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MULTILEVEL FILTERING PRECONDITIONERS :
EXTENSIONS TO MORE GENERAL ELLIPTIC PROBLEMS *

CHARLES H. TONG !, TONY F. CHAN ¢ aND C.C. JAY KUO ¢

Abstract. We briefly review the concept of multilevel filtering (MF) preconditioning applied to
second-order self-adjoint elliptic problems. We then show how to effectively apply this concept to
other elliptic problems such as the second-order anisotropic problem, Helmholtz equation, convection-
diffusion equation, biharmonic equation, equations on locally refined grids and interface operators
arising from domain decomposition methods. Numerical results are given to show the effectiveness of
the MF preconditioners on these problems.

1. Introduction. Preconditioned conjugate gradient (PCG) methods have been
a very popular and successful class of methods for solving large systems of equations
arising from discretizations of elliptic partial differential equations. With the advent
of parallel computers in recent years, there has been increased research into effective
implementation of these methods on various parallel computers. Since effective pre-
conditioning plays a critical role in the competitiveness of the PCG methods, many
classical preconditioners have been proposed and studied, especially for second-order
elliptic problems. Among these are the Jacobi preconditioner (diagonal scaling), the
SSOR preconditioner, the incomplete factorization preconditioners (ILU and MILU)
and polynomial preconditioners. Many such preconditioners have been very successful
in giving high performance, especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often the
parallelization of the preconditioner. The rest of the PCG methods can usually be
parallelized in a straightforward way (the inner product computation is also considered
a bottleneck but its wide applicability in other methods has prompted many parallel
computer manufacturers to develop highly optimized and efficient code for it). Unfor-
tunately, for many of the classical preconditioners, there is a fundamental tradeoff in
the ease of parallelization and the rate of convergence. A principal obstacle to paral-
lelization of many preconditioners which are effective in improving the convergence rate
(e.g. SSOR, ILU and MILU) is the sequential manner in which these preconditioners
use in traversing the computational grid - the data dependence implicitly prescribed by
the method limits the amount of parallelism available. Reordering the grid traversal
(e.g. from natural to red-black ordering) or inventing new methods (e.g. polynomial
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preconditioners) to improve the parallelization alone often has an adverse effect on the
rate of convergence [3].

The fundamental difficulty can be traced to the global dependence of elliptic prob-
lems. An effective preconditioner must account for the global coupling inherent in
the original elliptic problem. Preconditioners that use purely local information (such
as red-black orderings and polynomial preconditioners) are limited in their ability to
improve the convergence rate. On the other hand, global coupling through a naturally-
ordered grid traversal is not highly parallelizable. The challenge is therefore to con-
struct effective global coupling that are highly parallelizable. We are thus led to the
consideration of preconditioners which share global information through a multilevel
grid structure (ensuring a good convergence rate) but perform only local operations
on each grid level (and hence highly parallelizable.) Preconditioners of the multilevel
type have been proposed recently by other researchers such as Bramble-Pasciak-Xu [2],
Axelsson [6], Vassilevski [10], Axelsson-Vassilevski [7] [8] and Kuznetsov [9]. In our
previous paper [4], we presented a new class of multilevel filtering (MF) preconditioners
for elliptic problems built on ideas from digital filtering theory and implemented on a
multilevel grid structure. The MF preconditioner in its multigrid formulation is similar
to the conventional multigrid method without smoothing. It is designed to capture the
mesh-dependent spectral property of a discretized elliptic operator. The variations of
coefficients are handled by the conjugate gradient method with diagonal scaling.

In this paper we will first review briefly the concept of MF preconditioning and
numerical results for standard Poisson-like problems with variable and discontinuous
coefficient problems. Then we will show the flexibility of the MF preconditioners by
adapting them to other elliptic problems that give rise to symmetric or symmetrizable
and positive definite systems. These problems include the second-order anisotropic
problems, the Helmholtz equation, the convection-diffusion equations for small convec-
tion terms, fourth-order elliptic problems such as the biharmonic equation, problems on
locally refined grids, and interface operators for domain decomposition methods. We
empbhasize the ease of tailoring the original MF preconditioner for Poisson-like problems
to these problems using the same filtering framework. In particular, the second-order
anisotropic problems and problems on locally refined grids can be solved more efficiently
by using different types of filters while the other problems require the use of different
scaling functions in the course of preconditioning. Extensive numerical experiments are
given to demonstrate the effectiveness of the MF preconditioners.

2. MF Preconditioners for Poisson-like Problems.

2.1. Concept and Algorithm. We shall motivate the construction of the MF
preconditioner by first considering the following 1D Poisson equation on Q = [0, 1]

(1) — Au = f(z)

subject to zero Dirichlet boundary conditions. A standard second-order discretization
of the above equation on a uniform grid with grid size A = ;1"—1 gives rise to a linear
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system equation denoted by Au = f where A, u and f correspond to the discrete

Laplacian, the solution and the forcing functions respectively, and A is a tridiagonal

matrix with diagonal elements — %, %, —75. It is well known that the matrix A can be

diagonalized as
A=WAWT
where W is an orthogonal matrix with elements
(W);; = 2Vhsinijrh,

and

. 4 . ,kmh
A= dzag(/\k) ’ /\k = ﬁSln2 -2—

The main idea of the MF preconditioning is to approximate this eigendecomposition

of A. First, the eigenfunctions of A are grouped into subsets corresponding to different
frequency bands. In matrix form, for n = 2% — 1, we partition W into L bands so that

W= [W11W2a"' :WL];
where
W= [wZ"lv Tty w2’—l]'

with w; being the jth column of the matrix W. Thus, for example, W, and W,
correspond to the lowest and highest frequency bands respectively.
Using the notations introduced above, we can rewrite

L
A=Y Waw!
=1
where
A= diag(A,), A= d’l:ag(/\zl—l, fety )\2:_1).

The first approximation comes in when we replace all the eigenvalues (A;) within
each band by a constant ¢;. Thus, we have a preconditioner M such that

My = 3 Bw
=1 a
where
B = VVlW,T.

Note that we have the following property for B; :

Bo=l? if v € range {W,}
Tl 0 ifverange{Wi}t.
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Hence, B; can be considered as an ideal spatial bandpass filter. Thus applying the
preconditioner M to a vector (i.e. M~1v) consists of three phases : projection of v into
the subspace corresponding to each band (operator B), scaling by the corresponding
approximate eigenvalues ¢;, and synthesizing the scaled components (summation).
Since the implementation of ideal filters is computationally expensive requiring
many global operations (e.g. sine transforms), we seek the approximation of ideal
filters with nonideal ones which are computationally more efficient. For the construction
of efficient nonideal filters, we borrow ideas from standard digital filtering theory [4].
Typically, a bandpass filter is constructed by taking the difference of two lowpass filters,
one that filters out all frequencies higher than the highest ones in the band and the
other one that lets through all frequencies lower than all frequencies in the band. In
turn, the lowpass filters can be approximated by cascading a sequence of elementary
filters H;’s, which are simple averaging operators over a small fixed number of grid
points separated by spacing proportional to the wavelength of the band W,.
Mathematically, the effect of using nonideal filters can be summarized by replacing
B, with approximations B, in the definition of M to get our final preconditioner M :

=1

In the rest of the paper, we use the following two filters :
o the first order filter defined by :

(Hip); = 7(Vjmg-t + 205 + vjyp-1)

N

where (-); denotes the jth element of the argument, and v is extended period-
ically by

V-; = —Y5, and Untj = —Upg2-j-

o the filter H;; obtained by applying H;; twice :

1
(Hi2); = E(vj_gz.-u-x + 4v;_g1—1t + 6v; + 4vj 001 + vj+21.-1+1).

We call the method introduced above the single grid multilevel filtering (SGMF)
preconditioner, which involves computation on the same number of grid points n at all
levels (corresponding to the frequency bands). Since there are L = logy(n + 1) levels
and O(n) operations are required per level, the total number of operations required per
iteration is thus O(nL).

To further improve the efficiency, we introduce a multigrid version of our precondi-
tioner which we called the multigrid multilevel filtering (MGMF) preconditioner. This
is motivated by the fact that waveforms consisting only of low wavenumber compo-
nents can be well represented on coarser grids. To incorporate the multigrid structure,
the operators I},; and I{_,, which are the down-sampling and up-sampling operators
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respectively, are introduced. Note that in the multigrid literatures these operators
are commonly known as restriction and interpolation operators. Using the concept of
MGMF, we construct a sequence of grids @ of sizes h; = O(ZL"h),l I L, to
represent the decomposed components. With MGMF, the total number of operations
per iteration is O(n), a reduction by a factor of log, n compared to SGMF.
We summarize the MGMF1 preconditioning algorithm as follows :
Algorithm MGMF1 : input = r, output = z = M~1r
Decomposition :
vpi=r
foril=L-1,.--,1
v i= Ify Hipa v
end for
Scaling :
forl=1,---,L
wi=v+Q
end for
Synthesis :
21 =W
forl=2,---,L
z = w + Hip Il 21
end for
2=z

end MGMF1

As it stands, this definition of the preconditioner can be extended to higher di-
mensions, more general elliptic operators and finite element meshes, as long as we have
appropriate definitions for the elementary filters H;’s, the restriction and interpolation
operators I}, and I{*!, and ¢’s. For example, filters for the high dimensional cases can
be constructed from the tensor product of 1D filters. Moreover, it is well known that the
eigenvalues )i in the wavenumber band B; behave like O(h;?) for general second-order
elliptic problems, where k; denotes the grid spacing for level I [18]. Therefore a general
rule for selecting the scaling constant ¢ at grid level I is ¢; = O(h;?). For quasiuniform
meshes with refinement factor of 2 (so that h; = 2h;4,), this leads to the recurrence
relation ¢;4; = 4¢;. In [4], we also show how to extend the definition of H; to general
finite element meshes.

The MF preconditioner is designed to capture the mesh-dependent spectral property
of a discretized elliptic operator but not the variation of its coefficients. In order to take
badly scaled variable coefficients into account, we use diagonal scaling [14]. Suppose
that the coefficient matrix can be written as

A=D'?AD'?

where we choose D to be a diagonal matrix with positive elements in such a way that
the diagonal elements of A are of the same order. Then in order to solve Au = f, we
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can solve an equivalent problem Ai = f, where &t = D2y and f = D~'/2f, with the
MF preconditioner.

The SGMF preconditioner on uniform meshes can be easily analyzed exactly us-
ing Fourier methods and we shall compare these results with the experimental results.
The MGMF preconditioner on uniform and quasiuniform grids can be analyzed using
the same finite element analysis framework used by Bramble, Pasicak and Xu [2], since
their multilevel nodal basis preconditioner can be interpreted as a special case of the MF
preconditioner with a particular filter. Basically, their results show that the condition
number of x(M~!A) (using their multilevel nodal basis preconditioner) is O(L) where
L = log, n. Our experimental results showed that both the SGMF and MGMF precon-
ditioners have comparable performance in terms of iteration counts. Therefore, in our
numerical experiments, we will mainly use the more efficient MGMF preconditioners.

On a uniform mesh there is an obvious connection of our multilevel filtering idea
with wavelets [17, 19]. Wavelets are orthonormal basis functions for square-integrable
functions and are defined on a multilevel structure. These basis functions have compact
support in space and almost compact support in the Fourier domain. Thus, wavelets
can be considered as efficient bandpass filters. We are exploring the use of wavelets in
our multilevel filtering preconditioner framework.

2.2. Numerical Results. In this section, we present numerical results for two-
and three-dimensional Poisson, variable coefficient and discontinuous coefficient prob-
lems to demonstrate the convergence behavior when MGMF preconditioning is applied.
Three variations of the MGMF preconditioning are implemented :

MGMF1 the MGMF preconditioner with 9-point (27-point) filter for 2D (3D) prob-
lems. (i.e. Hy;)

MGMPF2 a modified version of MGMF in which the 9-point (27-point) filter is applied
twice. (i.e. H32)

MGMF3 another modified version of MGMF in which the 9-point (27-point) filter is
applied once at the finest grid level (to give smaller amount of work compared to
MGMF?2) and twice at other grid levels (to achieve a convergence rate between
MGMF1 and MGMF2 but close to MGMF?2).

The preconditioning operation counts for 2D (3D) problems are 9N, 27N and 15N
(9N, 32N and 12N) respectively for MGMF1, MGMF2 and MGMF3 where N is the
number of unknowns. These operation counts include also the diagonal scaling.

For all test problems, we use the standard 5- (or 7-) point stencil on a square (or
cubic) uniform mesh with 2 = 7 and N =n? (or N = n3), zero boundary conditions
and zero initial guesses. Experimental results are given for different values of & and the
stopping criterion is || 7 || / || r° ||< 1075, The six test problems are:

1. the 2D model problem with solution u = z(z — 1)y(y — 1)e,

(2) - Au= £,9=[0,1],



2. a 2D variable coefficient problem with solution u = ze®¥ sin rz sin 7y,

a du 0 Ou
—_ —-zy 7" — eV ] = = 2
3. a 2D discontinuous coefficient problem with f = 2z(1 — z) + 2y(1 — y),
0 du 7] Ou 2
(4) 2 (p(w,y)gg) + 35 (p(x,y)a—y) = f£,2=[0,1)%,
where

104 z<05,y>05

10* z>0.5y<0.5
p(z,y) =
1 otherwise

4. the 3D model problem with solution u = z(z — 1)y(y — 1)z(z — 1)e*¥?,
(5) -bu=f,0= [0’1]37

5. a 3D variable coefficient problem with solution u = e*¥*sin 7z sinwysin 7z,

g Ju 0 Ou i) du
A T Rt — | e*yz __ — e — ) = = 3
(6) 9z (e 69:) + ay (C ay) + 92 (e az) 5L [0’ 1] ’

6. a 3D discontinuous coefficient problem with f = 2z(1—z)+2y(1-y)+22z(1-2z),

f: (s 3) 42 (o)) 452 (e a5e) = 1.0 = 01

where

10~ z> 0.5 withy <0.5,2<050ry >0.5z>0.5
plz,y,2)=1{ 10° z<0.5withy>0.5,2<050ry <0.5,2>0.5
1 elsewhere

For comparison purposes, the hierarchical basis (HB) [1] [11] and multigrid (MG(k),
where k is the number of pre- and post-smoothings used) preconditioners were also
implemented. The operation counts per iteration for the HB and the MG(k) precondi-
tioners are 7N and 26 + 32 x k (8N and 26 + 36 x k for 3D) respectively. The number
of iterations are shown in the following Tables 1 to 6 (>-’ in Tables 4 and 5 means ’data
not available’). For different test problems the k£ in MG(k) that gives the best overall
operation count is shown.

The iteration counts shown in the tables do not reflect the overall operation counts
for the preconditioners. In Tables 7 and 8 we also show the total operation count
required per grid point for each preconditioner. (We show only the data for n = 255
and n = 31 for the 2D and 3D problems respectively).
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TABLE 1

Iteration counts for Test Problem 1

Iteration counts for Test Problem 2

[_n [ MGMFI1]| MGMF2| MGMF3| HB | MG(2) |
7 10 9 10| 16 4]
15 11 9 10 | 24 4
31 12 8 10 | 34 5
63 13 8 10 | 44 5
127 15 8 10 | 54 5
255 16 7 10 | 64 5
TABLE 2

[ n | MGMFi] MGMF2] MGMF3| HB | MG(1] ]

7 13 12 13| 18 7
15 17 14 16 | 27 8
31 ’k 22 17 19| 36 10
63 | 26 18 22| 46 12

127 || 30 20 24 | 56 13
255 || 33 21 26 | 67 15
TABLE 3

Heration counts for Test Problem 3

n || MGMF1| MGMF2 | MGMF3 | HB | MG(10)

7 21 19 20 | 28 6
15 35 30 33| 49 10
31 59 49 51 79 15
63 101 82 86 | 132 17

127 200 140 143 | 223 20
255 367 254 269 | 393 24
TABLE 4

Heration counis for Test Problem 4

[ = [ MGMF1] MGMF2 | MGMF3| HB | MG(2) ]

7 11 8 11 ] 20 5
15 13 8 10 | 30 5
31 13 8 10| 45 6
63 H 14 7 10| 70 ;




TABLE 5
Heration counts for Test Problem 5

[ n | MGMFi| MGMF2| MGMF3| HB| MG(2)

7 13] 11 13] 20 5
15 16 12 14 | 33 6
31 18 13 16 | 53 7
63 21 14 18| 82 R

TABLE 6

Iteration counts for Test Problem 6

|_n | MGMF1| MGMF2 | MGMF3 | HB | MG(10) |

7 24 21 24 | 43 8

15 || 46 38 41| 96 15

31 | 95 71 74 | 229 20
TABLE 7

Operation counts per grid points for 2D problems (n=255)

[ test problem | MGMF1 | MGMF2 | MGMF3| HB | MG |

1 448 328 340 1664 555

2 990 1008 936 1876 | 1185

3 11010 12192 9684 | 11604 | 8808
TABLE 8

Operation counts per grid poinis for 3D problems (n=31)

| test problem |L1_WGMF1J_1_\/IGMF2| MGMF3| HB| MG |

4] 416 440 350 | 395| 615
5 612 741 502 | 1749 | 861
6 3230 4047 2738 | 7557 | 8220




We can observe from the tables that filtering twice (MGMF2) always improves the
convergence rates over MGMF1 but not the overall operation count. This observation
was the main driving force for the design of MGMF3 and we see that MGMF3 re-
quires less work per grid point than MGMF1 and MGMF2. Also, from the tables it
appears that both MGMF2 and MGMF3 give condition number of O(1) for Poisson
problems in 2D and 3D, of O(logn) for variable coefficient problems and of O(n) for
discontinous coefficient problems. The HB preconditioner does not exhibit competitive
performance both in terms of iteration count and operation count, especially for 3D
problems, since the condition number behaves like O(h™!) instead of O(log A~!) for 2D
problems. The HB preconditioner should give better performance for problems with
nonuniformly refined grids. The MG preconditioner gives the best convergence rates
for all the test problems attempted. However, for smooth problems it performs worse
than the MGMF preconditioners in operation counts mainly because of the expensive
work spent in the relaxation steps. For discontinuous coefficient problems (e.g. test
problems 3), the MG preconditioner sometimes gives better operation counts than the
others when the number of relaxation steps is large enough (10 in our experiments). In
our previous paper when we used 3 relaxation steps the operation count for problem 3
was found to be the worst of all.

3. MF Preconditioners for Anisotropic Problems. In this section, we extend
the concept of multilevel filtering to the second-order anisotropic problems. To achieve
high degree of efficiency, the preconditioning step requires some modifications in the
design of filters. We first provide justification for such modifications and then we will
show the condition number computed by Fourier analysis. Numerical experiments are
also included.

Consider the following 2D second-order anisotropic problem :

(8) — 0tizy — gy = f(2,9) in @ =[0,1]

where @ > 1 and with zero Dirichlet boundary conditions. The discretization of the
equation using uniform square mesh with A = 15 gives a block-tridiagonal matrix A
such that Au = f where u is the solution. In the Fourier domain we can express this
as :

(9) AG, B)de = fikr 5k =1,2,---,n—1
where

(10) ip = {Eg mz:jl 4t sin(jmlh) sin(knmh)
and

(11) fix= ‘{Egé fim sin(jwih) sin(krmh)
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such that
(12) A(j, k) = (2 + 2a) — 2(acos jwh + cos krh)

We can observe from the eigenvalue spectrum of A that for a 3> 1 the variation
in magnitudes of the eigenvalues in the k-direction is relatively small compared to that
in the j-direction. To maintain uniform variation of eigenvalues within each band, we
divide more wavenumber bands in the j-direction than in the k-direction. We call
this technique directionally adaptive filtering. This can be done in practice by first
performing 1D filtering in the j-direction for a number of levels (say number of levels =
4) and after that resuming 2D filtering. This is in contrast to performing 2D filtering
for all the levels for the nearly isotropic problems described in the last section. Here v
depends on « as well as the problem to be solved. For second order elliptic problems
with quasiuniform grid and h; & 2hy,, it is sufficient to use v = round(log, ). Suppose
a = 4, then v = 1 and the modified H;, for the finest grid level takes the following
stencil form :

%|1 2 1|

while the filter for the other coarse grid levels have a 2D stencil (tensor product of 1D
filter, i.e. Hyy x Hy).

Note that if the finest level is defined on a (n +2) % (n +2) grid, then for v > 1 the
next coarse level is defined on (2L +1) X (n + 2) grid instead of (22 +1) x (24 +1)
grid for 4 = 0. It should also be noted that this modified filtering scheme is analogous
to the idea of semi-coarsening in the multigrid literatures.

We performed Fourier analysis of the single grid version of this scheme (called
SGMF1a) on the 2D anisotropic problem with different « and k. The condition num-
bers of the preconditioned system are given in Table 9. For comparison purpose, the
condition numbers of the preconditioned system using the unmodified SGMF1 precon-
ditioner are also included. Table 9 shows that this modified scheme is quite effective.
For example, for a = 1000 the condition number grows slowly with n while this is not
true for the unmodified SGMF1 preconditioner.

The MGMF1 preconditioning algorithm for the above anisotropic problems can be
summarized as follows :
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TABLE 9

condition number for different a and n

a=10 I a = 100 o = 1000
n]|  A|SGMFla [ SGMF1 A |SGMFla | SGMF1 | A [ SGMFla [ SGMF1
7 “ 25 3.8 13 25 3.8 38 25 3.8 47
15| 103 4.3 21| 103 4.7 117 103 4.7 216
31| 414 5.4 28 [[ 414 5.8 233 [ 414 5.9 849
63 || 1659 6.6 34 || 1659 6.8 328 | 1659 69 2142
127 u 6639 8.2 40 [| 6639 7.9 395 | 6639 8.0 3480
255 || 26560 9.7 46 [| 26560 9.0 454 || 26560 9.0 | 4396

Algorithm MGMF1a : input = r, output = z = M~!r

v =71
Decomposition :
count = v

forl=L-1,---

y1

if (count = 0) then
t := x-filterl(vi41)
vy := y-filter1(t;)

else

count = count — 1
vy := x-filterl(vi4;)

end if
end for
Scaling :
forl=1,---,L

V=T

end for
Synthesis :
tl ="

fori=2,.--,L

tri=v+ Hl,lIl‘_ltl—l

end for
z: =1
end MGMF1la

Next we show the numerical results using the multigrid MF (MGMF1a) precondi-
tioner in conjunction with the conjugate gradient method. Again, we use the standard
5-point discretization on a uniform square mesh with 2 = nlﬁ and the forcing function
f(z,y) is such that the solution is u = z(z — 1)y(y — 1)e*¥. The stopping criterion used
is|| v || / || *° |I< 10~ and the initial guess is 0. The iteration counts for different h
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and « are shown in Table 10.

TaBLE 10
Heration counts for different o and n

a=10 o = 100 « = 1000

n | A]MGMFla | MGMF1 | A |MGMFla | MGMF1 | A [MGMFIa | MGMF1
7 23 11 18] 17 7 19 13] 6] 20
15 || 48 13 26 || 41 10 4 || 27 9 44
31| 97 15 32 | 90 12 64 || 63 12 84
63 || 197 16 36 || 187 13 83 || 126 13 140
127 || 405 19 41 || 388 15 95 [[ 258 15 193
255 || 839 20 45 || 812 17 106 || 608 17 224

The numerical results show that this scheme works very well for a wide range of a.
It should be noted that a similar scheme can be applied to the case when o < 1 and
for the 3D anisotropic problems.

4. MF Preconditioners for Positive Definite Helmholtz Equation. Con-
sider the following 2D Helmholtz equation :

(13) —Au+Pu=finQ=[0,1)?

with zero Dirichlet boundary condition and when B is a positive or a small negative
constant so that the discretization matrix A is symmetric and positive definite. (Most
Helmholtz problems with negative 8, however, give rise to symmetric but indefinite
stiffness matrices. We plan to pursue this type of problems in the future). An effective
MF preconditioner for this equation requires modifications in the scaling constants c’s,
as explained below. Again we can express Au = f in Fourier domain with Aas:

A(j, k) = 4sin®(irh) + 4sin®(jwh) + SR

The spectrum of A differs from that of the Poisson equation by #h% and we need
to incorporate this offset in the scaling constants ¢js. Instead of using ¢4 = 4¢ for
2
Poisson equation with &; & 2h;y;, The recurrence relation is now given by ¢; = °—‘t":ﬂ
with ¢, = 8 + kh? (let us call this scheme SGMF1b). To find the range of B such that
all the eigenvalues are real and positive, we can first observe from the equation above
that this is indeed the case when 8 > 0. And if 4 < 0, it is straightforward to find the

lower bound of 3 as

—~8sin®(wh/2
B> ——hg /2) .

For the 2D Helmbholtz equation with n = 256, this lower bound is about —19.7. In

Table 11, we show the condition numbers of the preconditioned systems (SGMF1b)
13




computed by Fourier analysis for a range of # and compare them with those of the
unpreconditioned system (A). We also include the condition numbers when the un-
modified SGMF1 preconditioner is used. The Fourier results show that for large g,

the modifieid preconditioner SGMF1b improves the condition number significantly over
SGMF1.

TABLE 11
condition number for different n and 8

B=10 8 = 1000 I B=-10

n A | SGMF1b | SGMF1 || A [ SGMF1b [ SGMF1 A [ SGMF1b | SGMF1

7 7] 197 2.18] 15 2.60 12.5 51 3.36 3.75
15 69 2.61 285 3 3.70 31.0 | 209 4.19 4.84
31| 275 3.36 360 9 4.63 49.3 H 839 5.16 6.14
63 || 1102 4.09 4.33 w 33 5.04 579 || 3363 6.10 7.38
127 |[ 4407 4.84 5.09 || 129 5.17 60.5 |[ 13456 7.06 8.67
255 || 17629 5.59 9.94 || 515 5.20 61.2 || 53831 8.02 9.94

We now show the numerical results using the multigrid formulation of the SGMF1b
preconditioner (MGMF1b). Again, we use the standard 5-point discretization on a
uniform square mesh with h = n’? and the forcing function f(z,y) is such that the
solution is u = z(z — 1)y(y — 1)e*¥. The stopping criterion used is || 7* || / || »° ||<
10~% and the initial guess is 0. The iteration counts for the unpreconditioned (A) and
preconditioned CG methods (MGMF1b and MGMF1) with different » and 3 are shown
in Table 12.

TABLE 12
Heration counts for Helmholiz equation with different n and 3

| =10 I B = 1000 | p=-10
n | A MGMF1b | MGMF1 | A [MGMF1b [ MGMF1 | A [ MGMF1b | MGMF1
_—7u 15] 10 10 4 6] 8 18] 11 11
15 || 32 11 1] 6 8 11 38 12 12
31 [ 66 12 12 10 10 16 || 77 13 13
63 || 133 13 13 || 22 11 18 || 156 14 14
127 || 273 15 15 || 48 12 19 || 316 15 15
255 |[ 555 16 16 || 101 13 20 || 643 17 17

Again, we can see that the numerical results agree with the results from Fourier
analysis. For small 8, the MGMF1b and MGMF1 requires almost the same number
of iterations to achieve convergence. However, for large B, the advantage of using the

MGMF1b becomes obvious.
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5. MF Preconditioners for Convection-diffusion Equation. Consider the
2D convection-diffusion equation

(14) k(z,y)- yu=eDu+ f(z,y) in @ =[0,a] x [0, )]

with Dirichlet boundary conditions on 92. This equation, for example, describes the
concentration of a chemical in a solution flowing with a time-independent velocity field
k(z,y). We examine the simple case when k(z,y) = [£,0)]7,¢e =1l and a = b =1 s0
that the equation becomes

- Au+ kug = f(z,y) in Q= [0,1)%

The application of MF preconditioning to this convection-diffusion equation re-
quires special handling because the discretization matrix A is nonsymmetric. In this
section we only consider the cases where A is symmetrizable (i.e. there exists a diag-
onal matrix D such that DAD"! is symmetric) and positive definite. In the following
we describe two methods to handle the problem. The first is to symmetrize A before
applying the PCG algorithm. The symmetrized system resembles the positive-definite
Helmbholtz equation and thus efficient MF preconditioners are known from the last sec-
tion. The second is to convert the problem to the self-adjoint form and then apply the
original MF preconditioning with diagonal scaling to it. We examine two discretization
schemes for the first method and show that the MF preconditioner is effective for both
schemes. Also numerical results show that both the first and second methods give good
convergence behavior.

Method 1A Central Difference Scheme
This method on a square mesh of side k gives rise to :

k
— Dpui;+ ﬁ(u.’-n,j - ui-1,5) = fij

where Azu; ; is the standard 5-point finite difference discretization for the
Poisson equation. This method has an accuracy of O(h?). However, to
obtain stability, the mesh size A has to obey the following criterion [15] :

2
<-.
h_k

Therefore, if k is large (which is typical for many applications), very small
mesh size has to be used in order to maintain stability. However, too small
a mesh size also means unnecessarily high operation count to arrive at the

solution.
Method 1B HODIE Scheme [16]
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The HODIE method for the above convection-diffusion equation has the
following difference formula :

kh kh o (1=7)h
(2r+2)uii—(7+ 5 Jim1, (7= S Y —vi g1 —vi i = kRS (zH%

,Jk)
where 7 = \/1 + "—2;—2
An advantage of this method is that it has an accuracy of O(h?) and is
also unconditionally stable.
Method 2 Transformation to Self-adjoint Form
The above convection-diffusion equation can easily be transformed into
the following self-adjoint form

- V(e vu) = e f(z,y)

and then the standard 5-point finite difference approximation can be ap-
plied to obtain O(h?) accuracy. (However, it should be noted that if k
is not a constant, it may not be able to transform such problems into
self-adjoint forms)

The discretization matrices from the first method 1A and 1B above are nonsym-
metric but symmetrizable when & is in the range of stability. We can symmetrize these
matrices before applying preconditioned conjugate gradient methods. The symmetrized
matrices in general are equivalent to the discretization of certain Helmholtz equations.
Consequently, the MF-preconditioning techniques for the Helmholtz equation can be
used here. Recall that for the Helmholtz equation, only the scaling constants need to
be modified. Using the same technique, we can derive the scaling recurrence for these
methods as :

Ciy1 + 3s

a= 4 ’

where s is different for different methods :

¢ Central difference :

_2-2/0+9)0-1)
4440+ B)0 —"?")’CL

=6+2\/(1+1“2£)(1—k2—h)

¢ HODIE Method :

2 1+k2h? 2 1+k7h2
s= \/ \/ 2 cp=4+427+42 (‘r+ (1'——)

444145
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We use the following test problem :

- Au+kuy = f(z,y) in Q= [0,1]?

where f(z,y) = —m(1 — i—’,{;)sin 7y so that the solution is given by u(z,y) = (1 -
slk, . . . . . o aie .
g—,;;;)sm my. The stopping criterion is || r* || / || 7° ||< 107° and zero initial guess is
used. The iteration counts are given in Table 13 for k = 30 and different & = -

nt+l”
TaBLE 13
Heration Counts for Convection Diffusion equation
[ n1A]1B] 2]

15]] 26 ] 2121
314‘ 27| 25|24
63| 27| 26 | 26
127 [ 27| 2727
255 || 27] 27] 27

We can observe from Table 13 that all methods used here require about the same
number of iterations and the convergence rates seem to depend only slightly on =.
However, it was observed that the self-adjoint form gives the best accuracy. However,
when transformation to self-adjoint form is not possible, both the central difference and
HODIE methods seem to give reasonable accuracy. The central difference method is
both easy to use and reasonably accurate when the convective term is not too large.
When the convective term is large and high accuracy is needed, then the HODIE method
is quite promising.

6. MF Preconditioners for Biharmonic Equation. Consider the following
biharmonic equation in 2D :

(15) — A= finQ=]0,1]

with first boundary conditions :

(16) u(z,y)lr=0
and
(17) -Z—Z =0

We discretize this equation using 13-point second-order centered finite difference
1

approximation with A = 47 :
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20‘(1."_,' - 8(u;+1,,- + ui-1,; + Uij+1 + ui.j-l)
+ 2(u;+1,j+1 + U141 + Uigr,5-1 + ut’-l.j-l)
+  Uip2,i + Ui-25 + U 40 + Ui -2 = hqft"j

for i,j = 2,n—1. If we let the boundary condition be u = g(,y) and its first derivative
be b(z,y). Then the difference equation for i =1, and j =3,---,n —2is:

2luy,; = 8(uz; + unjer + urjo1) + 2(uz, 441 + Uz 1) + Us; + Unjpe + U2
= h*(fi,7 +890; — 2(90,i+1 + goj—1) — 2hbo ;)

since
ou Ju
-a—n = —'% onx= 0,
and using central differencing, we get
_(ulvj - u-l’j) — b .
2h 0

Also, at i = j = 1, we have

22u1n — 8(uzx +u12) + 2uz2) +uzi + 3
= k*(firj +8(g0, + 910) — 2(90,i+1 + Foj-1 + 92,0) — 2h(bo,1 + b10))-

The difference equations for other near boundary grid points can be derived similarly.
The eigenvalue spectrum of A can be approximated by :

(18) A(j, k) = (4 — 2(cos(¢wh) + cos(jmh))?

which is the square of that of the Poisson equation.

Since the eigenvalues in B, for this equation behave like O(h;*), a natural ex-
tension of the MF preconditioner involves changing the scaling recurrence ¢4y = 4¢
to ci41 = 16¢; (again, hy & 2hy4, is assumed). In Table 14, we show the result of the
Fourier analysis on the MF-preconditioned biharmonic equation. In the table, SGMFlc,
SGMF2c and SGMF3c represent the original SGMF1, SGMF2 and SGMF3 precondi-
tioners with the new scaling.

We see that the condition number of A bgrows about 16 times with each halving of .
The use of SGMF1c has effectively helped to reduce the condition number. Nevertheless,
SGMF2c helps to reduce the condition number even more dramatically.

To verify the Fourier results, we implement the SGMF1c, SGMF2c and SGMF3c
preconditioners for the Biharmonic equation where the f(z,y), g(z,y) and b(z,y) are
such that the solution is u = z(z — 1)y(y — 1) sin(rz) sin(wy). The stopping criterion

18



TABLE 14
Condition number for SGMF preconditioning for biharmonic equation

|__n || No preconditioning IEMFI ¢ |_SGMF2¢ | SGMF3c |
5.3 17

7] 690 25 .
15 || 1.1 x 10* 108 5.6 66
31 1.7 x 10° 438 7.2 256
63 2.8 x 10° 1814 8.7 1017
127 4.4 x 107 7367 10.2 4061
255 7.0x 10% [ 29705 11.7 16238
TABLE 15

Heration Counts for SGMF-preconditioned PCG for biharmonic equation

|__n || No preconditioning | SGMF1c | SGMF2¢c | SGMF3c |

7 10 9 10 9
15 42 17 12 16
31 H 160 36 14 30
63 | 586 82 17 57

127 || 2218 177 23 113
255 | 8587 366 33 220
TABLE 16

Hteration Counis for MGMPF-preconditioned PCG for biharmonic equation
n [ No preconditioning | MGMF1c | MGMF2c | MGMF3c |

717 10 10 0] 10
15 42 27 22 24
31 160 40 29 32
63 586 56 30 37

127 2218 80 35 40
255 8587 120 43 48
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is [ ¥ || / ]| *° ||< 10~ and the initial guess is zero. The iteration counts are shown in
Table 15.

Next we show (in Table 16) the iteration counts when the multigrid formulation of
SGMF1c, SGMF2c and SGMF3c (i.e. MGMF1c, MGMF2c and MGMF3c) are applied
to the same problem.

We observe a close correlation between the numerical and Fourier results for the
SGMF preconditioners. Indeed, SGMF2c improves significantly over SGMF1c with
only a little increase in cost per iteration. SGMF3c improves somewhat over SGMF1c
but is still not good enough compared to SGMF2c. Therefore, SGMF2c requires the
least operation counts out of the three. Looking into the numerical results for the
MGMTF preconditioners, we first observe that both MGMF1c and MGMF3c give better
convergence rates than their SGMF counterparts. We cannot explain why this is the
case, nor can we explain why MGMF3c performs much better than predicted by the
corresponding Fourier results. Finally, with a little arithmetic, it is not difficult to show
that MGMF3c gives the least overall operation counts.

7. MF Preconditioners for Problems with Locally Refined Grids. In this
section, we shall consider the application of the MF preconditioners to second-order
elliptic problems with local mesh refinement. Such mesh refinements are necessary for
accurate modeling of problems with various type of singular behavior. We consider the
discretization scheme for locally mesh refined grids by McCormick and Thomas [12].
This discretization scheme was motivated by the desire to preserve the highly regular
grid structure (to maintain efficiency on parallel computer architectures) as well as to
satisfy the need for local resolution in many physical models. For example, the mesh
in Fig. 1 would be effective if the forcing function f(z,y) behaves like a § function
distribution at the points (1,1) and (n,n) (both lower left and upper right corners).

The Fourier analysis cannot be applied here because of the presence of nonuniform
grids. However, as was shown in our previous paper [4), the parallel multilevel precon-
ditioner proposed by Bramble, Pasciak and Xu [2] can be considered as a special case of
MF preconditioners with appropriately chosen filters. We can borrow the finite element
analysis result from them and we would expect the MGMF preconditioners to be ef-
fective also for meshes with local refinement. Below we show the MGMF algorithm for
this problem. Here f and Hj are restriction (or interpolation) and elementary filtering
operators restricted to the locally refined grids only. Moreover, we can use the same
recurrence relation ¢; = 4¢;4; and we have the following algorithm:
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Fi1G. 1. Locally Refined Grids - Ezample 2

Algorithm MGMF1d : input = r, output = z = M~r
Decomposition :
vpi=r
(* filtering at refined levels *)
for !l = L—l,--o,‘J—k
v = I:'+1Hl+1.1vt+1
end for
(* filtering on uniform grid levels *)
forl=L-%k-1,---,1
v = Ij Hijavinm

end for
Scaling :
fori=1,---,L
M=+ O
end for
Synthesis :
21 =N

forl{=2,---,L—k
z2:=v+ Hyll_ 2
end for
forl=L-k+1,---,L
zy =y + E[l,lill_lzl-l
end for
Z=7ZL

end MGMF1d 21



We solve a Poisson equation on the grid
e shown in Fig. 1 but with refinement only at the upper right corner and the
forcing function is f(z,y) =27'6(1 — k,1 — ), and
e shown in Fig. 1 and the forcing function is f(z,y) = 2~!(6(k, k) +6(1—h,1—1))
where [ is the number of level of refinements used and % is the grid size for the
nonrefined grid.

We use the discretization scheme for the domain and the interfaces proposed by
McCormick [12] for aligned grid. The stopping criterion and initial guess are the same
as before. The iteration counts for different number of levels and different h are given
in Table 17 and 18. The iteration counts for unpreconditioned CG method and the
parallel multilevel preconditioner (BPX) [2] are also included for comparison purpose.

TaBLE 17
Heration Counts for Poisson equation with refinements at upper right corner only

[ n ] no. of levels | CG | MGMF! | BPX |

15 o] 26 9] 12
15" 1] 37 10 14
15 2| 45 11| 16
[ 5] 3| 53 12| 17
(31 ] o] 48] 9 13
31 1| 70 10| 15
31 2| 88 11| 17
31 || 3109 12| 18
63 0| 84 10 14
63 1]126 1| 15
63 2 | 166 11| 17
63 3]210 12| 19
127" 0133 0] 14
127 1] 219 1| 15
127 2 [ 309 12| 17
127 || 3395 13 19

The tables show the effectiveness of the MF preconditioner compared to the unpre-
conditioned CG method and the PCG method with parallel multilevel preconditioner.
The convergence rates seem to be quite insensitive to the number of refinement levels
used.

8. MF Preconditioners for Schur Complement Systems. Consider solving a
2D second-order elliptic problem on a domain divided into 2 subdomains by an interface.
If we use a 5-point discretization and order unknowns in the the subdomains ; and
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TABLE 18
Hteration Counis for Poisson equation wilk refinements at both corners

|_n [ no. of levels | CG| MGMF1| BPX |

15 0 26 9 12
15 1| 54 11| 15
15 2| 63 12 17
15 3 75 16| 18
31 0| 48[ 9| 13|
31 1| 86 11| 16
31 2 | 117 13 17
K 3 | 140 13| 19
63 0 84 10 14
63 1126 12| 16
63 2190 12| 18
[ 63| 3| 235 14| 19
(127 ] 0133 10 14
127 1| 204 12| 16
127 2 | 297 13| 18
127 3 | 391 14| 20

2, first followed by those on the interface I's, we obtain the following linear system:

[ A 0 Ay l Uy ] [ h ]
Au = 0 A A uy | = | fa
u3 f3

Az Az As
By applying block Gaussian elimination to eliminate the unknowns u; and u;, we
obtain the following system for the interface unknowns u3 :

Suz = fs
where
S = Az — An AT A3 — A Az Ags
and
fs=fs— AnAT fi — An A7 fo.

A standard approach in domain decomposition methods is to solve the Schur com-
plement system Sus = f3 with the preconditioned conjugate gradient method. Many
preconditioners have been proposed in the literature [20]. A typical one is Dryja’s pre-
conditioner [22], which is defined to be the square root of the negative one-dimensional
Laplacian and which can be inverted by the use of FFTs in O(nlogn) time where n is
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the number of unknowns on the interface. Recently, Smith and Widlund [21] proposed
a hierarchical basis preconditioner for S which is cheaper than Dryja’s preconditioner,
requiring only O(n) work per iteration. Here we propose to use the MF preconditioner
for S. To do this, we can retain the multilevel filtering framework and we only need
to modify the scaling constants ¢;’s. We know that the eigenvalues for the Schur com-
plement in the frequency band B; behaves like O(h;!) [22]. Therefore, it is sufficient
to use the recurrence ciy; = 2¢;. In Table 19 we compare the number of iterations to
obtain convergence for different n for the Poisson equation on a rectangular 2n x n grid
decomposed into two equal subdomains.

TABLE 19
iteration count versus n

[ n ] No precond | Dryja | MGMF1 | MGMF?2 | HB |

7 4 4 4 4 4
15 8 6 7 6 7
31 16 6 9 7 8
63 27 6 9 7 10

127 39 6 9 7 12

We observe that MGMF2 performs better than MGMF1 and the hierarchical basis
(HB) preconditioner. All but the HB preconditioner show convergence rates indepen-
dent of n. Moreover, MGMF2 performs almost as well as Dryja’s preconditioner. The
MGMTF appears to offer convergence rate comparable to Dryja’s preconditioner and at
the same time is relatively easy to use and costs about the same as the HB precondi-
tioner.

9. Conclusion. In our previous paper [4] and the first part of the present paper
we show the competitiveness of the MF preconditioners compared with some other
preconditioners such as the hierarchical basis preconditioner, multigrid preconditioner
and others. In this paper we have further demonstrated the ease with which we can
extend the MF preconditioners to effectively solve other more general elliptic problems.
The flexibility of filter and scaling block design offers different ways of achieving high
degree of efficiency for these problems.
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