USC-SIPI REPORT #157

Unsupervised Hierarchical Segmentation of
Textured Images Based on Homogeneity Testing

by
Zhenyu Wu and Richard Leahy

June 1990

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 400
Los Angeles, CA 90089-2564 U.S.A.



Contents
Abstract

1 Introduction

2 Image Modeling

38 Likelihood Related Computations

3.1 Approximate evaluationof In|B| . ......................

3.2 Sufficient statisticsof 8 . . . ... ... ... ... ... . . . ... ...

33 MLEofparameterset @ . ... .. ... ... .. ..t eenunnen.
4 Testing Homogeneity for GMRFs

4.1 Homogeneity tests for labeleddata . . ... .................

4.2 Homogeneity tests for unlabeleddata . . . .. ... ... ..........
5 Hierarchical Segmentation Algorithm

5.1 Split-and-mergelearning . . . ... .. .. ... ... ... ...

52 Patchforming . .. ... ...... ... ... . . ... .. .

5.3 Constrained ML agglomerative patch clustering . ... ...........
6 Experimental Results

6.1 Restoration of uniform image with additivenoise ... ...........

6.2 MR imagesegmentation . ............... ... ... ...,

6.3 Accuracy study for the proposed approximations forIn|B} .. .......

7 Conclusion
A Appendix : Proof of Theorem 1
B Appendix : Proof of Theorem 2

Reference

28

30



List of Figures

—

Indexing pattern for a first order GMRF on an irregular lattice. . . . . . . 7
2 Example of power functions for (a) likelihood ratio test (LRT) for labeled
data; (b) dispersion test; (c) hierarchical LRT; (d) LRT applied to unlabeled

data with arbitrary partition . . . . . . .. ... ... ... ... . .. 13
3  Block diagram for split-and-merge learning . . . .. ... ... ....... 17
4  Segmentation of 4 region hand-drawn image : (a) noise-free image, (b) noisy

image (SNR = 2), (c) segmentation, (d) error (1.3%) . ........... 19
5  Segmentation of 4 region hand-drawn image : (a) noise-free image, (b) noisy

image (SNR = 1), (c) segmentation, (d) error (7.3%) . ........... 20
6 A cross-section MR image of the brain for a patient with brain tumor . . . 21
7  Partial results of split-and-merge . .. .................... 21
8  Resulting patches before and after patch growing . . ... ... ...... 22
9  Examples of resulting patches after clustering ... ............. 22
10 Resulting segmentedregions . . . . . . .. ... .. ... o e, 23
11 Combined segmentationmap . . . . . . . . . ..o i it 24

List of Tables

1  Values of partition function for patches shown in fig. 6 calculated using :
(1) direct method, (2) accurate approximation, (3) fast approximation . . . 25

ii



Abstract

A new unsupervised hierarchical segmentation scheme is presented and is ap-
plied to the problem of tissue classification of magnetic resonance (MR) images of
the human brain. The images under study are modeled as a mosaic of ‘homogeneous’
subimages where each subimage is modeled as a first order Gauss-Markov random
field (GMRF) with unknown parameters. The segmentation goal is to group the pix-
els into regions which, under a suitable hypothesis, are homogeneous GMRFs. An
analysis of homogeneity testing for GMRF is presented and two tests are proposed :
the hierarchical likelihood ratio test and the dispersion test. Useful analytic results
are derived for the case of an uncorrelated random field. Based on the homogeneity
tests a hierarchical segmentation approach is suggested. The image is represented by
a quadtree, and a split and merge procedure is applied to find large homogeneous re-
gions within the image. This is followed by a segmentation refinement step involving
connected component labeling and region growing, in which most of the unclassified
pixels will be attached to the neighboring regions to which they are most similar. Fi-
nally, a constrained maximum likelihood agglomerative clustering procedure is used
to reduce the number of segmented regions. The idea here is to allow the algorithm
to learn about the image by first clustering the ‘easy’ pixels while delaying decisions
on the ‘hard’ pixels until more information has been gathered. One difficulty en-
countered in implementing the algorithm is evaluating the likelihood for irregularly
shaped regions. A new highly accurate approximation for the determinant of the
covariance matrix based on eigenanalysis is proposed to overcome this problem.

Index Terms- Segmentation, random fields, hypothesis testing, magnetic reso-
nance imaging, quadtree.



1 Introduction

In this paper an unsupervised hierarchical segmentation scheme for textured images is
described, in which the image is modeled as a mosaic of regions where the pixel intensities
in each region are characterized by a homogeneous GMRF with unknown parameters.

Markov random field (MRF) models have been widely studied as a mathematical model
for images 1), [2], [3], [4]. In addition to textured image segmentation, they have also been
used to solve related problems such as image restoration and smoothing [5], [6], [7], [8] and
texture synthesis and classification [9], [10], [11). Among the numerous papers on textured
image segmentation in the literature, there are two general approaches which are closely
related to this work: Bayesian and “maximum likelihood”.

Within the Bayesian framework, a doubly stochastic process model is assumed: a
prior Gibbs distribution for the region formation, and a second MRF for the texture of
each region [12], [13]. The segmentation may be achieved by maximizing the aposteriori
probability (MAP) or the posterior marginal probability (MPM) [14]. MAP solutions
have been found using either iterative relaxation (7], [15], [16], [17], dynamic programming
applied iteratively to strips of the image [12], [18], and stochastic relaxation through
simulated annealing [5], [13], [19].

Another approach is hierarchical ‘maximum likelihood’ segmentation as proposed by
Cohen and Cooper [15], [16]. In this case the image is modeled as a mosaic of GMRFs
with known parameters. The image is partitioned into small square windows (e.g. 16 x 16)
and each window is assumed to contain pixels of at most two classes. Each window is
represented by a quadtree and segmented independently using a hierarchical approach.
Starting from the root node, each block is divided into four sub-blocks and the best
grouping of four is then obtained by maximizing their joint likelihood. This procedure is
repeated recursively for each of the sub-blocks so that the image can be segmented from
coarse to fine scale. Except at the root level, the likelihood conditioned on the resulting
classification at a coarser level of the surrounding blocks should be used to achieve a
good segmentation. Due to the restriction of at most two textures in each window, this
hierarchical segmentation method may perform well only for images without fine details.

The techniques mentioned above are mostly supervised. However unsupervised ex-
tensions have been reported [19] or may be achieved by incorporating some unsupervised
learning algorithms suggested in [20], {21].

This paper is focused on developing an unsupervised segmentation scheme based on
the GMRF model. The unsupervised approach is often preferable to a supervised method
in situations such as tissue classification for MR images, where the parameters for a given
type of tissue may vary from patient to patient and from machine to machine, and may even
vary within the same image depending on its relative location. The images are modeled



as a mosaic of ‘homogeneous’ subimages, each characterized by a first order GMRF with
unknown parameters. The choice of a first order neighborhood was motivated by the need
for computational tractability, however the variations within a region of an MR image,
corresponding to a single tissue type, generally exhibit very local correlation rather than
large scale textual characteristics and consequently this model should be appropriate in
most cases. A preliminary version of the algorithm was reported in [21]. The proposed
algorithm has some parallels to the hierarchical ML methods in [15], [16], namely that
the images are modeled as a mosaic of ‘homogeneous’ GMRFs; the joint likelihood plays
an important role in the segmentation; and the images are segmented in a hierarchical
fashion.

The basis of the segmentation scheme is homogeneity testing for GMRF’s. There
are two cases to consider: labeled data and unlabeled data. Labeled data case refers to
the situation where the data are already grouped into homogeneous subsets. One such
example is the problem of deciding whether two homogeneous regions merge together to
form a larger homogeneous region. The likelihood ratio test [22], [23] is chosen here as
the homogeneity criterion. Similar tests have been used by other researchers for the same
purpose [20]. Unfortunately when segmenting an image, the data are unlabeled. In other
words, the data may be mixtures of samples from different populations, and a decision
needs to be made about the occurrence of population mixtures. Chen and Pavlidis [24]
have addressed this problem for uncorrelated data. Generalizations for correlated data
have also been reported [25], [20]. Their testing strategies are all similar: divide the
data into a few groups and test the homogeneity based on statistics computed from those
data groups. It has been found in our analysis that these tests usually have a low power of
detecting inhomogeneity, regardless of the choice of the homogeneity criterion, because the
implicit assumption that these data groups were homogeneous themselves is often invalid.
Here a statistical analysis of this issue is presented and two new and more powerful tests
are proposed : the dispersion test and the hierarchical likelihood ratio test. For the special
case of white GMRF’s, the power function for these tests can be computed and comparisons
are made.

The segmentation algorithm seeks to group the image pixels into regions which, under
a suitable hypothesis, are homogeneous GMRFs. Following an analysis of homogeneity
testing, a three step unsupervised hierarchical segmentation algorithm is proposed. At
first a familiar split-and-merge procedure [24] is used to find large homogeneous regions.
Its purpose is to allow the algorithm to learn the statistics of the different classes based
on these large regions. A segmentation refinement step is then introduced through con-
nected component finding and region growing. Finally a step-wise constrained maximum
likelihood agglomerative clustering procedure is used to merge the resulting regions to a
smaller number. In all three steps homogeneity testing is involved, for either labeled or



unlabeled data.

As in most of the segmentation techniques which use the MRF model, the problem of
computing the partition function of the MRF for regions of irregular shape is encountered.
For the particular case of GMRFs, the challenge lies in evaluating the determinant of a large
matrix. Computation of the partition function is limited to very small irregular regions
and a few regular shaped regions such as a rectangular lattice where analytic expressions
for eigenvalues of the matrix are available [26], [27]. Some researchers introduce additional
independence assumptions in their formulation so that computing the partition function
becomes unnecessary 18], although those assumptions are often difficult to justify. Others
use the so called pseudo-likelihood [18], [20] to approximate the true likelihood. The
pseudo-likelihood is defined as the product of the conditional likelihoods for all pixels
within the region [28], [29], which can be interpreted as an approximation to the likelihood
of the residual errors resulting from GMRF by assuming that the residuals are independent.
However, the likelihoods of the residuals and the data are numerically different, although
they contain equivalent statistical information. Here a new highly accurate approximation
is proposed to compute the partition function for a first order GMRF. The approximation
is based on eigenanalysis of the inverse of the covariance matrix. Its evaluation is carried
out as a summation over the pixel sites of the region, where each term depends only on
the pixel site and its neighborhood. This form allows efficient computation when merging
regions. The approximation is also used for GMRF parameter estimation.

The paper is organized as follows. The image model is briefly described in section 2,
and the partition function approximation and related computing are presented in section 3.
The next section analyzes the problem of homogeneity testing for GMRF and evaluates
different homogeneity tests. The proposed segmentation scheme is developed in section 5
and examples of segmentation experiments are presented in section 6.

2 Image Modeling

Let X denotes a real valued image defined on the image domain Z, usually a rectangular
lattice. Let Z be composed by K exhaustive and mutually exclusive subsets {Z;}.,, and
Xk, the subimage defined on Z, be modeled as a Gauss-Markov random field (GMRF).
The image X can then be described by its joint probability density function (pdf) given
by :
K
fX) = kHl f(Xk),

provided the X; and X; are independent for k # j. Based on this composite image
model, the segmentation becomes a problem of fitting GMRF parameters and estimating
the partition {Z;}.



The GMRF model for X on Zj is defined by the following joint probability density
function [2] :
L 1 . - .
F(X2) = |Bk|2N e—;;k'(xk-mc DT Br(Xx—pr-1)
(2x02)
where N = number of pixels on Z, 1

(1)

denotes an V; X 1 vector consisting of all 1’s, and
for a first order neighborhood

1 fj=1
~Pu if j € Ny(3)
~PBa if j € Nv()

0 otherwise

Bi(i,j) = (2)

where Ny(t) and Ny (i) denote the sets of horizontal and vertical nearest neighbors of pixel
1, respectively. Here 8, and By should be properly chosen so that By is positive definite.

The GMRF Xj defined in (1) is introduced by Besag [2] as an approximation of a sta-
tionary spatial process observed on a finite window Z;. Some alternative approximations
are based on the spectral analysis of the underlying stationary process [30], [31]. However
these are not easily tractable models for image segmentation. As an approximation Xj
itself is only asymptotically stationary. Therefore when X is said to be “homogeneous”
it should only be interpreted as a random field defined by the homogeneous parametric
model given in (1) and (2).

Xk, as defined in (1), has a free boundary. In other words, if X were viewed as a portion
of an image on an infinite lattice, then f(X}) is identical to the conditional density given
that all the pixels outside Z; have been set to the mean, u;. Such a boundary assumption
is preferable to others such as toroidal wrapping due to the potential shape irregularity of
the image partition {Z;}.

Here only a first order neighborhood and constant mean are considered. However we
note that extensions to parameterized mean and higher order neighborhood are possible.

3 Likelihood Related Computations

For notational convenience the subscript k used in (1) and (2) will be dropped. Given the
GMRF image model, the following operations are frequently performed when segmenting
an image :

¢ Given an observation X on Z, compute the likelihood f(X) for fixed parameter set
6= (ﬂ’ 02, :Bla .32)-

¢ Find the maximum likelihood estimate (MLE) of 6 given X.

o Efficiently update f(X) and/or the MLE of 8 when modifying Z.
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Note that the evaluation of | B|, or equivalently In|B|, is involved in all of those oper-
ations. Unfortunately computing In |B| is a costly operation, which becomes prohibitive
when Z is a large irregularly shaped region. Evaluating In|B| is equivalent to computing
the partition function for Gibbs distributions [2], [4] for the case where the random field
is Gaussian.

Exact evaluation of In |B] is limited to small or certain regularly shaped regions. Ord
[26] gives an anmalytic formula to compute In|B| for a rectangular lattice with the free
boundary assumption. Similar expression for the toroidal boundary condition is given by
Besag and Moran [27]. Numerical approximations of the likelihood function for GMRFs
have also been proposed in the literature, most within the context of parameter estimation.
Whittle [30] computes In | B| from the spectral density of the underlying stationary spatial
process, which is observed only through a window Z. Due to the use of an asymptotic
argument, only the number of pixels on Z is directly reflected in the approximation, which
makes it insensitive to the shape of Z. Similar arguments are used in [31], [32]. Besag [2]
also compares the parameter estimation results using his coding scheme against Whittle’s
method. His coding scheme is later generalized to the pseudo-likelihood function [28], [29]
for more efficient parameter estimation. Although the pseudo-likelihood is not originally
intended for likelihood approximation, it has been widely used for that purpose. However
the pseudo-likelihood is at best an approximation of the likelihood of residual errors,
which is numerically different from the likelihood of the data even though both contain
equivalent statistical information. Ripley [4] also mentions a simple approximation of
In |B| using Taylor expansion when discussing the fact that the likelihood function may
not be a concave function of the GMRF parameters.

3.1 Approximate evaluation of In|B|

Grouping all pixels on Z into “x” and “+” classes, as shown in figure 1, and using the
property that the “+” pixels are independent of each other conditioned on the “+” pixels,
and vice versa [2], B can be decomposed after reordering X as

B _ I‘ B..‘. _ I. B.+ I. - B‘+B+. 0
" |By It | |0 L B., I,
Therefore defining @ = B, B,. one can show :

In|Bl=h|l.-Q|= % In(1 — Ag) (3)
k=1

where 0 < A; < 1 are the eigenvalues of @. It is impractical to compute the {)\} for a large
region Z, unless Z is a regular shape such as a rectangular lattice and the {A;} can be
evaluated analytically [26]. The proposed approximations for In|B| are based on the sum
and the square sum of the {\;}, whose computation is provided by the following theorem.

6
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Figure 1: Indexing pattern for a first order GMRF on an irregular lattice

Theorem 1 From the definitions of B and Q,
N,
> M
k=1

N,
DA

k=1

= ti‘(Q) = Alﬂ? + A?ﬂg (4)

tNQ?) = Aupb; + AnfBi + Al (5)

Denote by ny (i), nv(2), nua(i) and nys(2) the number of first order horizontal, vertical and

third order horizontal and vertical neighbors of site i in region Z, respectively; N,(2) the

set of second order neighbors of i connected through Z and nc(t,j) the number of common

(first order) neighbors between ¢ and j. The constants in (4) and (5) are then computed

as :
A

Az

An

Az

Ay

Y na(i)

1€EZ.

Y nv(d)

1€Z.

> {n¥ (i) + naa(i)} (6)

1€Z,

2 {nv (@) + nvs(i)}

i€Z.

2 {2 nu() v +[ 32 ne(,i)%)

i€Z, FEN(1)

Note that the constants (A;, Az, A1, A2z, A12) are shape descriptors of Z. The proof
for the theorem is given in Appendix A. In particular when Z is square, which is often

encountered in a quadtree based hierarchical segmentation, the theorem simplifies to:
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Corollary 1 If Z is a n X n square array, then

A1 = A2 = n(n - 1)
Ajy = A= n(3n - 5) (n > 1)
Au = 12(n - 1)

The first approximation for In |B| consists of finding a sequence {};} “close” to {\¢}
from which In | B| is computed. Specifically, the following empirical model for the sequence
{Ae} was used :

:\k=m,\+Ck-S,\ k=1,.--,N, (7)

where m) and S? are the sample mean and variance of {\s} computed from (4) and (5),
and
Cyr=C1+(k—-1)D,

where the constants C; and D are determined using YN, Cy =0 and L3, CZ = N.,
so that {}¢} will have the same sum and square sum as {)\;}. In our segmentation
experiments p = 3 was chosen. The sequence {:\k} is based on a heuristic model, the
advantage of this model is that {C\} does not depend on 8, hence the MLE of & becomes
simpler. In cases where any of the resulting A fall outside the valid interval [0,1), a
reduced length sequence ), should be recomputed by assigning some of the 1’s to 0.

Repeated use of the above approximation may still be too time consuming. In this
case a much faster but less accurate approximation may be used instead. From the Taylor
expansion of In |B| as given below,

In|B| = ):[ ZA

n=1 k—l

a simple approximation for In |B)| is proposed

TPV SPWE S 55 I Sty
=1 k—l n=3
1 N

= —Z'\k‘ngz*'N [ln(l—p)+p+§p] (8)

k=1 k=1

where
1 N - 1 N *

=M+ 3 2N

NS
Note that the approximation consists of replacing the {)A;} by a constant p from the third
term on in the Taylor expansion of In|B|. The two approximations described above are
compared with the exact value of In | B| for several regions and combinations of 8, and 8,
in Section 6.3.



3.2 Sufficient statistics of 6

In order to efficiently compute and update the likelihood f(X) defined in (1), we keep
track of a set of minimal sufficient statistics of §. Expanding the exponent term of f(X)
gives

(X—p-1)"B(X —p-1)=X"BX ~2u- X"B1+4* - 1"BL

Substituting B from (2) :

X"™BX = Y. z2-(0 X zz)B-(X Y zz)Be

€2 i€Z jeNg(i) 1€Z jENy (1)
XTBL = Y zi— (3 nu(i)-2:)b — (X nv(i) ) (9)
iez iez i€z
17B1 = N - (X nu())B — (O nv(i))Be
i€Z i€Z

= N —2A61 — 2428

Hence the vector

Qi Y. Y @iz, Y wwp, 3, na(i) zi, ) nv(i) - z:)

i€Z i€Z  i€Z jeNg(i) i€Z jeNy (i) i€z i€Z
is a sufficient statistics for 8. The first four terms are commonly expected statistics, the
last two are closely related to the boundary shape of Z.

Observe that the sufficient statistics, as well as the shape descriptors defined earlier,
are summations of local properties which depend on each individual pixel and its neighbors
exclusively. Therefore their computation can be carried out in either recursive or parallel
fashion, and consequently they are ideal for region split-and-merge or relaxation type of
algorithms. This form of computing sufficient statistics should be more efficient than the
hierarchical form proposed in [16].

3.3 MLE of parameter set §

For any given B, and 8;, the MLE of u and o? are easily computed [4] :

XTB1
-0.-1\7 —_f.
g2 = X—a- 1)y BX—-p-1) (11)

It can be shown that % and Nﬁi are independent random variables with distributions
N(u, ?ﬁ%) and x? with N — 1 degree of freedom, respectively. The above results can be
easily extended when the subimage mean becomes a parametric function, i.e. Ez(z) =
aT - g(i). Linear and quadric functions of lattice index are common examples for fitting
subimage mean tendencies [20].



When B, and f; are unknown it is only practical to compute approximate MLEs of
p1 and B, for regions of irregular shape then compute & and % according to (10) and
(11). The coding method [2] and the pseudo-likelihood method [28], [29] are the popular
estimation techniques in the literature. However these estimates often produce a non-
positive definite matrix B, where B is the resulting matrix B evaluated at the estimates of
p1 and ;. Here the approximation of In |B| described above is used in conjunction with the
asymptotic domain constraint |8 + |B2] < 0.5 [2] to find an approximate MLE. Without
this constraint, the resulting B may still not be positive definite. In our experiment the
barrier method [33] was used to solve this constrained optimization problem.

We have also observed that the likelihood surface defined on (54, 82) is quite smooth.
Consequently we may sample the (8, f;) domain and perform the maximization over the
resulting finite set of (8, 82). Since the likelihood function may be evaluated from sufficient
statistics and the shape descriptors, once they are computed it requires little extra effort
to evaluate the likelihood functions associated with each (B, 82) of the sample set. This
later approach was preferred and implemented in the segmentation algorithm.

4 Testing Homogeneity for GMRUF's

Let X be a subimage defined on an arbitrary region consisting of N pixels. In this section
we develop tests for whether X is a realization of a homogeneous GMRF (the null hypoth-
esis). Under the alternative hypothesis Hy, X is a mosaic of homogeneous GMRFs, i.e.
X = (X1,Xz2,+++,Xk)T where K is the number of GMRFs in X and X; denotes the N;
samples from the i:-th GMRF parameterized by 8; = (ui, 02, b1, B2:). The null hypothesis
Hj, may be more conveniently stated as §; = 8, Vi for X partitioned into K groups. Here
only tests against the class of equal variance alternatives, i.e. o? = o2, Vi, are studied.
This class excludes images in which the variance is the only distinguishable feature.

4.1 Homogeneity tests for labeled data

When the data are labeled, i.e. the partition {X;} of region X is given, testing homogeneity
falls within the conventional framework of statistical hypotheses testing. The tests for
labeled data described here will be used in the segmentation algorithm to decide whether
two homogeneous regions should be merged together to form a larger one. For the limited
class of alternative hypotheses stated above, the likelihood ratio test is used.

Let i, 62 and B denote the MLE of g, o2 and B under Hy, and g, 072 and B} denote

the MLE of u;, 0% and B; under H, for the i-th subimage. The MLE of B refers to the
matrix constructed using the MLE of §;, and $2. Then the likelihood ratio test [22], [20]

10



for rejecting Hp can be simplified to :

o N-K |B|-% .52 — |B*|~% . 0%
K="k 1 |B*|"71v.a-—2

>C (12)

where K is the number of classes, V is the number of pixelsin X, B* = diag(B;, B;,-- -, By),
and
ZN. oi* = E(X #i - 7B} (Xi — pi - 1)
l-l r—l
In the case where the common variance o2 is known, the corresponding likelihood ratio
test for rejecting the null hypothesis Hy is

Wk = —(Na —ZNU‘2)+ln|B‘| ~In|B|>C (13)
i=1
In order to use the tests Fx and Wy defined in (12) and (13), we must set the thresh-
old C for any given significance test level. Unfortunately both Fy and Wy are usually
complicated functions of the data, hence approximations are often needed for setting the
threshold C.

Let us rewrite 62 as :

o? N Z(X p-)TB(X:i— 1)

8—1

= NZKX fi - WTB{Xi — i 1)+ (1T BiL) - (B — )]

i=1
where B; is the i-th diagonal block of B, and

xT Bil
7B1°

i =

Due to the consistency property of the MLE of 8, and 3, [26], if all subimages {X;} are suf-
ficiently large, estimates of the 8’s, based on X or individual X}, should be approximately
equal under the null hypothesis Hy, i.e. B ~ B*. Hence under Ho,

Fen MoK EEATEL (b - g)
K—-1 YK (Xi—p:- DB} (Xi—pr-1)

Note that the right hand side is approximately an Fx_; n-k distributed random vari-
able [22], because its numerator and denominator become asymptotically independent.
Similarly,
Wi ~ —Z[(ITB 1) (3 — )
i=1

which is approximately x%_, distributed.

11



Another possible approximation for setting the threshold C is to use the property
that the log of the likelihood ratio is asymptotically proportional to a x?, under the null
hypothesis Hy [22], [20].

Due to the complexity of the tests, evaluating their performance is very difficult. How-
ever there is a special sub-class of GMRF's for which the power functions for both tests
can be computed. Assume all X GMRF’s are white, i.e. f); = B2 = 0V i, then the
homogeneity testing as formulated becomes the well studied problem of mean comparison
for normal populations [22)], [23]. In terms of image processing, our image model becomes
uniform regions (constant mean for each region) with Gaussian additive noise. It can be
shown that Fx and Wy are non-central Fk-1,n-k and non-central x%_, distributed, re-
spectively. For both tests the non-centrality parameter vanishes under the null hypothesis
H,. Note that the approximations used earlier for Fy and Wx now become exact. For
the white random field case :

. 1 K -
Wk = FZN. (X - X;)z. (14)
=1

Here /2 and j; are replaced by the sample means X and X; respectively.

Given the probability distributions, the power of Fx and Wk can be computed for any
fixed K and {N;}. The power function of a test is defined as the probability of detecting
inhomogeneity at a given significance level. In figure 2 the power function of W5 (curve a)
is plotted for N; = 4 and N; = 12, against the normalized mean difference (= £>£2),
Other curves in fig. 2 are described in the next subsection. The power function of F; was
also computed but not plotted since the difference between the two are negligible. This
suggests that the power of W has a low sensitivity towards the true value of variance, even
for a relatively small sample size. In this two population case both tests, ¥ and W5, are
uniformly most powerful (UMP) for their respective hypotheses [22], [23].

4.2 Homogeneity tests for unlabeled data

The tests described in the last section are valid only for labeled data X. However X is often
unlabeled, which makes homogeneity testing more difficult. Several tests will be proposed
and their performance will be analyzed here. In order to make the analysis simpler, we
assume that the common variance o2 is known throughout this section.

Homogeneity tests for white GMRF

We begin the analysis focused on the limited sub-class of white GMRF for two reasons.
Firstly homogeneity testing for white GMRFs is important in its own right. It would
provide a solution to the problem of resolving population mixtures for a given data sample.
Applications in image processing include the restoration of uniform images corrupted by

12
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the same two class example (N; = 4,N; = 12) used in the previous subsection, the power
is computed as follows : the 16 samples are arbitrarily split into two subsets of 8, and the
least informative prior (binomial in this case) is used to compute the overall power of the
W, test. As shown in figure 2 (curve d), the resulting power is disappointing.

One remedy is to make the subimages {X;} smaller, so they have a higher probability
of being homogeneous. Although more subsets must be tested, which contributes some
power loss, the overall power is still improved. In the limit every subset has only one pixel,
then the W test becomes proportional to the sample variance of X. This special case is
named here the dispersion test : reject Hy if

Né?

.bN=Wn=7>C. (15)

Despite its simple appearance, the Dy test has a surprisingly good power. Figure 2 shows
the power function of Dy (curve b) when applied to the same two class problem.

A more elaborate approach is also proposed : apply the dispersion test if the size of
X is small; otherwise, divide X into X' groups and apply recursively the same test to
all groups, then apply the Wy test defined in (14) only if all groups test homogeneous.
This procedure is named here the hierarchical likelihood ratio test. This test has a clear
purpose : to avoid testing homogeneity among subimages unless subimages themselves
have a high probability of being homogeneous. The test can be naturally implemented
within a hierarchical data structure, in our case a quadtree.

In order to claim the proposed hierarchical test as a genuine hypothesis test, it is
necessary to know how to set the involved thresholds so that the overall test has the
desired significance level. The following theorem provides the solution to this problem.

Theorem 2 Under either Hy or H, all tests involved in the hierarchical likelthood ratio
test scheme are statistically independent.

This theorem is an extension to the well known fact that the sample mean and the
sample variance are independent when data are drawn from a normal population [22].
The proof is also similar and is provided in Appendix B. Using this theorem, the overall
significance level of the hierarchical test can be computed from the significance levels of
the individual tests involved in the testing scheme. It is, however, still an open question
as to how to distribute the overall significance level within the hierarchical test so that
the resulting test power is optimized. An empirical method is used here to assign the
individual significance levels.

The power of a two-level hierarchical test, applied to the same two class problem, is
computed : the 16 samples are split equally into 2 groups, an equal significance level is
assigned to all three individual tests and the binomial prior is used to compute the overall
power. The resulting power is plotted in figure 2 (curve c). One can observe that the
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hierarchical test is more powerful than the W test applied to unlabeled data, but less
powerful than the dispersion test. This result could be considered encouraging, since the
power is computed for the least informative prior. In other words this computed power is
the lower bound for the power function of the hierarchical test for any prior distribution
[34]. In contrast, the dispersion test makes no use of a prior. Another advantage of using
the hierarchical test is the possibility of detecting homogeneous portions even if the overall
test fails.

Homogeneity tests for general unlabeled GMRF

When local interactions among neighboring pixels are also considered, the homogeneity
issue becomes more complex. In addition to analytic complexity, there are important
model defects of which we need to be aware. Consider two contiguous subimages, X; and
X,. According to our mosaic image model, they are uncorrelated when Hj is rejected,
but they become correlated if Hy should be accepted. One way to avoid dealing with such
an undesirable discontinuity is not to use inter-region statistics when testing homogeneity,
as in the case of the hierarchical likelihood ratio test. Another defect is caused by the
use of the GMRF model itself as an approximation to a stationary spatial process. If
observations are added or removed the resulting model is not compatible with the original
model in the sense that the same pixels will have different characterization within the two
models.

Based on the result obtained for white GMRFs (Fig. 2) the use of tests whose decision
are based on statistics computed from arbitrarily formed subregions should be avoided due
to their low power of detecting inhomogeneity. Therefore only the dispersion test and the
hierarchical likelihood ratio test will be used for testing homogeneity.

Due to the difficulty of obtaining analytical results, these tests are only presented as
generalizations of their counterparts in the white GMRF case. The dispersion test is
defined as a scaled MLE of the variance o2, i.e. reject Hyp if

~ Né?
Dy = —;
g

> C. (16)

Here 62 is computed according to (11). Under the null hypothesis Hp, D is approximately
x2. Consequently C can be approximately computed for a given significance test level.

The hierarchical likelihood ratio test is defined in a similar manner as for the white
GMRF case, except the test W in (13) should be used in place of (14. For the general
case, the thresholds for the tests involved in the hierarchical scheme can only be set
approximately for a given significance level.
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5 Hierarchical Segmentation Algorithm

The hierarchical segmentation algorithm can be divided into three major components :
split-and-merge learning, patch forming, and constrained ML agglomerative patch cluster-
ing.

5.1 Split-and-merge learning

The main goal of the split-and-merge procedure is to allow the algorithm to learn and
to be trained through hierarchically finding large homogeneous regions within the image.
This is the most crucial part of our unsupervised segmentation scheme.

Let the image be represented by a quadtree with the top of the tree corresponding
to the entire image, the next level to the four quadrants of the image and so on [35].
Starting from the top of the tree, we test homogeneity for the region corresponding to each
node using either the dispersion test or the hierarchical test. The node is then labeled
accordingly: if the region is homogeneous a label is attached together with the estimated
GMRF parameters to that node and the tree is terminated at this node; if the region is
inhomogeneous the node remains unlabeled and the same node labeling strategy is applied
to its four quadrants. Furthermore, each newly labeled region is tested for possible merging
with previously formed homogeneous regions. This allows larger homogeneous regions to
be formed gradually, so that the GMRF parameter estimates become more and more
reliable. Here the likelihood ratio test W, should be used. As the node size becomes
small, the parameters estimated from large homogeneous regions can provide supervision
for deciding whether to merge the node to bigger regions. In this way the algorithm can be
‘trained’ by these early large homogeneous regions for later classifying the remaining ‘hard’
(small) regions. This split-and-merge mechanism is illustrated in figure 3. In completion,
the split-and-merge step produces an image partition.

When testing homogeneity two kinds of errors may occur : a region is labeled inhomo-
geneous while Hy is true (type I error) or a region is labeled homogeneous while Hj is false
(type Il error). The type II error is related to how accurately the algorithm can be trained.
Once committed, this error is unlikely to be corrected. On the other hand, the type I error
controls the rate of training for the algorithm and is often self-correctable. In addition a
step-wise ML agglomerative clustering can also be applied to reduce the type I error after
the split-and-merge. A large number of type I errors may however inhibit the early for-
mation of large homogeneous regions, resulting in a very noisy segmentation. Therefore a
balance between the two types of error is needed. A general rule is to keep the probability
of type II error small while testing large regions, then gradually increase this probability
as the region size becomes small.
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Figure 3: Block diagram for split-and-merge learning

5.2 Patch forming

The resulting segmentation from the split-and-merge is often noisy. This is not surprising
since no smoothness constraint is imposed. Each segmented region (set of pixels assigned
to the same label) may have many isolated subregions, most of which may contain very few
pixels. Hence it is natural to think of breaking down each segmented region into connected
subregions (patches) in order to get a smoother segmentation.

The patch forming algorithm consists of the following steps :

1. Patch labeling: For each resulting region from the split-and-merge, find all its spa-

tially connected components (patches), and label them accordingly : a different label
is assigned to each patch except those with very few pixels (< 4 pixels in our exper-
iment) which are left unlabeled.

2. Patch growing: Among all pairs of unlabeled patches and their neighboring labeled

patches, select the one with the smallest mean difference and expand the labeled
patch by attaching the unlabeled one to it. Repeat this step until the smallest mean
difference exceeds a given threshold or no unlabeled patch is left.
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In the above algorithm, the patch labeling is carried out using a modified version of
the algorithm in [36].

5.3 Constrained ML agglomerative patch clustering

The number of patches resulting from the previous step is usually too large. A constrained
maximum likelihood agglomerative patch clustering step is therefore used to reduce the
number of labels. The patch clustering is performed as follows :

Among all pairs of labeled neighboring patches, select the one which when
merged produces the smallest reduction in their joint likelihood while satisfying
certain regularization constraints. A new patch is then formed by merging these
two patches. The procedure is repeated until a stopping condition is met.

This clustering is a generalization of the clustering method described by Duda and
Hart [37], in the sense that regularization constraints are imposed and the clustering is
performed on sets of correlated pixels (patches).

When implemented the following specifications are used :

1. In addition to connectivity only one other regularizing constraint is used: the max-
imum gradient on the boundary between two candidate patches should not exceed
a given threshold. Here the gradient is computed using only pixels that lie in the
union of the candidate patches.

2. The stopping condition for clustering is that no pair of patches can be found which
give a smaller likelihood reduction than a pre-set threshold while meeting the regu-
larizing constraints.

3. A common variance is used for computing the likelihood for all patches. This variance
is estimated as a weighted sum of ML variance estimates of the labeled patches.

When merging patches, the criterion of maximum likelihood seeks to put together
patches with similar GMRF features, while the connectivity and edge constraints tend
to limit the extension of resulting patches and to preserve the local contrast displayed
between neighboring patches. The patch clustering is only step-wise optimal. After patch
clustering, most of the resulting patches are large and distinct from their surrounding
patches. Therefore when applied to the problem of tissue classification of MR images, the
final tissue labeling of the patches can be easily performed through an interactive patch
editing.
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Figure 4: Segmentation of 4 region hand-drawn image : (a) noise-free image, (b) noisy
image (SNR = 2), (c) segmentation, (d) error (1.3%)

6 Experimental Results

The segmentation scheme described above has been applied to the restoration of images of
uniform regions corrupted by Gaussian white noise, and tissue classification of MR images
of the human brain.

6.1 Restoration of uniform image with additive noise

Although the problem solved in this subsection is somewhat artificial, the experiment can
help to evaluate the performance of our segmentation scheme. Figure 4.a shows a 4 region
computer generated image of 128 x 128 pixels with 256 grey levels. This image is adapted
from the example of [19], but it is not an exact replica due to the lack of specification.
The intensities for the 4 uniform regions are 80, 112, 144 and 176, respectively. The image
was then corrupted by Gaussian additive noise corresponding to a signal-to-noise ratio
SNR = 2 (Fig. 4.b). The SNR is defined as the ratio between the minimum intensity
difference between the mean of these uniform regions and the standard deviation of the
noise. The pixel-wise maximum likelihood classifier (thresholds at 96, 128, 160) gives a
21.1% error percentage. In contrast, if the same ML classifier is applied to the patches
resulting from the unsupervised hierarchical segmentation, the error drops to only 1.3%
(Fig. 4.d). A second case is shown in Fig. 5. Fig. 5.b shows the corrupted image with
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Figure 5: Segmentation of 4 region hand-drawn image : (a) noise-free image, (b) noisy
image (SNR = 1), (c) segmentation, (d) error (7.3%)

SNR = 1. The segmentation error (Fig. 5.d) is 7.3% compared to an error of 40.3% using
a ML classifier.

6.2 MR image segmentation

MR imaging is a powerful non-invasive diagnostic tool which produces anatomical images
of the human body based on the nuclear magnetic resonance properties of hydrogen. One
undesirable characteristic of MR images is that the parameters for a given type of tissue
may change from patient to patient, from scanner to scanner and with variations with the
imaging protocol. In addition they may also vary as a function of the tissue’s location
within the same image. The last is particularly disturbing, since this variation may re-
sults in undistinguishable features (GMRF parameters) for two different types of tissue if
they are far apart from each other. This constitutes a strong motivation for segmenting
the image into connected patches and using regularizing constraints to preserve local con-
trast between neighboring patches. This feature ambiguity problem is experienced in our
example shown in figure 6.

Figure 6 shows a typical MR image of the human brain for a patient with a large lesion
on the left side of the brain. The image size is 256 x 256 quantized to 12 bits per pixel.
Before segmentation, the skull portion of the image was removed from the image by finding
the contour of the boundary between the skull and the enclosed soft tissues. In order to
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illustrate how the segmentation method works, we will discuss in some detail the partial
results produced at each step of the algorithm when applied to the image in figure 6. In
the example all GMRF parameters are estimated from the image and no prior information

of region partition is assumed.

Figure 6: A cross-section MR image of the brain for a patient with brain tumor

Figure 7: Partial results of split-and-merge

Results of the split-and-merge : The split-and-merge algorithm produces 16 regions.

Figure 7 shows three of these regions whose pixels correspond mostly to the white matter

in the brain. Note that they are rather noisy. However our main goal at this point, as
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(a) (b)

Figure 8: Resulting patches before and after patch growing

Figure 9: Examples of resulting patches after clustering
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(a) White matter (b) Grey matter

(c) Ventricles (d) Tumor

Figure 10: Resulting segmented regions
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Figure 11: Combined segmentation map

stated before, is not to produce a smooth segmentation but to find large homogeneous
regions.

Results of patch forming : The connected component labeling algorithm is applied to

each of the regions obtained from the split-and-merge. Figure 8.a shows all labeled patches
displayed with their mean grey level while the unlabeled patched are shown in white. Note
that the unlabeled patches fall mainly into the boundaries between different tissues. The
unlabeled patches are then assigned a label through patch growing, the resulting patch
mean image is shown in figure 8.b. Note that the main features of the original image are
preserved.

Results of patch clustering : Figure 9 shows a few resulting patches after constrained

ML patch clustering. In figures 9.a-e the patches belong to white matter; in figure 9.f-g,
grey matter; and in figure 9.h, ventricle. In this case we further classified the patches into
one of four tissue types. Figures 10.a-d shows the resulting segmented regions correspond-
ing respectively to (a) white matter; (b) grey matter; (c) ventricle; and (d) tumor. In each
figure only pixels classified to that label are displayed while the rest are set to black. The

combined segmentation map is shown in figure 11.

6.3 Accuracy study for the proposed approximations for In |B)|

In Table 1 we show the values of the partition function (defined as ;In|B|) for the eight
patches displayed in fig. 9 for various (fi,82). For each (B, 32) the values in the three
columns are computed respectively by the direct method, the accurate approximation
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through {}:} and the fast approximation through Taylor expansion. For 8, = 8, =
0.25, which is near the boundary of the valid domain for In|B|, the error for the first
approximation is small while the error for the second becomes large. As the (f1,8:)
moves further from the boundary, the error of the second approximation reduces rapidly
(B1 = 0.15, 8, = 0.3) and eventually becomes negligible (8; = 0.1, 8, = 0.15).

Size " ﬂ]_ = 025, ﬂz =0.25 " ,Bl = 0.15, ﬂz = 0.30 ,31 = 010, ﬁz =0.15
L@ [ @ | @ [
a | 298 |l -21.849 |-21.550 | -19.127 || -17.754 | -17.735 | -16.625 |[ -4.207 | -4.213 | -4.191
b | 615 [ -52.601 |-50.940 | -43.606 || -40.839 | -40.704 | -37.629 |[ -9.440 | -9.439 | -9.384
c | 559 || -46.492 |-45.448 | -39.157 || -36.707 | -36.656 | -33.914 || -8.496 | -8.502 | -8.453
d | 489 [ -37.034 | -36.346 | -32.053 || -29.325 | -29.216 | -27.310 || -6.951 | -6.951 | -6.915
e | 569 | -46.217 | -45.395 | -39.289 || -36.485 | -36.430 | -33.802 || -8.513 | -8.514 | -8.466
f|477 | -35.987 | -35.740 | -31.410 || -28.935 | -29.059 | -27.124 | -6.803 | -6.864 | -6.828
g | 414 || -31.524 | -31.384 | -27.440 " -25.679 | -25.858 | -24.085 || -6.016 | -6.045 | -6.013
h | 602 [ -55.461 [-54.815 | -45.653 || -42.456 | -42.904 | -39.298 || -9.698 | -9.790 | -9.728

Table 1: Values of partition function for patches shown in fig. 6 calculated using : (1) direct
method, (2) accurate approximation, (3) fast approximation

7 Conclusion

An unsupervised hierarchical segmentation scheme has been developed for segmenting tex-
tured images. The images are modeled as a mosaic of “homogeneous” first order GMRFs,
and the segmentation seeks to group the image pixels into homogeneous regions. Based on
homogeneity testing a three step segmentation scheme have been developed : a split-and-
merge procedure for finding large homogeneous regions, a parch forming for classifying
boundary pixels and a final constrained ML agglomerative patch clustering to reduce the
number of resulting patches.

An analysis on testing homogeneity for GMRFs has been presented. For the case of
labeled data the likelihood ratio test is used; and for the unlabeled data case two new tests,
the dispersion test and the hierarchical likelihood ration test, are proposed. For the case
of white Gaussian random fields useful analytic results are derived for these tests, their
power functions are computed, and their performance are compared against a commonly
used testing strategy.

Accurate approximations have been proposed for computing the likelihood for data
observed on irregularly shaped regions. This is equivalent to compute the partition function
for Gibbs distributions for the case where the random field is Gaussian.
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The segmentation scheme has been applied to tissue classification in MR images of the
human brain. The preliminary results are very promising. Currently we are looking at the
extension to the segmentation of 3D images, and to higher order neighborhoods. We also
plan to incorporate anatomical information in order to automatically assign tissue label
to the resulting patches.
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A Appendix : Proof of Theorem 1

Let denote Ng(i), Nv(i), No(t), Nys and Nys the (first order) horizontal and vertical
neighbor sets, second order neighbor set, third order horizontal and vertical neighbor sets
of a site ¢, respectively. Only neighboring pixels connected to i through Z are included in
these neighbor sets. By definition, B(:, k) = 0 when ¢ and k are not (first order) neighbors
of each other. Hence

Q) Y" B(i,k)- B(k,5)

k€eZ;

keNg (1) keNy (i)

= - Y B(kj)-F Y B(kj),

keNu(i) keNv (i)

By substituting Q(7, j), we have

S h = (@
1€Z,
= ) Qi)
i€EZ.
= {8 X 144 X 1}
i€Z, keNg(i) keNy (i)
= Bi Y nu(@)+ 67 ) nv(i)
1€Z, i€Z,
= A} + A28
DA = (@Y
1€Z,
= Z z Qz(ta])
1€Z. JEZ,
= > {Q%GN+ Y QG+ Y QG+ Y Q.i)}
i€Z. JENH3(s) J€Nvsl(i) JEN2(3)
= Y {8} nu(@) + B3 nv()]’ + B} nua(i) + B3 nva(i)
€2,
+8:65 -1 3= ne(i )%}
JEN, (1)
= Zz {81 - [n%(5) + nus()] + Bz - [n¥(8) + nva(d)]
i€Z,
+B828; {2 nu(i)nv (@) +[ X ne(i, )%}

JEN;(3)
= AnBi + Anfs + A1Bi52
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B Appendix : Proof of Theorem 2

The following lemma is an extension to the well known result in statistics that the sample
mean and sample variance of i.i.d. normal random variables are independent. The proof
follows the proof of that result given in {22].

Lemma1l: Let X = (X;,X3, --,Xk)? be K independent random vectors, where
X; = (za1, iz, - -, Tin; )T are N; independent normal random variables with with mean Mi;
and variance o2, then X and (X; — X, X; - X,---, Xk — X) are statistically independent,
where the bar denotes the sample mean of the corresponding vector.

Proof : Write the joint characteristic function of the K + 1 quantities involved:

K
R R =R =R (B 11, o+ tk) = E{exp(G[tX + )_ t:(X; — X))}

i=1

But observe that X = 3 Xi&i and define = & T, hence

K K
tX + Z t.'()-(.' - X) Z[( t_)N.' + t.'])—(,' = E a; X;
i=1 i=1 i=1
which is a linear combination of independent, normal random variables {X;} with coeffi-
cients

N;
ai'—'(%—t_)Ni‘l'ti:Nt'l'(ti—Nit—)

having the properties

K K
Y Hiai = pt+ Y fi(ti — Nif)

=1 =1
and
K g2 K. 1 2N? 2tN;
- = + (& = Nid) + (6 - Nid)Y]
,.;N,- §N. N?
K

= Z +2tz —2tt+2(t Nty

:—l z—l i=1 '

_ Z(t _)

i=1
The joint characteristic function of X and (X; — X,..., Xk — X) can then be written as

K K o?
Elexp(d_ja:Xi)] = Hexp(jﬁea.-——’-a?)

=1 i=1

= exP(J Zl‘tas - _Z —)

=1 :—l

= exxJ[iﬂt- ] eprZu:(t —Nﬂ——z(t _Nt-)l

i=1 =1
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The last form of the joint characteristic function is separable in ¢ and (¢4, - -, ¢x), therefore
X and (z; — X,z — X,-++,2zx — X) are independent.

Proof of theorem 2 : At an arbitrary point of the hierarchical testing scheme, the
data X is divided into (X, X2,--+,Xk) and the test for homogeneity is

K
Wi = :—2;1\&- (X - X)°.
Since Wy is exclusively a function of {X; — X}, Wx must be independent of X following
lemma 1. Also note that the only statistic of X; that Wx uses is its sample mean X;.
Similarly the test at one level above will only use the statistic X from the data set X.
Therefore the test at one level above should be independent of Wx. By repeating the same
argument, we show that all tests involved in the hierarchical scheme are independent.
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