USC-SIPI REPORT #156

Adaptive Linearly-Constrained Filtering:
Principles and Implementations

by
Ching-Yih Tseng

May 1990

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angelkes, CA 90089-2564 U.S.A.



Dedication

This dissertation is dedicated to my parents.

iii



Acknowledgements

I would like to thank Professor Lloyd J. Griffiths for his gracious guidance and
constant support which made the completion of this dissertation possible. I would
also like to express my gratitude to Professors Rama Chellappa, Richard Leahy and
Chunming Wang for their participation in my Dissertation Committee.

My experience in USC would not have been so wonderful and exciting without
many unforgettable friendships. I especially appreciate the opportunity to work with
David Feldman, Michael Rude and George Zunich in the same research group. I ac-
knowledge their patience in proof-reading my writing and their willingness in helping
my various English problems. Because of their good nature, working with them has
been so enjoyable. I also appreciate the opportunity to befriend many other SIPI
members.

I am deeply indebted to my parents for their love and encouragement. This
dissertation is dedicated to them.

This work was supported by the Semiconductor Research Cooperation under
Contract No. 86-01-075 and No. 88-DP-075.



Contents

Dedication iii
Acknowledgements v
List of Tables viii
List of Figures x
Abstract xii
1 Introduction 1
1.1 Motivation . . . . . v ¢ v i v i i e e e e e e e e e e 1
1.2 AdaptiveFiltering . . ... ....... ... ... .0 0. 3
1.2.1 Adaptive filters with desired signals . . . . .. ... ... ... 3

1.2.2 Adaptive filters with linear constraints . . ... ... ... .. 5

1.2.3 Adaptive filter with adjustable linear constraints . . . . . . .. 7

1.3 Dissertation Outline . .......................... 7
1.4 Contributions . . . . . .. . . ... ... e e e 8

2 Linearly-Constrained Filter 11
2.1 Introduction . . .. . . . . . i it i i i e e e 11
2.2 Problem Formulation . . . . ... ............ ... ..., 12
2.2.1 Multi-channel FIR Filter . . . . . ... ... .......... 12

2.2.2 Linearly-Constrained Filter . .. .. ... ........... 14

2.3 Specification of Constraint Equations . . . . ... ... ........ 15

vil



viii

23.1 NarrowBandSignal ....................... 16

232 BroadBandSignal . ....................... 17
2.4 Fundamental Subspaces and Closed Form Solutions . . .. ... ... 17
2.4.1 Four Fundamental Subspaces . ................. 18
242 Closed FormSolutions . . ... ................. 18
2.5 Signal-to-NoiseRatio . . ... ...... ... ............ 20
2.5.1 Closed-Form Expressions . . . . . ... ... .......... 21
252 DiIsCUSSION . . . . . v vt i e e e e e e e e e e e e e e 27
2.6 The Addition of Constraints . . . . ... ... ............. 31
2.6.1 RecursiveFormulas . . . . ... .. ............... 31
26.2 Discussion . . . . . . . it e e e e e 33
27 SUmMmMATY . . . . . vt e e e e e e e e e e e e e e e e e e 35
Iterative Algorithms 37
3.1 Introduction . . ... ... .. i ittt 37
3.2 TIterative Algorithms . ... ... ...... ... ... ... . . ... 38
3.2.1 TheConstrained LMS . ..................... 38
3.2.2 The Generalized Sidelobe Canceller . . . . ... ... ... .. 41
3.2.3 The Modified Generalized Sidelobe Canceller . . . . . ... .. 43
33 Comparisons . . . . . . . v i i e e e e e e e e e e e e e e 46
3.3.1 AlgebraicComparison . .. ... .........000.... 46
3.3.2 Geometrical Comparison . . . . ... .............. 49
3.4 Implementation and AnalysisModels . . . . . ... .......... 51
3.4.1 A Unified Implementation Model .. .............. 51
3.4.2 A Unified AnalysisModel . ... ................ 54
35 SUMmMAry . . . . i it e e e e e e e e e e e e e e e e e 57
Implementation of Adaptive Linearly-Constrained Filters 59
41 Introduction . . . . . .. . . . . i i i i e 59
42 Problem Formulation . . . . ... ... ... .............. 60
4.3 Dual Implementation Structure . . .. .. .. ... .......... 61



4.3.1 Canonical FormI ... .. .. .. . & . i i it

43.2 Canonical FormIl .. ......................
4.4 Incorporation of Transformations . ... .. ..............
4.4.1 Non-orthogonal Transformation . ... ... ..........
4.4.2 Orthogonal Transformation . ... ...............
4.4.3 Fast Orthogonal Transformation . . . ... ... ... .....
4.5 Systolic VLSI Architecture . . . . . ... ... ... .. ... . ...
4.6 Comparisons to Previous Work . ... ... ..............
4.6.1 Previous WorkReview . . . ... ... .............
4.6.2 CompariSONS . . « . ¢ ¢ v v v v o v e et e e e e
4.7 SUmMMAErY . . . . . i i it e e e e e e e e e e e e e e e e

Fixed-Point Implementation

51 Imtroduction . . . .. .. ... .. .. i e
5.2 Fixed-Point ImplementationIssues . . ... .. .. ..........
5.2.1 Successive Quantization Procedure . ... ... ........
522 OverflowHandling ... .....................
5.2.3 Alternative Number Representation Systems . . ... ... ..
53 SimulationResults . .. ... ... ....... ... .. ... ...,
5.4 SUMIMATY . . . . v v v vttt e e et e e e e e e e e e e e e e

A Generalization to Linearly-Constrained Filters

6.1 Introduction . . ... .. ... ... .. ...
6.2 Mathematical Groundwork . . . . .. ... ... ... ...... ...
6.2.1 Standard Linearly Constrained Problems . . .. ... ... ..
6.2.2 Generating optimal weights from primitive weights . .. .. .
6.3 An Adaptive Implementation Structure . . . ... ... ........
6.3.1 Adaptive implementation of the weight matrix W, . ... ..
6.3.2 Reconfigurationofg(n). . ... ... .. ............
6.4 SUMMATY . . . v v vttt e e e e e e e e e e e e e e e e e

23
93
95
95
95
96
97
103

109
109
110
112
112
115
116
118
119

ix



7 Summary and Future Research Directions
71 Summary . .. .. it e e e e e e e e e

7.2 Future Research Directions . . . . . . . . v v v v v v i v v e s e e e s

Appendix A



List of Tables

41 Thecomparisontable. ... ....................... 91

xi



List of Figures

1.1

2.1
2.2
2.3

2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

4.2

4.3
4.4

A representation model for adaptive filter with desired signal. . ... 4
The direct form multi-channel FIR filter. . . . .. .. .. ... .... 13
The block diagram of the direct form multi-channel FIR filter. . ... 13

The conceptualized diagram of the weight vector update due to an

additional constraint in (a) the original space, (b) the transformed space. 34

The increase in minimum output power for succeeding stages. . ... 35
The block diagram of constrained-LMS . . . . ... .......... 40
The block diagram of generalized sidelobe canceller . . . ... .. .. 42
The block diagram of modified generalized sidelobe canceller . . . . . 46
The conceptualized diagram of adaptive linearly-constrained filter. . . 52
The conceptualized diagram of the CLMS algorithm. . .. ... ... 52
The conceptualized diagram of GSC algorithm. . ... ... ... .. 53
The conceptualized diagram of MGSC algorithm. .. ... ... ... 53
The unified implementationmodel . . . . .. ... ... ... ..... 58
The unified analysismodel . . . . . .. ... ... ... ........ 58

Two dual implementation structures:(a) canonical form I, (b) canonical

formIL. . . . . . . e e e e 70
The decomposition of (a) the A matrix, (b) the B™! matrix. . . . . . 71
The growth factor analysis plots for complex scale factor. . . . . . .. 76

The VLSI planar array architecture. . . . . . ... .. ......... 84



xiv

4.5

5.1
5.2
5.3
5.4
5.5
5.6

6.1

6.2
6.3

The functional diagram of the (a) internal PEs and (b) boundary nodes
in the VLSI planararray. . . . . .. ... .. ... .. ... ...

Normalized quantization error for the random C matrix example.
Optimal array response for the deterministic C matrix example. . . .
Normalized quantization error for the adaptive array example. . . . .
The magnitude array responses in two’s complement number system.
The magnitude array responses in power-of-two number system. . .

Normalized quantization error for the second adaptive array example.

The implementation structure of the adaptive filter with adjustable
constraints. . . . . . . . . .. ... e e e e e e e
The detailed implementation of the weight matrix W(n). .. .. ..

The reconfiguration of the response vector f(n). . ... ........

86

99
104
105
106
107
108



Abstract

Incorporating linear constraints in adaptive filters has arisen as a new trend to
provide robust filtering operations in signal processing. The mechanism of this class
of adaptive filter is to minimize the output power while constraining the weight values
by a set of linear equations. The constraints are deliberately selected to confine the
weights so that the signals of interest will not be cancelled when minimizing the
filter output power. Through this constrained power minimization process, the noise
power is reduced without distorting the signals of interest and therefore it improves
the signal to noise power ratio at the output.

The basic requirement to utilize the adaptive linearly-constrained filter is to de-
sign the constraints. Appropriately setting up constraints requires the knowledge of
the features regarding the particular signal of interest. Such features can be identi-
fied either through empirical methods, such as using a large set of training signals,
or through theoretical methods, such as using the statistical information about the
signals. After all, the resulting constraints have to effectively prevent the cancellation
of signals of interest when the filter is applied. The second requirement is an adaptive
algorithm to update the weights. To ensure implementation efficiency, it is desirable
to develop implementation structures which are both computationally efficient and
numerically stable.

This dissertation presents some results from the study of the above two require-
ments in adaptive linearly-constrained filters. To develop procedures for constraint
specification and performance evaluation, the understanding of the effect of the con-
straints on the steady-state behaviors of the filter is an essential. Such effect is studied
here through examining the optimal weights, the signal-to-noise power ratios, and the

addition of constraints. On the other hand, a model for implementation is established

XV



based on decoupling the weights into fixed and adaptive portions. By this decoupling,
any unconstrained adaptive algorithm can be used to implement the adaptive-weight
portion. Thus, only the fixed-weight implementation is studied in detailed in which
the addressing issues include implementation structures and quantization effects. In
the final part of this dissertation, a generalization of the adaptive linearly-constrained

filters which allows the constraints to be adjustable is also discussed.



Chapter 1

Introduction

1.1 Motivation

Today’s communication systems are operated in an increasingly noisy environment
due to both growing amounts of traffic and the increased use of wide bandwidth
encoding systems. As a direct result of spectral crowding, modern system must
combat relatively high levels of co-channel interferences. One particularly effective
technique which has been developed for reducing the effects of interfering signals is the
use of adaptive filtering methods. Adaptive filters are able to provide more robust
filtering operations than fixed weight filters in a time-varying environment due to
their inherent ability to adapt to changes in the weighting values within the filter.
Traditional adaptive algorithms such as Recursive Least-Squares (RLS) and
Least-Mean Square (LMS) approaches require the presence of a desired signal to
the filter in which the filter weights are adjusted iteratively so that the filter output
is a least-squares estimate of the desired signal. In [1, 2], several methods have been
presented to select desired signals in various applications. In general, selecting a de-
sired signal in the conventional adaptive filter for a particular application is always
a difficult problem and therefore inevitably places a limitation in the applicability of
the filter. To overcome this limitation, Griffiths proposed a simple adaptive algorithm
in [3]. This algorithm is a modification of the LMS algorithm and is also known as

the P-vector algorithm. A significant advantage of the P-vector algorithm is that it
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has the same simplicity as the LMS algorithm while it does not require a desired
signal. Instead, it utilizes the information about the cross-correlation between the
desired signal and the filter input for updating the filter weights. It was shown in [3]
that this cross-correlation information is usually known a priori or can be estimated

easily in the application of antenna arrays.

A more recent technique to combat with the desired signal problem in adaptive
filter is to incorporate linear constraints in the filter [4]. This technique has received
significant interest in the signal processing and communication communities due to
its wide applicability in the general area of wide bandwidth communications. In this
dissertation, this particular class of adaptive filter is termed the adaptive linearly-
constrained filter. In general, an adaptive linearly-constrained filter can be formulated
as iteratively searching the optimal weights which minimize the filter output power
subject to a set of linear constraints. The linear constraints are pre-selected to confine
the weights so that the output power contributed by the desired signal retains less
distortion than that of the noise when the filter weights converge. By this mean,
the ratio of signal to noise power is improved via the filter. Clearly, some a priori
knowledge must be available regarding the feature of the desired signal. Otherwise,
there is no means of identifying the desired signal. Comparatively, obtaining this a
priori knowledge is usually easier than getting access to the desired signal itself in

most application.

The linear constraint method is more general than the P-vector method since
more than the cross-correlation information can be incorporated in the filter. In fact,
it was shown in [5) that the P-vector algorithm can be alternatively implemented
by an adaptive linearly-constrained filter with one single constraint. However, using
multiple constraints is far more robust and flexible than using single constraint in

solving adaptive problems when a desired signal is not available.

The work in this dissertation is motivated to provide an integrated investigation
of the adaptive linearly-constrained filter. However, it would be impossible to cover
all important issues associated with the adaptive linearly-constrained filter in a dis-

sertation of reasonable size, hence only those which serve as fundamental principles
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toward understanding filter performances and those which have potential extension
toward future applications are selected in this dissertation. In accordance with this
philosophy, this dissertation is organized under two major topics: Principles and Im-
plementations. By understanding the principle part one should be able to obtain some
guidelines to design constraints and to evaluate the filter performance for his/her in-
terested application, and by understanding the implementation part one should be
able to realize his/her system with an optimal trade-off between complexity and per-

formance.

1.2 Adaptive Filtering

This section provides an overview of the development of adaptive filtering starting
from adaptive filters with desired signals, to those with linear constraints, and finally,
to those with time-varying linear constraints. We show that these three evolutionary
steps represent a natural extension from one to the next when viewed from linearly-

constrained minimization standpoint.

1.2.1 Adaptive filters with desired signals

A typical model for representing an adaptive filter with desired signal is shown in
Figure 1.1.  The input vector x(n) linear combines with the weight vector w(n) to
produce an output signal y(n) which provides a least-squares estimate of the desired
signal d(n); the error signal e(n) is formed by the difference of d(n) and y(n) and is
used to adapt the filter weights toward optimality. Generally, x(n) is modeled as a
stationary stochastic vector with zero mean and covariance matrix R;;. As a least-
mean-squares estimator of d(n), the filter reaches its optimality when the mean value

of w(n) reaches the Weiner solution which is given by
Wweiner = R;;P:cd (11)

where P4 is the cross correlation between x(n) and d(r).



Desired
signal

Filter d(n) Error

Input Weight
vector vector

X(n)

w(n)

Figure 1.1: A representation model for adaptive filter with desired signal.

This conventional model has been widely used in the literature for analyzing
adaptive filtering [6, 7). The analysis is usually preformed from a vector space point
of view in which the filter weights at any time instance is considered as a vector
in a N-dimensional vector space where N is the size of the system. The update
of the weights then corresponds to the movement of one vector to another in the
vector space such that the magnitude of the error signal is reduced in a mean-square
sense. A particularly simple algorithm for adapting the weights is the well-known
LMS approach [8] which is based on a stochastic gradient search in the vector space.

To relate the conventional adaptive filter to a linearly-constrained problem, we
can view the desired signal d(n) as part of the input to the filter and increase cor-
respondingly the dimension of the filter weight by one. To this end, we concatenate

d(n) and x(n) to form a new input vector to the filter,

s(n) = | 4™ } (1.2)

x(n)

and denote the new weight as

~w(n)

w(n) = [ o ] : (1.3)

Clearly, to keep the filter unchanged by this reformulation we need to restrict the

first component of the new weight to be unity. This can be done by restricting W to
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satisfy the following equation,

ctw=1, (1.4)
where o
1
0
c=| . (1.5)
- 0 -

and the superscript ¥ denotes the Hermitian transpose. Under this constraint, the
error signal e(n) is given by

e(n) = Wi(n)x(n). (1.6)

As a result, we can formulate the conventional adaptive filter as a linearly-constrained

minimum power problem defined by iteratively finding % which minimizes
WiR,, W (1.7)

subject to the linear constraint given in (1.4), where R, is the covariance matrix of

X.

1.2.2 Adaptive filters with linear constraints

As mentioned earlier that by formulating the desired signal as one component of
the input vector to the filter we can use a simple constraint to retrieve the desired
signal from the filter input. Such a simple constraint is beneficial, however, only
when the desired signal appears explicitly in the filter. Otherwise, the constraint
is too simple to be useful in most applications. An extension of the conventional
adaptive filter is therefore needed to cope with problems in which the desired signal
is not explicitly presented. Under these circumstances, we need to incorporate more
elaborated constraint to extract the desired signal from the input vector.

The first example of using more intricated constraint to avoid the need of desired
signal was the P-vector algorithm presented in [3]. Instead of using a desired signal,

the P-vector algorithm utilizes the cross-correlation information between the desired
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signal and the input vector for weight adaptation. Although not noted in the original
work, it was shown in [5] that the P-vector algorithm in fact implements a linearly-
constrained minimum power problem in which the cross-correlation vector between
the input vector and the desired signal is used as the constraint vector. This algorithm
has been found useful in extracting narrowband signal in broadband noise background
in which the cross-correlation information is known or can be estimated easily.

In some applications, however, single constraint may not be sufficient to extract
the desired signal. This suggests a generalization to the linearly-constrained minimum

power problem with multiple constraints. We define this problem as
min wiR_ . w (1.8)

subject to M linear constraints,

Ctw=Tf. (1.9)

The constraint matriz C contains M column vectors while the response vector f
specifies the corresponding constraint value for each vector. Without loss of generality,
the matrix C is assumed full rank. A filter which iteratively solves this constrained
problem is termed the adaptive linearly-constrained filter.

The application of adaptive linearly-constrained filters has been widely studied
in the area of adaptive beamforming in array signal processing [9, 10, 11, 12, 13].
These studies can be generally divided into two major concerns, one is the principle
of incorporating the constraint and the other is the implementation of the filter. In
the previous work, several approaches have been proposed to construct the constraints
which require only that the direction of arrival and a frequency band of interest be
specified a priori.

This dissertation pursues studies in both the principle and implementation of
adaptive linearly-constrained filters with the effort of providing general guidelines
and leading to new applications in this topic. We analyze some important aspects
of the steady-state behavior of the linearly-constrained filter, including the optimal
weights, the signal-to-noise ratios, and the addition of constraints. The understanding

of these properties is important since it helps evaluate the steady-state performance
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for a particular application. Transient-state properties such as convergence rate and
misadjustment are not discussed in this dissertation since, as will become clear in later
chapters, they are basically the same as those of the conventional adaptive filter for
which these properties have already been well-studied in the literature [6, 14, 15, 7, 16].
We also compare three iterative algorithms for solving the linearly-constrained mini-
mum power problem with multiple constraints as defined earlier. Efficient structures
based on the simplest iterative algorithm of the three are then derived to implement
adaptive linearly-constrained filters with arbitrarily given constraints. Quantization

studies on these structures are also given.

1.2.3 Adaptive filter with adjustable linear constraints

A remaining issue studied in this dissertation is to generalize the linearly constrained
filter such that the righthand sides of the constraint equations are adjustable. This
corresponds to incorporating a time variable n in the response vector f in the speci-
fication of constraints:

Ctw = f(n). (1.10)

An adaptive filter with this type of time-varying constraints is termed as having
adjustable linear constraints. An efficient structure is presented in the dissertation to
implement this type of adaptive filter. Further study is required to exploit possible

applications of adaptive filters with adjustable constraints.

1.3 Dissertation Outline

In Chapter 2 of this dissertation, the adaptive linearly-constrained filter is formulated
as a minimization problem with linear constraints. Examples are given to illustrate
the selection of constraints for both narrow and broad band signals. The steady-state
performances of adaptive linearly-constrained filters including the optimal weights,
the signal-to-noise ratios, and the addition of constraints are studied in detail.

In Chapter 3, three iterative algorithms for implementing the adaptive linearly-

constrained filter are compared. This comparison is motivated to provide a clear
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insight into the algorithms from both algebraic and geometric standpoints. It is shown
that under certain conditions these three algorithms are identical in both transient
and steady states. Two models, one useful for implementation while the other useful
for analysis, are then established to represent the adaptive linearly-constrained filter.

In Chapter 4, two structures are derived to implement the adaptive linearly-
constrained filter. The option of using one of these two structures guarantees imple-
mentation efficiency for a filter with either small or large number of constraints. A
VLSI systolic array architecture is also presented to implement these structures.

In Chapter 5, quantization issues of implementing the adaptive linearly con-
strained filter in fixed-point are addressed. Simulation results are used to demonstrate
the effect of quantization noise using both random and deterministic constraint ma-
trices.

In Chapter 6, the implementation of adaptive filters with adjustable constraints
is addressed. This implementation is an extension of the implementation structures
in Chapter 4.

In Chapter 7, the dissertation is summaried and future related research topics

are outlined.

1.4 Contributions

The main contributions of this dissertation are outlined in the following.

1) Derive closed-form expressions for the optimal weight of a linearly-constrained fil-
ter based on the square-root decomposition of the data covariance matrix. These
expressions provide valuable insight to algorithm development in linearly-constrained
filters.

2) Derive useful lower and upper limits for the optimal output signal-to-noise (SN R)
ratio of a linearly-constrained filter. Define two factors which measure the ratios of
the actual SNR to its lower and upper limits, respectively. It is shown that these
two factors can be bounded in terms of the jammer-to-white noise ratio (JNR) at

the input and several other places in the filter. By estimating the JN R, the bounds
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on the two factors can be used to predict the performance of the adaptive linearly-
constrained filter in a particular noise environment.

3) Derive recursive formulas to update the optimal weight and output power expres-
sion when an additional single constraint is added to the linearly-constrained filter.
These formulas clearly indicate the effect of adding constraints to the filter.

4) Provide a unified view of three iterative algorithms used to implement the adaptive
linearly-constrained filter. Conditions under which these three algorithms are identi-
cal are established.

5) Develop two structures to implement the adaptive linearly-constrained filter with
small and large number of constraints, respectively. Various transformations such
as Gauss transformation, Householder transformation and Givens rotation, can be
used in the two structures to obtain computationally efficient and numerically stable
implementations.

6) Establish several performance measures for studying the quantization noise in the
adaptive linearly-constrained filter. Introduce a simple arithmetic — Power-of-Two
— to reduce the hardware implementation cost of an adaptive linearly-constrained
filter while maintaining acceptable quantization error.

7) Propose a generalization of the adaptive linearly-constrained filter by allowing
the linear constraints to be time-varying. An efficient structure is also derived for

implementation.



Chapter 2

Linearly-Constrained Filter

2.1 Introduction

The linearly-constrained filter is referred to here as a FIR filter with its weights being
constrained to satisfy one or more linear equations while minimizing the filter out-
put power. Such filters have been widely used as optimal receivers in array signal
processing [9, 10, 11, 12, 13]. With the purpose of providing some guidelines for its
performance analysis and extending the application to the general area of digital sig-
nal processing, this chapter studies the performance of the linearly-constrained filter
and some of its interesting properties. The study is only conducted with the filter in
steady-state even though linearly-constrained filters are practically implemented in
an adaptive manner. Transient-state properties such as convergence rate and misad-
justment are not discussed here since, as will become clear later in the thesis, they
are basically the same as those of the conventional adaptive filter for which these
properties have already been well-studied in the literature [6, 14, 15, 7, 16].

In this chapter, the analysis of the linearly-constrained filter is mainly based on
the use of linear algebra techniques. The linearly-constrained filter is first formulated
as a minimization problem with linear constraints in Section 2.2. In Section 2.3,
we present two simple examples to illustrate the idea of constraint specifications for
both narrow band and broad band signals. Three subsequent sections are respectively

devoted to studying the optimal weights, the signal-to-noise ratios, and the addition
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of constraints in the linearly-constrained filter. In the summary section, we make

some remarks concerning the use of results obtained in this chapter.

2.2 Problem Formulation

2.2.1 Multi-channel FIR Filter

Figure 2.1 illustrates a direct form multi-channel FIR filter with K sensors and L
tapped-delay lines. At each snapshot, the data appearing at the K sensors form a

K-dimensional data vector designated as

z1(n) |
xm=| " | 1)
| zx(n) |
This vector is termed the filter snapshot vector. Since each sensor has a tapped

delay-line of length L, we can form a K L-dimensional vector termed the stacked

snapshot vector. This is denoted by

x(n)

x(n—1)

x(n) = (2.2)

| x(n—L+1) |

In this dissertation, the data are assumed to be complex-valued for generality. The
complex data may have resulted from the use of in-phase/quadrature-phase modula-
tion. The output of the filter is given by the inner product of the stacked snapshot

vector and the K L-dimensional complex valued weight vector w(n), that is,

y(n) = wh(n)x(n) (2.3)

where the notation ! denotes the Hermitian transpose. Note that it is the complex

conjugate of w(n) rather than w(n) which operates on the data. Denoting the weight
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Figure 2.1: The direct form multi-channel FIR filter.

Input data
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w(n)
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Figure 2.2: The block diagram of the direct form multi-channel FIR filter.
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vector in this way is convenient since it expresses the output as the inner product of
two vectors in both complex and real cases.

This multi-channel filter is represented by the block diagram in Figure 2.2. The
input data, x(n), is a N-dimensional (N = K L) vector and the filter output, y(n), is
the inner product of x(n) and the weight vector w(n). Depending upon the particular
application, the optimal weight vector w(n) is selected according to some specified

criterion.

2.2.2 Linearly-Constrained Filter

Linearly-constrained minimum variance is a commonly used criterion: the power of
the filter output is minimized subject to a number of linear constraints on the weight
vector. The resulting filter is termed the linearly-constrained filter. To formulate the

linearly-constrained filter, we define a minimization problem as

min wiR,.w, (2.4)
subject to M linear constraints,
Clw=f. (2.5)

The term R is the covariance matrix of the N-dimensional complex random input
vector x(n) (assumed zero mean). The constraint matrix C contains M possibly
complex column vectors while f specifies the corresponding constraint value for each
vector. Without loss of generality, the matrix C is assumed full rank.

Although the matrix C may not necessary be an orthogonal matrix in general, it
is sometimes more convenient to express C as an orthogonal matrix. (By orthogonal
matrix we mean a matrix with orthonormal columns.) In the following, we outline the
procedure for reformulating the constraint equations so that the constraint matrix is
orthogonal.

Let the QR decomposition of C be

C=QR (2.6)

14



where Q is an orthogonal matrix and R is a triangular matrix. Substituting this

equation into the constraint equation Ctw = f, we have
RiQiw =f. (2.7)

The full rank property of C ensures that R is invertible. Thus, the above equation
can be rewritten as
Qtw = (RH)1. (2.8)

This constraint equation with (R)~f as the response vector and Q as the constraint
matrix is equivalent to the original constraint equation. Thus, we can assume that
the constraint matrix is orthogonal without loss of generality.
It was proved in [9] that the optimal solution to the minimization problem defined
in Eq.(2.4) and (2.5) is
Wop = RZIC(CIRSIC) Y. (2.9)

Using this equation, we can compute the optimal weights if the terms R;,, C and f
are given. In most practical applications, however, the signal environment in which
the filter operates is unknown or time-varying and signal statistics such as signal
covariance matrix cannot be determined in advance. It is therefore necessary to
update the weights in the linearly-constrained filter according to the current signal
environment. As a result, the design of the linearly-constrained filter essentially
consists of two parts. The first is to set up the constraint equation specified by
C and f using some a priori information about the signal environment; the second
is to construct a rule to adjust the filter weights according to the current signal

environment.

2.3 Specification of Constraint Equations

The purpose of the linearly-constrained filter is to reject the jammer and white noise
components of x while retaining the desired signal portion. The significant feature of
the linearly-constrained filter is that a portion of the filter response is held fixed and

the remainder allowed to adapt. The dimension of the weight vector determines the
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total degrees of freedom of the filter response. Some of the degrees of freedom are
reduced by a set of linear constraints on the filter coefficients. The constraints are
selected according to given prior knowledge and the remaining degrees of freedom are
used to adjust the filter coefficients during operation in the actual signal environment.
Specification of the constraints is based on a fixed-weight system design which uses
the best available e priori information. Essentially, this process is identical to that
conducted when system designers specify a non-adaptive filter structure. This section
illustrates two examples of constraint specification for the cases of narrow-band and
broad-band desired signals. More details on constraint specifications can be found in
[10, 17, 18, 12, 13].

2.3.1 Narrow Band Signal

Consider the case in which the desired signal s is a single-source narrow band signal.

Its covariance matrix is a rank one matrix represented by
R,, = o’vvi. (2.10)
The filter output power contributed by s then equals
wiR,,w = o?|viw|. (2.11)
A typical constraint for this case requires
viw =1. (2.12)

Observe that the output power contributed by s is held fixed under this constraint.
Thus, minimizing the total output power subject to the constraint minimizes the
noise power at the filter output.

Equation (2.12) requires the filter response to have unity gain at the direction
specified by v. Specification of v depends upon the particular application. For
instance, in array processing the vector v corresponds to the direction that s impinges
on the array. In this case, the knowledge of array geometry and the arrival direction

of s are sufficient to compute v.
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2.3.2 Broad Band Signal

In the broad band case the covariance matrix R,, is, in general, a positive definite

matrix of rank N which can be represented by
R,, = VZV! (2.13)

where the columns of V are the eigenvectors of R,, and the diagonal elements in the
diagonal matrix X are the corresponding eigenvalues of R,,. The concept of eigenvec-
tor constraint was introduced in [13] by choosing the M eigenvectors corresponding
to the M most significant eigenvalues of R,, to form the constraint matrix C. The
response vector f is then chosen as the best least-squares estimate of a pre-specified
desired filter response. The a priori information needed to set up this type of con-
straint requires knowledge of R,;. An estimate of R,, can be used if the exact R,, is

not available.

2.4 Fundamental Subspaces and Closed Form So-

lutions

In general, the input data vector x in the linearly-constrained filter can be expressed

as the sum of three components,
x=s8+j+n (2.14)

consisting of the desired signal (s), the jammer (j) and the white noise (n). These
three components are assumed to be zero-mean and statistically independent. The
covariance matrix of x therefore equals the sum of the individual covariance matrices,
ie.,

R, =R, + R;; + 721 (2.15)

where o2 is the white noise power.
In this dissertation, the investigation of the linearly-constrained filter is based

upon the analysis of vector spaces induced from the covariance matrix R, and the
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constraint matrix C. To facilitate the presentation thereafter, four fundamental sub-
spaces and several closed form expressions for the optimal weights in the lLinearly-

constrained filter are examined in this section.

2.4.1 Four Fundamental Subspaces

The four fundamental subspaces in the linearly-constrained filter are defined as fol-

lows:

Signal space: The vector space spanned by the columns of R,,.
Jammer space: The vector space spanned by the columns of R ;;.
Constraint space: The vector space spanned by the columns of C.

Constraint Orthogonal space: The orthogonal complement subspace of the con-

straint space.

A full rank matrix W, satisfying the condition
wiCc=0 (2.16)

is used to specify the constraint orthogonal space and is termed the blocking matriz.

2.4.2 Closed Form Solutions

In addition to the closed-form solution in Eq.(2.9), w,,: can be expressed in the

alternative form
Wopt = Wq — Wo(WIRzzWa)-IWIRzqu (2.17)

where

w, = C(C'C)-'f (2.18)

is the optimal solution under conditions of white noise input and W, is the blocking
matrix. Unlike Eq.(2.9), Eq.(2.17) expresses the optimal weights using the blocking

matrix W, instead of the constraint matrix C. In the next chapter, this expression
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plays an important role in developing an effective iterative algorithm, the Generalized
Sidelobe Canceller (GSC), to implement the adaptive linearly-constrained filter.
The alternative optimal weight expression is based on the following matrix iden-
tity:
I- W,(W!R,,W,)"WIR,, = R;JC(C'R_}C)™'Ct. (2.19)

The proof of this identity is given as follows. Let H be the square root of R.., i.e.,
R., = HH' (2.20)

The left-hand side of the matrix identity can be rewritten as

I-W,(WiIR,, W, '"WIR,, (2.21)
= (HY'H'- W, (WIHH'W,)*WIHH! (2.22)
= (H)I- H'W,(WIHH'W,)'WIH]H! (2.23)
= (HY)'[I- Py, JH (2.24)

where Py, is the projection matrix specified by H'W,. And the right-hand side

of the matrix identity can be rewritten as

R;Ic(CtR;lC)ICt (2.25)
= (HHY)-'C[C'HH")'C]"'Ct (2.26)
= (HH-'H'Cc[C'(HY)'H !C]'Ccl(H)tH! (2.27)
= (HHY 'Py-cH! (2.28)

where Py-1¢ is the projection matrix specified by H™'C. Since

HW,)H™IC = W!C (2.29)
= 0, (2.30)

It follows that
I- PH‘W. = PH“G- (231)

Equations (2.24) and (2.28) are then equal and the proof of the matrix identity is
completed. Multiplying both sides of Eq.(2.19) by w, proves that Eq.(2.9) and (2.17)

are equal.
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From the proof of the matrix identity, the optimal weights of the linearly-

constrained filter can be expressed as

Wopt = (Ht)_lPH-chqu (2.32)
= (HY)'I- Py, Hw,. (2.33)

These two forms will be used in Chapter 6 to derive the generalized linearly-constrained
filter.

2.5 Signal-to-Noise Ratio

A particularly important performance measure for a linearly-constrained filter is the
output signal-to-noise ratio (SNR) when the filter has converged to the optimal
weights. As shown in Eq.(2.17), the optimal weight vector can be split into the sum
of two components. The first component, w,, is independent of R, and therefore
exists as an explicit fixed-weight entity in the filter. Consequently, when R, is
unknown only the second component needs to be implemented adaptively. (Iterative
algorithms will be discussed in the next chapter.) The improvement of the SNR
yielded by adaptively searching for the optimal weights according to the input data
statistics can therefore be examined by comparing the SN R of the filter with w,,,
and w, as the filter weights. The understanding of this improvement is important
since the system designers should consider this improvement as the cost-benefit trade-
off factor when comparing the use of fixed-weight conventional filter versus adaptive

linearly-constrained filter.

In Section 2.5.1, we derive the closed-form expressions for the SN R of the filter
with w,,; and w, as weights, respectively. A detailed discussion of the lower and
upper bounds of the optimal SNR for all possible signal environment is given in
Section 2.5.2.
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2.5.1 Closed-Form Expressions
Definitions and Assumptions

The optimal weight vector can be decomposed into two components:
Wopt = Wgq — W, (2.34)

where w, is the quiescent weight vector and w, is the negative projection of w,p

onto the constraint orthogonal space, i.e.,
W, = _Pwswopt- (235)

The term P,,, denotes the projection matrix specified by the blocking matrix W,.
From Eq.(2.17) it follows that

w, = W, (WIR_,W,) "WIR_,w,. (2.36)

Note that decomposing w,,; in this way separates the optimal weight vector into a
data independent portion w, and a data dependent portion w,.
Let the covariance matrix R,, be the sum of two components corresponding to
its signal and noise portions:
R..=R,;+R,, (2.37)

where the term
R.. =R;; + 031 (2.38)

corresponds to jammers and white noise. Denote the ranks of R,, and R;; as
r, = rank(R,,) and r; = rank(R;;). (2.39)

Assuming the matrices R,, and R;; are non-negative definite, we can therefore de-
compose them as
R,,=H,H! and R;;=H;H! (2.40)

where H, and H; are both full rank and of sizes N x r, and N x r;, respectively. To

avoid R, to be singular, we also assume that ¢2 is non-zero.
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Define the matrix A and the vector b as
A=P,H; (2.41)
and
b = Hlw,. (2.42)
The rank of A, denoted by r, must satisfy
r < min(rj, N - M), (2.43)
where N — M is the rank of P,,. Let the singular value decomposition of A be
A=U3,V! (2.44)
where X, is a N X r; matrix of the form

2. 0
0 0

5, = : (2.45)

The matrix X, is a diagonal matrix containing the non-zero singular values of A and
is denoted by
3, = diag(01,02,+++,0,). (2.46)

To simplify the derivation of the signal to noise ratio, two assumptions are made.
The first assumption is that the projection of the signal s onto the constraint orthog-

onal space is zero, that is,
P..H,=0. (2.47)

This assumption is satisfied if all the power of 8 is preserved in the constraint space.
If the rank of H, is less than or equal to the number of constraints (M), it is possible
to select the constraint matrix C so that this assumption is fully satisfied. Otherwise,
we can choose C so that the assumption is approximately satisfied when R,, has no
more than M significant eigenvalues. The second assumption is that the blocking
matrix is orthogonal, i.e.,

wWiw, =1 (2.48)

We can make this assumption without loss of generality since the SN R depends on

Wopt but not the specific form of W,.
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Expression for w,

Theorem 1 Under the two assumptions mentioned above, W, can be expressed as
w, = U,SVIb (2.49)

where S is a N X r; matriz of the form

S, 0
S=[0 0}. (2.50)

And the diagonal matriz S, has positive diagonal elements given by,

= 1 g g ce e g
S, = diag(—1, ;gf;z, , ;z;?n')- (2.51)

0'1 +Un

Proof: Using the two assumptions mentioned above and the fact that Wiw, = 0, it

is easy to verify that
WIR,. W, =021+ WIR;;W, (2.52)

and

WIR,.w, = WIRj;w,. (2.53)
Thus, the expression for w, in Eq.(2.36) becomes
w, = W,(a2I+ WIR;;W,)'WIR,w, (2.54)
or, equivalently,
w, = W,(o2I+ WIH;H!W,)'WIH,H!w,. (2.55)

Using the Sherman-Morrison formula [19], the matrix inverse in the above equation
equals
LI - LWIH; (02T + H!W,W!H,)'H!W,. (2.56)

Substituting this into Eq.(2.55) shows that

W, = LW, WIH,;Hlw, — LW, WIH,(0}I + HIW, WiH,)" HIW, WiH,Hw,.
n n
(2.57)
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From the definitions of A and b and the fact that
Py, = W, Wi, (2.58)
Equation (2.57) becomes
W, = ;IEA[I —(02I4+ ATA)'ATAD . (2.59)

Using the singular value decomposition of A, the bracketed term of the above equation
simplifies to
V.DV!, (2.60)

where D is a r; x r; diagonal matrix given by

i o2 a2 o2
D= dzag(;ﬁl;z, ;g-_-l_';g, TN ;3:_“‘;5, 1,---,1). (2.61)
Therefore,
W, = ;‘EAV.,DV';b. (2.62)
In addition, since
AV, =U,Z,, (2.63)

the above equation becomes
W, = ;lfuaznnvlb. (2.64)
Since the diagonal matrix S defined in Eq.(2.50) satisfies
S=24%,D, (2.65)
aﬂ
the vector w, can be expressed in the form of Eq.(2.49).

Q.E.D.

Expressions for SNR

Theorem 2 Letthe SNR of the linearly-constrained filter with w as the weight vector
be defined as
wiR,,w

SNR = "Row

(2.66)
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Then, the closed-form ezxpressions for the SNR with w = W, W = w, are given by

wiR,w
a) SNR,; = i | , 2.67
(@) "~ wi(e2I+H,;V,DViH)w, (2.67)
IR
() SNR, = ——i 0 __ (2.68)
wi(ox I+ H;H))w,

Proof: Using the decomposition in Eq.(2.34) for w,,, we can express the output

power contributed by the signal as
wzp,R,,wop, = w!R,,w, + wIR,,w, — wIR,,w, — wiR,,W,. (2.69)
The last three terms are zero because of the assumption that P,,H, = 0. Thus,
Wl Ry Wopt = WiR,, W, (2.70)

We can also express the output power contributed by the noise as

W RanWopt = o2wiw, + o2wiw, + wh H;Hiw,. (2.71)
Since
Hlw,, = Hiw,-Hiw (2.72)
g Wopt = ive 3o .

= t
= b-H}w, (2.73)

= 1
= b-H]P,w, (2.74)
= b-Alw,, (2.75)

the last term of Eq.(2.71) equals

lIb— Atw,|[3 (2.76)
where || - || denotes the vector 2-norm. As a result, the signal to noise ratio when
W = W,y i8 given by

wiR,,w
SNR,, = = 7 (2.77)

o2wiw, + o2wiw, + ||b— Atw,||3’
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The above SNR expression can be further simplified by substituting w, in

Eq.(2.49) into the last two terms of the denominator. The first of these terms becomes

oiwtw, = o2b'V,stUlU,SVID (2.78)
= o2b'V,$?Vib (2.79)
since U, is an orthogonal matrix. (In the above expression, S? is an abbreviated

notation for S'S. This abbreviation will be used hereafter without further notice.)

In addition, since

b-—A'w, = b—A'U,SVIb (2.80)
= b-V,ZlUlU,SVib (2.81)
= b-V,Zisvib (2.82)
= V,(I-X!S)Vib, (2.83)

the second term becomes
Ib — Atw,|)? = b1V, (I- Z!8)*V!b. (2.84)
Therefore,

a2wiw, +||b— Atw,|2 = blV,[028% + (I- Z!S)*Vib (2.85)
= wiH;V,[028? + (I- =iS)YJVIHIw, (2.86)

The bracketed matrix sum in above equation is a diagonal matrix which can be verified
to be equal to the matrix D defined in Eq.(2.61). Thus, the SN R,,; can be expressed
as in Eq.(2.67).

From Eqs.(2.38) and (2.40),

wiR,.w, = wi(o21 + H;H!)w,. (2.87)
It follows that the SNR for w = w, is given by Eq.(2.68).
Q.E.D.
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2.5.2 Discussion

Equation (2.34) shows that the optimal weight vector of a linearly-constrained filter
can always be decomposed into two components, w, and w,. Since w, is the optimal
weight when the input vector x has no jammer, component w, serves to reject the
jammer but not the white noise. Hence, when the input vector consists of both
jammer and white noise, using w, increases white noise power at the filter output.
W,, which provides minimum noise power output, finds the optimum trade-off between
increased white noise power output and decreased jammer noise output. Clearly, this
trade-off depends on the input jammer to white noise power ratio (JNR). In the
following discussion, we study how this trade-off affects the output signal to noise
ratio of the filter. To provide a quantitative study, we first consider the upper and
lower limits on the output SN R for all possible noise environments. We then define
two factors which measure the ratios of the actual SV R to its lower and upper limits,
respectively. We show that these two factors can be bounded in terms of the JNR
at the input and several other places in the filter. By estimating the JNR we can
therefore use the bounds on the two factors to predict the performance of the adaptive

linearly-constrained filter in a particular noise environment.

Jammer to white noise ratios

Consider the input noise covariance matrix R, in Eq.(2.38). We define the JNR
at the filter input as the ratio of the maximum eigenvalue of R;; to the white noise
power, that is,

JNR;, = m}”)
We also define two other types of JNR in th:al filter, JNR, and JNR;, which are
induced from the weight vector w, and the projection matrix P, respectively. JN R,

is defined as

(2.88)

wiR..w
_ Q=32 "¢
JNR, = —_af,wgwq . (2.89)
and the JNR; are defined as
2
JNR,-=Z—; fort=1,2,---,r (2.90)
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where o7 is the i_th largest eigenvalue of the matrix PR ;;Py, (or AA"). The
maximum value of JNR; for i = 1,2,---,r is denoted by JNR ...

The lower and upper bounds of SNR,,;

By comparing Eq.(2.67) with Eq.(2.68), one can see that the only difference between
SNR,,; and SNR, is the second term in the denominator. Rewriting the second term
in the denominator of SNR, as

wiH,; V. IVIH!w, (2.91)

shows that the corresponding term in SN R, can be obtained by replacing the iden-
tity matrix I with the diagonal matrix D. The difference in SN R between using w,
and w,,; as the weight vectors of the linearly-constrained filter therefore depends on
the diagonal matrix D. Since the main diagonal elements of D are non-negative and

have values less than or equal to 1,
SNR,, > SNR, (2.92)

for any R;..
On the other hand, we can bound SNR,,; by replacing the second term of the
denominator of Eq.(2.67) with zero. This can occur when there is no jammer at the

input or when the weight vector w, is orthogonal to H;. As a result,

wiR,,w,
SNRopg S SNR,mw = 2_f_' (2.93)

oawliw,
We define a factor §; as the ratio of SNR,,, to SNR,:

_ SNRoy

b SNR,

(2.94)

This factor indicates the degree of SN R improvement due to the inclusion of w, in

the optimal weight. Similarly, we can define another factor §,, as the ratio of SN R,
to SNRop¢:
SNRy,x

bn = SNR.,"

(2.95)

28



which measures how far away is the SN R, from its upper bound. In the following,
we derive the bounds for these two factors in terms of the jammer to white noise
ratios as defined above.

Using Eq.(2.67) and Eq.(2.68), one has

t(o2I + H.H!
b= — “2'9("" + ’1‘”’; . (2.96)
wi(oaI+ H;V,DVIH}w,
In addition, using the fact that
D=1I-3!s (2.97)
the denominator of §; can be rewritten as
wi(o2I+ H;H))w, — w!H;V,S{sViH!w, (2.98)

where the numerator of & appears explicitly as one term of the denominator. It is

then easy to verify that § can be expressed as

a;

bi=1+— ” (2.99)
where wiH, V. ZisViHiw
o= —l 22 3 3 (2.100)
wi(o2I+ wiH;H)w,
Alternatively, a; can also be expressed as
b'V,2!SVib/bb
a = wiw / (2.101)

%l t!

where b is defined in Eq.(2.42). Since the non-zero terms of the diagonal matrix X3!S

are given by
o? JNR;

3

o?+o2 1+JNR;
and the first term in the denominator of Eq.(2.101) is given by

for :=1,2,---,r, (2.102)

1

TNE (2.103)
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we have

o< INBrez: _JINR,
'=14¥JNRm.: 1+JNR,

(2.104)

Since §; is a monotonically increasing function of ¢y, it is correspondingly bounded

by
JNRpe - JNR,
14+ JNRy.. + JNR,

In addition, since JNR, and JNR,,,, are both no greater than JNR;,, § can also

be bounded by the input jammer to noise ratio as

<14 (2.105)

2
5 <1+ JNR;,

< T32JNR. (2.106)

Proceeding in a similar fashion, we can derive a bound on §,, in terms of
JNR, and JNR;,. Directly substituting the expressions for SN R,,: and SN R, in

Eqs.(2.67) and (2.93), respectively, one has

_ oawiw, + wiH,V.DViHlw,

) (2.107)
" oiwlw,
Or, alternatively,
'H,V,DViH!w
IS W e A i A} (2.108)
oawlw,

To obtain a bound on é,,, the second term of the above equation is expressed as a

product of two terms:

tgrt t
wiH;V,.DV Hiw, wiH;H}w,
wiH,Hlw, TAW W,

(2.109)

The first of these terms is bounded by unity since the maximum eigenvalue of VaDVI
is less than or equal to one, and the second equals JNR, by definition. Thus, the
value of §,, is bounded by,

6m < 1+JNR, (2.110)
< 1+ JNR;, (2.111)
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2.6 The Addition of Constraints

In this section, we discuss the effect of adding constraints to the linearly constrained
filter. We derive recursive formulas to update the optimal weight and output power
expression when one single additional constraint is added and provide an interpreta-

tion of these recursive formulas.

2.6.1 Recursive Formulas
Let the constraint equation of a linearly-constrained filter be denoted as
Clw=f, (2.112)

where C; has 7 columns. We add one more constraint to this filter by appending a

column vector ¢;;; to C; and an element f;;; to f;. The new constraint equation is

C!+1W = fina (2.113)
where
Cin1 =[C;i cip] (2.114)
and
fis1 = B, (2.115)
fin

The matrices C; and C,,, are assumed orthogonal for convenience.
Let w; and w;;; be the optimal weights of the filter before and after adding the
constraint, respectively. It is shown in Appendix A that w;;; can be obtained from

w; via the following recursive formula:
Win1 = Wi + (finn — el wiwe,, (2.116)

where
Weipr = (Hf)_lp,’.’.]HtCH.l. (2.117)

The term P;,, is the projection matrix specified by H™'C;y; and H is the square-root

of the covariance matrix R.,. The vector w,,,, is actually the optimal weight of the
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filter with the constraint,
Claw = e, . (2.118)
where e;y; is a vector having unity as its (¢ + 1)_th element and zeros elsewhere.
Multiplying both sides of Eq.(2.116) by H', we have
H'wiyy = H'wi + (fin -l wi)Htw,,,,. (2.119)
The right-hand side of the above equation is the sum of two orthogonal vectors, which

can be proved by examining their inner product,
wl Ro.w;. (2.120)

The scaler term, f;;; — cL_lw,-, is omitted in above expression since only the angle

between the two vectors is important. Using the expression for the vector w,,, in
Eq.(2.117), one has

wlmme,- = chlHP,-HH'lR,,,w.- (2.121)
= c:t+1Rzz(Ht)—1Pi+lH1Wi- (2.122)

This can be further simplified using the fact that
(HNY- 1P H'w; = w;, (2.123)

which is also proven in Appendix A. Thus,

wl'.“Ruw,- = cL_lme; (2.124)
= ol R.R;IC(CIRZIC)™; (2.125)
= ¢l ,Ci(CIR;IC)™; (2.126)
= 0. (2.127)

Let the output power of the filter before and after adding the additional con-
straint be €; and ;4 respectively. A recursive formula for the output power can now
be obtained by taking the L, norm on both sides of Eq.(2.119). Specifically,

Eip1 = &+ |fig1 — C€+1W;|2€c,~+, (2.128)
where

Eeiy1 — |Htwc.'.p |2~ (2.129)
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2.6.2 Discussion
The update of the optimal weight

As revealed in Eq.(2.116), w4, is a linear combination of w; and w., +1- The vector
We,,, and the scalar fiy, — c},,,lw,- determine, respectively, at which direction and
by what amount the optimal weight changes due to the addition of the constraint
cfﬂw = fi+1. Since w; lies in a space spanned by the basis {wy, Wz, -+, Wy}, Wipa
lies correspondingly in a higher dimensional space spanned by a new basis which is
formed by adding a linearly independent vector w,,,, to the previous basis. This
additional basis vector, however, is not generally orthogonal to the space spanned by
the previous basis. Figure 2.3 (a) shows conceptually the new optimal weight w;; asa
linear combination of two unorthogonal vectors, w; and w,,,,. Using a transformation
specified by H, however, the update of the optimal weight in the transformed space
corresponds to adding one orthogonal vector to the previous optimal weight as shown
in Figure 2.3 (b). This orthogonality update follows from the fact that the vector
H'w; is always orthogonal to Hfw,, 41 as shown in Eq.(2.127).

The change of output power

Figure 2.4 illustrates the increase in output power caused by the addition of con-
straints. The term ex,k =0,1,---,7 + 1 denotes the output power for the filter with
k constraints. The increase in the output power from the i_th to the (¢ + 1)_th stage

equals €,,, multiplied by |fi}, — c awialt

The quiescent and optimal filter responses

It is interesting to observe the change in the quiescent and optimal filter responses
due to the addition of a constraint. The quiescent response is defined as the optimal
filter response under conditions of white noise input. It is easy to verify that the
change in the quiescent filter weights due to the addition of one more constraint can

be expressed as,

Wais1 = Wqi + fi+lcx'+l- (2.130)
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(a)

Original space

(b)

Transformed space

+
Hw, ,

Figure 2.3: The conceptualized diagram of the weight vector update due to an addi-
tional constraint in (a) the original space, (b) the transformed space.
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Figure 2.4: The increase in minimum output power for succeeding stages.

This is in fact a special case of Eq.(2.116) with H = I, the identity matrix.

When f;;; = 0, the recursive formulas for the quiescent and optimal weights are

Woipr = Wy (2.131)

Wi = wi—(cl,w)we,,. (2.132)
On the other hand, when f;;; = c:f,,_lw,-,

Wop = Wq;+(c,t+1w;)c;+1 (2.133)

Wit1 = Wi (2.134)

Thus, for an arbitrary vector ¢;;; (orthogonal to C;), it is always possible to choose
the corresponding fi;, so that either the quiescent response or the optimal response

remains unchanged due to the addition of the constraint.

2.7 Summary

This chapter has examined some important aspects of steady-state behavior of the
linearly-constrained filter, including the optimal weights, signal-to-noise ratios, and
the addition of constraints. While we have by no means completely studied the
steady-state performance of linearly-constrained filters, we have made some progress
in analyzing their behavior from a vector space standpoint. The results obtained in
this chapter can be used to derive efficient adaptive implementation structures and

to establish some guidelines for constraint specification.
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The Generalized Sidelobe Canceller structure which adaptively implements the
linearly-constrained filter in [11] in fact based on the closed-form expressions in Sec-
tion 2.5. A detailed derivation of the GSC will be given in the next chapter and
three iterative algorithms for implementing the linearly-constrained filter are com-
pared. Further exploiting the closed-form expressions for the optimal weight results
in a generalized linearly-constrained filter structure, termed the Eztended Generalized
Sidelobe Canceller, which will be presented in Chapter 6.

The SN R expressions in Section 2.5 are more general than those results obtained
in [20] where only one constraint was allowed. In addition, by using a pre-assumed in-
put covariance matrix, we can select constraints which maximize the resulting closed-
form expression for the optimal SN R. Moreover, our discussion of the effect of adding
linear constraints to the filter has application toward the design of partially adaptive

arrays. Further investigations on these topics are required.
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Chapter 3

Iterative Algorithms

3.1 Introduction

Several closed-form expressions for the optimal weights in the linearly-constrained
filter have been presented in last chapter. Using any of these expressions, the optimal
weights can be easily found provided that R,,, C and f are known. When applying
the linearly-constrained filter to a practical signal processing problem, it is possible
to set up the constraints specified by C and f using some priori knowledge about
signal characteristics. However, in most practical situation the actual environment in
which the filter is operated is unknown or varying in time. In such cases, the weights
of the linearly-constrained filter cannot be pre-computed optimally and have to be
adjusted using some adaptive algorithm. The resulting filter is termed an adaptive
linearly-constrained filter.

The purpose of this chapter is to present and compare several iterative algo-
rithms for realizing the linearly-constrained filter adaptively. Section 3.2 first derives
three iterative algorithms: the Constrained LMS (CLMS), the Generalized Sidelobe
Canceller (GSC) and the Modified Generalized Sidelobe Canceller (MGSC). The first
two algorithms were originally proposed in [9] and [11], respectively, in the context
of array signal processing for implementing the antenna receivers; the last algorithm
was derived in (21, 22] to simplify the implementation of the GSC algorithm. As

opposed to original derivations, the approaches taken here to derive the CLMS and
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GSC are based on a vector space decomposition which provides clear insights into
these two algorithms; modifying the GSC algorithm by changing the coordinates of
filter weights results in the MGSC algorithm. In Section 3.3, comparisons of the three
algorithms from algebraic and geometrical points of view are presented. Two models,
an implementation model and an analysis model, are established in Section 3.4 for
depicting adaptive linearly-constrained filters. The former model, which decouples
filter weights into fixed-weight and adaptive-weight portions, is useful for deriving
effective implementation structures; and the latter model, which represents all classes
of adaptive linearly-constrained filters, is useful for comparing the convergence per-
formance due to different choices of the fixed-weight entities. In the final section,

some concluding remarks are given.

3.2 Iterative Algorithms

For an adaptive linearly-constrained filter of size N with M constraints, the instan-
taneous weights form a vector, denoted by w(n), and the constraint matrix, denoted
by C, specifies a M-dimensional subspace in the N-dimensional vector space. To
fully characterize the N-dimensional vector space, a blocking matrix, denoted by
'W,, whose columns span the orthogonal complement subspace of C is specified. The
subspaces designated by C and W, are termed as the constraint space and constraint
orthogonal space, respectively. The following three algorithms are derived based on
the decomposition of the instantaneous weights into these two orthogonal complement

subspaces.

3.2.1 The Constrained LMS
The Algorithm

The weight vector w(n) can be uniquely decomposed as the sum of the projections

in the two orthogonal complement subspaces:
w(n) = P.w(n) + P, w(n). (3.1)
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The terms P, and P,, denote the projection matrices specified by C and W,, re-
spectively. Using the fact that

Ctw(n) =f, (3.2)
it is easy to verify
P.w(n) = C(CtC)-'f (3.3)
= W, (3.4)
Thus,
w(n) = wg + Py, w(n). (3.5)

With the initial condition w(0) = wy,, the Constraint LMS [9] updates the weights in

the N-dimensional space by,
W(n + 1) = Wq + Pua[w(n) + py"(n)x(n)] (3.6)

where y(n) = wt(n)x(n) is the instantaneous system output and the superscript * is
the notation for complex conjugate. This algorithm is constrained since the update
term is restricted in the constraint orthogonal space by the matrix P,,. However,

the algorithm can be rewritten in a unconstrained form as

wWo(n+1) = wo(n)+ py*(n)x.(n) (3.7)
wn+1l) = w,—w,(n+1) (3.8)
by defining
Wo(n) = —Py,w(n) (3.9)
Xo(1n) = Py,x(n). (3.10)

In fact, this reformulation represents a more general version of the original CLMS
since the initial weights need not start at w,(0) = 0. Unaware to the authors, the
constraint elimination technique presented in [23] is actually the same as reformulating

the CLMS in the above unconstrained form.
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yq (n) + y (n)

x(n) Yo (n)

Xo(n) /

> Pus >Wo( n)

YA

Figure 3.1: The block diagram of constrained-LMS

The function of the CLMS algorithm is characterized by the following equations:

Xo(n) = P ysx(n),
Yln) = wix(n),
win) = wimn), 611
y(n) = y(n) —y(n),
Wo(n+1) = Wo(n)+ uy*(n)xo(n)
w(n) = W, — Wo(n)

And the block diagram of CLMS is shown in Figure 3.1.

Proof of Convergence

It was proven in [9] that the CLMS converges in mean under the condition of having

the step size ¢ bounded by,
0< p <2/ ez (3.12)

where A, is the maximum eigenvalue of the matrix Py R P ,.
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3.2.2 The Generalized Sidelobe Canceller
The Algorithm

To illustrate the mechanism of GSC, the projection matrix P,,, expressed in terms of
W, is substituted into Eq.(3.5):

w(n) = w, + W,(WIW,) "Wiw(n). (3.13)
This equation can be rewritten as
w(n) = wy — W,w,(n) (3.14)
by defining the (N — M)-dimensional weight vector
Wa(n) = —(WIW,) "Wiw(n), (3.15)

which is the negative pseudo-inverse of W, operating on w(n). The GSC [11] updates
w,(n) by unconstrained LMS adaptation,

Wa(n +1) = Wo(n) + #y"(n)xa(n) (3.16)

where

Xa(n) = Wix(n) (3.17)

is termed as the reduced-dimensional vector.

The function of the GSC algorithm is characterized by the following equations:

Xu(n) = Wix(n),
¥e(n) = wzx(n),
ww) = wim), 619)
y(n) = y(n) —ya(n),
We(rn+1) = w,(n)+ py*(n)x.(n)
w(n) = w, — W,w,(n)

And the block diagram of GSC is shown in Figure 3.2.
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Yq (1) Y (n)
Wy ‘ +@ .
x(n) Ya (n)

Xa(n)
> W > Wy(n)

Figure 3.2: The block diagram of generalized sidelobe canceller

Proof of Convergence

To prove the GSC algorithm converges to the optimal solution, it is sufficient to prove

that w,(n) converges to
Waopt = (WIRW,) TWIR,,w, (3.19)
and use the fact (has already been proved in Section 2.4.2) that
Wopt = Wy — W (WIR, W, 'WIR_ w,. (3.20)

Referring to Figure 3.2, the weights w,(n) in the lower path adaptively form a
linear combination with the vector x,(n) to produce a least-squares estimate of y,(n)
in the upper path. Thus, with a properly chosen step size, the mean values of w,(n)

converge to the Weiner solution
waopt = R:;paq L (321)

where,
Ree = E {XaXI} ’

3.22
= WIR,.W,, (3.22)
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and,
Pag = E{xdy;} )
= WIR,,,,Wq .

As a result, the convergence of the GSC to the optimal solution is granted under the

(3.23)

condition of having the step size ¢ bounded by,
0< st <2/ Amas (3.24)

where Ap,, is the maximum eigenvalue of the matrix WIR,,_.WS.

3.2.3 The Modified Generalized Sidelobe Canceller
The Algorithm

Given a constraint matrix C (assumed full rank), there exists at least one nonsingular

matrix A which transforms C into € with the following form:

A 0
C= 3.25
v (3.25)

where V is a M x M nonsingular matrix. The transformation is defined as
C=AfcC. (3.26)

and the matrix € is termed as a canonical form. Using the matrix A we can reformu-
late the original constrained minimization problem into an equivalent problem with
a constraint matrix of canonical form. First, note that Ctw = f can be rewritten in
terms of C as

Sw=r (3.27)

by defining
W= A"lw. (3.28)

This corresponds to expressing the weights in new coordinates. Second, the system

output power wtR_,w can be expressed in terms of W as
WiR,, W (3.29)
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where

R.. = A'R_;A (3.30)
is the covariance matrix of the transformed signal defined as
% = Atx. (3.31)

Thus, the original minimization problem is equivalent to a new minimization problem

expressed in the new coordinates, which is,
min WiR, W
w

subject to

Slw=r.

The GSC weight decomposition can now be applied to solve this equivalent minimiza-

tion problem. Since the upper (N — M) x M submatrix of C is zero, the full rank

matrix
W, = [ (I)‘" ~Mx(N=M) } (3.32)
clearly satisfies
Wit =0 (3.33)

and is picked as the blocking matrix. (The term I is an identity matrix with its size

as a subscript.) The quiescent weight vector in the new coordinate system is given

by,
w, = 6(E'e)1t (3.34)
which can be simplified as
0
W, = [ ] ] , (3.35)
Wem
where

Wom = (VO (3.36)
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It should be noted that W, is the optimal solution when the transformed signal (n)

has identity covariance matrix. The quiescent output for the MGSC is

fo(n) = Wix(n) (3.37)
= Whak(n) (3.38)

where X,(n) is the last M components of %X(n). The weights are updated by LMS

algorithm as follows,

Wa(n +1) = Wa(n) + uy"(n)%e(n) (3.39)
where
%(n) = W'i(n) (3.40)
y(n) = gy(n) — Wi(n)Xa(n). (3.41)

Note that %, (n) is the first N — M components of X(n).
The function of the MGSC is characterized by the following equations:

x(n) = Alx(n)
%a(n)
é - == ’
Xo(n)
Jq(n) = qu&q(n)’
fa(n) = Wi(n)k(n), (3.42)
y(n) = Go(n) — fu(n),
Wo(n+1) = Wa(n)+ uy*(n)Xa(n)
w(n) = Alw, - W,\?v,,(n)]
= A- _VAV“(")
Wym

And the block diagram of the MGSC is shown in Figure 3.3.
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x(n)

X4(n)
> A > '?Va(n)

\

ko(n) Ya(n )
NZ_ Jy(n) - Y (n)
Wam ~(+) -

Figure 3.3: The block diagram of modified generalized sidelobe canceller

Proof of Convergence

In the MGSC algorithm, we first reformulate the original minimization problem into
an equivalent problem and then apply the GSC algorithm. As a result, the conver-
gence of MGSC immediately follows from that of the GSC. The step size g in the
MGSC has to satisfy the bound,

0 <t <2/ Amas (3.43)

where Apmqz is the maximum eigenvalue of the matrix Wlﬁ,,\fv,.

3.3 Comparisons

3.3.1 Algebraic Comparison
Weight decomposition
Define a blocking matrix W, such that
c(cteyict = 1- w,(Wiw, -1 w! (3.44)
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then, at time n, the filter weights can be decomposed into two orthogonal complement

subspaces as

w(n) = P.w(n)+P,w(n) (3.45)
= C(C'C)'Clw(n) + P,,w(n) (3.46)
= C(C'C)'f +P,,w(n) (3.47)
= Wy + W,(WIW,)"Wiw(n). (3.48)

The filter output y(r) = wi(n)x(n) can be expressed as the difference of these two

signals,
y(n) = y4(n) — yo(n) (3.49)
by defining the quiescent signal y,(n) and the orthogonal signal y,(n) as
Yq(n) = Wlx(n) (3.50)
and
Yo(n) = —wH(n)W,(WIW, )1 Wix(n). (3.51)

In the following, the CLMS, GSC and MGSC are compared by the way they generate

these two signals.

The CLMS

The CLMS algorithm projects the filter weights w(n) and input data vector x(n)

onto the constraint orthogonal space:

wo(n) = — W, (WIW,)""Wiw(n)

3.52
%(n) =  W(WIW,) "Wik(n). (352

The weights wo(n) are updated in a unconstrained fashion and the signal y,(n) is

generated by the inner product of w,(n) and x,(n).
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From CLMS to GSC

The GSC further simplifies the way to generate the orthogonal signal y, (n) by defining

the reduced-dimensional weights and input data vector as

wa(n) = — (W, W) 'Wiw(n)

X (n) = WIx(n) (3.53)

The weights w,(n) are updated in a unconstrained fashion and the signal y,(n) is
generated by the inner product of w,(n) and x,(n).

In the CLMS, a weight vector of size N, w,, is used to control the filter weights
projected onto a N — M dimensional subspace, specified by W,. Thus, it in fact has
some redundancy. This redundancy is removed in GSC by controlling the adaptive
weights using only N — M weights, w,(n). Besides, the computation of x,(n) in
GSC is simplier than that of x,(n) in CLMS since the multiplication of x(n) by
the projection matrix P, is more complicated than that by the blocking matrix W,.
This is because the uniqueness of a projection matrix restricts the effort of simplifying
the computation P,,x(n) while the non-uniqueness of a vector space basis provides

different approaches of implementing the computation Wix(n).

From GSC to MGSC

It is easy to verify that the matrix A in the MGSC can always be constructed such
that

AT'W, = [(I)‘"‘M”“N'M’ ] (3.54)
MxM

where I denotes the identity matrix with size indicated by its subscript. Using this
matrix A the vector A~'w, is computed and is partitioned into the upper N — M

and lower M components as:
All'w,=| -—-—|. (3.55)
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Define a new weight vector W(n) in terms of A™! as

w(n) = A7'w(n) (3.56)
= A7l'w,— A"'W,w,(n) (3.57)
= wbiw“(n)]. (3.58)

Wom

The negative of the first N — M components of W(n) are defined as the reduced-

dimensional weights in the new coordinates, i.e.,
Wa(n) = —Wy + wo(n). (3.59)
The filter output can then be expressed as
y(n) = Wiake(n) — Wl(n)%a(n) (3.60)

by defining X,(n) and %,(n) be the first N — M and the last M components of the
transformed signal
x(n) = Alx(n). (3.61)

In the MGSC, the matrix A essentially expresses the filter weights in a new coor-
dinate system such that the upper N — M weights, W,(n), are adaptive and the lower
M weights, W,,,, are fixed. The filter output is formed by the inner product of the
new weights W(n) with the transformed signal X(n). Compared to GSC, the quiescent
weights in MGSC are compressed into M weights, W,,,, which further removes the
redundancy in the GSC. In addition, the computations of Wix(n) and Atx(n) have
the same complexity provided that W, and A are constructed in decomposed forms

[22]). The details of implementing A in decomposed form will be given in Chapter 4.

3.3.2 Geometrical Comparison
Geometrical representation

The function of an adaptive linearly-constrained filter of size N = 2 with one con-

straint, M = 1, can be visualized by the geometrical plot as shown in Figure 3.4. In
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this plot, the coordinates with variables w; and w, correspond to the filter weights;
the filter output power wiR .. w, which is a convex ball sitting on this w; w, plane,
can be represented as contours of ellipsoidal shapes where each contour corresponds to
a constant output power; the constraint equation Cw = f defines a straight line, /;,
on the plane; the constraint orthognal space defines a second straight line, /3, passing
through the origin and in parallel to /;. All eligible weights, w(n), are restricted on
the line /; since they all have to satisfy the constraint. The optimal weight vector wp
is the intersection of /; and the contour with smallest output power; the quiescent
weight vector w,, however, is the closest point on {; to the origin and perpendicular
to the line I;. Figure 3.4 can also be interpreted as in a general case by viewing I, as
a M-dimensional hyperplane, /; as a N — M-dimensional subspace and each weight
vector as a N-dimensional vector. Based on this geometrical plot, the behaviors of
how the CLMS, GSC and MGSC algorithms move the current filter weights w(n) to

the new weights w(n + 1) are explained in the following.

CLMS

Referring to Figure 3.5, the CLMS first estimates a temporary new weight vector
W(n + 1) which, however, does not lie on !;; the projection of W(n + 1) onto I,
denoted by —w,(n + 1),is then computed; since w,(n + 1) is on I, it is orthogonal
to (perpendicular to) the constraint space, i.e., Ctw,(n + 1) = 0; the actual new
weights w(n + 1) is obtained by subtracting wo(n + 1) from w,. The new weight
vector obtained by the above procedures is ensured to lie on /; since subtracting a

vector on l; from w, will not bring it away from I,.

GSC

Referring to Figure 3.6, the GSC estimates the weight vector w,(n + 1) directly on
[; by expressing it as a linear combination of the column(s) of W, with coefficient(s)
designated by w,(n +1); the current weight(s) w,(n) on I, moves to the new weights
Wa(n + 1) by unconstrained LMS algorithm using the reduced-dimensional vector

Xs(n) = Wix(n) as input data; the actual new weight vector w(n + 1) is obtained
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by subtracting wo(n + 1) from w,. Since the movements of the weight(s) are done on

I3, no constraint violation can occur.

MGSC

Referring to Figure 3.7, the MGSC first changes the coordinates w;_w, into new
coordinates ;.w; by a transformation A such that w, is align with w, (in the plot,
A is assumed orthogonal which corresponds to a rotation operation); the vector w,
can then be expressed in the new coordinates with only one (M in general) non-
zero element; the GSC algorithm is applied to update weights in the new coordinate

system.

3.4 Implementation and Analysis Models

3.4.1 A Unified Implementation Model

The CLMS, GSC and MGSC algorithms essentially reformulate a linearly constrained
minimization problem into a unconstrained one with appropriate transformations.
Using these reformulations, adaptive linearly-constrained filters are decoupled into
fixed-weight and adaptive-weight portions as shown in Figure 3.8. The fixed-weight
portion, depending upon the constraint equations, properly generates the reference
signal d(n) and data vector X(n); the adaptive-weight portion then adaptively forms
a least-squares estimate of d(n) by a linear combination of the vector X(n) with its
weights. Thus, the adaptive-weight portion is basically a unconstrained adaptive
filter with an available reference signal. The fixed-weight portion, however, can be
characterized as a matrix transformation which transforms a constrained problem
into a unconstrained one. The CLMS, GSC and MGSC actually state the property
to which the matrix transformation has to obey. Detailed implementation issues using

this model will be addressed in Chapter 4.
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spam:ed by Ws
(W:C=0)

Figure 3.4: The conceptualized diagram of adaptive linearly-constrained filter.

Figure 3.5: The conceptualized diagram of the CLMS algorithm.
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-Wy[wy(n) + | € () (n

where
x4n) = Wyx(n)

Figure 3.6: The conceptualized diagram of GSC algorithm.

Figure 3.7: The conceptualized diagram of MGSC algorithm.
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3.4.2 A Unified Analysis Model

Although the CLMS, GSC and MGSC all converge to the same optimal solution as
shown previously, it is still not clear at this point which has the best performance in
terms of convergence rate and misadjustment. It is shown in the following that these
three algorithms are identical under certain conditions.

The identical conditions of CLMS and GSC

Theorem 3 With the same step sizes, the CLMS and GSC are identical under the

following two conditions:
(a) Initial condition: w,(0) = W,w,(0),

(b) Orthogonal blocking matriz: WIW,=L

From the weight decomposition mentioned earlier, condition (a) obviously implies
that the CLMS and GSC start at the same initial weights.

In the following, we prove the CLMS and GSC are identical at time n + 1 from
the assumption that it is true at time n. Multiplying both sides of the LMS update
equation in GSC (Eq.(3.16)) by W,, we have

W,w,(n + 1) = W,w,(n) + uy*(n) W x,(n). (3.62)
The identity of CLMS and GSC at time n implies
W,w,(n) = w,(n) (3.63)

and the filter outputs are equal. On the other hand, W, is orthogonal implies

W,x,(n) = W,Wix(n) (3.64)
= Pu.x(n) (3.65)
= x(n). (3.66)
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As a result, Eq.(3.62) converts into
W,ws(rn+1) = wo(rn)+ py*(n)x,(n) (3.67)
= wo(n+1). (3.68)
Thus, by induction, the CLMS and GSC are identical under conditions (a) and (b).

Q.E.D.

The identical conditions of GSC and MGSC

Theorem 4 With the same step sizes, the GSC and MGSC are identical under the

following two conditions:
(a) Initial condition: W,(0) = —W; + w,(0),
(b) Similarity: AW,=W,,

where Wy, and W, are as defined in Eq.(8.55) and Eq.(8.92), respectively. Note that
condition (b) implies that the first N — M columns of A are equal to the columns of
W,.

Proof:
The initial overall filter weight vector in the MGSC is
—W,(0
AW(0)=A-| T (© ] (3.69)
Wom
Applying conditions (a) and (b) to above equation, it becomes
7y — wo (0
AW() = A.| TV © ] (3.70)
W,
= Al ™ |- AW,w.(0) (3.71)
qu
= w, — W,w,(0). (3.72)

This proves that the GSC and MGSC both start at the same initial weights.
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In the following, we prove the GSC and MGSC are identical at time n + 1 from
the assumption that it is true at time n. At time n + 1, the weight vector of MGSC
is

Aw(n +1) = AW, — AW, W,(n + 1). (3.73)
Since the first N — M columns of A are equal to the columns of W,, it is true that
Xa(k) = xa(k) (3.74)

for all time k. Applying this equality to Eq.(3.39), we have

Wa(n +1) = Wa(n) + uy*(n)xa(n). (3.75)

Substituting this equation into Eq(3.73) and using condition (b), we have,

A¥%(n+1) = AW, — W,W,(n) — uy*(n)W,x,(n) (3.76)
= AW, — AW, W,(n) — uy"(n)W,x,(n) (3.77)
= Aw(n) — py*(n)W,x,(n) (3.78)

The identity of GSC and MGSC at time n implies
Aw(n) =w, — W,w,(n) (3.79)
and the filter outputs are equal. Using these two facts, Eq. (3.78) converts to

Aw(n+1) = wy,— W,w,(n) — py*(n)W,X,(n) (3.80)
= w,— W,w,(n+1). (3.81)
Thus, by induction, the MGSC and GSC are identical under conditions (a) and (b).

Q.E.D.

Summary

Since for a given W, matrix in the GSC algorithm there always corresponds a matrix
A in the MGSC such that these two algorithms are identical, the MGSC is actually
a simpler implementation form for the GSC algorithm. On the other hand, the
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CLMS algorithm is only a special case of the GSC algorithm when W, is orthogonal.
As a result, with different choices of W, matrix the GSC algorithm represents the
whole class of adaptive linearly-constrained filters. A model for analyzing the system
performance by the use of different W, matrix in the GSC algorithm is shown in
Figure 3.9. Instead of directly varying the W, matrix, an orthogonal W, is first
chosen and fixed while an additional nonsingular matrix T is used to transform one
blocking matrix to the other. Consequently, the blocking matrix in this model is a
product of two matrices W, and T. By properly choosing T, the GSC algorithm
with any blocking matrix can be represented by this model. This model is useful for
the discussion of the effect of using several different blocking matrices in the GSC

algorithm.

3.5 Summary

This chapter has presented three iterative algorithms for implementing the linearly
constrained filter adaptively. Algebraic and geometric interpretations were used to
illustrate the similarity of these three algorithms. In addition, it was shown that they
are in fact identical under certain conditions. Two models were also established for

implementation and analysis purposes.
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Figure 3.8: The unified implementation model
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Figure 3.9: The unified analysis model



Chapter 4

Implementation of Adaptive

Linearly-Constrained Filters

4.1 Introduction

This chapter focus on the issues of implementing the adaptive linearly-constrained
filter using the implementation model as shown in last chapter where the filter weights
are decoupled into fixed and adaptive weights. The adaptive-weight implementation
is no different than the implementation of a conventional adaptive filter with desired
signal, which has been well developed in the literature [24, 25]. Most material in this

chapter is therefore devoted to the implementation of the fixed-weight portion.

Through the derivations of the iterative algorithms in last chapter the required
property of the matrix the previous chapter used in the fixed-weight portion has been
found. However, a systematic procedure is still needed to construct such a matrix
transformation for implementing a particular linearly-constrained filter. Since the
matrix transformation is not unique, it is preferable to construct a matrix transfor-
mation which has less computational complexity and good numerical behavior. To
fully accomplish the efficiency of implementing the matrix transformation, two ap-
proaches are described to construct the matrix transformation in the case of small

and large number of constraints, respectively.
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In Section 4.2, the problem of implementing the matrix transformation is formu-
lated based on the MGSC algorithm. Two structures, termed the canonical form I
and II, are derived in Section 4.3 for implementing the matrix transformation. For a
system with a small number of constraints (less than a half of the system size) the
computation required in the canonical form I is less than that in the canonical form
IT and vice versa. Consequently, the option between canonical form I and II guar-
antees implementation efficiency for a system with either small or large number of
constraints. The canonical forms are based on implementing the matrix transforma-
tion as a product of sparse matrices, which are referred to as elementary reflectors.
Various applicable transformations for implementing the elementary reflectors are
discussed in Section 4.4. A VLSI systolic array architecture for implementing the
fixed-weight portion of the adaptive linearly-constrained filter is then proposed in
Section 4.5. This chapter concludes with a comparison of this implementation to

other related work.

4.2 Problem Formulation

In Section 3.4, a unified implementation model was presented where the filter weights
were decomposed into fixed and adaptive portions. In the fixed-weight portion, the
matrix transformation generate the reference signal y,(n) and the reduced-dimensional
data vector x,(n) from the input data vector x(n). Among the three iterative algo-
rithms derived in the previous chapter the MGSC is the most efficient structure as dis-
cussed in Section 4.6. Thus, the matrix transformation is constructed in this chapter
based on the MGSC weight decomposition. In the adaptive-weight portion, an adap-
tive filter with weights w,(n) is used to form the least-mean-squares estimates of y,(n)
by a linear combination of x,(n). Although only LMS algorithm is applied to update
the weights w,(n) in this thesis, other adaptive algorithms (such as Least-squares,
Q-R decomposition, etc.) can also be used. The use of an appropriate adaptive algo-
rithm depends on the system performance required in a particular application. The

system performance usually includes the considerations of implementation cost,
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finite-wordlength effect, convergence rate and misadjustment. Detailed im-
plementation of the fixed-weight portion of the adaptive linearly-constrained filter

based on this model is discussed in the following sections.

4.3 Dual Implementation Structure

4.3.1 Canonical Form I
The A matrix
Let the constraint matrix C with M columns (full rank) be denoted as
C=lcicy -+ cul- (4.1)
The full rank property of C ensures that there exists at least one nonsingular matrix

A such that

AlC = (4.2)

VMxM

O(N-MyxM }

where V is a M x M nonsingular matrix.
From the MGSC algorithm, the first N — M components of Atx(n) form the

reduced-dimensional vector:
Xa(n) = [ATX(n)]n-a10 (4.3)

and the inner product of the vector w,, with the last M components of Atx(n) forms

the reference signal:
Yo(n) = Wi, [ATx(n)om (4.4)
where
Weo = (VH)7If. (4.5)
The A matrix and the w,, vector then constitute the fixed-weight portion of the
adaptive linearly-constrained filter with C and f specifying the constraint equations.

This implementation structure is referred to as the canonical form I and is represented

by the block diagram in Figure 4.1 (a).
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Construction of the A matrix

We now derive a systematic procedure to construct the A matrix. It is constructed

such that

(000 0 -0 0]
0 0
0
atc=| " = 0% (4.6)
N
X
X
-XXX'XX-

where the j_th column of A'C only has nonzero elements below the (N — j)_th row.
The V matrix in Eq.(4.2) for this particular A therefore has only nonzero elements
on or below its anti-diagonal. The matrices of this form are termed as the lower
anti-triangular matrices.

For a constraint matrix C with M columns, the matrix A is decomposed as a

product of M square submatrices:
A=A A;---Ay (4.7)

where the submatrices are used to successively transform the matrix C, column by
column, to be a matrix of the form as shown in Eq.(4.6).

The procedure for constructing the A matrix in decomposed form then consists
of M succeeding stages corresponding to the construction of the first submatrix A,
to the last submatrix Ap. At the j_th stage of the procedure, the submatrix A; is
constructed to transform the first to the (N — j)_th elements of c; to be zeros while
remaining the rest elements of c¢; unchanged; the matrix C is then updated by multi-
plying it by the Hermitian transpose of A ;. The Gauss or Householder transformation
which eliminates the elements of a vector can be used to construct the submatrix of
A in each stage. The computational complexity using Gauss transformation is less

than that of using Householder transformation. However, only using the Householder
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transformation results in an orthogonal A matrix. Although self-orthogonal is not re-
quired for A, the 2-norm preservation property of an orthogonal matrix may improve
numerical behavior in some cases. Comparisons of using orthogonal and unorthogo-
nal A matrix in the adaptive linearly-constrained filtering will be discussed in later
chapters.

The Gauss and Householder transformations are, respectively, the two simplest
non-orthogonal and orthogonal transformations which can be used to construct the A
matrix in decomposed form. However, incorporating these two transformations into
the A matrix may not be suitable for parallel processing due to the need of global
communications among the elements of x(n) while computing Ax(n).

To accommodate to parallel processing, the Hermitian transpose of the j_th

submatrix of A is further decomposed as a product of N — j sparse matrices, that is,

AI- = An_j;  Agj- Ayj, (4.8)
where ] .
10 0
01
-0 x x .
A= (4.9)
X x 0
10
0. - -0 1]

has ones on the diagonal and zeros elsewhere except that the elements on the entries
(¢,2),(4,4+1),(¢ +1,¢) and (¢ + 1,7 + 1) are chosen to force a zero at the (¢, 7) entry
of C. The matrices of the form in the above equation are referred to as elementary
reflectors. As the A matrix is decomposed as a sequence of elementary reflectors,
computing A'x(n) no longer needs global communication since multiplying any vector
by an elementary reflector only needs two consecutive elements of that vector.

The procedure for constructing the A matrix as a sequence of elementary reflec-

tors is sunmarized in the following algorithm.
Algorithm 1
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Forj=12,..., M;
Fori=12,...,N-j;
Find A;; such that the (i,j)-th entry of A;;C is zero;
Update C by A;;, i.e.,, C— A;;C.
end;

end.

The selection of the elementary reflectors in the algorithm is discussed in the next
section where various transformations are addressed.

The update of the C matrix in the algorithm results in a C matrix of the form
as shown in Eq.(4.6). The bottom M x M of the final C corresponds to the V matrix
needed for finding the wy, vector according to Eq.(4.5).

Computation of Atx(n)

As A is in decomposed form, the transformed signal Atx(n) can readily be computed
via the M recursions,
x(n) = AlxU-V(n), (4.10)

with the initial condition x{%(n) = x(n) and the final result Atx(n) = x(M(n). A
conceptualized block diagram is shown in Figure 4.2 (a) to demonstrate this recursive
computation. Further details on implementing it on a systolic VLSI architecture are
discussed in Section 4.5. A reasonable question to ask at this point is what is the
number of computations required to implement Atx(n) when A is constructed by
the decomposition process outlined above. The computational complexity is counted
via the number of complex multiplications required since multiplier always represents
the most costly component in hardware implementations. The total number of loops

contained in the two nested loops in Algorithm 1 is
kKe=NxM-MM+1)/2 (4.11)

which designates the number of elementary reflectors in A as well. Since the multipli-

cation of x(n) by A is performed by successively multiplying x(n) by the elementary
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reflectors, the total number of complex multiplications required in computing A'tx(n)
is therefore proportional to ,, which is of order O(NM). (The actual number of
multiplications may vary by a constant factor depending on what type of transforma-
tion is applied to construct the elementary reflectors, as shown in the next section.)
This decomposition approach is only efficient when the number of constraints, M, is
small (M < N/2) since the number of computations grows proportional to M. In
order to fully exploit the efficiency of implementing a system with arbitrary number
of constraints, a second structure is developed in the following to deal with the case

when the number of constraints is large.

4.3.2 Canonical Form II
The B! matrix

Besides the A matrix, the full rank property of C also ensures that there exists at

least one nonsingular matrix B such that

(B)tc = | UMM (4.12)

O(N-a)xM

where U is a M x M nonsingular matrix.

As opposed to the A matrix, the B~! matrix transforms the matrix C into a
matrix form which has a non-singular M x M submatrix on the top instead of at the
bottom. A proof similar to the proof of the MGSC algorithm can be derived to show
that the last N — M components of (B~')!x(n) form the reduced-dimensional vector:

Xa(n) = [(B™)1x(n)]o,n-m (4.13)

and the inner product of the vector wg with the first M components of (B™!)tx(n)

forms the reference signal:
¥o(n) = whi(B™)tx(n)]mo (4.14)

where
w, = (U7 (4.15)
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The B~! matrix and the w vector then form the fixed-weight portion of the adaptive
linearly-constrained filter with C and f specifying the constraint equations. This
implementation structure is referred to as the canonical form II and is represented by
the block diagram in Figure 4.1 (b).

Construction of the B~! matrix

The decomposition process in the canonical form I cannot be applied to construct the
B~ matrix directly. Instead, the matrix B but not its inverse is first constructed in
a decomposed form. The B~! matrix is then obtained by inversing each individual
submatrix of B.

The property of B can be perceived from the constraint orthogonal space. Let a

matrix W, span the constraint orthogonal space and be denoted as
W~, = [CM+1 CM42 ° CN]. (4.16)

Note that W, is orthogonal to C and is full rank. The full rank property of W,
ensures that there exists at least one nonsingular matrix B such that
(4.17)

. 0 —
BW, = [ Mx(N—-M) }

Q(N-M)x(N-M)

where Q is a (N — M) x (N — M) nonsingular matrix. (We will prove that the inverse
of this B matrix in fact results in Eq.(4.12).) In contrast to the A matrix in canonical
form I, the B matrix transforms the blocking matrix, W,, instead of the constraint
matrix, C, into a matrix form having only a nonzero submatrix at the bottom. Since
a nonsingular transformation will not change the rank of the matrix, the Q matrix
must be of size (N — M) x (N — M) and nonsingular.

Multiplying both size of Eq.(4.17) by B~!, the matrix W, can be expressed in
terms of B~! and Q as follows,

OMx(N-M)

W,=B"1. (4.18)

Q(N-M)x(N-M)
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Since the columns of W, spans the constraint orthogonal space, we have

w,('c = [0 QY- BYtc (4.19)
= 0. (4.20)

From the above equalities, the nonsingularity of Q implies that the lower (N—M)x M

submatrix of (B™!)'C must be zero and the full rank property of C implies that the
upper M x M submatrix of (B~)!C must be nonsingular. As a result, the (B~*)!C
matrix must satisfy Eq.(4.12).

By comparing Eq.(4.2) and Eq.(4.17), it follows that the decomposition process
for constructing the A matrix can also be applied to construct the B matrix since
they all correspond to transforming a full rank matrix into a matrix having a zero
submatrix on the top and a nonsingular submatrix at the bottom. However, a ref-
erence blocking matrix W, must be established before applying the decomposition
process. One approach to obtain W, is to perform a singular value decomposition on
C and pick the corresponding N — M left singular vectors with zero singular values
as its columns. Similar to the decomposition of A, the matrix B is decomposed as a

product of N — M submatrices:
B=By_-pm:---B:-B,; (4.21)

where the submatrices are used to successively transform the matrix W, column by
column, to be a matrix of the form as shown in Eq.(4.6) except that the size of the
nonsingular submatrix at the bottom is now (N — M) x (N — M). The j_th submatrix
B; is used to force the j_th column of W, to have only non-zero elements below the
(N — j)-th row.

Similar to that of constructing the A matrix, the procedure of constructing the
B matrix then consists of N — M succeeding stages corresponding to the construction
of the first submatrix B, to the last submatrix By_ps. At each stage, a submatrix
(either Gauss or Householder transformation) is constructed to introduce the zeros
at the corresponding column of W, and to update the W, matrix.

The Hermitian transpose inverse of B in decomposed form is then obtained by
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taking the Hermitian transpose inverse of each individual submatrix of B, that is,
(B = (Bl (B - (BT (4.22)

where the inverse operations are particularly simple for either Gauss or Householder
transformations since only the operations of changing signs or taking Hermitian trans-
pose are needed.

Similar to the decomposition of AI- in canonical form I, the j_th submatrix of B

can further be decomposed as a product of N — j elementary reflectors:
Bj =Bn-_j;- - By; - By;. (4.23)
Correspondingly, the Hermitian transpose inverse of B; is in a decomposed form
(B; ) = (By—jy )t By ™)t (Byy ™)1 (4.24)

where the operation of inverting an elementary reflector only involves inverting a 2 x 2
matrix.
The procedure for constructing the B™! matrix as a sequence of elementary

reflectors is summarized in the following algorithm.

Algorithm 2

Perform a singular value decomposition on C and

pick the corresponding N — M left singular vectors

with zero singular values as W,.

Forj=12..., N-M;

Fori=12,...,N-j;

Find By; such that the (i,j).th entry of B;;W, is zero;
Update W, by By;, i.e., W,— B,-,-W,,;
Find the Hermitian transpose inverse of By;;
Update C by (B;;')}, i.e., C— (Bj')IC.

end;
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end.

The selection of the elementary reflectors in the algorithm is similar to that in Al-
gorithm 1 and the Hermitian transpose inverse of an elementary reflector can be
obtained from easily using the closed form formula of inverting a 2 x 2 matrix. More
details on this will be discussed in Section 4.4.

The update of the C matrix is performed in the algorithm in order to find the
w, vector. The top M x M matrix of the final C matrix corresponds to the U matrix
which is used to solve for w,, by Eq.(4.15).

Computation of (B~!)tx(n)

As B! is in decomposed form the transformed signal (B~)fx(n) can readily be

computed via the N — M recursions,
x(n) = (B;)1xVU"(n) (4.25)

with the initial condition x(®(r) = x(n) and the final result (B~!)tx(n) = x(N-M)(n).
A conceptualized block diagram is shown in Figure 4.2 (b) to demonstrate this recur-
sive computation. Further details on implementing it on a systolic VLSI architecture
is discussed in Section 4.5.

The total number of loops contained in the two nested loops in Algorithm 2 is
ky=NX(N-M)-(N-M)(N-M+1)/2 (4.26)

which as well designates the number of elementary reflectors in B~!. The number
kp is simply equal to x, by replacing M by N — M. Thus, the total number of
complex multiplications in canonical form II is proportional to N — M instead of
M as in canonical form 1. (The actual number of multiplications may vary by a
constant factor depending on what type of transformation is applied to construct the
elementary reflectors, as shown in the next section.) Therefore, canonical form II is
more efficient than canonical form I for implementing a system with large number of
constraints (M > N/2).
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Figure 4.1: Two dual implementation structures:(a) canonical form I, (b) canonical

form II.
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Figure 4.2: The decomposition of (a) the A matrix, (b) the B~! matrix.

4.4 Incorporation of Transformations

In the last section, the construction of A (or B) was partitioned into a sequence of
elementary reflectors in the form as shown in Eq.(4.9). Several applicable transforma-
tions on constructing such elementary reflectors are discussed in this section. Since
each elementary reflector only eliminates one entry and affects two rows in the matrix
C (or W,), it is sufficient to consider a 2 x 2 case. Thus, the problem of constructing
an elementary reflector can be formulated as:

For a given vector

c
c=| |, (4.27)
C2
how to construct a non-singular transformation T to zero out the first element of c,

ie.,

0
T-c= (4.28)

~

C2

where ¢, is the update of the second element. Without loss of generality, two as-

sumptions are made on the vector ¢ to simplify the discussion of constructing the
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transformation T, which are, |c;| > |c1| and ¢ # 0. The first assumption can al-
ways be obtained by properly exchanging ¢, and c, before constructing T, which is
equivalent to pre-multiplying a permutation matrix; the second assumption is, how-
ever, used to eliminate the trivial case when c equals zero. Three major categories in
which T can belong to are: non-orthogonal, orthogonal and fast orthogonal transfor-
mations. In the following three subsections, the construction of T in these categories
are discussed in details.

By using appropriate transformation, the computation A'x(n) in canonical form

I can be implemented by a sequence of computations,

(4.29)

Similarly, the computation (B~')tx(n) in canonical form II can be implemented by
a sequence of computations,
T

Y2 T2

(4.30)

We term these computations as the generic computations in the canonical form I and
I, respectively. The computational complexity and numerical stability of the generic
computations are two major factors which the designer has to determine what type

of transformation should be used in his system.

4.4.1 Non-orthogonal Transformation
Gauss Transformation

The simplest transformation to eliminate the first element of the vector c is the Gauss

transformation represented as
1 ¢

T= 4.31
0 1 (4.31)
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where t = —¢;/c;. Note that the magnitude of ¢ is bounded by unity which ensures

numerical stability. The Hermitian transpose inverse of T is

ay_ | 10
(T e (4.32)

where t* is the complex conjugate of t. The generic computations are then represented

as
= 1+t
hn 1 2 (4.33)
Ya = 22
in canonical form I and
=z
n 1 (4.34)
Yo = =tz 42,

in canonical form IL.

Gauss Transformation with Real Scale Factor

For fixed-point implementation, modification of the generic computations using Gauss
transformation is necessary since numerical overflow may occur. This can be done by
scaling y; by 1+ |{| in canonical form I and scaling y; by 1 + |t| in canonical form II.

The modified generic computations are then equal to

- 1
B = nEdt aEe (4.35)
Ya = 22
in canonical form I and
= X
n ! (4.36)

Y2 = ﬁqt;[-’b'l + ﬁmwz
in canonical form II.

This modification, however, increases the computational complexity by 50% since
an additional real-complex multiplier is needed for each generic computation. The
additional cost for implementing the modified generic computations is substantially
high, especially for hardware based implementation. An alternative modification is

therefore derived using a complex scale factor.
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Gauss Transformation with Complex Scale Factor

To simplify the derivation we only discuss the case in canonical form I, a similar
complex scale factor can be applied to that in canonical form II. A complex scaling

term s can be applied to y; in Eq.(4.33) as follows,
1 t

where s is chosen as,
s=1+csgn(t)-t. (4.38)

In this expression, the complex function csgn(z) operating on a complex variable

z = zr + jz1 is defined as,

sgn(zgr) if|zg| > |2|

(4.39)
—jsgn(zy) otherwise

csgn(z) = {

and sgn(-) is the signum function for real variables. Note that the range of csgn(z) is

{-=1,1,—-7,7} and that the complex term s is a generalization of the real scale factor
1 + || since they are equal when ¢ is real.

With the use of Eq.(4.38), and a little algebra, the modified generic computation

in Eq.(4.37) can be rewritten as,

n = o—a-{z—oz}, (4.40)
where,
o = csgn” (t) (4.41)
and N
=1 -({:-SEZg(n)(t)t' (4.42)

In the implementation of (4.40), a wordlength of 2 bits is sufficient to encode o
since it can only be one of the four elements in the set {-1,1,—j,7} and a simple
circuit with this control input can be used to implement the computation oz, without

multiplication. (An example implementation is presented in the next section.) The
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magnitude of the coefficient o can be bounded by , and,in addition, the real part of
a is always nonnegative. Because of this limitation, a has a smaller dynamic range
than does ¢ and is more efficiently encoded for a given word length.

When scaling of this type is employed, the growth factor for Eq.(4.40) is
L+l

|s|
1+ ¢

|1+ csgn(t)t| ’

K = (4.43)

(4.44)

and satisfies the following inequalities,

22
14+v2

The lower bound is attained when ¢ is real and the upper bound is reached when ¢t =

1<K <( )% ~ 1.08 (4.45)

715 +3J 715 In order to specify the efficiency of the scaled operation, it is important to
understand how the term K varies with ¢. This can be achieved from an examination

of the following function:
1+ |2|

T+ csgn()7] (4.46)

f(z)=

In polar coordinates,

||
arctan(zr/zg) if |zg| > |2i]
arctan(zg/z;) otherwise
<

where0 <r<land -£ <6

form,

%. Equation (4.46) can then be rewritten in a simpler

(4.47)

(r.0) = 1+2r 412 \?
I =\ T+ 2r | cos 0] + 12

Figure 4.3 (a) and (b) illustrates the behavior as a function of r and |0|. It is an
increasing function of r when || is fixed and also increases with |8| for fixed values of
r. As a result, both the amplitude and phase of ¢ determine the value of the growth
factor in Eq.(4.44). The smoothness of these plots also suggests that this scaling

technique has good performance for most cases.
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Use of this scaling technique results in a reduction on the bound of the growth
factor of a generic computation from 2 to 1.08 which substantially reduces the possibil-
ity of numerical overflow. In addition, the cost of incorporating this scaling technique

is considerably lower.

4.4.2 Orthogonal Transformation
Orthogonal transformation T can be formed using the Givens rotation:

c S8

T = } (4.48)

-8 C

where
1 t

C = —— 5=
V1t VI+i®

Since the Hermitian transpose inverse of an orthogonal matrix is equal to the matrix

and t=—¢/c,. (4.49)

itself, the generic computations in both canonical form I and II can all be represented

as:

(4.50)

Y1 = € T1+ 8%
Y2 = —8 T1+cz,

By ensuring the input vector has 2-norm bounded by unity, no numerical overflow
will occur in the generic computations because orthogonal transformations do not

change the 2-norm of a vector.

4.4.3 Fast Orthogonal Transformation
Concept of Fast Orthogonal Transformation
Suppose a matrix A is decomposed as a product of M submatrices:
A=A;-Ay-- Ay (4.51)

A sufficient condition to make A an orthogonal matrix is that all submatrices in the

product are orthogonal, i.e.,
AlA; =1, for j=1,2,---,M. (4.52)
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A more general way to construct an orthogonal matrix is to require that all A;’s

satisfying the recursions
A'D;JA;=D;, for j=1,2,---M (4.53)

where each D; is a diagonal matrix with the initial condition Dy = I, as an identity
matrix. The resulting matrix A - D;}/ ? is then an orthogonal matrix. In this case
the orthogonality is not required for each submatrix and the transformation is termed
the Fast Orthogonal Transformation (FOT). The FOT was originally proposed in [26]
to avoid the square root computations in solving least-squares problems, and it was
termed the square-root free orthogonal transformation.

The FOT can be applied to construct an orthogonal T with less computation
than the Givens Rotation. In the following, two different forms of FOT are derived

to implement the transformation T.

Fast Givens Transformation

Let the vector ¢ = [¢; ¢;]¥ and the matrix D = diag(d,, d;) be given, where d,,d; > 0,

and define
T = 1 al ] . (4'54)

b 1

Observe that if
a = —Cl/Cg and bl = —(dg/dl)a;, (4.55)

then T satisfies Eq.(4.28) and

1 d 0
TpTt = | 14 (4.56)
0 (1 + Tl)dg
where
™= —albl = (dg/d1)|01/02|2. (457)
Similarly, we can define
1
T=|% (4.58)
1 b
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and
ag = —Cz/cl, bz = —(dlldg)a;, (4.59)

then T satisfies Eq.(4.28) and

1 d 0
DTt = | T2 (4.60)
0 (1 + Tz)dl
where
T = —agbg = (dl/d2)|02/c1|2. (4.61)

Since rj7; = 1, we can always select T as either Eq.(4.54) or (4.58) so that the
“growth factor” (1 + r;) is bounded by 2. Matrices of the form

1 a as 1
|:b1 l} or [1 bz] (4.62)

are referred to as fast Givens transformations. Detailed discussion of the fast Givens
transformation can be found in [19]. The Hermitian transpose inverse of Eq.(4.54)

and (4.58) can be easily obtained as:

1 1 —b
T W= —— — ! 4.63
(T7) Il-albll[—a: . } (4.63)
and
1 b1
T W= ———— | 72 4.64
(T Il-azbzlll a;] (4:64)

respectively. With properly pre-permuting the input (2, and z,), and post-permuting
the output (y; and y;), the generic computations in canonical form I and II can be

represented as:

= b
{ n o1+ 02 (4.65)

Y2 = az +2;
where a and b are coeflicients of complex values.
Notice that the generic computation implemented by a fast Givens transforma-
tion required only about half of the multiplications as that by a Givens rotation.

However, scaling may be necessary due to the possible overflow at each stage. The
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scaling can be done similar to the non-orthogonal transformation as discussed in
Section 4.4.1.
A Novel Fast Orthogonal Transformation

In addition to the fast Givens transformations, the following transformation can also

be used as a fast orthogonal transformation. Define

T=| %™ (4.66)
h 1
where
a; = —CI/CQ, b] = —(dz/dl)a;, r = (dg/d1)|(11|2 (4.67)
We prove that this T can be used as the elementary reflector by showing that
0
Te = (4.68)
Cz(l + 1'1)
and
0
rpTt = | G+ : (4.69)
0 d2(1 + T‘l)
By direct computation, we have
Te= | “hatmic (4.70)
bicy + ¢,
Since
bl _ d - d 2
-0+ rice = afal *C + 3f|all Co (4.71)
= aFle-(a/e) +laf] (4.72)
= aPle (-a)+|af?] (4.73)
= 0, (4.74)
and
—blcl +ec = —talf'a; ¢+ ¢ (475)
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= al-$a - (a/e) +1) (4.76)

= ao(Rlal +1) (4.77)
= 62(l+1'1) (4.78)

it follows that Eq. (4.68) is true. We also have

|bl|2dl + rid, -—-]b1|2d1 + rd;
—|b:1|2dy + r1d; |61]2dy + d2

TDT! = (4.79)

Evaluating the elements in the above matrix, we have the following equalities:

b+ ridy = (Pl dy + Rlards (4.80)
= B (481)

= dl a d—lal .
= 0, (4.82)
oalPds + 7y = (RVlarPds + (PPl (4.83)
= G[Rlarf + (Pl (4:84)
= d2(7‘1+7‘%)=d21‘1(1+7‘1) (485)

and

lbuf?dy + dy = (511)2|al|%tl+d2 (4.86)
- dg(gf|a1|2+1) (4.87)
= dy(1+m). (4.88)

Therefore, T satisfies Eq.(4.69).

Similarly, we can also define

0] —bz
T= .89
M ()
where
as = —'Cg/C], b2 = —(dl/dz)a;, ro = (dl/dg)lq/cllz. (4.90)
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Following a similar proof as above, it can be shown that

0
e } o

Tec =

and
dirz(1 +12) 0
0 dl(l + 1'2)

TDT! = : (4.92)

The Hermitian transpose inverse of Eq.(4.66) and (4.89) can easily be computed as

1 1 =
T W ——— ! 4.93
= mw | - —b;} (99)
and
1 by -1

(1)t =

= — 4,94
B+ | 8 r, (494)

respectively. With properly pre-permuting the input (z; and z;), and post-permulting
the output (y; and y,), the generic computations in canonical form I and II can be

represented as:

= b
{y‘ T+ 1o (4.95)

y2 = —bzy + =z
where b and r are coefficients. The coefficient b is of complex value, however, r is
always a real positive number. The generic computation using this fast orthogonal
transformation requires less computation than that using the Fast Givens Transfor-
mation. This is due to the fact that two coefficients in the latter transformation are
complex while one coefficient is complex and the other is real in the former transfor-

mation.

4.5 Systolic VLSI Architecture

A systolic VLSI planar array architecture is derived in this section to implement the
fixed-weight portion of the linearly constrained filter based on the construction of A

in decomposed form as addressed in Section 4.3.
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The partition of the matrix A into a sequence of elementary reflectors naturally
leads to a planar array architecture which corresponds to mapping each submatrix A ;
onto a Processing Element (PE). Figure 4.4 illustrates the detailed structure of the
planar array implementation. The elements labeled with a [A symbol indicate time
delays with ! representing the number of units of delay. A total of (N + M —3) delay
elements and N x M — M(M + 1)/2 PE’s are interconnected in a two-dimensional
array. The PE’s form a trapezoidal network in which the number of PE’s reduces
uniformly from (N —1) at the first column to (N~ M) at the last column. Each PE has
two inputs and two outputs and all PE’s are identical except for internal coefficient
values. Each PE implements one generic computation as defined in Eq.(4.29) in which

the elementary reflector can be a Gauss transformation or Givens Rotation.

In the planar array, each PE communicates to its four neighbors by receiving
the input data from its northern and western neighbors and transmitting the output
data to its eastern and southern neighbors, respectively. The function of the PE
at node (7, ) can be generally represented as in Figure 4.5 (a). The timing of the
circuit is arranged such that the inputs arrive simultaneously and the outputs are
generated after a one-unit time delay A, representing the time required for one internal
computation of the PE. A unit-delay element in this path is therefore required to
ensure that the horizontal and vertical inputs of each PE arrive at the same time.
One convenient method for achieving coincident timing is to insert a one-unit time
delay at the vertical input to the first PE of every column (except the first column),
and to use increasing delays at the horizontal inputs to all PE’s after the second, as
shown in Figure 4.4. This approach guarantees that data will propagate from the
input of the planar array to the input of PE at node (i, ) after a (2j+i-3)-unit time
delay.

Input data samples from the vector x(n) are piped into the planar array in
parallel with a time latency between successive vectors of one delay unit A. The
delay elements which precede the PE’s serve to skew the input data and produce
a skewed data flow propagating through the array. On one hand, the first N — M

components of Atx(n), denoted by x,(n), first appear at the horizontal output after
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Figure 4.4: The VLSI planar array architecture.
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a time delay of (2M — 1)-unit but they do not all appear simultaneously. The first
element of x,(n) is produced at the output after 2M — 1 unit delays, the second
appears after 2M units, and the last after M+ N —1 units. This skewed output vector
is followed exactly one time unit later by the next skewed output vector x,(n + 1).
On the other hand, the last M components of A'x(n), denoted by x,(n), appear at
the vertical output after a time delay of (N — 1)-unit in a skewed order similar to
the horizontal output. However, they appear in a reverse order such that the last
element appears at the first column of the PE, the second last element appears at the
second column, and the first at the last column. M boundary nodes are then used
to compute the inner product of w,,, and x,(n) to produce the desired signal y,(n)
as shown in Figure 4.4. The function of the boundary node is represented in Figure
4.5 (b). By requiring the computation of each boundary node be done in one unit
time delay A, the desired signal y,(n) appears at the output one-unit time delay after
the last element of x,(n). Once x,(n) and y,(n) are generated, the adaptive-weight
portion of the linearly constrained filter can be implemented using any unconstrained

adaptive algorithm.

4.6 Comparisons to Previous Work

In addition to the canonical form I and II presented above, several approaches [27,
28, 29] have been proposed to implement the fixed-weight processor in the adaptive
linearly-constrained filters. In the following, the previous approaches are reviewed

and compared.

4.6.1 Previous Work Review

McWhirter and Shepherd

Define a matrix consisting of the constraint matrix C and the response vector f as

follows:

[ct £]. (4.96)
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Figure 4.5: The functional diagram of the (a) internal PEs and (b) boundary nodes
in the VLSI planar array.
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Premultiply the above matrix by a unitary matrix Q and a diagonal matrix D to

transfer the first M x M submatrix of C! into a triangular form, we have
[TV%]=DQ[C* f] (4.97)

where T is a M x M upper triangular matrix, V is a M x (N — M) matrix and f
is a M x 1 vector. Assuming the matrix T is invertible, the above matrix is further

multiplied by T~! which results in
[ | FY2 Y T'v T-'f ] . (4.98)

Accordingly, the original constraint equations C'w= f can be rewritten as

Clw=f (4.99)
where
. I
= MM (4.100)
(T V)t
and
f=1T"f (4.101)
Defining a nonsingular matrix A as
I -T'Vv
A=| MM , (4.102)
Ov-m)xM  Lnoanyx(v-m)

it is easy to verify that

AtC =

I
MxM— 1 (4.103)
O(v-a)xm

This A matrix then transforms the constraint matrix € into a form which has an
identity matrix of size M x M on the top and zeros elsewhere. From the MGSC
algorithm, the vectors x,(n) and x,(n) are, respectively, the first M and the last N —
M components of A'x(n). The w,,, vector required for generating the reference signal

is y,(n) equal to f since the nonsingular submatrix in A'C is identity. Partitioning
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the vector x(n) into two vectors corresponding the upper M lower N — M components

x(n) = [ %u(n) } , (4.104)

as follows

xz(n)
the reduced-dimensional vector x,(n) and the reference signal y,(n) can then be

formed by the following equations

Xq(n) x(n) — VI(T™N)x,(n) (4.105)
v(n) = F(THtxu(n). (4.106)

These two equations are used in [27] to transform the constrained problem into a
unconstrained one. The approach in [27] is therefore a special case of the MGSC
algorithm using the A matrix defined in Eq.(4.102).

Van Veen and Roberts

Two different pre-processors with and without data permutations were proposed in
[28] to implement the blocking matrix W), of the GSC structure in the case when the
number of constraints is large. The ideas of these two processors are summarized in
the following.

(a) Pre-processor with data permutation

Let an arbitrary blocking matrix W, of size N x (N — M) be given and be partitioned
into the upper (N — M) x (N — M) and the lower M x (N — M) submatrices, i.e.,

W, = [ Weu ] (4.107)

Row permutations are first used to ensure the upper submatrix Wy, is nonsingular

and a blocking matrix is defined by postmultiplying W, by W3, which is,

w, = | Jov-moxw-mn | (4.108)
W, wW:!

This W, matrix satisfies the properties of a blocking matrix since postmultiplying

W, by a nonsingular matrix will not change its rank and its column space.
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(b)Pre-processor without data permutation

The initial blocking matrix W, can be decomposed into a product of two matrices U
and S, i.e.,

W, =US (4.109)

where U is a N x (N — M) full rank matrix and S is a (N — M) x (N — M) nonsingular
matrix. The decomposition is done such that U is of lower triangular form. By this
partitioning the matrix U has the same column space and can therefore be used as

the blocking matrix in the GSC structure, that is,
W, =U. (4.110)

This W, matrix is simplier than W, since it is of triangular form.

Kalson and Yao

The approach in [29] simply rederived the GSC structure in a one constraint case.
The blocking matrix W, is a full matrix of size N x (N — M) without any special

structure.

4.6.2 Comparisons

A similar systolic array has been proposed in [27)] for fixed-weight portion implemen-
tation in the linearly-constrained filter. In that approach, the constraint equations
were reformulated such that the constraint matrix is partitioned into two submatrices
with a M x M triangular matrix on the top and a (N — M) x M rectangular matrix at
the bottom. The authors then showed that these two submatrices can be used to elim-
inate the constraints. As shown in earlier that this approach is actually a special case
of the MGSC algorithm in which the A matrix was implemented as a block triangular
matrix. The main drawback of this implementation is that it requires nonsingular
principal submatrix assumption on C otherwise a data permutation pre-processor is
needed. For an arbitrary given constraint matrix, the nonsingularity assumption is by

no means guaranteed. As a result, a permutation pre-processor is generally needed.
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It therefore complicates the implementation. In addition, no modification was avail-
able to implement the A matrix as an orthogonal matrix. Although self-orthogonal
property is not required for A, it is sometimes desirable to have an orthogonal A to
obtain better numerical stability in the system. Moreover, this approach is inefficient

for the implementation of a large number of constraints.

Two systolic array architectures were presented in [28] to efficiently implement
the large number of constraints cases. This approach was based on deriving a special
structure for the blocking matrix W, in the GSC algorithm such that the computa-
tional complexity is minimized. A reference blocking matrix W, of arbitrary form
was first constructed. Transformations were then used to transform W, into a sim-
pler form. In the first architecture, the blocking matrix is reduced to have an identity
principal submatrix which, however, requires the assumption of nonsingular principal
submatrix of W,. To implement this architecture therefore needs data permutation
as required in [27]. The second architecture was then proposed to avoid the need of

data permutation by transforming W, into a lower triangular matrix.

Another systolic array was presented in [29] which implemented the W, as a full

matrix. No special structure was imposed on W, to reduce computation.

As a summary, Table 4.6.2 is used to outline the characteristic of various ap-
proaches specified under the first column of the table. Under the second column, the
characteristic of each individual matrix transformation are listed. The third column
shows the number of complex multiplications needed to implement the fixed weight
portion of the filter with the corresponding approach. The number of complex mul-
tiplications is expressed as the sum of two terms which correspond to the required
computations for the desired signal and the reduced-dimensional vector, respectively.
The variables x, and & are as defined in Eq.(4.11) and (4.26), and the constant
factor ¢ varying from 1 to 3 depends upon the transformation used to construct the
elementary reflectors. The last column of the table shows the required assumption
on the constraint matrix C or the reference blocking matrix W, in the corresponding

approach.

Compared to other systolic arrays, the systolic array presented in this Chapter
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Approach Matrix No. of Complex Assumption on
Transformation Multiplications Cor W,
Canonical
Form A: A sequence of M+c -k, None
I elementary reflectors 1<¢<3
Canonical
Form B~1: A sequence of M+tec r None
II elementary reflectors 1<e<3
McWhirter Nonsingular
and A: Upper block M+ K, principal
Shepherd triangular submatrix of C
Van Veen Nonsingular
and W,: Identity principal | N + M x (N - M) principal
Roberts (a) submatrix submatrix of W,
Van Veen
and W,: Lower triangular N 4k None
Roberts (b)
Kalson
and W,: Full matrix N+Nx(N-M) None
Yao

Table 4.1: The comparison table.

possess at least three advantages : 1) No nonsingular assumption on the principal
submatrix of C or W, avoids the need of data permutation pre-processor, 2) Various
transformations for constructing the elementary reflectors provides more flexibility
for implementation, 3) The choice between canonical form I and II ensures efficiency

for both small and large numbers of constraints.

4.7 Summary

This chapter has presented a systematic procedure to implement the adaptive linearly-
constrained filter. The approach was based on using the MGSC algorithm to decouple
the filter weights into fixed and adaptive portions in which the former is completely
determined by the constraint equations while the latter is adaptively formed to min-

imize the output power. In general, the adaptive-weight portion can be implemented
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by some well-developed adaptive algorithms such as recursive least-squares or a simple
LMS approach. Furthermore, with the use of matrix decomposition techniques, it was
shown that the fixed-weight portion can be implemented efficiently for an arbitrary
number of constraints.

The design methodologies presented by other authors [27, 28, 29] in developing
the systolic implementations of the linearly-constrained filter were also based on the
fixed and adaptive weights decoupling. In fact, their approaches on implementing the
fixed-weight portion are equivalent to implementing the GSC blocking matrix or the
MGSC transformation matrix as mentioned in Section 4.5. However, the implemen-
tations in their approaches were in direct form in which the blocking matrix and the
transformation matrix were formed explicitly. In contrast to the direct form imple-
mentations, the decomposed form implementation used in this paper does not form
the transformation matrix explicitly. Instead, only the factorization of that matrix
is implemented. The use of decomposed form in this paper is similar to that of a
widely used approach in solving linear system or least-squares problems in which the
original problem is reformulated as an equivalent and simple one by a sequence of
matrix transformations. As such it provides favorable numerical property with the
use of the Gauss transformation, the Householder transformation or the Givens rota-
tion. In addition, the flexibility offered by the choices among these transformations
also allows the system designer a trade-off between implementation cost and numer-
ical performance. This trade-off flexibility is especially important in special purpose

hardware implementations in which the hardware cost is a critical consideration.
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Chapter 5

Fixed-Point Implementation

5.1 Introduction

The implementation of signal processing algorithms on special-purpose hardware sys-
tems is practically important because of its potential for high speed processing. The
arithmetic being implemented can either be fixed-point or floating-point depending
upon the particular application. These two arithmetics have different features. Float-
ing point introduces error due to arithmetic roundoff by addition as well as multi-
plication while fixed point only introduces error in the addition case. However, the
significant advantage of using floating point arithmetic over fixed point is the much
broader dynamic range it provides. Both of these effects must therefore be considered
when selecting the arithmetic for implementing an algorithm.

The decoupling of the adaptive linearly-constrained filter into fixed-weight and
adaptive-weight portions suggests the use of both fixed-point and floating-point in the
implementation due to the different features presented in these two weight portions.
Fixed-point is preferably used in implementing the fixed-weight portion since roundoff
error caused by the computations is minimized and numerical overflow due to the
insufficient large of dynamic range can easily be handled via scaling the weights. On
the other hand, floating-point is preferably used in implementing the adaptive-weight
portion because the weights may be of large values before reaching their optimums.

This is true even in a well-posed case that all the optimal weights are small, not to

93



mention the ill-posed case that some of the optimal weights are large. In addition,
the scaling of adaptive weights is far more complicated than that of the fixed weights
which makes it infeasible, if not impossible, to scale the weights in the adaptive-weight
portion.

When implementing the fixed-weight portion of the canonical form I in fixed-
point, noise is introduced by quantizing the coefficients of the matrix A'. The study
of this quantization noise is very important in practice since quantizing the coefficients
in insufficient accuracy can cause substantial violation of the theoretical properties
imposed on the matrix A, which may in turn lead to the divergence of the filter.
The main purpose of this chapter is to illustrate this quantization noise assuming
the matrix A is constructed via the decomposition procedure outlined in chapter
4. As a result of the quantization of the matrix A the quantization noise appears
both in the reduced-dimensional data vector, x,, and the quiescent signal, y,. The
quantization noise in X, is considered to be more important than that in y, due to
the fact that only the former noise may cause the filter diverges while the latter noise
merely lead to a different optimal solution. In addition, the quantization noise in y,
can be minimized by optimizing the filter weights w,, over the discrete space and/or
using longer wordlength in implementing w,. In order to simplify the problem, only
the more complicated quantization noise appearing in X, is considered.

As for the adaptive portion, the noise caused by the quantization of the w,
weights is an extremely difficult problem due to the noise accumulation resulting from
the feedback signal. The discussion of this quantization noise has been investigated in
[30] and [31] for unconstrained LMS filters. Since the adaptive portion of the adaptive
linearly constrained filter is merely an unconstrained filter, the procedures introduced
in [30] and [31] can also be applied to analyze the quantization noise caused by w,.
Detailed discussion of this quantization noise, however, is beyond the scope of this

thesis.

In Section 5.2, the fixed-point implementation issues including the quantization

!Similar quantization noise is introduced by quantizing the coefficients of B~! in canonical form
II. For simplicity, we only discuss canonical form I in this chapter.
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procedure, the overflow handling and the number representation systems are dis-
cussed. Simulation results in Section 5.3 are used to demonstrate the quantization

noise based on both random and deterministic test.

5.2 Fixed-Point Implementation Issues

5.2.1 Successive Quantization Procedure

In finite word length implementations of adaptive linearly constrained filters, the
decomposition approach to constructing A outlined in Algorithm 1 has an additional
significant advantage. This results from the observation that the degradation caused
by quantization can be reduced by performing the quantization on the coefficients of
the elementary reflector immediately after each iteration. This approach ensures that

the required property of A is closely preserved at each stage of the iteration.

5.2.2 Overflow Handling

As mentioned in Section 4.5 that the implementation of A'x(n) is acheived by con-
necting a set of PEs in which each PE corresponds to implementing one generic
computation. The generic computation is characterized as a 2 X 2 matrix-vector

computation:

hn =T. T

Y2 T2

(5.1)

In order to assure no numerical overflow occurs in the computation, the generic com-

putation is modified by multipling a diagonal matrix D:

N T

=DT. . (5.2)

Y2 T2
where the elements in D are used to scale down the two results from the rows of Tx.
The choice of the scale factors in D depends upon the particular composition of T.
In Section 4.4, various transformations and the corresponding scale factors have been

discussed. Of particular interest in this chapter among these transformations are
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the Gauss transformation with complex scale factor and the Givens rotation, which
represent the non-orthogonal and orthogonal transformations, respectively. These
two transformations will be used to demonstrate the quantization noise in Section
5.3. Similarly, this scaling technique can be applied to the generic computations in

canonical form II.

5.2.3 Alternative Number Representation Systems

Two fixed-point number systems are considered for use with a specific implementation
of the generic computations in the VLSI planar array. These are two’s complement
(TSC) and power-of-two with at most two nonzero digits (POT2). In both cases, the
word size is b bits. With TSC, any or all of these bits may assume values of 0 or 1.
In POT?2, at most two of the digits (each associated with a sign bit) in the sequence

are nonzero. More specifically, a number z is represented by a b-bit TSC as follows:

z= ia,-z-‘ (5.3)

i=1

and its complement is

b
=1+ a2"* (5.4)
=1
where
a; € {0,1},1=0. (5.5)

While a number z is represented by a b-bit POT?2 as follows:

z= a12_b1 + a22‘b’ (5.6)
and its complement is
F=a,2"" +a,27% (5.7)
where
a; € {-1,0,1},1=-1,0=0 (5.8)

and b;, b, are two integers of values between 1 and 4. Since the number of nonzero

digits is restricted, the required hardware for a power-of-two multiplier is less than
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that of a two’s complement multiplier of the same wordlength. The cost of implement-
ing the VLSI planar array is reduced substantially if the coefficients of the generic
computations are represented in POT?2 rather than in TSC. An efficient VLSI imple-
mentation of the POT2 multipler has been proposed in [32]. The quantization effects
of implementing A in both number systems are compared via simulation results in

the next section.

5.3 Simulation Results

Since we only consider the quantization noise in x, for canonical form I, it is equivalent
to considering the quantization noise in X, using the GSC structure by assuming that
the blocking matrix W, is similar to the matrix A. The reason for presenting the
quantization material in terms of the GSC structure is that the independent of the
w, vector on the choice of W, matrix simplifies the presentation. Nonetheless, the

result presented in this section is directly applicable to canonical form I.

In the simulation, a constraint matrix C is picked and the corresponding blocking
matrix W, is constructed using the decomposition procedure. Two ways are used to
pick the matrix C in the simulation: randomly generate C and deterministically
select C. The purpose of the random test is to see the quantization effect based on
a statistical point of view and the purpose of the deterministic test is to observe the
actual effect in adaptive array design problems. All the constraint matrices used in the
simulation are of dimension 32x6. For comparison, both the Gauss transformation
(GAT) with complex scale factor and the Givens rotation (GRT) are used to construct
the W, matrix in the simulation. The fixed-point number systems we consider are
TSC and POT2 as defined in Section 5.2.3. The quantization of the W, matrix
is performed using successive quantization procedure as outlined in Section 5.2.1.

Rounding is used in quantizing a number.
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Random Generation of C Matrix

Elements of C were chosen to be uniformly and independently distributed between
-1 and 1. Once a quantized W, matrix had been constructed, the degree to which
the quantized matrix remained orthogonal to the C matrix was measured using a
performance measure E; given by,

/T
1= T1xx7r I1_ et 0
W.IFICITF

where ||- ||r denotes the Frobenius norm [19]. This measure lies between 0 and 1 and

(5.9)

is the normalized error associated with the residue matrix W!C. The lower bound
E, =0 is achieved only if W, satisfies the orthogonality property and the departure
of E, from 0 is a quantitative description of the degree to which the space spanned
by W, overlaps the column space of C. Values of F;, near 1 indicate that either
the column space of C is a subspace of the column space of W, or vice versa and
therefore not likely to be observed unless extremely coarse quantization is employed.

A total of 32 random constraint matrices were generated. The average value of E,
obtained by averaging over this set is presented in Figure 5.1 as a function of the word
size used in the quantization. Four configurations were investigated, corresponding to
the GAT and GRT methods with both TSC and POT2 number systems. The E; value
for all four cases was about 0.1 for 2-bit quantization and decreased monotonically
as the wordlength increased. A saturation wordlength can be defined for each curve
as the minimum wordlength beyond which negligible increases in performance are
observed. When TSC was used as the number representation system, both GAT and
GRT had a saturation wordlength of about 10 bits. In the POT2 case, the GAT
had a saturation wordlength of about 6 bits while the GRT had about 4 bits. In
addition, the GAT-POT2 had lower overall values for E; than did the GRT-POT2.
This observation is due to the fact that the superior property of an orthogonal rotation
was severely distorted by quantization.

Further, the POT?2 approach exhibited a plateau effect for both GAT and GRT
such that increasing the number of bits above the threshold point did not result in

substantial increased performance. Threshold is observed due to the fact that the
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Figure 5.1: Normalized quantization error for the random C matrix example.
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number of nonzero bits in POT2 representation was restricted to two and an upper
limit on performance must exist, regardless of the wordlength. Improvements can be
obtained by increasing the number of nonzero bits but only at the expense of higher
implementation cost.

Comparison of the results in Fig. 5.1 reveals that the quantization effect ob-
served with GAT and GRT was about the same when W, was implemented using a
TSC number system. However, this was not the case when POT?2 representation was
employed as performance of GAT was uniformly better than that of GRT, regard-
less of wordlength. The difference was greater at longer wordlengths. Specifically,
the measured value of E; for the GAT-POT2 was about 0.0088 at the saturation
wordlength and about 0.0260 for the GRT-POT2 method. This latter value indicates
that the W, with orthogonal columns (GRT) was more sensitive to the quantization
than that with non-orthogonal column (GAT).

Deterministic C Matrix Experiment

A linearly-distributed 32 element adaptive narrowband antenna array with six con-
straints was selected as the example for the deterministic tests. The element spacing
was one-half wavelength and the six constraints consisted of five gain response point
constraints and one additional constraint to control the quiescent response of the ar-
ray [33]. The gain control constraints provided unity gain in the broadside direction
and nulls in four directions: 12°,14° 16° and 18°. Figure 5.2 illustrates the infinite
precision optimal gain response pattern for this example. The input signal environ-
ment for the array consisted of a 0 dB desired signal incident from the broadside
fs = 0° direction, a single directional interference (jammer) incident from §; = 229
at a power level of 20 dB, and white, uncorrelated noise at a 0dB power level. The

covariance matrix for this data set is given by,
R..=1+4+ V(as)vt(as) + 100 . V(G_;)Vf(gj) , (5.10)

where v(9) is the array steering vector for direction of arrival 6.
Performance curves for this example were obtained by comparing the subopti-

mal array weights W,,; obtained using a specific quantizer rule with the unquantized
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optimal weight vector W,y. The latter was computed from Eq. (2.17) using double-
precision floating-point calculations on a VAX-11 computer. In computing the quan-
tized suboptimal responses, only the effects of quantization in W, were considered.
Thus, quantized W, matrices were computed according to the particular rule under
consideration (GAT-POT2, GRT-TSC, etc.) and the approximation to the optimal
response W,,; was calculated with double-precision floating point using Eq. (2.17).
In order to evaluate the performance obtained under the four methods for con-
structing and implementing W,, two measures were employed. The first evaluated

the norm of the vector difference between Wopt and W,

By = [[Wort = Wopdls (5.11)
1 Wopel2

The second indicated the degree to which the constraint equation was satisfied,

_ lE—1ll;

Ep=1_"12 5.12
3= T (5.12)

where,
f = Clw,,. (5.13)

Note that both measures are zero if W, satisfies the orthogonality property. The
measures E; and Ej for the above design example are shown in Figure 5.3 as a
function of processor wordlength.

The distortion introduced by the quantization of the W, was also measured by
plotting the magnitude of array response. The complex array response b(#) at an
incident angle @ is given as,

b(6) = v} (0)Wop: . (5.14)

Plots of |b(6)| are shown in Figure 5.4 for the two’s complement quantized processors,
GAT-TSC and GRT-TSC computed at 8-bit precision. Comparable results for the
power-of-two cases, GAT-POT2 and GRT-POT?2, are illustrated in Fig. 5.5. Com-
parison of these results with Fig. 5.2 shows that the performance measures E, and
E; reflect the actual array response performance in the sense that the solutions which
have low values of the performance measure also have array responses which agree

most closely with the unquantized case.
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Discussion

The results presented in Fig. 5.3 show dramatically improved performance for the
2-bit word size case. At least two reasons can be cited for this seemingly anomalous
behavior. First, the process described in this paper for generating a quantized ap-
proximation to the W, matrix consists of a stage-by-stage procedure. This approach
will not, in general guarantee that a global optimal solution has been achieved. The
latter can only be found by searching the entire set of discrete approximations for
those points which produce global minima and this represents a truly formidable nu-
merical task even for moderate-sized problems. It should be noted, however, that
quantization by stage described in this paper does result in a local minimum at the
current stage. It does seem unlikely, however, that this characteristic fully explains

the performance levels observed for the 2-bit word size examples.

The second, and more meaningful, reason for the observed behavior is related to
the particular geometric properties of the example selected. In linearly-constrained
minimization problems, it is convenient to describe weight vectors for the processor
in terms of their projections onto the constraint subspace and onto the orthogonal
complement of this space. Any vector which satisfies the constraints must have a
predefined projection onto the constraint subspace. Different vectors, which all satisfy
the given constraints can therefore only differ in the degree to which they project onto
the orthogonal complement. For the particular example selected above, the optimal
vector w,,; was contained largely in the space spanned by the constraint vectors.
Quantitatively, the 12-norm of the projection in this subspace was 0.1962 while that
in the orthogonal complement was only 0.0075. Simply quantizing this value to zero
results in an E2 value of 0.9632 which is lower that that observed for both 4-bit and
6-bit wordsizes in GAT-POT2 and GRT-POT2. Using few quantization levels, such
as in the 2-bit case, increases the likelihood that the orthogonal complement value

will be set to zero.

A second example was generated in which a greater portion of the optimal vector

resided in the orthogonal complement. In this case, the same 32 element array was
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used, but the signal, jammer and constraint conditions were changed. The new pa-
rameters were: Unity gain in the desired signal direction § = 0% four null constraints
in the directions 22°, 249, 26° 28°; and a jammer direction of 32°. The relative powers
of the signal, jammer and white noise were unchanged. Under these conditions, the
projections of w,,, in the constraint and orthogonal complement spaces have norms
of 0.2664 and 0.0567, respectively. Figure 5.3 illustrates the behavior of the measures
E; and FEj for this example. Although the results are not strictly monotonic, the over-
all behavior does indicate the expected improvement in performance with increased
wordsize.

Figures 5.3 and 5.6 illustrate that the GAT-TSC, GRT-TSC and GAT-POT?2 can
provide acceptable performance for sufficient long wordlength but that GRT-POT2

cannot. This conclusion agrees with that of the random test.

5.4 Summary

This chapter has discussed the issues of overflow handling and alternative number
representation associated with implementing the fixed-weight portion of the adaptive
linearly-constrained filter in fixed-point arithmetic. A simple number system have
been proposed and shown to result in significant hardware complexity reduction for a
VLSI implementation. Finally, the effects of finite wordlength implementation have
been investigated using simulation results. These preliminary findings are encouraging
and suggest that relatively small wordlengths can provide effective processing within

the fixed-weight portion of the adaptive linearly-constrained filter.
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Chapter 6

A Generalization to

Linearly-Constrained Filters

6.1 Introduction

This chapter addresses the problem of linearly-constrained filtering in a more general
case in which the linear constraints in the filter are not fixed. Instead, the righthand
sides of the constraint equations are allowed to be adjustable. The filter of this
type is termed as having adjustable constraints. The application of this generalized
linearly-constrained filter requires further investigation and is beyond the scope of
this thesis. The main effort in this chapter therefore lies only in deriving an efficient

implementation structure.

To formulate adjustable linear constraints, we incorporate a time variable n in

the response vector f in the constraint specification given in previous chapters,
Ctw = f(n). (6.1)

To implement an adaptive filter with adjustable linear constraints, a structure that
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immediately follows from the MGSC is to allow w,,, to be adjustable according to
the change of f. However, the difficulty with this structure is that the weights w,(n)
will not start converging until the vector Wy, is held fixed since the update of w,(n)
depends on y,(n). In the case of changing f at every time instance the filter will not
converge at all since it has to keep tracing different desired signals at different time
instance. Even in the case of infrequently changing f such that there is sufficient
time for wo(n) to converge, this structure still bears a disadvantage of the need of
re-adjusting w,(n) every time f changes.

To alleviate these problems, a second structure as shown in Figure 6.1 is consid-
ered. This new structure mainly consists of two portions: The first is a transforma-
tion, denoted by W(n), which maps the input vector, x(n), into a M-dimensional
vector, z(n), and the second is a vector, denoted by g(n), whose elements linearly
combine with z(n) to produce the final output, y(n). The significant features of this
structure are that the transformation Wc(n) can be updated independent of f(n) and
the vector g(n) is a simple linear mapping from f(n). Consequently, the convergence
of the weight matrix W (n) is not affected by the values of the elements in f(n).
Once W,(n) converges, the reconfiguration of the filter weights due to the change of
f(n) simply involves a relatively simple linear mapping to obtain g(n).

In Section 6.2, it is shown that the optimal weights of a linearly-constrained
filter can always be expressed as a linear combination of a set of primitive weights.
Based on this linear combination expression and the MGSC algorithm, the detailed
implementation of the structure in Figure 6.1 is derived in Section 6.3. The chapter
ends with several concluding remarks on the generalization of the linearly-constrained

filter with adjustable constraints.

6.2 Mathematical Groundwork

This section shows that the optimal weight vector of a linearly-constrained filter with
M constraints can always be expressed as a linear combination of M components. In

the first part of this section, these M components are first identified as the optimal
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Figure 6.1: The implementation structure of the adaptive filter with adjustable con-
straints.
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solutions to a class of standard linearly-constrained problem with constraints induced
by the original constraint matrix; in the second part, it is shown that the overall

optimal weight vector can be obtained by linearly combining these M components.

6.2.1 Standard Linearly Constrained Problems

Given a constraint matrix C of dimension N X M, we can define M generic sets of

linear constraint equations as,
Clw=e; for i=1,2,---,M, (6.2)

where C; is a submatrix of C containing the first ¢ columns and e; is a i X 1 vector
with unity as its only nonzero component appearing at the last entry. Starting with
index ¢ from 1 to M, the :_th set of the linear constraints restricts that the linear
combination of the weight vector with the i_th column of C is equal to unity while
that with the previous columns are zero.

A class of standard linearly-constrained minimization problem induced by C
can now be defined as minimizing the filter output power subject to the M generic
sets of linear constraints. Accordingly, there are M optimal weight vectors, denoted
by W, Wea, -+ -, Wenr, associated with this class of linearly-constrained minimization

problem. It is shown in Appendix A that each w,; is given by
we = (H)1P;H'¢; (6.3)
where H is the square-root of R, and P; is the projection matrix of HC;. These

optimal weight vectors are referred to here as primitive weight vectors.

6.2.2 Generating optimal weights from primitive weights

The following theorem shows that the optimal weight vector of the linearly-constrained
filter can be obtained by properly combining the corresponding primitive weight vec-

tors. The combination coefficients, however, depends on the response vector f.
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Theorem 5 Consider the minimization problem of

min wiR . w (6.4)
subject to the linear constraints
Clw=f (6.5)
where
C=ci¢; .-+ cyl (6.6)
and i
[ f
f= f 2 (6.7)
| far |

are the constraint matriz and response vector, respectively. With the assumption that
¢; ’s are mutually orthogonall, the optimal solution for this minimization problem is a
linear combination of the primitive weight vectors w.;’s with appropriate coefficients

o
gi’s, i.e,

M
Wopt = zgiwci- (6'8)

=1
The primitive weight w,; is given by Eq.(6.3), and the vector g consisting of the

combination coefficients is given by

g=T7f (6.9)
where
T = CtW, (6.10)
and
W.=[Wa We2 -+ Wep)- (6.11)

In eddition, T is a triangular matriz with unities on the diagonal.

1This assumption can be asserted without loss of generality since an arbitrary given constraint
specification can always be reformulated such that the corresponding constraint matrix has orthog-
onal columns.

113



Proof:
By starting with only one constraint and successively adding one constraint at a time
in the filter, the optimal weight vector at the (¢ +1)_th stage, Wi41, is related to that

at the :_th stage, w;, by the following recursion,
Wi = Wi + (fir1 — el wi)Weiga. (6.12)

(The proof of this recursion can be found in Appendix A.) Recursively substituting
this recursion from index 7 equals 1 to M, it is easy to show that the optimal weight
vector with M constraints is a linear combination of the primitive weight vectors

we, fore=1,2,---, M, ie,

M
Wopt = D, §iWei (6.13)
t=1
or in a vector form
Wopt = W g. (6.14)

By directly substituting the above expression of w,, into the constraint equations

Ctw,, =1, (6.15)
it follows that
Tg = f (6.16)
where
T = CtWw.. (6.17)

To prove that T is a triangular matrix, we can check the i_th column of T given by
Clw,. (6.18)

Since w,; is the i_th primitive weight vector, it must satisfy the constraint condition
Clw, =e;. (6.19)

This implies that the first i elements of Ctw,; is equal to e; and T is therefore a lower

triangular matrix with unities on the diagonal.
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Q.E.D.

Based on the above theorem, the computation of the filter output
y(n) = wi,x(n) (6.20)
can be obtained by first computing an intermediate output
z(n) = Wix(n) (6.21)
and then combining this output with g,

y(n) = g's(n). (6.22)

In the next section, a structure for implementing the adaptive filter with adjustable
linear constraints is derived based on the use of this two-step computation and the
MGSC algorithm.

6.3 An Adaptive Implementation Structure

The two-step computation mentioned in last section naturally divides the implemen-
tation of the adaptive filter with adjustable constraints into two parts corresponding
to implementing W, and g. Adaptive implementation of the first part is equivalent
to adaptively implementing the class of standard linearly-constrained minimization
problem as defined in last section. It is therefore possible to implement it by M indi-
vidual MGSC structures where each MGSC implements one minimization problem.
However, this MGSC implementation can be further simplified by using the fact that
the righthand sides of the constraint equations are particularly simple and the con-
straint matrices in the minimization problems are formed recursively by adding one
constraint vector at a time. On the other hand, as a direct result of the above theo-
rem, implementing g according to the change of f simply involves forming T from W,
and solving a triangular linear system. In the following, the adaptive implementation
of the weight matrix W, and the reconfiguration of the combination coeflicients g are

given in detail.
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6.3.1 Adaptive implementation of the weight matrix W,

The vector z(n) is computed from the input vector x(n) as follows:
z(n) = Wi(n)x(n). (6.23)

In order to apply the MGSC algorithm, we have to implement this computation in
a transformed domain specified by a nonsingular matrix A which transforms the
constraint matrix C into C of canonical form as given by Eq.(3.25). It was proved
in Chapter 3 that by using this A matrix the original minimization problem can be

equivalently expressed in the transformed domain as

min WIR,. W (6.24)
w

subject to the linear constraints
& = f(n) (6.25)

where R, is the covariance matrix of the transformed signal X(n) as defined in
Eq.(3.31).

In general, the columns of € are not mutually orthogonal. This prevents directly
applying Theorem 5 to implement z(n) in the transformed domain. However, noting
that by multiplying both sides of Eq.(6.25) by (V1)~! we have

&'w = (VH1f(n) (6.26)
where
- 0
¢= . ] . (6.27)

Accordingly, the constraint matrix C now has orthogonal columns and the result of
Theorem 5 can be applied.

Let the primitive weights in the transformed domain with the constraint matrix
be denoted by W,. The computation of z(n) can now be preformed in the transformed
domain as

2(n) = W' (n)i(n) (6.28)
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where the time variable n is included in W, since the primitive weights are imple-
mented adaptively. To simply the derivation, the vector %(n) and the matrix W(n)

are partitioned as the upper N — M and the lower M components:

Xa(n)
X(n)=| — == (6.29)
Xq(n)
and
~W,(n)
W.n)=| —== |. (6.30)
T(n)
From Theorem 5, T(n) is a lower triangular matrix with unities on the diagonal:
1 o - o 0]
—ty1(n) 1 0 . 0
T(n)=| —ta(n) —tzn(n) 1 . 0 (6.31)
| —tMl(n) —tMg(n) . —tM,M_l(‘n) 1 ]
The :_th component of z(n) is then equal to
zi(n) = tl(n)xe(n) = Whi(n)xa(n) (6.32)

where t;(n) and w,i(n) are the i_th columns of T(n) and W,(n), respectively. The
adaptive weights in these two vectors are updated such that the variance of z;(n) is
minimized.

The block diagram for adaptively implementing z(n) is shown in Figure 6.2.
The input vector x(n) is first transformed into x,(n) and x,(n) by the matrix A;
Xq(n) and x,(n) are then multiplied by the Hermitian transpose of W,(n) and T(n),
respectively, to generate y, (n) and y,(n); z(n) is obtained by subtracting y,(n) from
¥,(n) and is used to update the weights specified in W,(n) and T(n); the weight
update is done such that the weights in the i_.th columns of W,(n) and T(n) is
adjusted to minimize the i_th components of z(n). The computation involved in this
structure is of order O(NM) provided that the LMS algorithm is used for weight

update and the matrix A is of decomposed form as described in Chapter 4.
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Figure 6.2: The detailed implementation of the weight matrix W(n).
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Figure 6.3: The reconfiguration of the response vector f(n).

L

6.3.2 Reconfiguration of g(n)

According to Theorem 5, the combination coefficients contained in g(n) must satisfy

the following equality,
T(n)g(n) = (V') 'f(n). (6.33)
Reconfigurating g(n) by the change of f(n) thus simply involves solving two M x M

triangular linear systems as represented in Figure 6.3. The final filter output, y(n),

is obtained by the inner product of g(rn) and z(n).
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6.4 Summary

This chapter has presented a new structure for implementing the adaptive filter with
adjustable constraints. The implementation is based on first using a class of stan-
dard linearly-constrained filters with constraint matrices induced from the original
constraint matrix and then combining the output of these filters to generate the final
output. The significant feature of this two step implementation is that the feedback
signals used to adjust the filter weights do not depend on the particular response
vector. It is therefore possible to change the response vector at any moment without
affecting the convergence of the weights. Implementing the first step is based on the
use of the MGSC algorithm while implementing the second step simply involves two
triangular linear system solvers and one linear combiner. The resulting structure was
referred to as the Extended Generalized Sidelobe Canceller (EGSC). The application
of the EGSC requires further investigation and is beyond the scope of this thesis.
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Chapter 7

Summary and Future Research

Directions

7.1 Summary

This thesis has presented an extensive study of the adaptive linearly-constrained fil-
ter. The design of an adaptive linearly-constrained filter for a particular application
can be typically divided into two major steps, one is to set up the linear constraints
and the other is to select an implementation structure. The material presented in
this thesis is selected with the effort of providing some guidelines for these two de-
sign steps. The analysis of the steady-state performance in Chapter 2 helps evaluate
the performance of the constraints; the comparison of three iterative algorithms in
Chapter 3 unifies the implementation algorithms; the derivation of the dual imple-
mentation structure in Chapter 4 ensures the implementation efficiency for arbitrary
number of constraints; the study of the quantization effects in Chapter 5 suggests
a trade-off between the implementation cost and system performance; and, finally,
the generalization of the adaptive linearly-constrained filter in Chapter 6 indicates a

future extension in adaptive filters.
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7.2 Future Research Directions

In the following, some possible directions for future research are summarized.

1) Constraint Specification: The methods of designing linear constraints for adap-
tive filters have been widely studied, especially in adaptive array areas. Essential
considerations of selecting a set of constraints are the effectiveness of the constraints
and the number of constraints. Previous works on the constraint specification include
the use of point, derivative and eigenvector constraints [13]. There has also been some
work [34] on applying additional constraints to the adaptive arrays in order to reduce
the dimension of adaptive weights.

The study of the linearly-constrained filter in Chapter 2 suggests some possible
directions for future research in constraint specification. For instance, a set of con-
straints can be designed to maximize the optimal SN R given in Section 2.5 by using
a pre-specified input covariance matrix. This covariance matrix may be formed by
using some a priori knowledge about the desired and jammer signals. Moreover, the
recursive formulas of the optimal weight and output power expression derived in Sec-
tion 2.6 provide some useful insights to evaluate the effect of adding one additional
constraint to the filter. This in turn helps determine the number of constraints to be
utilized in the filter.

2) Convergence Analysis: As shown in Chapter 3, an adaptive linearly constrained
filter can always be factorized as a cascaded of fixed and adaptive weights portions.
In Chapter 4, we have focused on deriving effective structures to reduce the required
computational complexity in the implementation of the fixed-weight portion. How-
ever, since the fixed-weight implementation is not unique the convergence properties
of the adaptive weight portion may be different for various fixed-weight implementa-
tion structures. The analysis of these properties requires further investigation.

3) Quantization Studies: In Chapter 5, the quantization effects on the fixed-weight
implementation has been studied via some preliminary experimental results. The
simulations have shown that it is possible to implement the fixed-weight portion with
relatively low precisions. To provide more general study on this issue in the future, we

suggest to establish a quantization noise analysis model for the fixed-weight portion
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implemented in decomposed forms.

4) Extensions of the Linearly-Constrained Filter: A structure for implement-
ing an adaptive filter with adjustable constraints has been derived in Chapter 6. One
application of this structure which has been suggested in [35] is to overcome the sen-
sitivity problems encountered in linearly-constrained adaptive arrays. More research

is required in order to apply this structure to many other areas in signal processing.
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Appendix A

The main purpose of this appendix is to derive a recursive update formula for the
optimal weight vector of a linearly-constrained filter in which the update is caused by
adding one additional constraint to the filter. We would like to point out here that
this recursive formula is only true under the orthogonal constraint matrix assumption
that the constraint vectors are mutually orthogonal and of unity length. Without this
orthogonality assumption, the recursive formula will appear in a more complicated
form. To simply the problem, we only consider tha case when this assumption is
valid. However, this does not limit the generality of the results in this appendix since
for any given linear constraint equations it is always possible to reformulate them

into a specification which possesses the orthogonality assumption.

This appendix is organized as follows. Some notations and definitions used to
derive the recursive update formula are first given. Important matrix identities are
then addressed in five lemmas. Finally, a main theorem is proved using these matrix

identities.

Notations and Definitions

Let the constraint equations of a linearly-constrained filter with 7 constraints be given

by
CIW = fi. (A - 1)
The matrix C; is assumed full rank and of size N x . Adding one more constraint

to this filter corresponds to appending one column vector ¢;;; to C; and one element
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fi1 to fi. Accordingly, the new constraint equations are given by

C}+1W = fin (A-2)
where
Cin1 =[C;i cip] (A-3)
and
f;
fin = . (A—4)
fir

To simplify the problem, we only consider the case when the additional constraint
vector, ¢;41, is of unity length and is orthogonal to all the previous constraint vectors
in C;.

Since the columns of C; only span a i-dimensional subspace, it is possible to

construct a full rank N x (N — ¢) matrix B; which is orthogonal to C;, i.e.,
ClB; =o0. (A —5)

With the assumption that c;;, is orthogonal to C;, we can construct B; such that

the first column of B; is equal to ¢;4,,
B; = [cit1 Biya]. (A -6)
and B;y, is orthogonal to C;y,
Cl,1Bin =0. (A="7)

On the other hand, we can define the matrix H as the square-root of the covari-
ance matrix R,
R.. = HH'. (A —8)

Using this H matrix, we can now define two matrices as
Cui=H™'C; (A-09)

and
By; = H'B,. (A —10)
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By direct multiplication, it is easy to verify that
cLBmi=o. (A —11)
The matrix P; is defined as the projection matrix of Cg;, which is
P; = Cpi(ChiCri) " Cly. (A-12)
Since Bpy; is orthogonal to Cy;, its projection matrix is given by

I-P;. (A — 13)

Several important matrix identities
Lemma 1 The following two matriz idenlities are true,
R;;Ci(CIR;IC)'Cl = (H')'PH', (A-14)
B:(B!R..B;)'B!R.. = (H)[I-P;H! (A-15)
Proof: See Section 2.4.2.

Lemma 2 Rank one update of the projection matriz P; is given by

Pii=P;+ P:‘+1PE+1 (A —16)
where
Pit1 = V7in [I - Pi]Qi-l-la (A-17)
Qi = Hlcin/y c:EHR;,l Citls (A-18)
Yit1 = 1/ qtt+1 [I - Pi]Qi+1- (A-19)

Proof: This is a standard formula for rank one update of a projection matrix. See

[36] for detailed discussion of projection matrices.
Lemma 3 The following matriz identily is true,
(HHY™I - P;JH '¢i4y = o(HY) 1P, Hicpy, (A —20)

where
1
c:[+1 Rza:ci-l-l - c§+1 RzzBi+l (B;!+1 RzzBH-I )—l BL-] Rzzci+l

a= (A-21)
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Proof:
Using Eq.(A-15) in Lemma 1 and the fact that H™! = H'R_?, we have

xr

(HHN'I-PJH = (HY'I-P,HR]! (A-22)
= Bi(BI!R..B;)'B!R..R]] (A-23)
= B;(B!R..B;)'B!. (A-24)

This suggests that
(HY'[I- PJH " ¢;yy = Bi(B!R..B;)'Blc;y, (A —25)

Using the partition of B; as given by Eq.(A-6), the matrix BER,,,B.- can be
partitioned as
claRecCinn €l RezBin

BIR..B;=| A
B.‘+1Rzzci+l Bi+lR=-’=B!'+1

(A — 26)

Using the matrix inversion lemma, the inverse of this matrix can also be partitioned

into four components as

t
(BIR.B) = |* * (A —27)

g T

where
1
@ = 3 ; i i (A-28)
ci+1 Rza:ct'-i-l — € RzzBi+l (Bi+lezBi+1 )-lBi-H Rxxci+1
B = “a(BIHRmBiH)_IBE+1erci+1 (A‘29)
t

[ = (Bl RecBiys — 0 — )1, (A-30)

c.‘+1Rm:ci+l
On the other hand, by using the partition of B; in Eq.(A-6) and the fact that

B;41 is orthogonal to c;y,, it is easy to verify that the vector Ble;,, is given by
Blci = [1,0,...,0]. (A —31)

Multiplying this vector to the matrix inverse given in Eq.(A-27) corresponds to taking
its first column, thus Eq.(A-25) becomes

(HH-'[I-PiHcip1 = aciyy + Binn B (A —32)
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By directly substituting the definition of § given by Eq.(A-29) into the above equation,

we have

HHYI-PJH cin = acip1 —aBipy (B;!+1RxxBi+l)_lB:[+1 R::Cis1
(A-33)
= ofI-Bin (B}+1erBi+l)_IBLIRu]CiH .
(A-34)

Using Eq.(A-15) in Lemma 1, the matrix in the bracket of the above equation is
equal to

(H)1P;,HT (A - 35)

and thus the Lemma has been proved.

Lemma 4 The following matriz identity is true,
(HYHY-'P; H = (HN'PH! + (H') 1Py Hicypq el [I- (HD'PH!Y). (A —36)

Proof:
By directly multiplying both sides of Eq.(A-16) by (H')~! on the left and H' on the

right, we have
(H")™'Pi,H = (H')'P;H' + (H")'p,,, pl,, H'. (A -37)
By using the definition of p;,; this equation becomes

HY- 1P H! = (HN'PH!+ — 2t (HY) I PjJH ciy; -
T+1 1Cis1

el [I- (HY'P;HY). (A-38)
According to Lemma 3, the above equation can be rewritten as

(HY)'P;, HY = (HT)_IPiHT‘*17{+—_11a(Hf)_1Pf+1HfCi+1'
ci+1R:r:::ct'+1

ety [I - (HHP.H) (A-39)
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This Lemma can therefore be proved by showing that

Vi1 &

e g (A — 40)
CI+1R$::C,'+1

From Eq.(A-18) and (A-19), 4;4+1 can be expressed as

el Rle;y,
= - PR e (h-4)
Applying Lemma 3 to the denominator, the above equation becomes
ol Rlein,
T = ac§+1(l‘;tl)—lz;i+:Hf¢i+l (A -42)
or, equivalently,
chaRocint = cl (H)'Piya Hiciy. (A—43)
Yitr1@

By using Eq.(A-14) in Lemma 1 and the fact that c;y; is of unity length and is
orthogonal to C;, it is easy to verify that

el (HY 1P HYciyy =1 (A — 44)

As a result, Eq.(A-40) follows and the Lemma has been proved.

The recursive update formula

Theorem 6 The optimal weight vector for a linearly-constrained filter with i con-

straints given by Eq.(A-1) can be expressed as
w; = (H)'P;H'w,; (A —45)

where
wgi = Cif;. (A — 46)
In the case when f; = e;, the corresponding optimal weight vector is given by
We = (Hf)—IP;H-lC;, (A - 47)
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which is also termed as the primitive weight vector. By adding one more constraint
to the filter such that the constraint equations are now given by Eq.(A-2), then the

new optimal weight vector can be expressed as
Wip1 = Wi + (fir — ¢l Wi Weipa (A —48)
where W41 is the primitive weight vector for the filter with i + 1 constraints.

Proof:

From the closed-form solution in Eq.(2.9), we have
w; = R;ICi(CIR;IC)'f; (A —49)
By using Eq.(A-14) in Lemma 1, it follows immediately that
w; = (H)"'P;H'w,,. (A — 50)

When f; = e; it corresponds to having w,; = c¢;, thus the primitive weight vector,
Wi, is given by Eq.(A-47).
Multiplying w41 to both sides of Eq.(A-36) in Lemma 4, we have the following

equation,
(Hf)_IPHIHqui-i-l = (Hf)-IPinquﬂ +
(H') P Hleipycly,y [T (H) 1P Hwyipy
(A-51)
where w4, is defined as
Wait1 = Ciafiga. (A —52)

From the partition of C;; and fi;; as given in Eq.(A-3) and Eq.(A-4), W44 can be
expressed as

Woit1 = Woi + fi+lci+1- (A - 53)
Thus,
(HNY'P;H'wyiy, = (H)'P;HYw,; + fi,0 (HN) 1P Hc,y1. (A —54)
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The second term of the above equation is zero follows from Eq.(A-14) in Lemma 1

and the fact that c;;; is orthogonal to C;. Therefore,
(HHY-1P;H'w,iy; = wi. (A — 55)
Accordingly, the scale factor in the second term of Eq.(A-51) is given by
claI— (HNY'PH Wit = firn — ¢l wa (A — 56)

As a result, Eq.(A-51) is in fact equal to Eq.(A-48) and the theorem has been proved.
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