examine the matrix



Ty = Kot +K 50 0%
which represents a one-color two-grid iteration process and, due to (5.6), can be expressed
as
A -~ A2”_
T,, = JK, J*,

where

1 - 48)e’-1)  _ (1+B)@*-1)
26 26

-8’ (14B)@t-)
26 26

is the equivalent one-color coarse-grid correction operator in the frequency domain. Since

Rog =1 = 2Ty (JP—1) =

p(jf{,,jz”'l) = p(K,,,Jz"), we see that J? can be viewed as the equivalent one-color
smoother S'eq, which corresponds to two Jacobi relaxation steps for the black component
be .

5.4 The spectral radius result

The equivalent one-color two-grid iteration matrix can also be determined for the

degenerate case £ = % or n= % [21]. Then, the spectral radius of the two-grid itera-

tion matrix can be found by solving

P(Th%) = maxM P(ch) .

In [29], Stuben and Trottenberg reduced their analysis to the determination of the largest
value among all the spectral radii of the frequency domain matrices .72”17(,,. Since we
have p(jkcq Jh = p(jz"f{,q), these two different derivations lead to the same final
result. A closed form of this quantity has been derived in [29] ( pp. 104-108 ), which is

summarized as follows

ol TN v=n+vy) | = (5.9)




In the above expression, the maximum of A(TY occurs at (§mh pmh) = (%,0) or (0,%)

-

when v =1 and at ( cos"[(ﬁ)”] , cos"[(ﬁ )%)) when v > 2.

By using the two-color Fourier analysis, we can clearly see why MG with the
red/black Gauss-Seidel smoother has a good convergence behavior in spite of its poor
smoothing property for the high frequency components. Through the red/black Gauss-
Seidel iteration, the low and high frequency components are coupled and can be
equivalently formulated as the coupling between red and black waves with the same low
frequency component. It turns out that only the black wave plays a role and that the
low frequency component of the black wave is solved by coarse-grid correction. Thus, we
conclude that the very high frequency components, namely those with (6,8) close to (,x),
are in fact corrected at the coarse grid rather than smoothed at the fine grid. Such an

explanation is difficult to obtain using the analysis given by [29].
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6. Convergence rate comparison for natural and red /black orderings
6.1 SOR and SSOR methods

Fourier analysis has been used to analyze the naturally ordered SOR and SSOR
iteration methods for the Poisson problem on a square with the periodic boundary condi-

tions by Chan and Elman [13]. It is shown that the optimal relaxation parameters for

both cases are the same,

2

w*( natural ordering ; periodic b.c. ) = 1725m(0.57h) * (6.1)

and the corresponding spectral radii are
Psor ( natural ordering ; periodic b.c. ) &1 — 0.57h , (6.2)
Pssor ( natural ordering ; periodic b.c. ) ~ 1 — wh . (6.3)

For the model Dirichlet problem, Frankel derived a classical Fourier result for the SOR

iteration with the natural ordering [18]. That is, the optimal relaxation parameter is

2

*( natural ordering ; Dirichlet b.c. ) = —=—— 6.4
«*( natural ordering ; Dirichlet b.c. ) Tk (6.4)

and the corresponding spectral radius is
Psor( natural ordering ; Dirichlet b.c. ) & 1 — 27k . (6.5)

This result was interpreted by LeVeque and Trefethen from a tilted-grid point of view
[24]. Although there is no Fourier result of the naturally ordered SSOR iteration for the
Dirichlet problem, it can be shown by matrix analysis that
Pssor ( natural ordering ; Dirichlet b.c. ) <1 — 7k | (6.6)
and that the convergence rate is not sensitive to the choice of the relaxation parameter
[19][32]. Note that (6.1)-(6.3) agrees with (6.4)-(6.6) asymptotically except for the con-
stant multiplying 4 in (6.2) and (6.5).
By comparing the above results with those in Section 3, we can clearly see that for
the SOR iteration the red/black ordering does not effect the choice of the optimal relaxa-

tion parameters (cf. (3.5) and (6.4)) and the rate of convergence (cf. (3.6) and (6.5)).
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However, for the SSOR iteration, the situation changes drastically. If the red/black ord-
ering is used, the acceleration due to the introduction of the relaxation parameter totally

disappears (cf. (3.11), (6.3) and (6.6)).
6.2 Preconditioners

Chan and Elman also applied Fourier analysis to analyze the eigenstructures of the
preconditioned system with the periodic boundary conditions and the natural ordering

[13]. Their results are summarized as follows,

#(Qs'A )( natural ordering ; periodic b.c. ) = O(%) , (6.7)

#(Qr'A)( natural ordering ; periodic b.c. ) = 0(,'1—2) , (6.8)

(
O(z5), e=0

<

#(Qsr"A)( natural ordering ; periodic b.c. ) = , (6.9)

0(%), c#0

where Qg, @; and @, denote the SSOR, ILU and MILU preconditioning operator.

Although no Fourier result for the naturally ordered Dirichlet problem is available, these
results agree with the known results for the Dirichlet case (see the references of [13]) and
numerical experiments indicate that the eigenstructures for the periodic and Dirichlet

cases behave in a very similar way [13].

By examining (4.7), (4.9) and (4.12), we see that the preconditioned system with the
red/black ordering in general does not decrease the order of the condition number of the
original Laplacian. In fact, the condition number is reduced approximately by a factor 4
for SSOR, ILU and MILU preconditioners. In contrast, effective naturally ordered
preconditioners such as SSOR and MILU can decrease the condition number of the
Laplacian by an order of magnitude. Thus, as far as the convergence rate is concerned, a
red/black preconditioned iterative method usually converges much slower than a natur-

ally ordered preconditioned iterative method.
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The condition number analysis of the red/black ordered preconditioners is con-
sistent with the experimental results reported by Ashcraft and Grimes [5] and, to the

best of our knowledge, no such analysis has been reported before.
6.3 MG method

So far, there is no exact Fourier result for the two-grid analysis of the model Diri-
chlet problem with the natural ordering. However, a simplified local Fourier analysis

which assumes ideal interpolation and restriction operators and ignores the boundary

conditions has been performed by Brandt (10]. The smoothing rate g of one lexicograph-

ical Gauss-Seidel relaxation is found to be %- by such an analysis. When the total

number ¥ of the smoothing iteration is small, we can roughly estimate the spectral radius

of two-grid iteration matrix from the smoothing rate by

Pmc ( natural ordering ) &~ p¥ = (%)” . (6.10)
Therefore, from (5.9) and (6.10), we see that the red/black Gauss-Seidel smoother has a

better smoothing rate than that of the lexicographical Gauss-Seidel smoother.

6.4 Summary of Comparison

We summarize the above comparison in Table 1, where each entry denotes the

number of iterations required and N is the number of unknowns.

ordering SOR SSOR PCG MG

natural | O(N*) [ O(N*) | O(N%) | o(1)

red/black | O(N*) | O(N) | O(N¥%) | oQ1)

Table 1: Comparison of convergence rates

The spectral radii of the MG method, which are calculated by (5.9) and (6.10), are also

compared below.
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ordering | v=1|v=2|v=3

natural L 1 L
2 4 8
red/black L 2 2
4 27 512

Table 2: Comparison of the spectral radii for the MG method
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7. Related work

Most research work on iterative algorithms with the multicolor ordering has been
focused on the SOR method. To achieve the efficiency of the SOR iteration, the determi-
nation of the optimal relaxation parameter is crucial. However, except for few simple
cases such as the model Poisson problem, this is in general a difficult task. A local two-
color Four analysis was proposed by Kuo, Levy and Musicus [23] to design a local relaxa-
tion scheme which uses different relaxation parameters for different finite-difference equa-
tions associated with each grid point. The four-color SOR iteration applied to the 9-
point Laplacian has been independently studied by Adams, LeVeque and Young (3] and
Kuo and Levy [22]. The technique used by Adams et al. is to change the variable of
iteration number to a new variable known as the "data flow time" defined by Adams and
Jordan [2]. By using such a technique, the multicolor ordering scheme can be related to
the natural ordering scheme and then analyzed by a modified Fourier analysis. In [22],
Kuo and Levy used a four-color Fourier analysis to design a two-level SOR scheme which
includes an outer block SOR iteration and an inner point SOR iteration. The four-color
Fourier analysis is a natural generalization of the two-color Fourier analysis presented in
this paper. Besides the four-color ordering, O’Leary considered several other ordering
schemes for the 9-point Laplacian and showed that the convergence rate of the SOR

iteration with these orderings is no worse that that for the natural ordering [26].
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8. Extensions

We can conclude our study simply as follows. Although some algorithms such as
the SOR and MG methods can be reordered to get more parallelism without sacrificing
their convergence rates, some algorithms such as the SSOR and preconditioned iterative

methods do have a tradeoff in achieving more parallelism and faster convergence.

A natural question that arises from this research work is: what is the "intrinsic pro-
perty” of these algorithms which makes them behave so differently with respect to the
reordering? A better understanding of this fundamental issue should help us to know
more about parallel computation and its limitation. The poor performance of the
red /black SSOR, ILU, and MILU preconditioners can be partly answered by the observa-
tion that at each iteration the red/black preconditioners use only local information while

the naturally ordered preconditioners do make use of some global information.

The preconditioned iterative methods such as the PCG method are among one of
the most eflective methods for solving elliptic PDEs in a sequential machine. However,
since effective preconditioners such as the naturally ordered SSOR and MILU schemes
cannot be easily parallelized, they are not as attractive for parallel computers. It is an
interesting and important research topic to find preconditioners which are easily parallel-

izable and give satisfactory convergence rates.
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Figure Captions

gigure 1: (a) Conventional and (b) folded two-color Fourier domains, where 8 = E€mh and
= nmh.

Figure 2: (a) The eigenvalues A, of the SSOR-preconditioned system as function of Qg ,
and (b) the surface plot of A\, as function of (6,4) with £ = 0.05.

Figure 3: (2) The eigenvalues of the ILU-preconditioned system as function of ¢

¢ 2nd
(b) the surface plot of the nonconstant eigenvalue as function of (0,9) with h = 0.05.

Figure 4: The condition nu:lnber of the ll\ﬂLU-preconditioned system a.si function of the
1 = — = — h = — = —
parameter ¢ with (a) A = (b) A L (c) 1E and (d) A 20

Figure 5: (a) The eigenvalues A, of the MILU-preconditioned system as function of Qg
and (b) the surface plot of A as function of (6,¢) with A = 0.05.

Figure 6: Four coupled Fourier components in (a) conventional and (b) two-color Fourier
domains.
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Figure 2: (a) The eigenvalues A, of the SSOR-preconditioned system as function of
O, and (b) the surface plot of A, as function of (6,9) with 2 = 0.05.



10!

- 41 -

w00 e

101 ¢

102

(r,0)

(b)

Figure 3: (2) The eigenvalues of the ILU-preconditioned system as function of oy, and

(b) the surface plot of the nonconstant ei

genvalue as function of (6,¢) with & = 0.05.
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Figure 5: (a) The eigenvalues
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As of the MILU-preconditioned system as function of
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Figure 6: Four coupled Fourier components in (a) conventional and (b) two-color
ourier domains.



