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Abstract

The problem considered here involves the use of an artificial neural network for
solving some computer vision problems such as static and motion stereo, compu-
tation of optical flow, and image restoration. The network used in this research
contains massive mutually interconnected and self-connected binary neurons. Two
decision rules, deterministic and stochastic, are used. The stochastic decision rule
guarantees convergence to a global minimum but computationally is very expen-
sive, while the deterministic decision rule greatly reduces computing time, but |
only gives a local minimum.

Two basic methods, static and motion stereo, for extracting 3-D information
from more than one image are C(.msidered. The static stereo method is based
on images taken by two cameras separated by a known baseline. The motion
stereo method infers depth information from a sequence of monocular images.
The derivatives of the intensity function are used for matching. A window op-
erator which functions very similar to the hum?.n eye in detecting the intensity
changes is proposed for estimating the derivatives. Under the epipolar, photomet-
ric and smoothness constraints the neural network is employed for the matching
procedure. For motion stereo, two algorithms, batch and recursive, which allow
the use of arbitrarily many image frames are presented. No surface interpolation

step is involved in the algorithms because of the dense derivatives used.

xii



An algorithm using rotation invariant primitives extracted from successive
monocular images is presented for computing optical flow. Under local rigidity
assumption and a smoothness constraint, the neural network is used to compute
optical flow. To locate motion discontinuities, the information about occluding
elements is utilized by embedding it into the bias inputs of the network. A batch
solution is also developed for the case of pure translation.

An approach for the restoration of gray level images degraded by a known

shift invariant blur function and additive noise is developed. The neural network

is employed to represent a possibly nonstationary image whose gray level function

is the simple sum of the neuron state variables. The nonlinear restoration method
is carried out iteratively by using a dynamic algorithm to minimize the energy
function of the network. Owing to the model’s fault-tolerant nature and computa-
tional capability, a high quality image is obtained using this approach. A practical
algorithm with reduced computational complexity is also presented. The choice of
the boundary values to reduce the ringing effect is discussed and comparisons to
other restoration methods such as the SVD pseudoinverse filter, minimum mean
square error (MMSE) filter and modified MMSE filter using Gaussian Markov
random field model are given. A schematic diagram of optical implementation of
the restoration algorithm is described.

To demonstrate the efficacy of all these algorithms, experimental results using

both synthetic and natural images are presented.

xiii
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Chapter 1

Introduction

This dissertation is concerned with developing algorithms for some computer vi-
sion problems, especially at the low-level using an artificial neural network. The
task of low-level vision is to recover physical properties of visible 3-D surfaces
from 2-D images. One module of low-level vision, for instance, extracts depth
information from two eyes-a pair of binocular images, or from one eye over a
period of time-a sequence of monocular images. Low-level processes also provide
motion information about brightness patterns over a sequence of 2-D images, the
so called optical flow, for motion detection and representation. Certainly human
brain is very good at performing low-level vision tasks but today’s computers are
not. This is because of massive amount of two dimensional array data that needs
to be analyzed and the lack of learning or self organizing capabilities of most
modern day computers. - From a mathematical point of view, low-level vision
problems are ill-posed in the sense of Hadamard {1, 2]. An efficient method for

solving ill-posed problem using artificial networks is the Tikhonov regularization



technique. The idea of regularization technique is to narrow the admissible solu-
tion region by introducing suitable a priori knowledge or stablize the solution by
means of some auxiliary non-negative functional [2]. Cognitive scientists believe
that brain uses cooperative computation to deal with the task of low-level vision
(3]. Cooperative computation takes into account multiple and often mutually
conflicting constraints or many pieces of information simultaneously to narrow
the solution region. This is accomplished by employing massively parallel pro-
cessing units, with information transfer taking place through the interconnections
between these units, in the form of excitatory and inhibitory signals. This cooper-
ative computation provides not only massive parallelism, but also a greater degree
of robustness because of local connectivity among processing units and adaptabil-
ity of interconnection strengths (weights). Attempting to provide a human-like
performance, many neural network models have been developed based on studies
in biological nervous systems for cooperative computation. The neural network
models seem well suited for mimicking low-level vision processes and hence an
attractive way for solving the low-level computer vision problems. The neural
network models have greatest potential in low-level vision area where highly par-
allel computations are required and the current best computer systems are inferior
to human performance.

In this research, a discrete artificial neural network is used to solve some
computer vision problems such as static stereo, motion stereo, computation of
optical flow and image restoration. This network containing massive mutually
interconnected and self-connected binary neurons is very similar to Amari (4, 5]
and Hopfield networks [6]. Since self-feedback may cause the energy function of

the network to increase with a transition, two decision rules, deterministic and



stochastic, are used to ensure convergence. The stochastic decision rule guaran-
tees that the network will converge to a global minimum but is computational
intensive. The deterministic decision rule greatly reduces computational time but
gives only a local minimum, an approximate solution. Two types of activation
functions, threshold function (step function) and maximum evolution function,
are used in the updating scheme.

Usually, the measurement primitives used for stereo matching are the intensity
values, edges and linear features. Conventional methods based on such primitives
suffer from amplitude bias, edge sparsity and noise distortion, whereas human
stereo process does not. Knowing that human visual system is very sensitive to
the intensity changes, the derivatives of the intensity function which are more
reliable, dense and robust are used for matching in this study. For estimating
the derivatives, a window operator is suggested using a combination of smoothing
and differentiation. However, as the natural stereo images are digitized, the re-
sulting spatial quantization error affects the intensity function and the derivatives.
The effects of noise and spatial quantization on the estimation of derivatives are
discussed, leading to an appropriate choice of window size.

Static and motion stereo are the two basic methods for inferring depth in-
formation using more than one frame. The static stereo is based on binocular
images with a known baseline. Under epipolar, photometric and smoothness as-
sumptions the neural network is employed to implement the matching procedure
based on the first order derivatives of intensity. Although many researchers have
been using neural networks for stereo matching (7, 8, 9, 10, 11, 12], these algo-
rithms rarely work on natural images. Experimental results using both synthetic

and natural stereo images show that the approach presented in this dissertation



successfully recovers the depth information. The robustness of this approach is
tested using noisy image pairs. The motion stereo method infers depth infor-
mation from a sequence of monocular image sequence. For motion stereo, both
batch and recursive neural network formulations are presented. Existing recursive
approaches usually use either a Kalman filter or recursive least square algorithm
[12] to update the disparity values. Due to the unmeasurable estimation error,
the estimated disparity values at each recursion are unreliable, yielding a noisy
disparity field. Instead, our approach recursively updates the bias inputs of the
network, the measurement primitives. The disparity field is then computed by
using the neural network based static matching algorithm. Since the recursive
algorithm implements the matching algorithm only once, and the bias input up-
dating scheme can be accomplished in real time, a vision system employing such
an algorithm is feasible. A detection algorithm for locating occluding pixéels is
also included. No surface interpolation and smooth procedures are required in all
algorithms. One sequence of natural images is considered in the experiments.
Optical flow is the distribution of apparent velocities of motion brightness
patterns in an image. Motion can be caused by moving objects and/or a moving
camera. The problem considered here is how to calculate the optical flow from
two or more image frames. Starting with conventional methods, an algorithm is
proposed for computing optical flow from two image frames based on principle
curvatures, a set of rotation invariant measurement primitives. Under local rigid-
ity assumption and a smoothness constraint, the neural network is then used to
compute the optical flow. A difficult problem in computing optical flow is to locate
motion discontinuities. A line process is commonly used [13] for detecting discon-

tinuities. However, the detected discontinuities may be shifted due to occluding
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region, because the optical flow at the occluding region is undetermined. In or-
der to locate the discontinuities accurately, we first detect the occluding elements
based on the initial motion measurements and then embed this information into
the bias inputs of the network. Computer simulations on synthetic and natural
images are presented. When motion is pure translation with constant velocity,
optical flow can be estimated from a sequence of images. A batch solution is
discussed for this problem and successfully tested on a sequence of natural images
with a stationary background.

Restoration of a high quality image from a degraded recording is an impor-
tant problem in early vision processing. An approach for restoration of gray level
images degraded by a known shift invariant blur function and additive noise is
developed. The neural network is employed to represent a possibly nonstationary
image whose gray level function is the simple sum of the neuron state variables.
The nonlinear restoration method is carried out iteratively by using a dynamic
algorithm to minimize the energy function of the network. Owing to the model’s
fault-tolerant nature and computational capability, a high quality image is ob-
tained using this approach. A practical algorithm with reduced computational
complexity is also presented. Several computer simulation examples involving
synthetic and real images are given to illustrate the usefulness of our method.
The choice of the boundary values to reduce the ringing effect is discussed and
comparisons with other restoration methods such as the SVD pseudoinverse filter,
minimum mean square error (MMSE) filter and the modified MMSE filter using
Gaussian Markov random field model are given. An optical implementation of

this approach is also described.



1.1 Thesis Organization

Chapter 2 reviews the relevant artificial neural networks and gives a modified
neural network, which is used in this research. To ensure convergence, two decision
rules, deterministic and stochastical decision rules, are presented.

In Chapter 3, static stereo research is reviewed and a neural network based
algorithm using epipolar, photometric and smoothness constraints is discussed.
A window operator for estimation of the first derivatives of intensity functions
is derived. An analysis of the effects of noise and spatial quantization on the
estimation of the derivatives is given. Results from synthetical and natural images
are presented.

Chapter 4 addresses the motion stereo problem where a monocular motion

image sequence is used instead of binocular images. After briefly reviewing the -

existing literature, two approaches, known as the batch and recursive approaches,
are proposed. Detection of occluding pixels based on the matching error is also
discussed. One sequence of real motion images is used to illustrate the perfor-
mances of these approaches.

Chapter 5 deals with optical flow. Existing methods for computing optical
flow are discussed. .A method for finding the principle curvatures based on the
second order derivatives estimated with subpixel accuracy is suggested. A neural
network algorithm for computing optical flow from two successive image frames
is developed. Extension to the case of multiple sequential images is discussed. A
method for detecting motion discontinuities is derived, and experimental results

using synthetic and natural images are presented.
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Chapter 6 presents an approach for image restoration. By using a simple
sum number representation, a dynamic algorithm using the neural network is
developed. A practical algorithm with reduced computational complexity is also
presented. Discussions on the choice of boundary values and comparisons to
other restoration methods are given. Several computer simulation examples are
presented to show the usefulness of this method. An optical implementation of
this approach is presenté(i.

Conclusions and future research are presented in Chapter 7.

1.2 Contributions

The primary contributions of this dissertation are as follows:

1. A new approach to static stereo is developed (14, 15, 16]. The first deriva-
tives of the intensity function are used as the measurement primitives.
Guidelines for the choice of the window size used in estimating the deriva-
tives are given by analyzing the effects of noise and spatial quantization on

the estimation of the derivatives.

2. Two new approaches, batch and recursive approaches, for motion stereo are
developed. A method for detecting occluding pixels based on matching error

is also derived.

3. A neural network based approach for computing optical flow is introduced
[17, 18]. Principle curvatures which are rotation invariant measurement

primitives are used in the matching procedure. For estimating the principle



curvatures, a 2-D window operator is designed. For pure translational mo-
tion, a batch algorithm is also introduced. A method for detecting motion

discontinuities is derived.

. A new method for the restoration of gray level images degraded by a known
shift invariant blur function and additive noise is presented [19, 20, 21].
A practical algorithm with reduced computational complexity is also pre-

sented. An optical implementation of the restoration algorithm is also given.



Chapter 2

Computational Neural Networks

2.1 Introduction

Research on neural network modeling has a long history. Neurobiologists have .
discovered individual nerve cells existing in the brain and learned how neurons
carry information, transmit information and receive stimuli. Based on the under-
standing of the nervous systems, many neural networks have been proposed by
researchers. Over the past fifty years, hundreds of papers have been published in
this area. As early as 1943, McCulloch and Pitts [22] developed a neural network
by treating neurons as Boolean devices and showed that such a network could
compute. Since then, learning has become the main focus in this area. In 1949,
Hebb [23] proposed a learning rule which was first tested in the Edmonds and
Minsky’s learning machine-a simulated network, still used today in many learning
paradigms. In the 50’s, Rosenblatt [24, 25] invented a class of simple neuron learn-

ing networks in order to realize a dynamic, interactive and self-organizing system.



Meanwhile, Selfridge [26] developed a dynamic, interactive network for compu-
tational tasks in perception. Widrow and Hoff developed an adaptive network
with a delta learning rule for pattern recognition [27]. Anderson [28] provided
brain state in a box model which contains a feed-back loop for learning. Recently,
Amari [29, 30], Arbib [31, 30] Malsburg [32], Fukushima [33] and Grossberg (34]
have developed several competitive learning models. Also Kohonen [35], Feldman
and Ballard [36), Rumelhart and McClelland [37], Hopfield[38, 39, 6], Sejnowski
[40], and others have made important contributions to neural network modeling.

Since Hopfield and Tank [6] showed that a certain class of optimization problem
can be programmed and solved on their neural network, the computational power
of neural network has become more and more apparent. The neural network used
in this research is based a great to extent on the Amari recurrent network and

the Hopfield discrete network.

2.2 Amari and Hopfield Networks

In early 70s, Amari [4, 5] proposed two self-organizing random networks: a non-
recurrent network for association and a recurrent network for concept formation.
The recurrent network, shown in Figure 2.1(a), is a sequential network containing
n bistable elements (neuron pools) {vi(t), vy(t),..., vo(t)}. Each element, shown
in Figure 2.1(b), consists of r£mtually connected neurons. The outputs of the
network are connected to its inputs. The bistable element can be in one of two
states: v;(t) = 1 (firing state) and v;(¢t) = 0 (resting state). Each element v;(-)
receives weighted input signals from all the elements at time ¢. After summing

the weighted inputs and comparing with a threshold k; the state of the element
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v;(-) at time ¢ + 1 is determined by
n
vi(t +1) = 9(3 Tij v;(t) — ki) (2.1)
i=1
where T;; is the weight (synaptic interconnection strength) from element j to

element i and g(z) is a step function defined by

1 ¢f 220
g(:c): (22)
0 if z<0.

The stable states are reached if
vi(t+1)=v(t) for i=1,2,...,n.

The pattern specified by the stable states of the elements is the network output.
Since the weight T;; is nonzero, all the elements of the network have feedback. The .
recurrent network was actually derived from the McCulloch-Pitts formal neuron-
the simplest form of neural network [22].

The Hopfield discrete network, shown in Figure 2.2, uses two state thresh-
old neurons {v,(t), v2(?),..., vn(t)}. Each neuron receives external input I; and
weighted inputs from other neurons at random times. The total input of neuron
11is

Z Tg'j U;(t) + I;.
J#Ei

The state of the neuron 7 is asynchronously updated according to a threshold rule

with threshold h;
vi = g(Q_ Tij vi(t) + L — by) (2.3)

=1

where g(z) is in (2.2). The asynchronous property is introduced to represent a

combination of propagation delay, jitter and noise in real systems. To ensure that

11
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(a) Recurrent network.

(b) Bistable element (neuron pool).

Figure 2.1: Amari recurrent network.
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the network converges to stable states, two conditions, symmetric interconnections
(T:; = Tj4) and no self-feedback (7} = 0), have to be satisfied [39]. If we consider
the bistable elements of the Amari network as the binary neurons, one can see
that the Hopfield network is similar to the Amari network. The Hopfield network
is originally designed for association. However, Hopfield and Tank [6] used an
analog version of this network to solve a difficult but well defined optimization

problem-the Traveling Salesman problem.

v

-\

L KL

Figure 2.2: Hopfield discrete network.

2.3 A Discrete Neural Network for Vision

Since we are dealing with vision problems, even if each pixel in a 2-D image is
represented by just one neuron, a massive 2-D neural network is required. For
instance, for a 256 x 256 image, a total 65536 neurons are needed. If m neurons

are used at each pixel, then 65536 x m neurons are needed. For simplicity of

13



analysis, a 1-D version of such a discrete neural network is shown in Figure 2.3.

More details about the 2-D network will be given in subsequent chapters.

Figure 2.3: A discrete neural network.

2.3.1 A Discrete Network

The network consists of n mutually interconnected binary neurons {v, vz, ..., vn}.
The neurons take on the values 0 for resting and 1 for firing. Let T;; denote the
strength (possibly negative) of the interconnection between neuron i and neuron

j. The interconnections are symmetric
Tij=Tii for 1<ij<n
and the self-connection is nonzero

T.#0

14
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which requires self-feedback for each neuron. In this network, each neuron (%, k)
synchronously, or randomly and asynchronously receives inputs ¥ T; jv; from all

neurons and a bias input I;
U = Z Ti5v; + I; (2.4)
J

Each neuron wu; is fed back to corresponding neurons after either thresholding or

maximum evolution
v; = g(u;). (2.5)

where g(z;) is an activation function whose form is taken either as (2.2) for thresh-

olding or
olz:) = 1 if z; =maz(z;Vk € ). (2.6)
0 otherwise.
for maximum evolution, where €;’s are disjoint subsets of index set Q = {1,2,...,,n} ‘
and U = Q, and 7 € ;. The synchronous updating scheme uses the information
about the old states of all neurons. The asynchronous updating scheme uses the

latest information about other neurons, which means that any state change in a

neuron will immediately affect the state of all the neurons.

2.3.2 Decision Rules

As mentioned above, this network has self-feedback, i.e. T;; # 0. As a result of
having feedback, this network does not always converge to stable states. This can
be explained as follows. According to [39], by setting thresholds {A;} to zero the

energy function of the network can be defined as

E=- Ti,j V; V; — Z: I,' v (2.7)

1 i=1

|-

n

3 .

n
=1 3
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Let changes in state and energy be denoted as
Av. = vnew vgld

and

AE = Erev _ Eold.

Case 1: Step function.
When a step function is used as an activation function, the energy change AE
due to a state change Av; of neuron ¢ is given by
id 1
=—(Q Tiyvi+ L) Av — 3 L (Av)? (2.8)
i=1
Case 2: Maximum evolution function.

When a maximum evolution function is used, a batch of m neurons {v;; & € }
is simultaneously updated at each step. At most two of the m neurons change
their state at each step. The energy change AF due to the state changes of neuron
i and neuron i is given by

AE = -(Z Ti;vi+ 1) Av; — = T,, (Av;)?

J—l

—(Z Ty, vi+1s ) Avy --T, o (Avp)?

(Av. Y4 Avg oY) (2.9)

In both cases, the energy changes are not always negative, i.e. AE > 0,
which means that the energy function does not decrease monotonically with a
transition. Therefore, E is not a Lyapunov function and the network is unstable.
Consequently, the convergence of the network is not guaranteed [41].

To ensure convergence of the network to a minimum, one can design some deci-

sion rules for updating the states of neurons. Depending on whether convergence
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to a local minimum or a global minimum is desired, a deterministic or stochastic
decision rule can be used, respectively. In some cases, for example when the en-
ergy function is convex, the deterministic decision rule will ensure the network to
converge to a global minimum.

Deterministic Decision Rule:

The deterministic rule is to take a new state v?*“ of neuron ¢ if the energy
change AE due to state change Av; is less than zer'o.. If AE due to state change
is > 0, no state change is affected.

Stochastic Decision Rule:
A stochastic rule is similar to the one used in simulated annealing techniques

[42, 43, 44]. Define a Boltzmann distribution by

Y. ¥4
Prnew =32

Pold -
where pn.., and p,iq are the probabilities of the new and old global state respec-
tively, AE is the energy change and T is the parameter which acts like tempera-

ture. A new state v}** is taken if

DPrew

>1, orif Pr¥<q pur Prew s
Dold Dold Dold

where £ is a random number uniformly distributed in the interval [0,1).

2.4 Discussion

In this chapter, we have presented a discrete artificial neural network. Owing to

the self-feedback, two decision rules have been suggested to ensure convergence

of the network. Comparing this network with the Amari network and Hopfield

network, some differences listed in Table2.1 can be noted. The major difference
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| Network | Neuron [ Self-feedback Decision rule | Activation function
Amari | Binary, pool Yes No Step

| Hopfield jnary No No Step
Ours Binary Yes Deterministic, Step,

“ Stochastic | Maximum evolution “

Table 2.1: Comparisons to the Amari network and Hopfield network.

among them is that the network used in this dissertation has self-feedback and

hence needs a decision rule to ensure convergence. Self-feedback arises naturally in

the problems considered in this dissertation. For the Traveling Salesman problem

[6] based on simulations we have found that our network needs less than 100

iterations, while the Hopfield network needs more than 1000 iterations. It appears

that using the deterministic decision rule in a network with self-feedback results

in fewer iterations than is required by a network without self-feedback.
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Chapter 3

Static Stereo

3.1 Introduction

Static stereo is a primary means for recovering 3-D depth from two images taken -
from different viewpoints. The two central problems in stereo matching are (1)
extract and match corresponding feature points or lines, and (2) obtain a depth
map or disparity values between these points. In this chapter, we present a method
for computing the disparities between the corresponding points in the two images
recorded simultaneously from a pair of laterally displaced cameras based on the
first order intensity derivatives.

Basically, there exist two types of stereo matching methods: region based and
feature based methods according to the nature of the measured primitives. The
region based methods use the intensity values as the measurement primitives. A
correlation technique or some simple modification is applied to certain local region

around the pixel to evaluate the quality of matching. The region based methods
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usually suffer from the problems due to lack of local structures in homogeneous re-
gions, amplitude bias between the images and noise distortion. Recently, Barnard
[45) has applied a stochastic optimization approach for the stereo matching prob-
lem to overcome the difficulties due to homogeneous regions and noise distortion.
Although this approach is different from the conventional region based methods,
it still uses intensity values as the primitives with the aid of a smoothness con-
straint. Barnard’s approach has several advantages: simple, suitable for parallel
implementation and a dense disparity map output. However, too many iterations,
a common problem with the simulated annealing algorithm, makes it unattrac-
tive. It also suffers from the problems of amplitude bias between the two images
and oversmoothing.

The feature based methods use intensity edges or linear features (for exam-
ple, see Grimson [46] and Medioni [47]) or intensity peaks which correspond to
discontinuities in the first order derivatives of intensity [48]. The intensity edges
are obtained using edge detectors such as t!le Marr-Hildreth edge detector [49]
or the Nevatia-Babu line finder [50]. Since amplitude bias and small amounts
of noise do not affect edge detection, feature based methods can handle natural
images more efficiently. Owing to fewer measurement primitives to deal with,
feature based methods are usually faster than the region based methods. How-
ever, a surface interpolation step has to be included. In order to obtain a smooth
surface, several types of smoothness constraint techniques have been introduced
(46). The common problem in feature based methods is that if features are sparse,
then surface interpolation step is difficult. Among the feature based methods, the
Marr-Poggio-Grimson algorithm gives impressive results. But it is difficult to en-

sure continuity of disparity over an area of the image. To overcome this problem,

20



Grimson [51] proposed a new algorithm including the figural continuity constraint
[48] and other modifications. The figural continuity constraint is superior to the
region continuity constraint. However, an occluding boundary or a sloping surface
may cause problems. Another interesting approach is the integrated approach,
which combines matching, contour detection and surface interpolation steps [52].
The integrated approach uses only piecewise smoothness assumption. A number
of stereo images were tried in [52] to illustrate the performance of this approach.
Some problems of this approach reported by the authors are misplacement and
missing of contours, and disparity errors due to inaccuracies in edge detection.
Julesz’s example of random dot stereograms shows that stereo matching oc-
curs very early in the visual process and is relatively independent of other forms
of visual processing [53]). Early stereo process implies that more dense measure-
ment primitives are used in matching. It seems that the region based methods
are closer to the human stereo process than the edge based methods, because
the intensity values are dense measurement primitives. However, region based
methods suffer from the problems of amplitude bias and noise distortion, whereas
human stereo process does not. The question then is what kind of measurement
primitives human stereo process does use. Arguing that the amplitude bias can be
eliminated by the differential operation, the intensity derivatives are dense, and
human visual system is sensitive to the intensity changes, the first order intensity
derivatives (simplest derivatives) may be considered as appropriate measurement
primitives for the stereo matching problem. Noise distortion, which the first order
derivatives are very sensitive to, can be reduced by some smoothing techniques
such as a polynomial fitting technique. The first order intensity derivatives can be

obtained by directly taking the derivative about the resulting continuous intensity
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function. Actually, the choice of window size is closely related to the theory of
human visual system. There exits at least four independent channels containing
different sized spatial filters in the early visual system [54, 55). Combination of
smoothing and differentiation results in a window operator which functions very
similar to the human eye in detecting intensity changes. To give some insights into
the resulting window operator, a theoretical analysis of the variances of the esti-
mated derivatives is given. Since the natural stereo images are usually digitized
for the implementation on a digital computer, we consider the effect of spatial
quantization on the estimation of the derivatives for the natural images.
Recently, many researchers have been using neural networks based on either
intensity values or edges [8, 9, 10, 11] for stereo matching. Early work on ex-

tracting depth information from the random dot stereogram using neural network

may be found in [56, 7]. In [7], & cooperative algorithm is employed to compute |

correspondence between the two descriptions, subject to uniqueness and conti-
nuity. Unlike standard correlation techniques, this algorithm is not restricted to
minimum or maximum correlation areas to which the analysis is subsequently re-
stricted. Although the algorithm is based on primitive descriptions such as edges
for matching, no preprocessing procedure was involved in their experiments be-
cause they considered each white dot in the binary random dot stereogram as a
primitive. Extension of this algorithm to natural images was reported in [57]. The
natural images are first converted into binary maps by taking the sign of their
convolution with the Laplacian of é Gaussian. Then the resulting binary maps
serve as inputs for the cooperative algorithm. Grimson [46] further extended this
algorithm using zero crossings. In this chapter, we use a neural network with

maximum evolution function to solve the stereo matching problem based on the
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first order intensity derivatives under the epipolar, photometric and smoothness
constraints. We illustrate the usefulness of this approach by using the random

dot stereograms and natural image pairs.

3.2 Estimation of Intensity Derivatives

Natural digital images usually are corrupted by certain amount of noise due to
electronic imaging sensor, film granularity and quantization error. The derivatives
obtained using a difference operator applied to digital images are not reliable.
Since a digital image comes about by sampling an analog image on an equally
spaced lattice, a proper way to recover a smooth and continuous image surface is
by a polynomial fitting technique. We first assume that, a point at the right image
corresponding to a specified point in the left image lies somewhere on the corre-
sponding epipolar line which is parallel to the row coordinate, i.e. in a horizontal
direction, and second, in each neighborhood of image the underlying intensity
function can be approximated by a fourth order polynomial. The first assump-
tion is also known as the epipolar constraint. With the help of this constraint,
the first order intensity derivatives we need for matching are computed only for
the horizontal direction. ﬁnder the second assumption, the intensity function in a
window, centered at the point (2, j), of size 2w + 1 is represented by a polynomial
of the form

9(,j +y) = a1 + agy + asy® + aqy® + a5y’ (3.1)

where y is lies in the range —w to +w and {a;} are the coefficients. If the window
size is 3, then a second order polynomial is sufficient to represent the intensity

function. The first order intensity derivative at poiht (2,7) can be easily obtained
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by taking the derivative about g(z,j + y) with respect to y and then setting y = 0

v oo 09(i,5) _dgi+y),
g(,5)= 5 = dy ly=0 = a2 (3.2)

Thus, the estimation of first order intensity derivatives is equivalent to determi-

nation of a,.

3.2.1 Fitting Data Using Chebyshev Polynomials

In order to estimate each coefficient independently, an orthogonal polynomial
basis set is used. Several existing orthogonal polynomial basis sets can be found
in [58, 59]). We use the discrete Chebyshev polynomial basis set, used by Haralick
for edge detection and topographic classification [60, 61). The important property
of using polynomials is that low order fits over a large window can reduce the
effects of noise and give a smooth function.

Let a set of discrete Chebyshev polynomials be defined over an index set

Q={-w,—w+1,..,w—1,w}, i.e. over a window of size 2w + 1, as

Cho(y) = 1
Chl(y) =%
Cha(y) = ¥* - /% (3.3)

Chs(y) = ¥ —(as/a2) v

Chy(y) = y*+[(9294 — 9096)/(209s — 63)) ¥* + (9206 — 42)/ (9094 — ¢3)

where

gn = Z k™.

ke
With the window centered at point (i, ), the intensity function g(z,j + y) for

each y € {2 can be obtained as

(Li+y) =Y. dn Chu(y) (3.4)

m=0
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where §(#,j + y) denotes the approximated continuous intensity function. For
w = 1, only the first three Chebyshev polynomials are needed. By minimizing the
least square error in estimation and taking advantage of the orthogonality of the

polynomial set, the coefficients {d,,} are obtained as

_ Zyen Chn(y) 9617 +y)

dm T oen CR2, ()

(3.5)

where {g(¢,7 + y)} are the observed intensity values.
Expanding (3.4) and comparing with (3.1), the first order intensity derivative

coefficient a,, is given by

a; = dy— q—:da

= Y M(y) g(i,j +y) (3.6)
yen
where M(y) is determined by
Chi(y) ¢4 Cha(y) (3.7)

M) = T TR T 3 Ten OR(R)

For w = 1, the second term in (3.7) is zero. From (3.6) one can see that M(y) is

a filter for detecting intensity changes.

3.2.2 Analysis of Filter M(y)

Basically, the filter M(y) used for detecting intensity changes has to satisfy the
following requirements. First, it should eliminate the amplitude bias completely.
Second, it should remove noise very efficiently.

For simplicity of notation, we rewrite (3.6) as
az = M(j) * g(3,5) (38)
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where “x” denotes the convolution operator. Suppose that the image is corrupted
by amplitude bias b and additive white noise {n;;} with zero mean and variance

a%. The observed image is
§(i,5) = 9(i,3) + b+ n(3, 5). (3.9)

where §(z,5) and g(i,7) are the corrupted and original intensity functions, re-
spectively. Noting that the filter M(j) is an anti-symmetric function of j, the
amplitude bias b is completely eliminated after the convolution operation. There-
fore,

M(5) * §(3,5) = M(j) * (93, J) + n(3,5)). (3.10)

The expected value of the filter output can be written as

B{M(j)* 3, 1)} = M) 9.3 (311)

Accordingly, the variance can be expressed as

E{(M(j) * 3(5,3) - B{M(j) * 3(3,5)})*}
= E{(M(j) * n(i,5))"}

=0? ) M*(j) (3.12)
JER
By using (3.7), it is straightforward to prove that
M(j)=—2 3.13
,-%_g:; G) 692 — 45 (3.13)
where

a=) y.

yeR
Hence, the variance of the filter output is

2
B{(M() * 9(i,) — E{MG) * 3G, 1))} = =g (3.14)

26



For large window size, g¢ >> ¢,.The variance can be approximatéd as
o2
E{(M(5) * §(i,j) — E{M(5) * 3(:,/)})*} = q—;' (3.15)

From (3.15), one can see that the variance becomes smaller and smaller as the
window size increases. For instance, if the window size is 5, then the variance
is 0.90%. If the window size is 11, then the variance is significantly reduced to
0.00902. However, large window causes some loss of local information due to
smoothing which smears or erases local features. If one desires to retain local
features, then a small window may be used, but more noise remains and the
estimated intensity function is rough. Also in order to reduce the effect of spatial
quantization error for the natural images, a window as small as size of 3 may be
used, as discussed in the next section. The variance of the estimated derivatives
using a 3 X 3 window is the same as that in (3.15). It appears that the choice |
of the window size is closely related to the theory of human visual system. It is
known [54, 55] that at least four different size channels exist in a human visual
system. Marr suggested [62] that in order to efficiently detect intensity changes,
the filter used should be first a differential operator, taking either a first or second
order spatial derivative of the image and second be capable of being tuned to act
at any appropriate scale.

The following examples show that by choosing a proper window size, the effects
of noise can be very efficiently eliminated. A 256 x 256 real image is used in these
examples.

Example 1: An amplitude bias of strength 20 and white Gaussian noise (30
dB SNR) were added to the image. A section of the image is shown in Figure 3.1.

The dashed and solid lines in Figure 3.1(a) represent the original and noisy images,
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respectively. Obviously, there is no way to match these two image based on the
noisy biased intensity values only. Figure 3.1(b) shows the estimated first order
intensity derivatives from these two images using the polynomial method. The
window size is 5, i.e. the index set is {—2,—-1,0,1,2}.

Example 2: An amplitude bias of size 20 and white Gaussian noise corre-
sponding to 20 dB SNR were added to the original image. Figure 3.2 shows a
section of the image taken from the same location as in Example 1. Figure 3.1(a)
gives the original and noisy biased images. Figure 3.1(b) shows the estimated
first order intensity derivatives of these two images. Since noise in this case is
large, a large window of size 11 was used to reduce its effect. One can see that

the derivatives of two images are matched very well.

3.2.3 Computational Consideration for Natural Images

For the implementation on a digital computer, the natural stereo images must
be digitized both spatially and in the amplitude. Under the perspective projec-
tion, the natural stereo pair images, that is, the left and right images, can not
be matched very well at sample points because of the spatial quantization error.
The spatial quantization error affects the intensity function as well as the deriva-
tives. In this section, we consider the effect of spatial quantization error on the
estimation of intensity derivatives. Similar results also hold for edge detection. A
recent discussion about the problems of qua.gtization error in stereo matching can
be found in [63].

For analysis purposes, a typical camera conﬁgurat‘.ién system similar to that
used by Horn [64] is given in Figure 3.3. Assume that the two cameras are

rigidly attached to each other so that their optical axes are parallel and separated
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Figure 3.1: A section of a real image with amplitude bias 20 and 30 dB noise.
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Figure 3.2: A section of a real image with amplitude bias 20 and 20 dB noise.
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Figure 3.3: Camera geometry for stereo photography.

by a distance d. The focal length of the lens is denoted by f which tak.es a
negative value in the world coordinate system OXY Z. The origin of a right
handed coordinate system of the world is located midway between the camera
lens centers. The positive Z-axis is directed along the camera optical axes. The
baseline connecting the lens centers is assumed to be perpendicular to the optical
axes and oriented along the Y-axis. Let the coordinate systems of the left and
right image plane be opz.y1 and orTRYR, respectively. Then a point in the world,

(X,Y, Z), projects into the left and right image planes at

d
(eu) = (L5, L LR, (3.16)
and
—d
(wrym) = (L5, L3 (3.17)
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respectively. Disparity Dx y can then be defined as
A 1
Dxy=yr—yo=-fd Z (3.18)
Suppose we sample the left image uniformly at line X, = Xp = Xo, a set of

equally-spaced points {..., L_2, L_1, Lo, In, L2, ...} are obtained at

: {""1 (:L‘o, yL_z)a (x07 yL_, )’ (xOs yLo)i (xO’ YL, )’ (3:01 yLz)a eeey }

The corresponding object points {..., Pz, Py, Po, P, P, ...} are located at
{"'7 (XO) Y-2’ Z--2)1 (X01 Y—l, Z'—l)’ (XOa YO’ ZO); (X07 l/17 Zl)) (XO’ Y2, ZZ), }
on the surface. These object points also project into the right image plane at

{m, (xO’ yR_z)a (mOa YR, )’ (zRoa yRo)a (330’ YR, )1 (.‘Eo, sz)v ey }

When the object surface is not parallel to the image plane, the corresponding
points on the surface are unequally-spaced. Consequently, the image points in
the right image plane are also unequally-spaced which means that the image
points do not match the sample points everywhere if the right image is uniformly
sampled. This phenomenon is shown in Figure 3.3.

We assume that in the left image plane, the sample points match the image
points exactly, and in the right image only the image point Ry matches the sample
point as illustrated in Figure 3.3 and the other image points do not match the
sample points. Thus

YL, — YLo = YL — YL} (3.19)
and

YL — YLo = YR! — YR (3.20)



where the “s” denotes the sample point. By (3;19) and (3.20), the spatial quan-
tization error, i.e. the distance between the sample point and the corresponding

image point can be calculated as

(YR, —yRo) — (YRt —YR) = fd (7 — %) i>0 (3.21)

-

(Yro —YR,) — (Yro —¥R}) = fd (5 - z), i<0
Obviously,

i > Ni-1, i > 0,

and

N < M-y, 1<0.

This shows that the spatial quantization error depends on Z, f and the distance
d between the cameras. If the object surface is parallel to the image plane, then

the sample points will match the corresponding image points perfectly because
Zo=2;, V 1.

An interesting aspect of (3.21) is that by definition of disparity in (3.18) the spatial
quantization error is exactly equal to the difference of the disparities between
points Py and P;. Therefore, stereo matching algorithms using intensity values as
the measurement primitives can not detect such a difference if the sample interval
is twice as large as the spatial quantization error.

We further assume that the incident illumination and absorption characteris-
tics of the object surface are roughly constant, and the surface orientation and
the distance to two cameras are almost same. Therefore, the left and right image
planes receive the same amounts of light which means that the intensity functions
of conjugate image points are almost same. It is assumed that the intensity func-

tion is differentiable with respect to y. Expand the intensity function g(zo,yrr)
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as a Taylor series about (o, yn:) = (%o, ¥r;)

9(z0,yr, — M) = 9(%0,YR;) — i 9 (%0, YR)lup=yp, + O(nf), >0

g(xo,yn:) = , ) )
| 9(zo,ym, + 1) = 9(Z0,YR,) + i 9 (Z0, YR) lyn=yr, + O(nf), <0
(3.22)

where g' (%o, YR)|yn=ys, is the derivative of the intensity function at (zo,yr,). By
using the sampled intensity function to estimate the first order derivative of the
intensity function g(zq, yr, ), (3.6) becomes
g'(z0,yro) = 2_ M(y) g(zo, (yr, +9)°) (3.23)
veQ
where the “~” denotes the estimate of intensity derivative using the sampled
intensity functions.

Replacing the sampled intensity functions in (3.23) by (3.22), we have

.‘;l(z'(h yR)lyR=yao = X‘; M(3) g(zro, yr;) + ZQ u(e) 7 M(2) g'(a:o, yR)'uR=ym
i€ i€
(3.24)

where u(z) is a step function

. 1, i>0
u(z) =

-1, ::<0O.

Clearly, the first term in the right side of (3.24) is equal to (3.6) which means it
is a correct estimate, and the second term is an estimation error caused by the
spatial quantization error. Since the spatial quantization error is proportional to f
and d, and is inversely proportional to Z, the estimation error will be small when
the camera is close enough and/or the object is far enough. When the surface is
not parallel to the image plane and the object is close to the camera, using a large

window to estimate the derivatives will give a large error due to the accumulated
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quantization error. Hence, a small window is preferred if the object is close to
the camera. As proposed in [65], the smallest channel in the human visual system
contains a filter with a central diameter of 1.5, roughly corresponding to 4 pixels.
Therefore, considering the effects of noise distortion and the spatial quantization
error, a filter m(y) with size of 3 — 7 pixels is the proper one for the natural stereo
images.

In fact, (3.24) can be considered as a general form for both derivative estima-
tion and edge detection as most of the edge detection algorithms can be considered
as a window operation followed by appropriate thresholding. Owing to the out-
put error of the window operation, the edge detector may miss an edge, give a
false edge or shift the edge. In other words, the edge output also suffers from the
spatial quantization error.

Noting that the filter m(y) is an anti-symmetric function of y and assuming

that the derivatives at sample points are the same, (3.24) can be simplified as

!;'(330, yr)lyr=yro = g'(:l:o, yr)lyr=yro[1 = Z m(2) (m + 1)) (3.25)
i=1

Substituting (3.21) and then (3.18), we finally have
g;'(:co, yr)lyr=yro ~ g’(IO: yr)lyr=yr° [1 - Z m(z) (D; — D-i)] (3.26)
i=1

The estimate of the derivatives may be either larger or smaller than the true value

which depends on the orientation of the object surface.

3.3 Matching Using a Network

Binary neurons are used to represent the disparity values between two images.

The network consists of N, x N. x (D + 1) mutually interconnected neurons,
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where D is the rﬁaximum disparity, N, and N, are the image row and column
sizes, respectively. Let V = {v;;x,1 < i< N,1<j < N,0< k< D}bea
binary state set of the neural network with v;;x (1 for firing and 0 for resting)
denoting the state of the (2,7, k)th neuron. When v;;; is 1, this means that
the disparity value is k at the point (z,7). Every point is represented by D + 1
mutually exclusive neurons, i.e. only one neuron is firing and others are resting,
as a result of the uniqueness constraint of the matching problem. -
The network parameters, the interconnection strengths T ; x;i.m » and the bias
inputs I jx, can be determined in terms of the energy function of the network.

As defined by (2.7), the energy function of the neural network can be written as

l‘ f' C C D f Q
= -—E Z E Z: Z Z Z,J.k dman Vijk Ulimn — Z Z Z I:,J,k Vijk
t—l I=1 j=1 m=1 k=0 n=0 =1 j=1 k=0
(3.27)
In order to use the spontaneous energy-minimization process of the neural net-
work, we reformulate the stereo matching problem under the epipolar assumption

as one of minimizing an error function with constraints defined as

" C " C D
E= Z Z Z .‘7[,(z - .‘11'2(31.7691‘7))2 vs.J.k+ E E Z Z (V35— —Y(i,5)®s, k)
=1 j=1 k=0 i=l j=1 k=0 s€S
(3.28)
where {g;(-)} and {gp(-)} are the first order intensity derivatives of the left and
right images, respectively, S is an index set excluding (0,0) for all the neighbors
in a I' x T’ window centered at point (7,7), A is a constant and the symbol &

denotes that

forb if 0Sa+b< N, N,
Jagp = (3.29)

0 otherwise

The first term called the photometric constraint in (3.28) is to seek disparity

values such that all regions of two images are matched in a least squares sense.

36



Meanwhile, the second term is the smoothness constraint on the solution. The
constant A determines the tradeoff between the two terms to achieve the best
results.

By taking I' = 5 and comparing the terms in the expansion of (3.28) with the
corresponding terms in (3.27), we can determine the interconnection strengths

and bias inputs as

Ti,j,k;l,m,n = —-48)6,"16,",,.51:‘“ +2A E 6(,',,')'(1,,,,)@,51:'“ (3.30)
€S
and
Ljx = —(95(i,5) — gr(i,j ® k))? (3.31)

where &, is the Dirac delta function. The size of the smoothing window used
in (3.30) is 5. However, one can choose either a larger or smaller window. From
(3.30) one can see that the interconnections are symmetric and the self-connet;tion
T jksi ik 18 not zero which requires self-feedback for neurons.

Matching is carried out by neuron evaluation. Once the parameters T; ; x:,m.n
and I, are obtained using (3.30) and (3.31), each neuron can randomly and
asynchronously (or synchronously) evaluate its state and readjust according to

N N. D
uijk =9 3 2 TijkimnVimn + Lijk (3.32)
I=1 m=1 n=0

and

ik = 9(iik) (3.33)
where g(z; ;) is a maximum evolution function

1 if z;;6 =maz(zji;1=0,1,...,D).
0 otherwise.

37



The synchronous updating scheme can be impleménted in parallel, while the asyn-
chronous updating scheme can be sequentially implemented. Another updating
scheme called the hybrid updating scheme results when some neurons are syn-
chronously updated and the others are asynchronously updated. For natural
stereo images, we will use the hybrid neural network. The uniqueness of match-
ing problem is ensured by a batch updating scheme-D + 1 neurons {v; g, ...v: ;,p}
at location (¢, j) are updated at each step simultaneously.

The initial state of the neurons were set as

1 if Lije =maz(l;;;;1=0,1,..,D).
Vijk = s ig ) (3.35)
0 otherwise

where I; ;  is the bias input.

As mentioned in Chapter 2, the self-feedback may cause energy function to

increase with a transition. The batch updating scheme simultaneously updates
(D + 1) neurons {v;;x; k = 0,..., D} corresponding to the image point (z,7) at
each step. However, at most two of the (D + 1) neurons change their state at

each step. By defining the state changes Av; ;x and Av;

;;.x of neurons (7, , k) and

(i,7,k') and energy change AE as

L. e g W old
Av; ik = ik = Vijk

new v?lfi ,

Ay, jp = Vi gk id K

and

AE = Erev _ Eold

the change AE due to a changes Av; ;i and Av, .+ can be obtained as

0,k

. N, N, D
r < . 1
AE = =3 3 Y Tiimtmm Vima + Lije ) Avije — = Tojmiik (Avige)?

i=1 m=1 n=0 2
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r c
1
- X Z ikdmn O+ Ljp ) B = 5 T in (Do)

=1 m=1 n=0
new
TIJ! 1‘0]." (Avt'J'kvt ] k' + Av lJvk U 'J k)

When

old old __
vk =0, vk =1,

Uik > Uik

and the maximum evolution function is as in (3.34), we have

new e,
Vijk = l’ l.]k =0

and

Av{,j‘k = 1, A’v'-’j,k' =-1.

Noting that

Tjhigee =0 if k# K,

(3.36) can be simplified as

1
5 (Tigmigk + Tojariiin)

AE = (u:',j.k' — Uiik) = )

Thus, the first term in (3.37) is negative. But
T + T jprie = —98 A <0

leading to

1
- (T.J.k Wik + T

2 ¥) >0

iJk "tj’

When the first term is less than the second term in (3.36), then AE > 0.

(3.36)

(3.37)

A deterministic decision rule is used to ensure convergence of the network,

probably to a local minimum. The stereo matching algorithm can then be sum-

marized as
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1. Set the initial state of the neurons.

2. Update the state of all neurons randomly and asynchronously (or syn-

chronously) according to the deterministic decision rule.

3. Check the energy function; if energy does not change anymore, stop; other-

wise, go back to step 2.

3.4 Experimental Results

A variety of images including random dot stereograms and natural stereo image
pairs were tested using our algorithm. A 5 x 5 (i.e. I' = 5) smoothing window

was used for all images.

3.4.1 Random Dot Stereograms

The random dot stereograms were created by the pseudo random number gener-
ating method described in [66]. Each dot consists of only one element. All the
following random dot stereograms are of size 128 x 128 and in the form of a three
level “wedding cake”. The background plane has zero disparity and each succes-
sive layer plane has additional two elements of disparity. In order to implement
this algorithm more efficiently on a conventional computer, we make the following
simplifications. Since only one of D+ 1 neurons is firing at each point, we used one
neuron lying in the range 0 to D to represent the disparity value instead of D + 1
neurons. From (3.30) one can see that the interconnections between the neurons

are local ( a I' x I' neighborhood) and have the same structure for all neurons.

40

()



Therefore, for I' = 5 we used a 5 x 5 window for computing U; ; » and energy func-
tion E instead of a N, N,(D + 1)xN,N.(D + 1) interconnection strength matrix.
The simplified algorithm greatly reduces the space complexity by increasing the
program complexity a little. Therefore, it is very fast and efficient.

Figure 3.4 shows a 10% random dot stereogram. Intensity values of the white
and black elements are 255 and 0, respectively. Figure 3.4(c) is the resulting dis-
parity map after 10 iterations using the asynchronous updating scheme. When
the synchronous updating scheme is used, 23 iterations are needed. The disparity
values are encoded as intensity values with the brightest value denoting the max-
imum disparity value. We used A = 20, D = 6 and w = 2 (i.e. window size was
5). Note that the disparity map is dense. |

A similar test was run on the decorrelated stereogram [53]. The original stere-
ogram is 50% density random dots. In the left image, 20% of the dots were '
decorrelated at random. By setting A = 2800, D = 6 and w = 2, a dense disparity
map in Figure 3.5(c) was obtained after 12 asynchronous iterations. The same
result can be obtained after 19 synchronous iterations. .

Another type of perturbation is Gaussian white noise [66). Figures 3.6(a) and
3.6(b) show a pair of multi gray level random dot images with intensity value in
the range (0 — 255). Gaussian white noise corresponding to 5 dB SNR was added
to the left image. The SNR is defined as

2

SNR =10 log,, -f;—;

n

where 02 and o2 are the variances of original left image and noise. The parameters

A =450, D = 6 and w = 2 were used. Only 6 asynchronous iterations were needed
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(a) Left image. (b) Right image.

(¢) Disparity map represented by an intensity image.

Figure 3.4: A 10% density random dot stereogram.
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(a) Left image. (b) Right image.

(c) Disparity map represented by an intensity image.

Figure 3.5: A 50% density random dot stereogram. In the left image, 20% of the
dots were decorrelated at random.
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to get the final result in Figure 3.6(c). When the synchronous updating scheme
was used, 9 iterations were needed to get ‘the same result.

As expected, both the synchronous and asynchronous updating schemes work
very well, although the latter takes more iterations. The synchronous updating

scheme is suitable for parallel processing.

3.4.2 Natural Stereo Images

Two stereo pairs of natural images, the Renault part and the Pentagon images,
were used to test our algorithm. All images are of size 256 x 256. Since natural
stereo images may not satisfy the epipolar constraint, small alignment correc-
tions in the vertical direction are needed. A hybrid updating scheme was used
for both the Renault and the Pentagon image pairs. The image is segmented into '
homogeneous and nonhomogeneous regions by using a local variance criterio;l. A
homogeneous region is defined as a smooth region with the small local variances.
The corresponding neurons corresponding to homogeneous image regions are up-
dated sequentially, while the neurons corresponding to nonhomogeneous regions
are updated in parallel. Since the first derivatives of the intensity function in ho-
mogeneous regions are small, the inputs are small and the neurons ténd to take the
same state as their neighbors because of the smoothness constraint. No doubt, the -
neurons near the boundary will be first affected by the neighbors corresponding to
inhomogeneous regions. As the neurons corresponding to homogeneous region are
sequentially updated, they will all be affected by the boundary conditions which
means surfaces in homogeneous regions can be interpolated.

For the Renault images, the parameters were set as A = 12, D = 13 and

w = 1. The threshold for the local variances was set at 1.0. The local variance was
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(a) Left image. (b) Right image.

(¢) Disparity map represented by an intensity image.

Figure 3.6: A multilevel random dot stereogram. In the left image, Gaussian
white noise corresponding to 5 dB SNR has been added.
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computed in a 5 x 5 window. About 72 iterations were required. Since a discrete
network was used, the disparities only take integer values. A simple smoothing
technique was applied to the nonzero portions of the disparity surface. Figures
3.7(a) and 3.7(b) show the left and right Renault part images. The final result is
given in Figure 3.7(c), while (d) shows the smoothed version of (c) by using 2 9 x 9
mean filter. Figures 3.8 and 3.9 give the plots of the unsmoothed and smoothed
disparity surfaces corresponding to Figures 3.7(c) and 3.7(d), respectively.
Figures 3.10(a) and 3.10(b) show the left and right Pentagon images. By
choosing parameters A = 10, D = 4, w = 1 and the local variance threshold 0.01,
a disparity map was generated after 51 iterations. A 5 x 5 window was used for
computing the local variance. Figures 3.10(c) and 3.10(d) give the unsmoothed
and smoothed disparity maps, respectively. A 13 x 13 filter was used for smooth-
ing. The plots of Figures 3.7(c) and 3.7(d) are shown in Figures 3.11 and 3.12, '

respectively.

3.5 Discussion

This chapter has presented an approach for extracting depth from a pair of static
stereo images. A discrete neural network is employed to iteratively minimize the
error function and an estimate of the disparity values is obtained when the neural
network converges to a minimum. The experimental results offer support for the
hypothesis that the first order derivatives of the intensity function may be consid-
ered as appropriate measurement primitives for the stereo matching problem. No
surface interpolation step is involved in this approach because of the dense first

order derivatives of the intensity function used as measurement primitives.
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(a) Left image. (b) Right image.

(c) Disparity map. (d) Smoothed disparity map.

Figure 3.7: The Renault part images. The disparity maps are represented by
intensity images.
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Figure 3.8: 3-D plots of the disparity map for the Renault part images.



Figure 3.9: 3-D plots of the smoothed disparity map for the Renault part images.
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(a) Left image. (b) Right image.

(c) Disparity map. (d) Smoothed disparity map.

Figure 3.10: The Pentagon part images. The disparity maps are represented by
intensity images.
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Figure 3.11: 3-D plots of the disparity map for the Pentagon images.
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Figure 3.12: 3-D plots of the smoothed disparity map for the Pentagon images.
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In considering the experimental results, however, one point should be kepf. in
mind. It concerns the occluding pixels. At the location of the occluding pixels,
the disparity values are undetermined. Hence, we have to detect the occluding
pixels and establish some rules to infer the depth information at such location.

This issue will be discussed in the next chapter.
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Chapter 4

Motion Stereo

4.1 Introduction

Motion stereo is a method for deriving depth information from either a moving

camera or objects moving through a stationary 3-D environment. Since motion
stereo uses more than two images, it usually gives more accurate depth mea-
surements than static stereo. In this chapter we give two neural network based
approaches, the batch and recursive approaches, for computing disparities using
a sequence of image frames.

A substa.;ltial amount of work has been devoted to methods for computing
the disparity field based on a sequence of images. In a relatively early paper,
Nevatia [67] uses multiple views between two stereo views to achieve certain ac-
curacy without an increase in search time. The object is placed on a turntable
and multiple views are taken by a camera every 0.5 degree apart. Two simple

methods are suggested for region search. Both methods only reduce the search
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range but not increase the resolution. Also they do not make use of any infor-
mation acquired in the previous view for the next search procedure. Williams
presents a new approach for deriving depth from a moving camera in [68]. By
moving the camera forward, the disparity is estimated using simple triangulation.
For simplicity, all the object surfaces are assumed to be flat and oriented in either
horizontal direction i.e. parallel to image plane or vertical direction i.e. parallel to
ground plane. Therefore, only the distances for horizontal surface and the height
for vertical surface need be found. To achieve subpixel accuracy, an image is inter-
polated according to the predicted disparity values obtained by a search process
and occlusion effects. Based on the error between real and interpolated images,
the correct orientation of each surface can be detected, and hence a segmented im-
age consisting of refined synthetic surfaces can be obtained. For implementation
purposes, an iterative segmentation procedure is employed and the systematic
changes of distance and height embodied in synthetic segmented image at each it-
eration are used for finding the correct distance and height. Experimental results
demonstrate the usefulness of this approach for simple natural image sequences.
Since only planar surfaces with one of two different orientations are assumed to
exist in natural images, areas corresponding to either non-planar surfaces or pla-
nar surfaces with other orientations are not correctly interpolated and therefore
the estimated distances and heights for these areas are not reliable. Furthermore,
this approach requires information about the focus of expansion (FOE) and the
final result depends very much on the quality of initial segmentation.

Instead of computing depth in image space, Jain, Bartlett and O’Brien [69)
developed a method for estimating the depth of feature points (corners) in the

ego-motion complex logarithmic mapping (ECLM) space. They showed that the

55



axial movement of the camera causes only horizontal but not the vertical change
in the mapping of image points. Therefore, the depth of a feature point can be
determined from the horizontal displacement in the ECLM for that point and from
the camera velocity in the gaze direction. However, the mapping is very sensitive
to noise, spatial quantization error and image blur, requiring some heuristics to
establish the correspondence of points, such as thresholds for maximum possible
changes in the vertical direction and an upper bound for the search range in the
horizontal direction in the ECLM space. Also the FOE for arbitrary translation
of the camera and the feature points (corners) are assumed to be known. Another
motion stereo method using feature points (corners) for computing depth in image
space can be found in [70). |

Recently, Xu, Tsuji and Asada [71] have suggested a coarse-to-fine iterative
method for motion stereo matching. By sliding a camera along a straight line, .
a sequence of images is taken at predetermined positions. The pair with short
baseline is matched first to produce a coarse disparity map based on the zero-
crossings. Then the coarse disparity map is used to reduce search range for the
pair with the next longer baseline. This procedure is continued until the pair with
the largest baseline is processed. One major advantage of this method is that
occlusions can be predicted from the previous disparity map to avoid mismatches
at present step. Although the computation time is less compared to other coarse-
to-fine methods, this method gives only a sparse disparity map and can not be
implemented on line.

Matthies, Szeliski and Kanade [12] have introduced two real time approaches,
based on intensity values and features using a Kalman filtering technique. A

sequence of lateral motion images is generated by a moving camera along a straight
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line from left to right (or right to left). The intensity based approach consists
of four stages for each frame. First, a new measurement of disparity at each
pixel is obtained by using a correlation matching procedure. Then the estimate
of disparity is updated by a Kalman filter update equation based on the new
measurement. Third, a generalized piecewise continuous spline technique is used
to smooth the updated estimate. Finally, the disparity for each pixel in the next
frame is given by the prediction procedure. As reported in [12], the intensity based
approach is more efficient than the feature based approach. But a major problem
in the intensity based approach is that once the updated estimate is smoothed
in the third stage, the gain of the Kalman filter and the error variance of the
estimate are no longer correct so that they can not be used in the next iteration.

In this chapter, we develop a neural network based batch approach for com-
puting the disparity values. Since the batch approach needs to use the match-
ing procedure only once, computational complexity is greatly reduced. We also
present a new real time approach for deriving depth from sequential images. Ba-
sically, we use a recursive least squares (RLS) algorithm to update the bias inputs
of the network instead of updating disparity values. When the next frame be-
comes available, the bias inputs are updated first and then a neural network is
employed to estimate the disparity values under the epipolar, photometric and
smoothness constraints. Unlike [12], no smoothing procedure is needed. Since the
neural network can be run in parallel and the RLS algorithm can be implemented
on line, this approach is extremely fast and hence useful for real time robot vision
applications. As the derivatives of the intensity function are more reliable than
the intensity values and are also dense, both approaches use the derivatives as

measurement primitives for matching.
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4.2 Depth from Motion

It is assumed that a sequence of images is taken by a camera moving with constant
velocity from right to left along a straight line, as shown in Figure 4.1. Several
assumptions are made for simplifying the problem. First, it is assumed that
the optical axis of the camera is perpendicular to the moving direction and the
horizontal axes of the image planes are parallel to the moving direction. The
constraint imposed on the camera configuration is to restrict the search within
the horizontal direction only, the so called epipolar constraint. Secondly, it is
assumed that the camera takes pictures exactly every t seconds apart. Thus,
all images are equally separated, i.e. each successive image pairs has the same

baseline.

Figure 4.1: Camera geometry for motion stereo.
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Let OXY Z be the world coordinate system with Z axis directing along the
camera optical axis and o;z;y; be the pth image plane coordinate system. The
origin of the pth image system is located at (0,—(p —1)uvt, f) of the world system,
where v is the velocity of camera, vt is the distance between two successive images
and f is the focal length of the lens which takes a positive value in the world
system. Under perspective projection, a point in the world, (X,, Y,, Z,), projects

into the pth image plane at

(xi’y‘_)=(fz‘)fo,f(},¢>+(§o- l)vt)) (4.1)

Theoretically, the disparity D, can be derived from two successive image frames

1
D°=y,,—yp_1=fvt-z—- (4.2)
/]

which is same as the formula used in static stereo. However, noise distortion, .
spatial quantization error and motion blur limit the estimation accuracy. In order

to achieve high accuracy, a long sequence of image frames is needed.

4.3 Estimation of Derivatives

As only. derivatives in the horizontal direction are required for matching, the
epipolar constraint saves a lot of computations. By using a set of univariate dis-
crete Chebyshev polynomials to approximate the intensity function in a window,
we have

(i, 7 +y) = A’ CH(y) (4.3)
where §(z, j + y) is the approximated continuous intensity function, ¢ denotes the
transpose operator,

A' = [a0,a1,0a2,a3, a4
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is the coeflicient vector and

CH(y) = [Choly), Ch(y), Cha(y), Cho(y), Cha(y)

is polynomial vector defined over an index set 2 = {—w, —w+1,...,w — 1,w}, i.e.
over a window of size 2w + 1, as in Section2.1 of Chapter 3. The coefficients {a,}

are estimated using

o = =vea Cha(y) 9(irj +¥)
i Yuen Ch3(u)

where {g(i,7 + y')} are the observed intensity values.

(4.4)

The first order derivatives of the intensity function at subpixel position (z, 7 +y)

can be calculated by

99(i,4), ~ _dg(ii+y) L. d
—aj—|J=J+y = dy =A dy@(y) (4.5)

for —05<y<05

For simplicity of notation, we use g'(¢,7 + y) to represent the first order partial
derivatives of the subpixel intensity function.
For the purposes of performance analysis, rewrite the coefficient vector as
A=) A®W)(ii+y) (4.6)
v'eN

where A(y’) is a vector with the nth element

Cha(y')
Luen Chi(u)

Replacing the vector A in (4.5) with (4.6) we have

gGi+y) =3 Flyy)eii+y) (4.7)
y'eN
where F,(y;y’) is given by
/ n d
Fy(y;9') = A'(y) 7 SHO), (4.8)
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a filter for estimating the first order derivatives of the subpixel intensity function.
Since only one camera is used, there is no bias amplitude in the observations.

Suppose that the image is corrupted by zero mean white noise

(i, 5) = 9(2,3) + n(i, 4). , (4.9)

where §(i,7) and g(,7) are the noisy observations and original intensity value,

respectively. The variance is given by

Var( Zﬂ Fy(y:9)93,5 + "))
y'e

=E{(d F(y:y)n(,j+))"}

y'en

=03 Y, Fuy) (4.10)
y'eR

where o2 is the variance of noise. Making use of the orthogonality of the polyno-

mial set, we have

Y Flwy) = 3 (A'Y CH(y))2
yv'en 'en
= (—CH‘(y)) > A y)A‘(y)—CH(y)
y'e
= (di H'(y) W - CH) (e11)

where W is a diagonal matrix with elements

Thus, the variance becomes

Var(}_ Fy(y:9"9(:,5 +¢))
y'eR
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=o? (% CH'(t)) W d—d-CH(y)
4. (4Chay))?
= ,.;1 Eu a Chi(v) 12

which shows that the denominator of each term is a monotonically increasing
function of the window size. Hence the variance of the output becomes smaller
and smaller as the window size increases. Considering the effects of spatial quan-
tization (as discussed in Chapter 3) and noise, a window with the size of 3 — 7

pixels is recommended for natural images.

4.4 Batch Approach

The conventional batch algorithm needs many measurements requiring a lot of

computations. For example, if there are M image frames, then the matching

procedure has to be implemented (M — 1) times to obtain (M — 1) disparity
measurements for each pixel. Such a batch approach does not have any advantage
over the recursive approach. Instead of doing matching (M — 1) times, the batch
method presented in this section implements the matching algorithm only once
by simultaneously using all the images pairs.

Theoretically, disparity takes continuous values. For implementation purposes,
we sample the disparity range using bins of size W. We use N, x N, x (D + 1)
mutually interconnected binary neurons to represent the disparity measurements,
where N, and N, are the image row and column sizes and D x W is the maximum
disparity value. For the (7, j)th pixel, we use (D + 1) mutually exclusive neurons
{viji0s Vijay-er Vijp}. When v; ;4 is 1, the disparity measured at pixel (z,j) is

kEW.
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4.4.1 Estimation of Pixel Positions

Let (7, j) be the position of the (z,7)th pixel in the first frame. In the successive
frames, due to camera motion, the position of all pixels are shifted to the right
by vt. Under the epipolar constraint, the shift happens only in the horizontal
direction. For example, the (7, j)th pixel moves from position (i,7) in the first
frame to position (z,7 + %) in the second frame. Let S; ;(p) be the total shift of

pixel (Z,7) from the first to the pth frame. Thus

Sii(p) = (p—l)%

= (p - 1) d,"j (4.13)

where d; ; is the true disparity value for pixel (7, 7). Note that the shift S;;(p) is
continuous due to the continuous variable d; ;. A rounding operation has to be
applied to S;;(p) for locating the (7, j)th pixel in the subsampled image. After

rounding, the position of the (z,7)th pixel in the pth frame is given by
C L Sig
(s + (222w, (4.14)
where [ ] is a rounding operator. It can be simply written as
(3,7 + kW) . (4.15)
where

e = (2l

4.4.2 Batch Formulation

Assuming that the camera is moving along Y axis with constant velocity v and the

images are taken exactly every t seconds apart, the error function for matching is
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defined as

N N D M-1 , o

E =33 Y X (9,65 ® (= 1)kW) = g4, (i, @ pkW))? viis
i=1 j=1 k=0 p=1
A Nr Ng D

LD IPIPIP I = Ui j)@ak)’ (4.16)

=1 j=1 k=0 €S

where {g,(-)} denote the intensity derivatives at (-) of the pth frame. Comparison

of (4.16) to (3.27) results in

Tijistimn = —48X8;18;m8kn + 2X Y 8(is),(tm)@s0kin (4.17)
€S
and
1 Mo, .o .
Lije = =37 Z% (95063 @ (p = D)EW) — 9,41 (3,5 @ pkW)) (4.18)
p=

where T;;kumn and I; ;i are the interconnection strength and the bias input,

respectively. Then a synchronous updating scheme described in Section 3.3 of the

Chapter 3 is used to update the states of neurons. The final outputs of the neural

network give the disparity estimates.

4.5 Recursive Approach

This approach basically consists of two steps: bias input update and stereo match-
ing. Whenever a new frame of image becomes available, the bias inputs of the
network are updated by the RLS algorithm and then new disparity measurements
are obtained using the new bias inputs.

Suppose that images are corrupted by additive white noise and the measure-

ment model is given by
Lix(p) = h(p,g,(i,i ® (p— 1)kW), 9,4, (3,5 ® PkW),ni jx(p))
= —(G(:J ® (p = EW) = G, (3,5 & pkW))? (4.19)
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for p=1,2,.,.M-1

where A is a measurement function and n; ; x(p) is noise. For p such measurements,

find a function

ii,j,k(p) = ji.j,k(P, iidlk(p),jiiJlk(p - 1)""’ jiljtk(l)) (4'20)

that estimates the value of the bias input I; ;4 in some sense. The value of the
function is the estimate. If the measurement function is linear and the mea-
surement noise is white, then a Kalman filter is commonly used for finding an
optimal estimate. In (4.19), as the measurement function is nonlinear and the
measurement noise is no longer white but is dependent on measurements, the lin-
ear Kalman filter does not yield a godd estimate. In contrast to the Kalman filter,
the RLS algorithm does not make any assumption about measurement function
and noise. Hence, the RLS algorithm can be used to update the bias inputs. '

When the pth frame becomes available, the bias input is updated by

Lix(p) = Liju(p— 1) + % (Liju(p) = Lijulp = 1)), (4.21)

This RLS algorithm is equivalent to the batch least squares algorithm with the
initial condition
I ; x(0) = 0.
The matching algorithm is the same as that used for static stereo matching.

The interconnection strengths is the same as in (3.30)

Tijktmn = —48X618;m8kmn + 22 D 8(i.i).(tm)@s0kn (4.22)
IES

and the bias input is given by (4.21). Since the bias inputs are recursively updated
and contain all the information about the previous images, we do not have to im-

plement the matching algorithm for every recursion if the intermediate result are
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not required. This method greatly reduces the computational load and therefore

is extremely fast. Formally, the algorithm is as follows:

1. Update the bias inputs using the RLS algorithm.
2. Initialize the neuron states.

3. If there is a new frame to be processed, go back to step 1; otherwise go to

step 4.

4. Update the neuron states using the matching algorithm.
This algorithm has several advantages over the correlation algorithm of [12]:
1. This algorithm recursively updates the bias inputs instead of the disparity

values. The matching algorithm is implemented only once.

2. This algorithm incorporates the smoothness constraint into the matching

procedure instead of using an extra smoothing procedure.

3. This algorithm uses the derivatives of the intensity function, which are more
reliable than the intensity values, as measurement primitives. Hence it is

suitable for natural images.

4.6 Matching Error

When multiple frames are used for matching, the spatial quantization error usually
causes a large matching error. In this section, we derive a mean value for the
matching error which can be used to detect the occluding pixels. It is assumed

that the true disparity at pixel (7, ;) in a smooth region can be expressed as
dij = kW + 6,

66

13



where §; ; is uniformly distributed in [—l;"-, %), and the first order derivative of

the intensity function at point (i, 7 +(p—1)kW) of the pth image can be expanded
as a Talor series about the point (4,7 + (p — 1)(kW + 6;;)) as

GG+ (p-1)kW) = ¢G5+ (p—1)(EW +6;) —
(p—1)bis9 (i, + (p = 1)(EW + &) + O(82,).

for p=23,..M (4.23)

where g"(-) denotes the second order derivative. The best estimate of the disparity

value is given by

J,-., = kW.
Therefore, the matching error is
1 M-l tro o ’ .« . 2
Error = 1 Z; [gp(z,] +(p—-1)kW) - gp+l(z,] + pkW)]
= :
1 M, b
> 7 2196 + (P = W +8)) = gpa (85 + p(EW + 61,))
p=1
—(p— 1)6;,59, (3,5 + (p = 1)(kW + 6,}))
+P 6:,iGpin (5,5 + P(EW + 63))) (4.24)

When images are corrupted by additive white noise
gp(iui) = gp(i,j) + np(iuj)

where §,(3,7) is the observation, the first order derivative of the intensity function
is given by
tpe t7 2 d ~ . . ’
Gi+y) = Y AY) —yC_H(y) 93,7 +y')
Ve

fo. . d .. ’
= g (Lj+y)+ Y, AY)-CH(y) (5,5 +3') (4.25)
y'en dy
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for —-05<y<0.5.

and the second order derivative is given by

G (,i+y) = ZQA‘(?/ CH(y) 3(i,7 +¥)
v'eE
- g,,(z,y+y)+znA(y) L CH(y) nyirj +4) (4.26)
y'€

for —-05<y<0.5.

Replacing g,(-) and g,(-) in (4.24) by (4.25) and (4.26) and noting that

91(6,7) = g,(6,5 + (p — 1)(kW + 6:3))

and
9:(5,3) = g, (3,5 + (p = 1)(kW +&;;))

for p=2,3,..., M,

the matching error becomes

Error = Ay ) CH(y)ly=g,_,7p(¢, 7 + Yp-1 +¢)
p—l y en
- Z A'(y") —CH(y)|y=9,np+x(i,j +y+Y)
y'en
qon @ .
—(p—1)&;, Zﬂ A'(Y) 777 B W)lo=g-. (65 + 95-1+)
'€
+p 6i; ’ZE;) A ’) d_g'@(y)ly;ﬁpnpﬂ(i,j + Y+ ')
+6:; 9, (5, 3)) < (4.27)
where
Yp = {PkW]
= pkW — Yp
68
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and [ ] is a rounding operator. Assuming that noise {n,(i,j)|p = 1,2,..., M} and
6;,; are mutually independent and noting the orthogonality of the polynomial set,

the mean error can be simplified as

d
E{Error} 72, (5=Cha()lympyr +
p-l n=1 Y
Wpo? d?
2 n
Un,,,.;(d—Chn(y))zlyzvp + 12 2 (dyzchﬂ(y))?ly=9p +
Wip—1)*a; w?

2 ( C(y) ] + g G (428

Since only one camera is used, it is reasonable to assume that

o2 =g for p=2,..,M.

ny np
The mean error at (z,j) can be computed as
E{Error(i,j )} = C10%, + Ca(9,(i,5))*. (4.29)

where C; and C, are determined by

% = 7 g{gzum TR l(dyChn(y))zny_g,-,ﬂd Cha(s) ety
T 3 Bz Ol + (0= 11 (zChals) ]
and
W2
C;, = ETR (4.30)

respectively. If the variance of noise and the second order derivatives of the
intensity function are known or estimated from the images, then the mean error
corresponding to the disparity value k at every point for a given w (window size),

M (frame number) and W (width of subsample interval) can be calculated.
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4.7 Detection of Occluding Pixels

Detection of occluding pixels is an important issue in motion stereo. As shown in
Figure 4.2(a), when a camera moves from right to left, points 2, 3, 4 and 5 project
into the first image plane at 2’, 3’, 4’ and 5. But points 2 and 3 on the object
surface will not project into the second image plane because they are occluded
by the front surface on which point 1 lies, Similarly, points 2, 3, 4 and 5 will not
appear in the image plane 3. At the location of pixels 2°, 3’, 4’ and 5°, the match
error is usually large which means no conjugate pixels can be found in the suc-
cessive image frames. Hence, the disparity values are undetermined. Such pixels
are called occluding pixels. When a smoothness constraint is used, although the

matching algorithm always assign some values to the occluding pixels, the discon-

tinuities of the disparity field may be shifted. As the number of frames increases, -

the number of occluding pixels also increases dramatically. For instance, if only
two object points are occluded for the second image as shown in Figure 4.2(a),
then about ten points are occluded for the sixth image which gives a ten pixel
wide occluding region in the first image plane. On the other hand, if only the first
two frames are used for matching, then pixels 4’ and 5’ are not occluding pixels
and therefore the disparity values at such location are determinable. As the third
frame does not provide any information about pixels 4’ and 5’, there is no need
to update the bias inputs at the location of these pixels.

However, in some cases the number of occluding pixels does not increase as the
number of frames increases. One typical example is illustrated in Figure 4.2(b),
where pixels 4’ and 5’ are not occluding pixels when the third image frame is used.

The above intuitive analysis essentially suggests a method for detecting occluding
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(b) Pixels 4' and &' are not occluding pixels.

Figure 4.2: Occluding pixels.
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pixels. By using the mean values of matching error derived in the previous section
the following detection rule can be used for detecting occluding pixels and hence
we can prevent the RLS algorithm from updating the bias input at the location
of occluding pixels.

Detection rule: An occluding pixel at location (¢, j) is detected if
min(l; jx; 0 < k £ D) > maz(E{error(i,j)r}; 0 < k< D)+b (4.31)

where b > 0 is a constant for raising the threshold. When the noise variance is
unknown, one can use a constant threshold instead of the mean error.

For the recursive approach, once an occluding pixel is detected, the bias inputs
of neurons at such locations will not be updated anymore. But during the first

iteration, the bias inputs of neurons at the locations of occluding pixels are first

updated and then corrected accordingly. The correction procedure is as follows.

From Figure 4.2 it can be seen that the pixels on the left side of the occluding
region have high disparity values and the pixels on the right side have low disparity
values. The width of the occluding region, i.e. the number of the occluding pixels
is approximately given by )

R D;;_,~D;;
Ay = [t (4.32)

where []is a rour;ding operator, (2, j) denotes the location of the most left occlud-
ing pixel, A;; is the true width, A.-‘,- is a estimate of the width, and D;;_, and
D; ;j1a;; are the disparity values of the nearest left and right nonoccluding pixels,
respectively. Since a smoothness constraint is used, the occluding pixel usually
takes either the high disparity value D;;_; or low disparity value D;;;4,,. The
discontinuities of the disparity field can be detected by checking the disparity

values in the y; direction for a transition from the high value to the low value.

72

'3

3



Starting with the discontinuity pixel, we check all the left and right neighbor pix-
els. The search procedure will not be stopped until a A.;,- wide or less occluding
region including the discontinuity pixel is found. Then, for all occluding pixels

the bias input of the A; ;th neuron is corrected by
Ii,l.De,,'.q.A,-',.(l) = min(I;,;'k(l); k=0,1,..,D). (4.33)

For the batch approach, the bias inputs at occluding pixels are estimated using

only the first two image frames.

4.8 Experimental Results

We have tested both the batch and recursive algorithms on a sequehce of 128
natural images taken by sliding a camera from right to left. The images are of -
size 256 x 233. We arbitrarily chose four successive frames (frames 61, 62, 63
and 64) shown in Figure 4.3 for testing, although there is no limit to the number
of frames. No alignment in the vertical direction was made and the maximum
disparity, about 2 pixels, was measured by hand. Same parameters were chosen
for both algorithms. The subpixel width W was set at 0.2 and hence D = 10.
The parameter A was set at 7. The threshold for occluding pixel detection was
set at 250 because the noise variance is unknown. Figure 4.4 (a) shows the batch
result after 49 iterations. The disparity map is represented by an' intensity image.
Figure 4.4 (b) is a smooth version of Figure 4.4 (a) using a 5 x 5 mean filter. The
recursive result is shown in Figure 4.4 (c) and its smooth version is in Figure 4.4

(d). The iterations for the recursive solution are 38.

73



(c) Frame 63.

(b) Frame 62.

(d) Frame 64.

Figure 4.3: The Trees images.




(a) Batch approach. (b) Smoothed version of (a).

(c¢) Recursive approach. (d) Smoothed version of (c).

Figure 4.4: Disparity maps.
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4.9 Discussion

We have presented two neural network based approaches, known as the batch and
recursive approaches, for motion stereo using the first order derivatives of intensity
function as measurement primitives. For the recursive approach, the bias inputs of
the neurons are recursively updated and if the intermediate results are not required
the matching procedure is implemented only once. Unlike the existing recursive
approach, the disparity field obtained by this approach is smooth and dense. Also
no batch results are needed for setting the initial states of the neurons. Both
batch and recursive methods gave very good results in comparison to Barnard’s
approach [45]. Experimental results show that the recursive approach needs fewer
iterations than the batch approach. This is because the recursive approach uses
a better bias input updating scheme especially for the occluding pixels. The -
good estimate of the bias inputs makes the network converge fast, although the
updating step for bias inputs takes more c-omputations. In view of parallelisim and
fast convergence, the recursive approach is useful for real time implementation,
such as in a robot vision system. In our experiment, the threshold used was 250
which seems a little bit conservative. However, the maximum disparity is only
about 2 pixels which means that the width of the occluding region is less than
2 pixels for two frames and there are only a few occluding pixels along the right
boundaries of the trees. Hence the occluding pixels do not cause a serious problem
in this experiment. This is also why the iteration number does not reduce a lot.
We believe that if the maximum disparity is large and a long sequence of images
is used, then the improvement on the occluding pixel detection will greatly reduce

the number of iterations.
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Chapter 5

Computation of Optical Flow

5.1 Introduction

Optical flow is the distribution of apparent velocities of motion brightness patterns -

in an image. Except for some special cases [64], optical flow corresponds to the
motion field. Hence, computing the optical flow from sequential images gives
important information about the spatial arrangement of the objects and the rate
of change of this arrangement in a given scene. Optical flow can thus be used for
segmenting images into regions and estimating the object motion in the scene. In
this chapter we present a method for computing the optical flow based on rotation
invariant measured primitives extracted from two successive image frames. An
implementation using a neural network is also given.

Existing approaches to computation of optical flow can be divided into two
types: image intensity based or token based approaches. The intensity based ap-

proach basically relies on the assumption that the changes in intensity are strictly
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due to the motion of the object and use the image intensity values and their spa-
tial and temporal derivatives to compute the optical flow. Limb and Murphy [72]
utilize the relation between spatial and temporal differential signals to estimate
the displacement of an object in a television scene under the assumption that the
displacement is constant within a block of image pixels. In order to make the
constant displacement assumption more realistic to situations in which there are
multiple moving objects, occluding objects and different parts of the same object
moving with different displacements in scene, Netravali and Robbins [73] proposed
a recursive algorithm for estimating the displacements of multiple moving objects
in a television scene by minimizing a functional of the prediction error. Since
the update at each pixel is based on gradient information at a single point, the
method is more sensitive to noise than Limb’s block approach. Subsequently, they
extended their method by using the gradient information at a number of pixels
in the neighborhood of the point [74]. Fennema and Thompson [75) developed a
nonmatching method for computing the speed and direction of the one or more
moving objects in a scene using a clustering technique based on spatial and tem-
poral derivatives of the intensity. To determine the actual velocity, a modification
of the Hough Transform was used. All these methods are applicable to rigid body
translation only. Expanding the intensity function as a first order Taylor series,
Horn and Schunck [76] derived an optical flow equation using brightness constancy
and spatial smoothness constraints. An iterative method for solving the resulting
equati;Jn was developed. This method usually fails to detect discontinuous loca-
tions of the velocity field due to oversmoothing and large displacements due to
first order approximation. Recently, Gennert and Negahdaripour [77] have pro-

posed to replace the brightness constancy constraint in the optical flow equation
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with a more general constraint, which permits a linear transformation between
the image intensity values.

The token based approach is to consider the motion of tokens such as edges,
corners and linear features in an image. The main reason to consider a token
based approach is that the tokens are less sensitive to some of the difficulties
associated with variations of the image intensity. Thompson and Barnard [78]
developed a probabilistic relaxation labeling scheme for computing displacements
based on corners, spots and similar structures in images. Hildreth [79] proposed a
method based on the zero-crossing contours. Nagel [80] investigated an approach
to track corners and estimate the displacement at the corners by using partial
derivatives of the intensity function. Under the assumption of smooth, rigid body

motion and nonspare distribution of feature points on a surface, Prager and Arbib

[81] developed a MATCH algorithm for computing the optical flow. However, the |

token based approaches give information about object motion and shape only at
edges, corners and linear features. An interpolation procedure has to be included
when dense flow field is required.

Recently, several researchers have used neural network for computing optical
flow based on either intensity values or tokens [82, 13]. In [82], a neural network
proposed by Hopfield and Tank [6] was used to realize the Ullman’s Minimal
Mapping Theory [83] for computing the optical flow based on feature points of a
nonrigid moving object. They also use the same neural network to implement the
structural theory for solving correspondence and structure simultaneously for the
rigid motion problems. Despite some mismatches, fast convergence of the neural
network was always obtained. A similar analog neural network was used in [13]

for computing the optical flow. To prevent the smoothness constraint from taking
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effect across strong velocity gradients, Koch proposed to incorporate a line process
into the optical flow equation [13]. However, no attempt was made to detect large
displacements. The resulting equation involving cubic and possibly higher terms
is nonconvex. Instead of using simulated annealing algorithm which is very time
consuming, a deterministic algorithm based on a mixed analog and digital network
is used to obtain a suboptimal solution. As reported in [84], convergence of such
a network was obtained within a couple of analog-digital cycles. Basically, the
analog-digital network approach is the first to use Horn’s optical flow equation
to find a smoothest solution and then to update the line process by lowering the
energy function of the network repeatedly. Several impressive examples using
synthetic and video images were presented in [84)].

In order to obtain a dense optical flow field, it seems that the intensity based
approach is preferable. However, the intensity value may be corrupted by noise
and also their partial derivatives are rotation variant. It is difficult to detect ro-
tating objects in natural images, based on such measurement primitives. Ur.lder
the assumption that the changes in intensity are strictly due to object motion,
we may use rotation invariant principle curvatures of the intensity function to
compute the optical flow. In this chapter, we use a neural network with max-
imum evolution function to compute optical flow based on the intensity values
and their principle curvatures under local rigid motion assumption and smooth-
ness constraints. For detecting motion discontinuities, a line process is commonly
used [13] for locating motion discontiﬁuities. However, without exactly knowing
the occluding elements, the detected discontinuities may be shifted. In order to
detect discontinuities accurately, we first detect the occluding elements from the

initial motion measurements, then use a line process to locate the discontinuities
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by using the information about the detected occluding elements. The intensity
values and their principle curvatures are estimated with subpixel accuracy by
using a polynomial fitting technique. When a large window is applied, smooth
estimates can be obtained from noisy observations. In order to ensure conver-
gence of the network, deterministic decision rules are used. Since the neurons and
lines are updated in parallel, this algorithm can be implemented in real time. To
improve the accuracy, a batch approach using multiple frames is also presented.

Experimental results using synthetic and natural images are given.

5.2 Estimation of Intensity Values and

Principle Curvatures

In order to reduce the effects of noise and quantization error, a bivariate polyno- .
mial fitting technique is used for the estimation of the intensity values and their
principle curvatures from discrete observations. The estimation problem can then
be formulated to find polynomial coefficients such that the square error
&;=2, > (@i+zj+y)-3(i+z,j+y)) (5.1)
z€N yen
between the estimate §(z,j) and the observation §(z,7) is minimized. In (5.1),

is an index set {—w, —w + 1, ...,w — 1,w}.
5.2.1 Estimation of Polynomial Coefficients

Bivariate discrete Chebyshev polynomials can be constructed by using the tensor
product technique. We assume that in each neighborhood of an image point
(2,7) the underlying intensity function can be approximated by a fourth order

polynomial and represent the intensity function in a window of size 2w + 1 by
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2w +1 is by
§(i+2,j+y)=CH'(z) Q CH(y) (5:2)
where §(z + , 7 + y) is the approximated continuous intensity function, ¢ denotes

the transpose operator,

CH'(z) = [Cho(z) Chi(z) Chy(z) Cha(z) Chy(z))

and
CH'(y) = [Cho(y) Chi(y) Cha(y) Cha(y) Cha(y)]

are polynomial vectors and

Qoo Go1 Go2 Go3 Qo4

a0 G101 G12 13 G14

1O
I

Q20 @23 QG22 Q23 Qa24

G3p0 QG331 a32 G333 Qa3q4

Q40 Q4,1 Q42 Q43 Q44

is the coefficient matrix. By minimizing the square error (5.1) and taking ad-
vantage of the orthogonality of the polynomial set, the coefficients {am .} are

obtained as

u  — Zued Toea Chm(2) Chaly) 9(i + 2,5 +y)
" Luen Luven Chi(u) Chi(v)

(5.3)

where {g(i +z,j +y)} are the observed intensity values. Once the coefficients are
calculated, the subpixel intensity values can be estimated from (5.2). A smooth
intensity function can be obtained if low order polynomials and large windows are

used.
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5.2.2 Computing Principle Curvatures

The principle curvatures at (z, j) are defined as the maximum and minimum val-
ues of the normal curvatures of intensity function at that point [85]. A notable
property of principle curvature is that they are rotation invariant which is useful
for detecting rotating objects. The principle curvatures can be expressed in terms

of Gaussian and mean curvatures of intensity function as follows [85)

ki3, §) = M+ (M? - G)* (5.4)

kaij) = M — (M* - G) (55)
where ky(%,7) and k;(%, j) are the principle curvatures, G and M are the Gaussian

and mean curvatures defined as

i 952 9i07

G=

and
_ 1(329(i,j) & y(w))
o2
respectively, under the assumption that
Foliri) _ 8g(i, i)
8105 ;0

Using the estimated continuous intensity function, the second order partial

derivatives of the intensity function can be calculated with subpixel accuracy as

follows
i Paineisy
BT iprjusey = TEERIHY) = i CH ) 20ty
&g(3, j Pgi+ 2,5+ d
25  irsmny = THLSIEY - 2l (@) @ £(CHO))
3q(i, 5 Py(i+z,j + d’
PO rnjosey =TI y)=QH.‘( )Q77(CH)  (56)
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for —-05<z,y<05

For simplicity of notation, we use g,.(2,¥), 9-4(z,y) and g,,(z,y) to represent the
second order partial derivatives of the subpixel intensity function. After substi-

tution of the second order partial derivatives, M, (5.4) and (5.5) become

k(i+z,j+y) = %{l(yzz(w,y) ~ 92, 9))* + 462, (2, 9)]F}
+922(2,Y) + 94y(2, )} (5.7)
and
k2 + 2,5 +y) = 9z:(7,9) + giu(2,9) — ka(i + 7,5 + ) (5.8)
for —05<z,y<05.

Therefore, the principle curvatures of the subpixel intensity function can be ob-

tained from the subpixel partial derivatives directly.

5.2.3 Analysis of Filters

Rewrite the coefficient matrix as
Q=3 Y Q@) gli+2,i+y) (5.9)
'€l y'eN

where Q(z',y’) is a matrix with the (m,n)th element

Chu(z') Cha(y')
Tuen Lven Ch(u) ChE(v)

By replacing the matrix Q in (5.2) with (5.9) we have

gi+z,i+y)=> Y Flzyz,y)gi+z,j+y) (5.10)
’el y'en

where F(z,y;z’,y') is determined by

F(z,y;2',y") = CH'(z) Q(<',y') CH(y)- (5.11)
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Similarly, (5.6) can be written as

d%g(4,5)
342

d%(3, )
9i0;j

d%g(4, §)
EYE

where

|£=i+z,j=j+y = E E sz(wa y;xl’ y') g(" + m'aj + yl)
el y'enl

limiteimity = 2, 2, Fole,y:i2,y) 9 +2,5+y) (5.12)
z’'efl y'eNt

Il’=i+z,j=j+y = Z Z FW(mv Y, mla y,) g(z + :B,,j + yl)
z'eN y'eNt
‘o iy
sz(z1y; T,y ) = @(ﬂ (:‘B)) Qﬂ(y)
o0 — d t d
Falz,yiay) = 2-(CH(2)) Q @(ﬂ(y)) (5.13)

Foley;2hy) = CH'(a) gd%(gﬂ(y))

are the corresponding filters.

It is assumed that the image is corrupted by additive white noise with zero

mean and variance o

2
n

g(l,]) =g(ivj) +n(z,)) (5'14)

where §(z, ) and g(z,j) are the observed and original intensity functions, respec-

tively. The expected value of the output of the filter F(z,y;z’,y’) can be

Accordingly, the

E{>. > Flz,y;2,y) g +2,j+¢)}

'€ Y'EN

=Y. Y F(zyz,y)gti + 2,5 +¥). (5.15)
e y'en

variance is given by

Var(d_ > F(z,y;2,¥)3(i + 2',j +¥'))
z'eN y’'en

=E{(Y. Y Flz,y;7,y) n(s + 2',j + )}
z'efl y'eN

=02 Y. Y Fz,y;7.y) (5.16)

'€ y'efd
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By using (5.11) and noting the orthogonality of the polynomial set, it is straight-

forward to show that

Z Z FZ(m,y;zI,yl)

el y'ent

= > Y (CH'(z) Q(«,y) CH(y))’

z'ef} y'eN
_ 3 Ch? (z) z“: Chi(y)
meo Luea Ch(v) 25 Tuen Chi(v)

Hence, the variance of the filter output is

Var(}. 3 F(z,y:7,v)3( + 2,5 +¥'))
o'eN y'en

2 v~ _ Chiu(z) <~ _ Ch()

=0 X T CRW) X T CW(Y)

n=0

(5.17)

(5.18)

Similarly, beginning with (5.13), one can show that the variances of the outputs

of the filters Fo(z,y; 2, ¥'), Fzy(z,y;2',y') and Fy(z,y; ', y’) are

Var( E Z F::x(xa ¥ zr’ y')_t'j(z + :t',j + yl))
'€ y'eN

(2 Chm(z))? i Ch(y)

=0’

2 Zuea CRL(v) 25 Tien CRE(v)

Var(Y 3 Fo(z,y:2,9)3G + 2,5 + )

z’'eQ y'eq
4 dCh 4. (LCh,(y))?
=t 3 O 5 e
a1 Luen Ch (u) Lvea ChRE(v)

Var(Y. 3 Fu(z,y:2,y")i(i + 2,5 +¢))

€N y'eN
R oL B )y
" m=0 Euen Ch?n(u) Zveﬂ Chz(v)

n=2

(5.19)

It is clear from the above equations that the variances become smaller and smaller

as the window size increases. For instance, when the window size is 5, the variance
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of the output of the filter F(z,y;z’,y') at (z,y) = (0,0) is 02. When the window
size is 11, the variance is significantly reduced to 0.0440%. As pointed out in
Chapter 3, large window causes some loss of local information due to smoothing
which smears or erases local features. If one desires to retain the local features,
then a small window may be used, but more noise remains and the estimated
intensity function, their derivatives and hence their principle curvatures are less

accurate.

5.3 Computing Optical Flow

5.3.1 Neural Network Formulation

The neural network consists of N; x N X (2D;+1) x (2D; + 1) mutually intercon-
nected neurons, where N, and N, are the image row and column sizes, respecti;rely.
D; W and D; W represent the maximum velocities in the : and j direction, where
W is the width of subsample interval. Let V = {v;;x1,1 <7 < N,,1 £ 5 <
N, —=D; £k < D;, —D;j <1< D;} be a binary state set of the neural network-
with v; ;x; denoting the state of the (2,7, k&, )th neuron. When the NEUron i,k
is 1, this means that the velocities in ¢ and j directions at the point (z,7) are k W
and [ W, respectively. Every point is represented by (2D;+1) x (2D,-+1) mutually
exclusive neurons and only one neuron is on and others are off. Let T tmnp.q
denote the strength (possibly negative) of the interconnection between neuron
(2,7, k,1) and neuron (m,n,p,q). It is assumed that the interconnections are sym-

metric and the neurons have self-feedback. Each neuron (i, j, k,{) synchronously
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receives inputs from all the neurons and a bias input

Ny N. D D;
uivj!k!l = E z 2 Z ﬂ.j,k,l;m,n,p.qvm,n,p,q + I'.'jokol (5'20)

m=1 n=1 p=-D; ¢9=-D;

Each u; ;x, is fed back to corresponding neurons after maximum evolution

Vijikd = 9(Uijk) (5.21)
where g(z; ;1) is a nonlinear maximum evolution function

if Tijks = maz(Tijpe; —Di <p< Di, —Dj < q< Dj).
9(Zi k) =
0 otherwise.

(5.22)

The uniqueness of the problem is ensured by the maximum evolﬁtion function.
Without adding any physical constraints to the solution, optical flow computed
from a pair of image frames usually is noisy and inaccurate. For instance, although
the correlation method may provide a solution based on the local match without '
any smoothness constraint, the resulting optical flow is not accurate and local error
is undetectable. In our algorithm, a smoothness constraint is used for obtaining
a smooth optical flow field and a line process is employed for detecting motion
discontinuities. The line process consists of vertical and horizontal lines, LY and
L%, Each line can be in either one of two states: 1 for acting and 0 for resting.

The error function for computing the optical flow can be properly expressed as
N, N, I

= > > X Z {A[(ku(i,J) = kn(i @ ki@ 1)’

i=1 j=1k=~-D; l_—D,

+(k12(i, ) — k(i @ k.3 ® D)%) + (91(4,5) — 92(i @ k.5 © 1)) Jvi e
Nr Nc l DJ

ZZ Z Z z("w.kl-”(:.a)eskt)

i=1 j=1k==-D; l=—D, €S
N N. D,

+3> X Z {3 [(”t.J.kl vierikt) (1 — Lfj k)

i=1 j=1k=-D; I=-D;
+(ijka — Vijorea)?(1 — L)l + D(L l,],kl + L7000} (5.23)
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where k)1(%,7) and k(i ® k, j @ 1) are the principle curvatures of the first image,
k21(3,7) and ky2(z @ k,7 @ 1) are the principle curvatures of the second image,
{g1(3,7)} and {g2(: ® k,j & 1)} are the intensity values of the first and second
images, respectively, S is an index set excluding (0,0) for all neighborsin a I' x T
window centered at point (2, ), A, B, C and D are constants and the symbol &
is the same as that defined in (3.29). The first term in (5.23) is to seek velocity
values such that all points of two images are matched as closely as possible in a
least squares sense. The second term is the smoothness constraint on the solution
and the third term is a line process to weaken the smoothness constraint and to
detect motion discontinuities. The constant B, C and D determine the relative
importance of the three terms and the constant A in the first term determines
the relative importance of the intensity values and their principle curvatures to
achieve the best results.

By choosing the interconnection strengths and bias inputs as

Tiiktmnpe = —[48B+C(4- L?.j,k.l - L?,je(-l),k,l — L
— Ll (-1),j ki) 6imOindip01q + Cl(1 — LE; 4 1)i mbig1n
+(1 = L} )8i01mb5n + (1 = LYoy k1) 8imbi@(-1)m
+(1 = Lig(-1).jka)bie(-1)m85n)0k,p010

+2B Y &,j)mm)@sOkp010 (5.24)

€S
and
Ii’j’k’l = _A[(kll(i’j) - k2l(i @ k’j @ I))2 + (k].?(i,j) - k22(i $ k)] @ l))2]
—(91(5,7) — g2 D k, 5 @ 1))? (5.25)
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where 6, is the Dirac delta function, and ignoring the term D(L?’j'k', + LY xs)
(which does not contain neurons v; ), the error function (5.23) is transformed

into

r Nc J DJ

1 r c n Do
= _5 z Z Z Z Z Z Z Z :I"!Jvk lmmn,pg v‘ankl Um,n,pq

i=l m=1 j=1 n=1 k=-D; p=~D;i=-D; q=-D;

-Xr: Zc: E' Z It,J,klvs.J.kl (5.26)

i=1 j=1 k=-D; I=—D;

which is same as (2.7), the energy function of the neural network. Therefore,
computation of optical low can be carried out by neuron evaluation. The size of

the smoothing window used in (5.24) is 5.

5.3.2 Updating Schemes

However, the energy function (5.26) does not include the term D(L!;,,+ LY Lk, 1)-
If (5.20) and (5.21) are used to update the neurons, the lines can not be updated
properly. It is necessary to update the neurons and lines separately.

Each neuron synchronously evaluates its state and readjustes according to
(5.20) and (5.21). The synchronous updating scheme can be implemented in
parallel.

The initial state of the neurons is set as

1 if Ljxg=maz(lijpe—Di <p< Di,—D; < q¢< Dj).
Vijkd = (5.27)
0 otherwise
where I; ;x, is the bias input. If there are two maximal bias inputs at point (z,5),
then only the neuron corresponding to the smallest velocity is initially set at 1
and the other one is set at 0. This is consistent with the minimal mapping theory

[83]. In the updating scheme, we also use the minimal mapping theory to handle

the case of two neurons having the same largest inputs.
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Again, self-feedback may increase the energy function E after a transition.
For two neurons v;j; and v, ;¢ changing their states, let the state changes be

denoted as
VL e pyREW old
Av'd'k'l - viyjikvl - vi!jrkrl
pheY old
AV w1 = VS ViR

and accordingly the energy change AE is
AE = E™v _ Eold

N, N. D
= —( Z Z Z Z T;,J,k Limn,pg Ym,n,pa + Ig.).kl )Avm.kl

m=1 n=1 p=-D; q——D,
Nf Nc '

_(Z Z E Z T.J,k l.m,n,p,q Um,n,p,q + I Jk Ny ) Avi,j,k',l'

m=1 n=1 p=-D; ¢q==D

1 1
« o « . . 2 — 2
=5 T ki gk (A”:.J.k.l) 2T;,j,k'.l';i,j,k',l' (Avi,j,k',l')

2
=T i tsig o (D V7550 ¢+ B, ;0 p07570) (5.28)
When
o.‘;fkl =0, v?.filfk',t' =1
and
Uk 1 < Uikl
we have
ikt =1 n;‘;c" p=0
and
AE = (u; ;00 ¢ = Uijkt) — l (Tijktsiiged + Tt priinr 1) (5.29)
k! 5 \Lidktiii, idk i gk

Since the first term in (5.29) is negative and the second term —3 (T ;ukuijks +
Tojw g ) 1s
h h v
BB+C (4= Lijei — Lijonms = Lijns = Lig-n.nd) > 0,
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if the first term is less than the second term, then AE > 0. A deterministic
decision rule is used for updating neuron states.

For updating the lines, the following decision rule is used. Let L;3}} and
L,'S':, denote the new and old states of the line L; ; x,, respectively. By (5.23), the
energy changes due to the state changes of the vertical line L{; ; and horizontal

line L%, ., can be determined

72k

AEY = E™v _ Eold
N N

Y z‘ z[ = (Uit = vign it (L — LETeS

i=1 j=1 k=-D; l=—D,

+D(LYTR = L] (5.30)

i3k,

and

AEh = [mew _ Eold
LR S hold _ 7 h;
S35 210 3 oY LA TR L 17 Iy
i=1 j=1 k=-D; I=-D;

+D(LTEy - L), (5.31)

.7k,

respectively. Then, the vertical line LY, ,; and the horizontal line L%;,, take a
new state if the energy changes AE® and AE® are less than zero, respectively.

The algorithm for computing the optical flow can then be summarized as
1. Set the initial state of the neurons.

2. Update the state of the all lines synchronously.

3. Update the state of all neurons synchronously.

4. Check the energy function. If energy does not change anymore, stop; oth-

erwise, go back to step 2.
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5.4 Detection of Motion Discontinuities

Motion discontinuities in optical flow often result from occluding contours of mov-
ing objects. In this case, the moving objects are projected into image plane as
adjacent surfaces and their boundaries are undergoing either split or fusion or
parallel motion. These motion situations give rise to discontinuities along their
boundaries. We must detect these discontinuities to prevent the algorithm from
using the physical constraint of surface smoothness in computating the optical
flow from one surface to the other. Basically there are two approaches for de-
tecting motion discontinuities. The first approach locates significant changes of
optical flow from the computed optical flow field [86, 87, 88, 79]. In [88], a zero-
crossing edge detector is used to find the discontinuities in a dense optical flow
generated from a sparse one by interpolation. This scheme allows surfaces to .
translate and rotate as well. Instead of directly detecting discontinuities, region
growing techniques are employed in 86, 87] to group elements of similar velocities
and the discontinuities are then implicitly given by the boundaries between the re-
gions. Hildreth [79] utilizes the properties of the initial perpendicular components
of velocity to locate the discontinuities along zero-crossing contours derived from
the image. These schemes are limited to pure translation motion. The second
approach is to infer discontinuities from the initial motion measurements without
fully computing the optical flow field [64, 13]. In fact this approach interleaves
detection of discontinuities and computation of optical flow. By incorporating a
line process into the optical flow equation, Koch [13] gives an explicit formulation
in for detecting the discontinuities. Although these methods can infer discontinu-

ities, location of discontinuities due to fusion motion may be shifted. In order to
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locate the discontinuities more accurately, we design a method for detecting the
occluding elements based on the initial motion measurements. Once the informa-
tion about the occluding elements is available, the neural network will correctly

locate motion discontinuities.

‘DCBA—VJ—D

e [l [v ]2

(a) Two moving objects.

Gl B | Aql X4| Y| Z1

(b) First Frame.

D2| Co| Bo| A2 Z2

(¢) Second frame.

ol B T I T B RS R RS T I K2
Ao Z,

(d) Fusion compitition.

Figure 5.1: Fusion motion.

To formalize the analysis, we have to distinguish split motion, fusion motion

and non-split-fusion motion. As explained in [83], the split motion occurs when
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(b)  First frame.
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(c) Second frame.
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(d) Split compitition.

Figure 5.2: Split motion.
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a single element is replaced by multiple elements, i.e. in two successive frames
the single element is shown first followed by multiple elements, while the fusion
motion results when multiple elements are presented first followed by a single
element. The non-split-fusion motion does not give new elements or eliminate
old elements, i.e. the number of the elements between the two frames does not
change. Two simple examples are given in Figures 5.1 and 5.2 to illustrate split
motion and fusion motion, respectively. Each example is composed of two frames
and each frame contains two moving surfaces, one is in front and the another in
back. For the first frame, the elements of the surface in the front are denoted by
Ay, B, etc and the elements of the surface in back by Wy, X,, etc. For the second
frame, A,, B,, etc and W,, X,, etc denote the elements of the surface in front
and the surface in back, respectively. The elements can be either image pixels or
lines. In Figure 5.1 two surfaces are moving towards each other. The elements
X and Y of the surface in back are visible in the first frame, while in the second
frame they are occluded by the front surface. Hence, the elements A;, X, and Y}
(or Xi, Y; and Z,) are replaced by the element A, (or Z,), and a fusion motion is
observed. In Figure 5.2 two surfaces are moving away from each other which gives
a split motion. The element A; (or Z,) are presented by A,, X; and Y; (or X3, Y2
and Z;). One typical example showing fusion, split and non-split-fusion motion
is given in Figure 5.3. Edge a of a small square surface is undergoing a fusion
motion, edge b is a split motion and edges ¢ and d are undergoing non-split-
fusion motion. For computation of optical flow, the fusion motion usually causes
problem but the split motion does not. As shown in Figure 5.1(d), in the fusion
motion case only one of three elements can find correspondence. The optical flow

at the two unmatched points is undetermined. Unlike the fusion motion, the split
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motion has only one element to be matched with one of three elements as shown
in Figure 5.2(d). Hence the optical flow at that point can be determined according
to the measurement primitive. In the non-split-fusion motion case, the number of
elements does not change and the optical flow is determinable at these points. If
the optical flow is perfectly determined, then the line process can successfully and
correctly locate motion discontinuities. Thus we will concentrate on the fusion

motion case for detecting the occluding elements.

=3

Figure 5.3: A typical example.

Suppose that the surfaces are translating with constant velocities. Let us
consider the case in which a surface is moving against a stationary background
as shown in Figure 5.4. Let X; denote the occluding element, A; and X, the
corresponding elements of A; and Xj, respectively. Let (7, 7) be the coordinates of
element A,, d; and d; the ¢ and j components of optical flow at (¢, j), respectively.
We assume that X, and Y, are located at (i +d;,j+d;) and (i +2xd;,j+2xd;),

respectively. By defining the match errors ey(z, ), e(2,7), e3(2,7) and e4(z,7) as

ei(i,5) = I a4,
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(a) One moving object.

First frame AIO\

Second frame A 2\‘6 ] Y2\40 f? :

(b) Detection scheme.

Figure 5.4: Detection of the occluding element.
€2(2,7) = Lisdi,j+d;00
e3(i,7) = Livd; j+d, disd;
eq(,7) = Ii+2xd.~,j+2xd,-,0.0
where I are bias inputs given in (5.25), the following relations hold under

orthographic or perspective projection without motion along the optical axis,

el(ivj) S e2(ivj)

eq(i,j) < es(i,g). (5.32)
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Note that if the above relations do not hold then the element X, is not an occluding
element. Hence, it is natural to use the relations (5.32) for detecting the occluding
elements.

Detection rule: An occluding element is detected at (¢ + d;, j + d;) if the optical

flow has nonzero values at (%,) and

. &) —&(,5)>T

84(i.§) — &(5,5) > T (5.33)

where the theshold T is a nonnegative number and &(z,7) are the avarage values
of the matching errors within a I'r x I'r window Sr
x 1 ~ e
ek(z,J) = 'i:‘? Z ek((z,]) + 8)
T sesy

for k=1,23, and 4.

For digitized natural images, T' usually takes nonzero value to reduce the effects
of quantization error and noise. Using a large value for T can eliminate false
occluding elements but may miss the true ones. Since optical flow at an occluding
point has zero values, the a prior: knowledge about the occluding elements can

be embedded in the bias inputs by setting, (for instance at point (i + d;, 7 + d;))
Livd; j+d; 00 = min(Liya; jrdj ki —Di k< Dy, —D; <1< Dy). (5.34)

Accordingly, the neural network will prefer zero optical flow at these points and
therefore the line process can locate motion discontinuities precisely.

In the case of two moving objects, without any information about the moving
objects such as local features it is difficult to detect the occluding elements if

only two image frames are used. As discussed in the next section, by using more
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than two frames the occluding elements can be detected based only on the initial

motion measurements.

5.5 A Batch Solution

A natural extension is to compute optical flow over a long time interval, i.e. using
multiple frames. We design a neural network based batch approach when the
motion is pure translation. Suppose that we have M frames and the objects are
translating with constant velocities. The batch solution is given by setting the
bias input as

M-1
Ii,j.k,l = - Z {A[(k"l(z @ (1‘ - l)k’j & (1‘ - 1)1) - k(r+1)l(i D Tk,j @ 1‘1))2
r=1

+(kea(i @ (r = 1)k, 5 & (r = 1)) = kgraape(i @ vk, 5 & rD))’]

+g:(( @ (r = 1)k, j & (r = 1)) = grra(i @7k, j @ 1))’} (5.35)

With minor modifications, the detection criterion used for the two frames can

be extended to multiple frames. Define the matching errors as
el.r(i,j) = A[(ku(i,j) - k(r+1)1(i D roi,J D 7'0,1'))2

+(k12(5,7) = k(ra1)2( ® 70i, J D 705))?]

+(91(2,5) = gr41(i ® r0i J D 7o5))” (5.36)

e2-(i,7) = Al(k11(i @ r0irJ D ro;) = k1)1 (¢ © roir§ D 105))?
+(ki2(i ® roi, § B Toj) — Kir41)2(¢ @ T0i, J D 1o;))’]

+(q1(i ® roir ] D Toj) = Graa (2 D T0i, § B 7o;))? (5.37)
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ea'r(i,j) = A[(ku(l & roi,j @ Toj) - k(r-&-l)l(i @ T]i,j D rl.‘i))2
+(k12(2 @ T0ir J D T05) — k(r41)2(1 B iy J D r15))%]

+(91(2 @ T0i, J B Toj) — Gr41(t D 110y J B 115))° (5.38)

eor(if) = Al(ku( @ r1iyJ ®r1;) = kpran(E @ 1155 B 1j))°

+(k1a(3 ® 713y § D 115) — Kpr41)2(i © 114§ O 115))?]

+(01(E ® 1§ B 115) = Grp1 (i O iy § B 715))° (5.39)
where
roi = rd;,
ro; = rd;,
ri = (r+1)d;
and

Ty = (r + l)dj.

The detection rule in the case of one moving object is similar to (5.33) i.e.
Detection rule: An occluding element is detected at (z + (r+1)d;,j + (v + 1)d;)

if the optical flow at (2, 7) is zero and

&x(2.7) — B1(2,5) > T,

84x(3.7) —834(2,5) > T (5.40)

for 0<k<r<M-1

where & (¢.7) are avarage values of the matching error.
In the case of two moving objects as shown in Figure 5.5 (a), occluding elements

can be detected by using multiple frames. In the second frame, region 1 is occluded
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object 2

region 2
region 1

object 1

first frame. second frame. third frame.

(a) Two moving objects.

Ay U vaiwy, X1 Y1 71
First frame Qo o Q O O O

Second frame QO o p 0O O

Ay Y3/ z3
Third frame O o O O

object 1 object 2

(b) Detection scheme.

Figure 5.5: Detection of occluding elements using multiple frames.
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and in the third frame both regions 1 and 2 are occluded. Hence, all the elements
of regions 1 and 2 are occluding elements. The detection scheme is as follows. As
shown in Figure 5.5 (b) (for simplicity, we only illustrate the detection scheme for
1-D case), U; and V) belong to region 1 and W; and X, to region 2. Using the first
two frames, optical flow at A; and W; can be determined if the matching errors
between A; and A; and W, and W, are smaller than some threshold. Similarly
the optical flow at A, and Y; can be computed by using the frames 2 and 3. If
optical flow at points W), Y;, W, and Y; are same but different from that of point
A;, then W, and X, are occluding elements and therefore U; and V; are occluding

elements too.

5.6 Experimeﬂtal Results

A number of synthetic and natural image sequences were tested. For each point,
we use two memories in the range —D; to D; and —D; to D; to represent velocities
in z and j directions, respectively, instead of using (2D;+1) and (2D;+1) neurons.
Due to local connections of the neurons, the neuron input U; ;x; is computed only

within a small window.

5.6.1 Synthetic Image Sequence

Two experiments based on synthetic image sequences, made of purely translat-
ing random dot images and rotating disk images, are presented here. The purely
translating random dot images were created by the pseudo random number gener-

ating method described in [66] used for generating random dot stereograms. Each
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dot consists of only one element. Figure 5.6 shows 10% intensity translating ran-
dom dot images (only 10% of the pixels are white and 90% are black). Intensity
values of the white and black elements were set at 255 and 0, respectively. The
images are of size 128 x 128 and contains two square patches which are moving
against a stationary background. A center 20 x 20 patch is moving in the south-
east direction with velocity (v; = 3,v; = 3), meanwhile a center 40 x 40 patch
partially overlapped by the small patch is moving in the south-southeast direction
with velocity (v; = 2,v; = 1). Figure 5.6(c) is the resulting optical flow after 10
iterations. For display purposes, only a 70 x 70 center part of the optical flow
field is shown in the figure. The velocity values are normalized by the maximum
velocity value. We used A =15, B = 10,000, C =800, D =1, D; = D; = 6 and
W = 0.5 (the width of subpixel). Note that the flow field is dense.

Another test was run on the rotating disk sequence with intensity values in
range (0-255). Figures 5.7 (a) and (b) show the first and second frames of in-
tensity images, respectively. Since the rotating disk is not globally rigid and the
principle curvatures are estimated over a small window, we assume that the disk
is rigid locally. The optical flow field shown in Figure 5.7(c) was obtained after 14
iterations. The parameters used were A=30,B=5,C=0,D=0,D;,=D;=3

and W = 0.1.

5.6.2 Natural Image Sequence

A sequence of pick-up truck images taken from a static camera was used to test
both the nonbatch approach (using two image frames) and the batch approach
(using multiple image frames). Figure 5.8 shows one frame of the image sequence,

a pick-up truck moving from right to left against a stationary background. Since
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(b) The second image.

(a) The first image.

(c) Optical flow.

images.

10% density translating random dot i

Figure 5.6
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the shutter speed was low, the truck was heavely blurred by the motion. The
motion blur smeared the edges and erased local features, especially the features
on the wheel. Hence, it is difficult to detect the rotation of the wheels. The
images are of size 480 x 480. Figure 5.9 shows four successive frames of the pick-
up truck image. Since the rear part of the truck is missing in the first frame, we
reversed the order of image sequence so that there is a complete truck image in
the first frame. Accordingly, the direction of the computed optical flow should
be reversed. For the two frame approach, we used the fourth frame as the first
frame and the third frame as the second frame. For simplicity of computation, the
image size was reduced to 120 x 120 by subsampling. By setting A = 2, B = 250,
C=350,D=20,D; =17 D; =1 and W = 1, the optical flow was obtained after
36 iterations. A 48 x 113 sample of the computed optical flow corresponding to
the part framed by black lines in Figure 5.8 is given in Figure 5.10. Note that ’
although most of the boundary locations are correct, the boundaries due to the
fusion motion such as the rear part of the truck and the driver’s cab are shifted
by the line process.

Figure 5.11 displays the occluding pixels detected at T = 100 based on the
initially computed optical flow of Figure 5.10. By embedding the information
about the occluding pixels into the bias inputs, using the initially computed optical -
flow as the initial conditions and choosing A = 2, B = 150, C = 80, D = 20,
D; =17, D; =1 and W = 1, the final result shown in Figure 5.12 was obtained
after 13 iterations. The aécuracy of boundary location is significantly improved.

For the batch approach, we used four image frames shown in Figure 5.9. The-
oretically there is no limit to the number of frames that can be used in the batch

approach. For the same reason mentioned before, the fourth frame was taken as
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the first frame, the third frame as the second frame, etc. Figure 5.13 displays
the occluding pixels detected at T = 100 from four frames. Figure 5.14 shows
the optical flow computed from four frames using the occluding pixel information.
The parameters used were A = 4, B =1000, C =50, D =20, D; =7, D; =1
and W = 1, and 15 iterations were required. As expected, the output is much
cleaner and the boundaries are more accurate than that of the two frame based

approach.

5.7 Discussion

We have presented two neural network based approaches for computing optical
flow. For the two frame based approach, we made no assumptions or requirements
on the solutions except smoothness. For the batch approach, we assumed that the -
object is undergoing a pure translation. Experimental results show that principle
curvatures are useful for matching and our approaches based on such measurement
primitives work very well especially for some low quality natural images such as the
truck images. The algorithm for detecting motion discontinuities also works very
well. However, this detection algorithm is limited to pure translation motion,
a common problem for most detection algorithms. More research is needed to

handle more complicated cases such as translation and rotation.

108



Figure 5.8: Pick-up truck image.
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Figure 5.11: Occluding pixels detected from two frames



Figure 5.12: Optical flow computed from two frames using the information about

the occluding pixels.
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Optical flow computed from four frames using the information about

the occluding pixels.

Figure 5.14
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Chapter 6

Image Restoration

6.1 Introduction

Restoration of a high quality image from a degraded recording is an important -

problem in early vision processing. Restoration techniques are applied to remove
(1) system degradations such as blur due to optical system aberrations, atmo-
spheric turbulence, motion and diffraction; and (2) statistical degradations due
to noise. Over the last 20 years, various methods such as the inverse filter [89],
Wiener filter [89], Kalman filter [90], SVD pseudoinverse[89, 91] and many other
model based approaches, ha,ve. been proposed for image restoration. One of the
major drawbacks of most of the image restoration algorithms is the computa-
tional complexity, so much so that many simplifying assumptions such as wide
sense stationarity (WSS), availability of second order image statistics have been
made to obtain computationally feasible algorithms. The inverse filter method
works only for extremely high signal to noise ratio images. The Wiener filter is

usually implemented only after wide sense stationary assumption has been made
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for images. Furthermore, knowledge of power spectrum or correlation matrix of
the undegraded image is required. Oftentimes, additional assumptions regarding
boundary conditions are made so that fast orthogonal transforms can be used.
The Kalman filter approach can be applied to nonstationary image but is compu-
tationally very intensive. Similar statements can be made for SVD pseudoinverse
filter method. Approaches based on noncausal models such as the noncausal
autoregressive or Gauss Markov random field models [92, 93] also make assump-
tions such as WSS and periodic boundary conditions. It is desirable to develop
a restoration algorithm that does not make WSS assumptions and can be imple-
mented in a reasonable time. An artificial neural network system that can perform
extremely rapid computations seems to be very attractive for image restoration
in particular and image processing and pattern recognition [94] in general.

In this chapter, we use a neural network model containing redundant neurons
to restore gray level images degraded by a known shift invariant blur function and
noise. It is based on the model described in (6, 38, 29] using a simple sum number
representation [95]. The image gray levels are represented by the simple sum of
neuron state variables which take binary values of 1 or 0. The observed image
is degraded by a shift-invariant function and noise. The restoration procedure
consists of two stages: estimation of parameters of the neural network model and
reconstruction of images. During the first stage, the parameters are estimated by
comparing the energy function of the neural network with the constrained error
function. The nonlinear restoration algorithm is then implemented using a dy-
namic iterative algorithm to minimize the energy function of the neural network.
Owing to the model’s fault-tolerant nature and computation capability, a high

quality image is obtained using this approach. In order to reduce computational

117



complexity, a practical algorithm, which produces results equiva.lént to the orig-
inal one suggested above, is developed under the assumption that the neurons
are sequentially visited. We illustrate the usefulness of this approach by using
both synthetic and real images degraded by a known shift-invariant blur function
with or without noise. We also discuss the problem of choosing boundary values
and suggest two methods to reduce the ringing effect. Comparisons with other
restoration methods such as the SVD pseudoinverse filter, the minimum mean
square error (MMSE) filter and the modified MMSE filter using Gaussian Markov
random field model are given using real images. The advantages of the method
developed in this paper are (1) WSS assumption is not required for the images, (2)
can be implemented rapidly and (3) is fault tolerant. We also present a schematic

diagram for optical implemetation of this approach.

6.2 Image Representation Using a Neural
Network

We use a neural network containing redundant neurons for representing the image
gray levels. The model consists of L2 x M mutually interconnected neurons, where
L is the size of image and M is the maximum value of the gray level function. Let
V = {vis, where 1 <:< L%1 S‘ k < M} be a binary state set of the neural
network with v;, (1 for firing and 0 for resting) denoting the state of the (7, k)th
neuron. Let T;.;; denote the strength (possibly negative) of the interconnection

between neuron (i, k) and neuron (7,1). We require symmetry

Tigju=Tiain for 1<4,j<L*and 1<Lk<M
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We also allow for neurons to have self-feedback, i.e. Tix;x # 0. In this model,
each neuron (, k) randomly and asynchronously receives inputs Y T; 4. ;4 from
all neurons and a bias input J;x

2 M

Ui = z z,: T kijavig + Lik (6.1)

7

Each u; is fed back to corresponding neurons after thresholding
Vik = g(u,-',,) (6.2)
where g(z) is a nonlinear function whose form can be taken as

1 if 220
9(z) = (6.3)
0 if 2<0.

In this model, the state of each neuron is updated by using the latest information
about other neurons.

The image is described by a finite set of gray level functions {z(¢,7); 1 £¢,7 <
L} with z(3, j) (positive integer number) denoting the gray level of the pixel (z, 7).
The image gray level function can be represented by a simple sum of the neuron
state variables as

z(i,7) = f Um k (6.4)
k=1

where m = (i —1) x L+j. Here the gray level functions have degenerate represen-
tations. Use of this redundant number representation scheme yields advantages’
such as fault-tolerance and faster convergence to the solution [95].

By using the lexicographic notation, the image degradation model can be

written as

Y=HX+N (6.5)



where H is the “blurring matrix” corresponding to a blur function, /N is the
signal independent white noise, X and Y are the original and degraded images,

respectively. Furthermore, H and N can be represented as

hig hi2a - - - hyp
hay  haa - - - hop
H= o (6.6)
| Aoy hpez - - - hpage
and
N, m n(i,1) N(ic1)xL+1
N, ng n(z,2) N(i-1)xL+2
N= =l |, m=| = ' (6.7)
| Ny | | nee | | n(iL) | | mixe

respectively. Vectors X and Y have similar representations. Equation (6.5) is
similar to the simultaneous equations solution of [95], but differs in that it includes
a noise term.

The shift-invariant blur function can be written as a convolution over a small

window; for instance, it takes the form

if k=0,1=0
of 1kl 1 <1, (k1) #(0,0)

h(k, 1) = (6.8)

sl o
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accordingly, the “blur matrix” H will be a block Toeplitz or block circulant matrix

(if the image has periodic boundaries). The block circulant matrix corresponding

to (6.8) can be written as

Hy

where

s o

al~

al-

al-

e
16

and 0 is null matrix whose elements are all zeros.

o

al-

(X[

al-

ak-

0

(=]

0

o Io

[=]

(6.9)

(6.10)

(6.11)
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6.3 Estimation of Model Parameters

The neural model parameters, the interconnection strengths and bias inputs, can
be determined in terms of the energy function of the neural network. As defined

in [6], the energy function of the neural network can be written as

1 & M L2 M
E=-53 2.2 2 Tumiaviavig =2 2. Linvin (6.12)
i=1

2 M
=1 k=1 I=1 i=1 k=1

2
In order to use the spontaneous energy-minimization process of the neural net-
work, we reformulate the restoration problem as one of minimizing an error func-

tion with constraints defined as

1 N 1 .
E=3|Y - HX| + ZM| DX (6.13)

where ||Z|| is the L; norm of Z and X is a constant. Such constrained error .

function is widely used in the image restoration problems [89] and is also similar
to the regularization techniques used in early vision problems [96]. The first term
in (6.13) is to seek an X such that H X approximates Y in a least squares sense.
Meanwhile, the second term is a smoothness constraint on the solution X. The
constant A determines their relative importance to achieve suppression of noise
and ringing.

In general, if H is a low pass distortion, then D is a high pass filter. A common
choice of D is a second order differential operator which can be approximated as a
local window operator in the 2-D discrete case. For instance, if D is a Laplacian
operator

V=—+_— (6.14)

})
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it can be approximated as a window operator

1 4 1

1

5|4 20 4| (6.15)
1 4 1

Then D will be a block Toeplitz matrix similar to (6.9).

Expanding (6.13) and then replacing z; by (6.4), we have

1 L2 L I
E = 5 Z ( Z hp.tx:) +3 AZ Z d ,:3:
p=1 i=1 p=1 i=1
1 L 2 M M L2 M
= Ezzzzzhﬁﬂhpav’k%.l"' Zyp Zz Zyphp.lvtk
=1 j=1 k=1 I=1 p=1 =1 t=1 k=1 p=1

1 L2 L2 M M
+2 ’\Z E Z E Z dp,i dp,; Vik Vi (6.16)
=1 j=1 k=1 (=1 p=1
By comparing the terms in (6.16) with the corresponding terms in (6.12) and
ignoring the constant term 3 Zp-l y2, we can determine the interconnection

strengths and bias inputs as

L? L?
T;'.k;j,l == Z hP»i hm’ - A Z dw’ dp.j (6.17)
p=1 p=1 .
and
12 .
Ly = E Yp hp,i- (6.18)

p=1 ,
where h;; and d;; are the elements of the matrices H and D, respectively. Two

interesting aspects of (6.17) and (6.18) should be pointed out: (1) the intercon-
nection strengths are independent of subscripts £ and ! and the bias inputs are
independent of subscript &, and (2) the self-connection T;;; x is not equal to zero
which requires self-feedback for neurons.

From (6.17), one can see that the interconnection strengths are determined

by the shift-invariant blur function, differential operator and constant A. Hence,
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T; x;ju can be computed without error provided the blur function is known. How-
ever, the bias inputs are functions of the observed degraded image. If the image
is degraded by a shift-invariant blur function only, then ; x can be e'stima,ted per-
fectly. Otherwise, I; is affected by noise. The reasoning behind this statement

is as follows. By replacing y, by ):f‘;l hpi i + np, we have

? L2
Lir = Z (Z: hpi Ti + np) hy,i
p=1 i=1
L2 L L?
= E Z hPﬂ' z; hy + Z np by (6.19)
p=1 i=1 p=1

The second term in (6.19) represents the effects of noise. If the signal to noise

ratio (SNR), defined by

2
SNR =10 log, % (6.20)

n

where o2 and o2 are variances of signal and noise, respectively, is low, then we have

to choose a large A to suppress effects due to noise. It seems that in the absence
of noise, the parameters can be estimated perfectly, ensurir}g exact recovery of
the image as error function E tends to zero. However, the problem is not so
simple, as the restoration performance depends on both the parameters and the
blur function when a mean square error or least square error such as (6.13) is

used. A discussion about the effect of blur function is given in section 10.

6.4 Restoration

Restoration is carried out by neuron evaluation and an image construction pro-
cedure. Once the parameters T; ;s and I;; are obtained using (6.17) and (6.18),

each neuron can randomly and asynchronously evaluate its state and readjust
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accordingly using (6.1) and (6.2). When one quasi-minimum energy point is
reached, the image can be constructed using (6.4).

Although a step function is used as activation function, tile self-feedback may
still cause the energy function F to increase with a transition. This is explained

below. Define the state change Av;: of neuron (2, k) and energy change AFE as
Aviy = v{" - v and AE=E"™v - EW

Consider the energy function

Lz L?
E=—'ZZZZT:I¢.JJUH=UJ,I-Zzlskvtka (621)
1—1 J=1 k=1 I=1 =1 k=1

Since only one neuron is updated at each step, the energy change AE due to a

change Av; ;. is given by

M
1
AE =—(D_ Y Tikjavia+Lix ) Avig — 3 T ki (Dvig)? (6.22) -

1=1 I=1
which is not always negative. For instance, if

2 M
”?,‘lg =0, ux=y, Z Tirija via+ Lig >0,

j=1 I=1

and the threshold function is as in (6.3), then v7{* =1 and Aw;; > 0. Thus, the
first term in (6.22) is negative. But

L2 L2
Tigix=—) k2, =23 d5; <.

p=1 =1

with A > 0 leading to

1
-3 T piik (A 1)% > 0.

When the first term is less than the second term in (6.22), then AE > 0.
Thus, depending on whether convergence to a local minimum or a global min-
imum is desired, we can use a deterministic or stochastic decision rule. The

restoration algorithm is summarized below.
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Algorithm 1:

1. Set the initial state of the neurons.

2. Update the state of all neurons randomly and asynchronously according to

the decision rule.

3. Check the energy function; if energy does not change, go to step 4; otherwise,

go back to step 2.

4. Construct an image using (6.4).

6.5 A Practical Algorithm

The algorithm described above is difficult to simulate on a conventional computer

owing to high computational complexity even for images of reasonable size. For
instance, if we have an L x L image with M gray levels, then L2M neurons and
3L%M? interconnections are required and L*M? additions and multiplications are
needed at each iteration. Therefore, the space and time complexities are O(L*M?)
and O(L*M?K), respectively, where K, typically 10 — 100, is the number of
iterations. Usually, L and M are 256 — 1024 and 256, respectively. However,
simplification is possible if the neurons are sequentially updated .

In order to simplify the algorithm, we begin by reconsidering (6.1) and (6.2) of
the neural network. As noted earlier the interconnection strengths given in (6.17)
are independent of subscripts k& and [ and the bias inputs given in (6.18) are
independent of subscript k, the M neurons used to represent the same image gray
level function have the same interconnection strengths and bias inputs. Hence,

one set of interconnection strengths and one bias input are sufficient for every
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gray level function, i.e. the dimensions of the interconnection matrix T' and bias
input matrix I can be reduced by a factor of M2. From (6.1) all inputs received

" by a neuron, say, the (4, k)th neuron can be written as

L? M
Ui = E Tiii. O via) + L,
;2 1
= Y Ty o+ 1. - (6.23)
j
where we have used (6.4) and z; is the gray level function of the jth image pixel.
The symbol “-” in the subscripts means that the T; ;. and I; are independent of
k. Equation (6.23) suggests that we can use a multivalue number to replace the
simple sum number. Since the interconnection strengths are determined by the
blur function, the differential operator and the constant A as shown in (6.17), it is
easy to see that if the blur function is local, then most interconnection strengths
are zeros and the neurons are locally connected. Therefore, most elements of the
interconnection matrix T are zeros. If the blur function is shift invariant taking
the form in (6.8), then the interconnection matrix is block Toeplitz so that only
a few elements need to be stored. Based on the value of inputs u;x, the state of
the (¢, k)th neuron is updated by applying a decision rule. The state change of
the (z, k)th neuron in turn causes the gray level function z; to change as
zold if Avip=0
PV =0 241 if Avy=1 (6.24)
% -1 if Avip= -1
where Av;, = vP§¥ — v?i¢ is the state change of the (i, k)th neuron. The super-
scripts “new” and “old” are for after and before updating, respectively. We use
z; to represent the gray level value as well as the output of M neurons represent-

ing z;. Assuming that the neurons of the network are sequentially visited, it is
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straightforward to show that the updating procedure can be reformulated as

L2
wig = Tz + L, (6.25)
J
A’U,"k =0 zf Uik = 0
Avip =g(uin) = Avip =1 if up >0 (6.26)

A‘U,',k =-1 f Ui <0

29 4+ Ay if AE<O
pr=g » (6.27)

z2ld if AE>0

Note that the stochastic decision rule can also be used in (6.27). In order to limit

T

the gray level function to the range 0-255 after each updating step, we have to
check the value of the gray level function z7°*. Equations (6.25), (6.26) and (6.27)
give a much simpler algorithm. This algorithm is summarized below.

Algorithm 2:

1. Take the degraded image as the initial value.

2. Sequentially visit all numbers (image pixels). For each number, use (6.25),
(6.26) and (6.27) to update it repeatedly until no further change, i.e. if

Av{,k = 0 or energy change AE > 0, then move to next one.
3. Check the energy function; if the energy does not change anymore, a restored
image is obtained; otherwise, go back to step 2 for another iteration.

The calculations of the inputs u; 4 of the (¢, k)th neuron and the energy change
AE can be simplified furthermore. When we update the same image gray level
function repeatedly, the input received by the current neuron (i, k) can be com-

puted by making use of the previous result
Uik = Uik—1 + Ak Ti . (6.28)

128



where u;_; is the input received by the (i, k — 1)th neuron. The energy change
AFE due to the state change of the (¢, k)th neuron can be calculated as

AE = —u,-.k Av,-,k -_ %

T (Avig)? (6.29)

If the blur function is shift invariant, all these simplifications reduce the space
and time complexities significantly from O(L*M?) and O(L*M*K) to O(L?) and
O(ML?K), respectively. Since every gray level function needs only a few updating
steps after the first iteration, the computation at each iteration is O(L?). The

resulting algorithm can be easily simulated on mini-computers for images as large

as 512 x 512.

6.6 Computer Simulations

The practical algorithm described in the previous section was applied to synthetic
and real images on a Sun-3/160 Workstation. In all cases only the deterministic
decision rule was used. The results are summarized in Figures 6.1 and 6.2.

Figure 6.1 shows the results for a synthetic image. The original image shown
in Figure 6.1(a) is of size 32 x 32 with 3 gray levels. The image was degraded
by convolving with a 3 x 3 blur function as in (6.8) using circulant boundary
conditions; 22 dB white Gaussian noise was added after convolution. A perfect
image was obtained after 6 iterations without preprocessing. We set the initial
state of all neurons to equal 1, i.e. firing and chose A = 0 due to the well
conditioning of the blur function.

Figure 6.2(a) shows the original girl image. The original image is of size
256 x 256 with 256 gray levels. The variance of the original image is 2797.141. It

was degraded by a 5 x 5 uniform blur function. A small amount of quantization
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(f) The 4th iteration. (g) The 5th iteration. (k) The 6th iteration.

Figure 6.1: Restoration of noisy blurred synthetic image.
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noise was introduced by quantizing the convolution results to 8 bits. The noisy
blurred image is shown in Figure 6.2(b). For comparison purpose, Figure 6.2(c)
shows the output of an inverse filter [97], completely overridden by the amplified
noise and the ringing effects due to the ill conditioned blur matrix H. Since the
blur matrix H corresponding to the 5 x 5 uniform blur function is not singular,
the pseudoinverse filter [97] and the inverse filter have the same output. The
restored image obtained by using our approach is shown in Figure 6.2(d). In
order to avoid the ringing effects due to the boundary conditions, we took 4 pixel
wide boundaries, i.e. the first and last four rows and columns, from the original
image and updated the interior region (248 x 248) of the image only. The noisy
blurred image was used as an initial condition for accelerating the convergence.
The constant A was set at 0 because of small noise and good boundary values. The
restored image in Figure 6.2(d) was obtained after 213 iterations. The square error
(i.e. energy function) defined in (6.13) is 0.02543 and the square error between

the original and the restored image is 66.5027.

6.7 Choosing Boundary Values

As mentioned in [98], choosing boundary values is a common problem for tech-
niques ranging from deterministic inverse filter algorithms to stochastic Kalman
filters. In these algorithms boundary values determine the entire solution when
the blur is uniform [99]. The same problem occurs in the neural network approach.
Since the 5 X 5 uniform blur function is ill conditioned, improper boundary values
may cause ringing which may affect the restored image completely. For example,

appending zeros to the image as boundary values introduces a sharp edge at the

131



(b) Image degraded by 5 x 5
uniform blur and quantization
noise.

(c) The restored image using (d) The restored image using our
inverse filter. approach.

Figure 6.2: Restoration of noisy blurred real image.



image border and triggers ringing in the restored image even if the image has zero
mean. Another procedure is to assume a periodic boundary. When the left (top)
and right (bottom) borders of the image are different, a sharp edge is formed
and ringing results even though the degraded image has been formed by blurring
with periodic boundary conditions. The drawbacks of these two assumptions for
boundary values were reported in (98, 90, 100] for the 2-D Kalman filtering tech-
nique. We also tested our algorithm using these two assumptions for boundary
values; the results indicate the restored images were seriously affected by ringing.

In the last section, to avoid the ringing effect we took 4 pixel wide borders from
the original image as boundary values for restoration. Since the original image
is not available in practice, an alternative to eliminate the ringing effect caused
by sharp false edges is to use the blurred noisy boundaries from the degraded B
image. Figure 6.3(a) shows the restored image using the first and last four 1:ows
and columns of the blurred noisy image in Figure 6.2(b), as boundary values. In
the restored image there still exists some ringing due to the naturally occurring
sharp edges in the region near the borders in the original image, but not due to
boundary values. A typical cut of the restored image to illustrate ringing near the
borders is shown in Figure 6.4. To remove the ringing near the borders caused
by naturally occurring sharp edges in the original image, we suggest the following
techniques.

First, divide the image into three regions: border, subborder and interior
region as shown in figure 6.5. For 5 x 5 uniform blur case, the border region will
be 4 pixels wide due to the boundary effect of the bias input I; ; in (6.18), and the
subborder region will be 4 or 8 pixels wide. In fact, the width of subborder region

will be image dependent. If the regions near the border are smooth, then the

133



(b) Method 1.

Figure 6.3:

(a) Blurred noisy boundaries.

(c) Method 2.

Results using blurred noisy boundaries.
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Figure 6.4: One typical cut of the restored image using the blurred noisy bound-
aries.
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width of subborder regibn will be small or even zero. If the border contains many
sharp edges the width will be large. For the real girl image, we chose the width
of the subborder region to be 8 pixels. We suggest using one of the following two

methods.

~ |4—— border region

‘ subborder region

D interior region

Figure 6.5: Border, subborder and interior regions of the image.

Method 1: In the case of small noise, such as quantization error noise, the
blurred image is usually smooth. Therefore, we restricted the difference between
the restored and blurred image in the subborder region to a certain range to

reduce the ringing effect. Mathematically, this constraint can be written as
& = vl £T for i € subborder region, (6.30)

where T is a threshold and &; is the restored image gray value. Figure 6.3(b)
shows the result of using this method with T = 10.

Method 2: This method simply sets A in (6.13) to zero in the interior region
and nonzero in the subborder region, respectively. Figure 6.3(c) shows thelresult

of using this method with A = 0.09. In this case, D was a Laplacian operator.
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Owing to checking all restored image gray values in the subborder region,
method 1 needs more computation than method 2. However, method 2 is very
sensitive to the parameter A while method 1 is not so sensitive to the parameter
A. Experimental results show that both methods 1 and 2 reduce the ringing effect

significantly by using the suboptimal blurred boundary values.

6.8 Comparisons to Other Restoration
Methods

Comparing the performance of different restoration methods needs some quality
measures which are difficult to define owing to the lack of knowledge about the
human visual system. The word “optimal” used in the restoration techniques
usually refers only to a mathematical concept, and is not related to the response
of the human visual system. For instance, when the blur function is ill conditioned
and the SNR is low, the MMSE method improves the SNR, but the resulting
image is not visually good. We believe that human objective evaluation is the
best ultimate judgment. Meanwhile, the mean square error or least square error
can be used as a reference.

For comparison purposes, we give the outputs of inverse filter, SVD pseu-
doinverse ﬁfter, MMSE filter and modified MMSE filter in terms of the Gaussian
Markov random field (GMRF) model parameters [101, 93].

6.8.1 Inverse Filter and SVD Pseudoinverse Filter

An inverse filter can be used to restore an image degraded by a space invariant
blur function with high signal to noise ratio. When the blur function has some

singular points, an SVD pseudoinverse filter is needed; However both filters are
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very sensitive to noise. This is because the noise is a.mbliﬁed in the same way as
the signal components to be restored. The inverse filter and SVD pseudoinverse
filter were applied to an image degraded by the 5 x 5 uniform blur function and
quantization noise (about 40 dB SNR). The blurred and restored images are shown
in Figure 6.2(b) and 6.2(c), respectively. As we mentioned before the outputs of

these filters are completely overridden by the amplified noise and ringing effects.

6.8.2 MMSE and Modified MMSE Filters

The MMSE filter is also known as the Wiener filter (in frequency domain). Under
the assumption that the original image obeys a GMRF model, the MMSE filter
(or Wiener filter) can be represented in terms of the GMRF model parameters
and the blur function. In our implementation of the MMSE filter, we used a
known blur function, unknown noise variance and the GMRF model para.méters
estimated from the blurred noisy image by a maximum likelihood (ML) method
[101). The image shown in Figure 6.6(a) was degraded by 5 x 5 uniform blur
function and 20 dB SNR additive white Gaussian noise. The restored image is
shown in Figure 6.6(b).

The modified MMSE filter in terms of the GMRF model parameters is a
linear weighted combination of a Wiener filter with a smoothing operator (such
as median filter) and a pseudoinverse filter to smooth the noise and preserve the
edge of the restored image simultaneously. Details of this filter can be found in
[93]. We applied the modified MMSE filter to the same image used in the MMSE
filter above with the same model parameters. The smoothing operator is a 9 x 9

cross shape median filter. The resulting image is shown in Figure 6.6(c).
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(a) Image degraded by 5 x 5
uniform blur and 20 dB SNR

additive white Gaussian noise.

(c) The restored image using
the modified MMSE filter.

Figure 6.6: Comparison

(b) The restored image using
the MMSE filter.

(d) The restored image using our
approach.

to other restoration methods.
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| Method | MMSE | MMSE (o) | Modified MMSE | Neural network |

MSE |1.38¢ dB| 2.139dB 1.893 dB 1.682 dB

Table 6.1: Mean square error (MSE) improvement.

The result of our method is also shown in Figure 6.6(d). The D we used in
(6.13) is a Laplacian operator as in (6.14). We chose A = 0.0625 and used 4 pixel
wide blurred noisy boundaries for restoration. The total number of iterations was
20. The improvement of mean square error between the restored image and the
original image for each method is shown in Table 6.1. In the table the “MMSE
(0)” denotes that the parameters were estimated from the original image. The
restored image using “MMSE (0)” is very similar to Figure 6.6(2). As we men-
tioned before, the comparison of the outputs of the different restoration methods
is a difficult problem. The MMSE filter visually gives the worst output which
has the smallest mean square error for MMSE(o) case. The result of our method
is smoother than that of the MMSE filter. Although the output of the modified
MMSE filter is smooth in flat regions, it contains some artifacts and snake effects

at the edges, a consequence of using a large sized median filter.

6.9 Optical Implementation

To take advantage of the parallelism of the optics, we use a semi-synchronous
neural network instead of an asynchronous one. The difference between the semi-
synchronous and asynchronous neural networks is that at each clock cycle the
former updates L? neurons selected from L? different gray level functions whereas

the latter updates one neuron only. Without loss of generality, we assume that
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the neurons are semi-sequentially updated which is not similar to natural neuron
transition rules. The semi-sequential updating means that if an M x L? matrix is
used to represent neurons (each element for one neuron and each column for one
gray level function), then each row will be sequentially updated.

Figure 6.7 schematically shows a system capable of performing the semi-
synchronous neural network consisting of the equations (6.1) and (6.2) with a
deterministic decision rule. It is based on the idea described in [94] and ({102]
using an optical matirx-matrix product. The basic idea is as follows.

As we noted early, the matrix-matrix product (6.1) can be written as

2 M
uig = Ty O vig)+ L, (6.31)
3 7

which is a vector-matrix product. We use a M? x (L2 +1) laser diode array shown

in Figure 6.8 to represent the current state of neurons stored in the storage. To

calculate (6.31), the light emitted by the laser diode array is collected vertically
and then spread to a spatial light module (SLM) which represents the intercon-
nection strengths and the bias inputs shown in Figure 6.8. After collecting the
light emerging from each row of the SLM horizontally, an L? x 1 photo detector
array is used to detect the output. The elements of the output vector U; are
then entered in parallel to a threshold array to calculate (6.2). Another threshold
array is used for computing the energy changes as soon as the output of the first
threshold array becomes available. By feeding all outputs of the first and second
threshold arrays to a decision array, the final result, a row of new state of neurons,
is obtained and stored in the ith row of the storage chosen by a control. As a
consequence, the ith row of the laser diode array is updated. In this system only

the matrix-matrix (or matrix-vector) product is irhplemented optically and other
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Figure 6.7: A schematic diagram for optical implementation of semi-synchronous
neural network.
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computétions are done by the electronic circuits. To overcome the difficulty of the
negative number representaton in optics, a coding scheme using two non-negative

number to represent a bipolar number can be used here [103] [94].

-IT‘ L2 s e T1 1 I 1
V L Bk BN 3 V
L21 11 1
; 0
V L3 N ] V
L2M| 1M 0
T U __
22 .. T|_21 |2 V
—_ . \'
—
T |
SLM for interconnection LED or laser diode

strengths and bias inputs. array for all neurons.

Figure 6.8: LED or laser diode array and SLM.

Since the dimensions of the array of neurons and the SLM are very large,
we use holograms to implement the matrix-matrix (or matrix-vector) product.
It is estimated [104] that with current technology as many as (10° — 107) gates
can be interconnected by using holograms. Figure 6.9 shows a schematic of a
large size of matrix-matrix product using holograms. The first and the third
holograms in the figure are computer generated holograms (CGH) which are used
for interconnections to realize the summations in (6.31). The second hologram is
used for the SLM to implement multiplication. Suppose that the blur function

is shift invariant, all elements in the same column of the laser diode array are
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connected to the same (2 x K — 1)? elements of the SLM array, where K is
the windoQ size of the blur function. Therefore, this is an M x L? elements to
(2x K —1)?x L? elements interconnection. The horizontal collection i.e the second
summation at the last step of the matrix-matrix product is accomplished by the

third hologram using a space variant interconnection method.

IQ— imaging -Dl‘- F.T. -’l‘- imaging -bl‘— F.T. —Dl

w7

11T
VL

laser diode 1st SLM 3rd photo
array hologram hologram hologram  detector

Figure 6.9: Schematic of large size matrix-matrix product using holograms.

In the optical implementation, L? neurons are updated at each clock cycle,
thus, one iteration needs only M clock cycles for M L? neurons. The time com-
plexity of optical implementaion is O(M K'), where K is the number of iterations.

The space complexity is O(M L?) due to the total number of neurons.
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6.10 Discussion

This chapter has introduced a new approach for the restoration of gray level images
degraded by a shift invariant blur function and additive noise. The restoration
procedure consists of two steps: parameter estimation and image reconstruction.
In order to reduce computational complexity, a practical algorithm (Algorithm 2),
which has equivalent results to the original one (Algorithm 1), is developed under
the assumption that the neurons are sequentially visited. The image is generated
iteratively by updating the neurons representing the image gray levels via a simple
sum scheme. As no matrices are inverted, the serious problem of ringing due to
the ill conditioned blur matrix H and noise overriding caused by inverse filter or

pseudoinverse filter are avoided by using suboptimal boundary conditions. For the

case of a 2-D uniform blur plus small noise, the neural network based approach .

gives high quality images compared to some of the existing methods. We see

from the experimental results that the error defined by (6.13) is small while the

error between the original image and the restored image is relatively large. This

is because the neural network decreases energy according to (6.13) only. Another
reason is that when the blur matrix is singular or ill conditioned, the mapping
from X to Y is not one to one, therefore, the error measure (6.13) is not reliable
anymore. In our experiments, when the window size of a uniform blur function is
3 x 3, the ringing effect was eliminated by using blurred noisy boundary values
without any smoothness constraint. When the window size is 5 x5, ringing effect
was reduced with the help of the smoothing constraint and suboptimal boundary

conditions.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

An artificial neural network was presented and applied to some computer vision .
problems such as static and motion stereo, computation of optical flow and image
restoration. To ensure convergence of the network, the deterministic decision
rule was used in all the algorithms. Experimental results using natural images
confirm that neural networks provide simple but very efficient means to solve
computer vision problems, especially at the low level. Experimental results also
provide a strong support to the hypothesis that the first order derivatives of the
intensity function are appropriate measurement primitives for stereo matching and
the principle curvatures are useful for computing optical flow. The utilization of
multiple frames for computing depth and optical flow gives much better results
and is useful for robot vision applications. Since no matrices are inverted during
restoration, the serious problem of ringing due to the ill conditioned blur matrix

is avoided and hence the neural network algorithm gives high quality images
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compared to some of the existing methods. Although this artificial neural network
has been applied to only a few low level computer vision problems so far, it is

potentially useful for many computer vision problems.

7.2 Future Research

As pointed out in the discussion section of previous chapters, some topics for fu-
ture study became apparent during the course of this research. For instance, how
to detect motion discontinuities when the motion is translational and rotational.
How to restore the blurred and noisy images when the SNR is very low. How to
use stochastic decision rule to find a global optimal solution to these problems,
etc. However, the long-term goal of this research is to develop an artificial neural
network vision system for the recognition of objects in a 3-D scene, which is use-
ful for robot manipulation and vehicle navigation. (A simple example of using a
network called schemas for robot hand control can be found in [105).) The system

will make usé of parallelismn at all levels to achieve real-time vision in complex.
enviroments. There exist many vision systems such as ACRONYM [106], 3D MO-
SAIC [107], VISIONS [108] etc. emphasizing different aspects of the 3-D object
recognition problem. But none of them were able to match human performance.
A typical system has the following structure shown in Figure 7.1. The first part
is to preprocess the given digital image to remove system and statistical degrada-
tions i.e. image restoration. The second part is to extract features such as edges,
lines, shapes, optical flow, etc. and to segment the image into connected regions
“homogeneous” in some sense. The third part is to resegment the image based on

various geometric criteria, to measure various properties of and relations among
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the regions, and to establish a relational structure i.e. a labeled scene graph ac-
cording to the properties and relations of the image parts (regions). The lasi; part
is to match models and to recognize the objects by finding subgraphs of the scene
graph satisfying the constraints defined by the object graph. To construct such
vision system using neural networks, many interesting and promising research

topics should be pursued. Here we discuss a few of them.

Images

!

Preprocessing

!

Feature Extraction
Segmentation

!

Resegmentation
Property Measurement

Model Matching

'

Recognition

Figure 7.1: Vision system structure.

For feature extraction, naturally edge detection is the first thing to think of.
There are many types of edges, such as step, roof, line and ramp edges. One

possible way to detect edges by using a neural network is to formulate the edge
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detection problem as a pattern recognition problem. For example, step edges with
different orientations may be considered as different patterns. The neural network
can then be trained to remember all these patterns. When observations are fed
into the network, an edge will be detected if the observation matches one of the
patterns.

Although neural network based approach to texture segmentation is not new
[109], it is still required to develop a rotation invariant method. As mentioned in
the previous chapter, human eye is very sensitive to intensity changes. We may
use the intensity derivatives to construct some rotation invariant statistics and
then segment the image based on such statistics. Moreover, segmentation based
on geometric structure of surfaces is also a good research topic.

Another important issue is to compute shapes, or Shape from x. Our static
stereo and motion stereo algorithms are for computing shapes from stereo and
motion images, respectively. Shape from shading is to find the needle map and
then to recover the depth map or directly recover depth without computing the
reflectance map. If the needle map is known, a neural network can be used to
recover the depth Z(z,j) by minimizing the following cost function

Ny N 1

E = 3 2 A5(2G,5+1) = Z2(i) + Z(i+ 1,5 +1) = Z(i +1,5)) - p(i, )

i=1 j=1
HE(Z6+1,9) = 20,3) + 26+ 1,5 +1) = 26,5+ 1)) — gli, )P

FM(Z(i,5 +1) = 206, ))* + (2 +1,5) - 2(;, 5))) (7.1)

where p(Z,7) and ¢(3, j) are the gradients at point (z,7), A is a control parameter.
The depth Z(z,7) is represented by a simple sum of neuron state variables which

may take real values. Although computing the needle map is a difficult problem
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because of the nonlinearity, it is still possible to use a higher order neural network
to solve it.

The neural network is also potentially useful for shape from texture. Un-
der paraperspective projection, shape from texture can be formulated as a linear
least squares problem [110], which the neural network is good to handle. When
perspective projection is introduced, shape from texture becomes more difficult
because of the nonlinear equation to be solved. However, by using the Fourier
transform or the Wigner distribution, shape from texture can be simplified as a
linear least squares problem (111, 112].

One very challenging problem is how to develop a neural network algorithm to
compute shape from a combination of the information from different image cues
such as stereo, motion, texture, shading and contour. If one thinks of these cues as
some constraints, then this can be done using a neural network. Since the neural
network can take into account multiple. and mutual constraints simultaneously, it
is a promising approach to the integration problem.

Since graph matching is a natural process in a neural network, definitely neu-
ral network based approach will give a good solution. Recently, von der Malsburg
[113] has presented a shift invariant method for labeled graph matching using a
multi-layer neural network. This method uses local features such as edges, cor-
ners, gray level etc. and their neighborhood relationships to construct a labeld
graph. Distortions such as partly hidden are not considered. For 3-D matching,
the major problem is that the observed image parts may not correspond to the
object parts due to changes in perspective such as occlusion and segmentation
error such as incorrect merging and splitting. We have to develop an error tol-

erant matching algorithm to solve this problem. Principally, this algorithm will
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use object dependent features to recognize objects based on subgraph matching

techniques.
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