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Abstract

The motion of a deforming body is completely characterized by the velocity
field (with initial position) generated by the motion. A method of computing the
3-D velocity field from 3-D cine CT's of a beating heart is proposed.

Continuum theory provides two constraints on the velocity field generated by
a deforming body. Assuming that () the image is proportional to some conserved
quantity and (2) the imaged medium is incompressible, the velocity field must
satisfy the divergence-free constraint and the incompressibility constraint. Com-
putation of the velocity field using these two constraints is an ill-posed problem
which may be regularized using a smoothness term. We define a penalty func-
tion as a weighted sum of the two constraining terms and the smoothness term.
Minimization of this function yields the desired velocity field.

Via variational calculus, it can be shown that the solution minimizing the
penalty satisfies the Euler-Lagrange equations for this problem. The solution of
the Euler-Lagrange equation is a set of coupled elliptic partial differential equa-
tions (PDEs). For numerical implementation, the PDEs obtained are discretized
resulting in a system of linear equations Ax = b where x is the solution velocity
field. The matrix equation is solved using the conjugate gradient algorithm. Ex-
amples of experiments using simulated images and a cine CT of a beating heart
are presented.
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1 Introduction

X-ray computed tomography (CT) is a diagnostic tool for producing cross-sectional
images of the human head or body. The reconstructed CT images are proportional to
the spatial distribution of the linear x-ray attenuation coefficient within the imaged slice.
Since attenuation coefficients vary with tissue type (e.g. blood, muscle, fat, bone), these
images yield valuable anatomical information. For most conventional CT scanners the
scanning time is on the order of 1 to 10 seconds per slice, consequently, application is
limited to parts of the body that are stationary. A modern cine CT scanner [1], in which
x-rays are produced using an electronically steered electron beam, is able to reduce this
scanning time to 50 milliseconds and is therefore ideal for cardiac imaging with minimal
motion artifacts. Multiple slices covering the entire heart may be scanned in a few
seconds and stored as a sequence of 3D images of the beating heart. This sequence of
images may be displayed on a monitor as a movie for qualitative diagnosis based on the
motion of the heart. The goal of this paper is to quantify this motion using the data
provided by the cine CT. The motion of a beating heart is completely characterized by
the velocity field (with initial position) generated by the motion; it is this field that we
propose to estimate.

The problem of estimating motion from a sequence of images is often ill-posed [2]
in the sense of Hadamard [3]. Horn and Schunck [4] reported the first computational
algorithm for computing a 2-D velocity field from a sequence of 2-D images using a
method commonly referred to as optical flow. The ill-posed nature of the problem was
overcome via a regularization method of Tikhonov [2]. Several variations on the original
optical flow algorithm have since been proposed |5, 6, 7].

The optical flow algorithm of Horn and Schunck (4] computes a velocity vector for
every pixel in the image. The brightness constraint introduced in [4] is based on the
assumption that a ‘point’ in a sequence of images does not change in its gray level from
one frame to the next. This brightness constraint alone however does not result in a
unique velocity field. By incorporating a regularization or smoothness measure on the
velocity field (thus assuming the true field to be spatially smooth) and minimizing a
weighted sum of the smoothness term and the error in the brightness constraint, the
2-D velocity field can be computed from a sequence of 2-D images.

Mailloux et al (8, 9] have attempted automated motion quantification of a beating
heart using echocardiograms. In [8], the optical flow method in [4] was applied directly
to 2-D echo images with favorable results. In [9], the velocity field was assumed to be
locally linear and the solution constrained to lie on the set of linear vector fields. The
linearity constraint, and both the brightness and smoothness constraints of optical flow,
can all be shown to be convex. Therefore, by using projections onto convez sets (POCS)
[10], the velocity field was computed for all components of the linear velocity field:
translational, rotational, divergent and shear. One limitation of the results reported by
Mailloux et alis that they are 2-D approximations of the true 3-D field.

Since the motion of a beating heart is a 3-D phenomena, we formulate and solve the
problem directly in 3-D. The formulation is derived from a physical model for the motion



of the imaged medium using continuum theory {11, 12]. In particular, the equation of
continuity can be applied to all images proportional to the density of some conserved
quantity; the incompressibility condition may be applied if the imaged medium is also
incompressible.

For a 2-D slice of a 3-D body (e.g. 2-D echocardiograms, or 2-D CT images), the
equation of continuity and the incompressibility condition cannot be justified, since in
general, and specifically for a beating heart, the motion is not confined to the 2-D slice
being imaged and we would expect the above constraints to be violated. For this reason,
motion estimation is addressed here as a 3-D problem.

In Section 2 we present a brief review of continuum theory [11, 12] as it applies to
3-D density images. Using this theory, we develop two constraints on the 3-D velocity
field generated by a beating heart. With these constraints, the computation of the 3-D
velocity field is formulated in Section 3 as an optimization problem and a solution to
the optimization problem is developed using the Euler-Lagrange method. The solution
is then discretized for computer implementation. Section 4 presents the results for both
simulated images and clinical cine CT images of a beating heart.

The presentation to follow introduces and defines a large number of variables. To
avoid confusion, these variables are defined below.

r=(2,y,2) spatial variables or coordinates
R=(X,Y,2) material variables or initial position
¢ time
s(r,t) = (u,v,w) velocity in Eulerian Description
S(R,t) velocity in Lagrangian Description
f density image
D/Dtg mobile derivative of g with respect to ¢
g« = 0g/0z partial derivative of g with respect to =

V = (8/6z,0/8y,0/0z)

gradient operator, spatial

V. divergence operator
(7%, T,,T) spatial extent of the imaging experiment
Q [0, T.] x [0,T,] x [0,T,], imaging volume
N surface enclosing (2
dQ) = dz dy dz differential volume element
es cost pertaining to smoothness of s = (u,v,w)
er cost pertaining to incompressibility constraint
ep cost pertaining to divergence-free constraint
T regularization parameter for ef
2 regularization parameter for ep
f discrete version of image f
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x : discrete version of the velocity field s = (u,v,w)

2 Constraints on the Velocity Field

In this section we present two constraints which may be applied to the velocity field
of the cine CT of the heart. These constraints are developed within the framework
of continuum theory. A fundamental assumption in the following is that the data are
density images in the sense defined by Fitzpatrick [13], i.e., the images represent some
conserved quantity. CT image intensities are proportional to the linear attenuation
coefficient. This coefficient is a time-invariant function of the tissue type determined
by its chemical composition. It is therefore reasonable to assume that the CT image
represents a conserved quantity. A mathematical definition of density images and the
conservation property is given in section 2.2. Although the method described here is
derived and applied to x-ray CT images, it can be shown that magnetic resonance (MR)
images and emission tomographic images are also density images and hence the algorithm
described below could also be applied to images collected using these modalities.

2.1 Descriptions of Motion of Deformable Media

Consider a physical body occupying a region ¥ C R3. This body is in motion and is
subject to deformation. The region V consists of points or particles that can be associated
with the position vector R = (X,Y,Z) in one-to-one correspondence. Therefore the
mapping ‘particle = R’ is bijective so that each particle is uniquely labeled with a
position vector R.

Let a physical body at time ¢ occupy a region V,, and at time ¢, through motion,
occupy a new region V,. Then the particle with label R = (X,Y,Z) € V,, will have
moved to a new position r = (z,y,z) € V;. We describe this mapping by

r=r(R,t) (1)

The mapping r(R, ¢) describes the path of the particle initially located at R. There-
fore, it is natural to define the velocity S at time t of the particle with label R as
follows.

S(R1) = 2x(R,1) ()

Further, we assume that the particle with label at R moves to only one r and con-
versely, no two particles with different labels arrive at the same r at the same time. This
assumption is the principle of impenetrability of matter. Then, the inverse mapping of
(1) exists and a pair of invertible mappings are described below.

r = r(R,t) and R = R(r,t) (3)

The above pair of invertible mappings depict the transformation between spatial descrip-
tion and material description. These are also called Eulerian and Lagrangian descriptions
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respectively. In spatial description, the independent variable is r—the spatial variable.
In material description, the independent variable is R—the material variable. In both
cases, ¢ is an independent variable.

In most imaging experiments, pixels or voxels are fixed to a laboratory frame of
reference. The motion of the imaged medium is observed with respect to this laboratory
frame in which the pixels are fixed. Therefore, the convenient description of motion in
most imaging applications seems to be the spatial description. This is the case for the
problem of computing the velocity field within the imaging volume. We must express
S(R,t) in (2) in terms of the spatial variable r—the pixel coordinates.

Using (3), the velocity may be expressed in terms of the spatial variable r as below.

s(r,t) = S(R, ¢) |R=R(r)= S(R(r,¢),?) (4)

This is the spatial description of the particle velocity. In other words, s(r,t) is the
velocity of the particle passing through the spatial position r at time £.

2.2 The Equation of Continuity

In this section, we present the continuity equation using the conservation of mass. Con-
sider a region V with a density distribution f(r,t). Let m be the volume integral of f
over V. If f represents the mass density then m is the total mass in V. The rate of
change in m (within a fixed arbitrary volume V) is given by

dm

5= —%/vf(r,t)dV (5)

where
dV = differential volume element in V

This is the change in m as a result of a decrease in density f within V.

Assuming that f is a density of some conserved quantity—meaning that this quantity
is neither created nor destroyed—the change in m above should exactly be matched by
the flux of m out of the volume V. Mathematically,

= § Het)s(r, ) - dn (®)
where

dV = surface enclosing V
dn = differential normal surface element on 9V
s(r,t) = velocity field in spatial description
Equating (5) and (6) yields the conservation equation which states that the rate of

m (the volume integral of density f) leaving an arbitrary region V must be canceled by
the flux of m across the surface GV enclosing that region

%/vdeﬁ-}gvfs'dn:O (7)



This is the conservation of mass equation (in integral form) that every density image is
defined to obey.

Application of the divergence theorem to the flux integral yields

LGr+v (s av=0 ®

This must hold for every arbitrary region V. Hence, the integrand itself must be identical
to zero.

fe+ V- (fs)=0 (9)

This is the conservation of mass equation in differential form. In continuum theory, (9)
is referred to as the equation of continuity.

Equation (9) may be used as a constraint on the velocity field s(r,t). For density
images of a compressible medium, the continuity equation (9) may be used as a constraint
on velocity field rather than constraints to be discussed in Sections 2.3 and 2.4 to follow.
See [14, 15| for example.

2.3 The Incompressibility Constraint

The density f may be expressed in either material or spatial descriptions.

fY“(R,t) in Lagrangian or material description
fE(r,t)  in Eulerian or spatial description

Recall that in material description, the initial position R is the independent variable
whereas in spatial description, r is independent. In view of (3),

fL(Ra t) = fE(rs t) lr:r(R,t)

Then, by considering the initial position R as the fixed variable we take the partial
derivative of both sides with respect to ¢. Using r = (2, y, z),

8z OfE afE
—fL(R t) = afaf her®y  + gtyafy le=r(R.) (10)
0z 0f% off
Fri sl L TR el D)

The partials dz/0t,dy/0t and Oz/0t evaluated at r = r(R,t) simply represent three
components of the velocity in material description S(R,t). Using (3) and (4) we may
express (10) in spatial description as

%f"(R,t) |R=R(r) (11)
3}
= %tf— + u(r t) f + o(r,t) gy—f + w(r,t)é—



where s(r,t) = (u,v,w). The superscript £ on f have been dropped. From this point
on, by f we mean the spatial description of the density—fZ(r,¢). The left hand side of
(11) is the rate of change in the density of the particle initially at R expressed in terms
of the spatial variable r. It is precisely the rate of change of f as seen by an observer
moving with the particle initially at R.

The convected or mobile derivative is defined as the derivative with respect to time,
moving with the particle, as

D ¢

Dt Bt +s-V (12)
Then, we may write (11) as

D 0

ot/ =l to Y (13)

For an incompressible medium, the density f does not change in time if the observation is
carried out while moving along with the particle. Therefore D/Dt f = 0 if f represents
an incompressible medium. This yields the incompressibility constraint.

f+Vfs=0 (14)

This is equivalent to the brighiness constraint of optical flow extended to 3-D.

Examples abound where the flow is incompressible and thus satisfying (14). For
example, in CT images, the density (and hence CT numbers) of the heart muscle and
blood are invariant throughout the systole/diastole cycle. Consequently, cine CT images
of the human heart should obey the incompressibility constraint (14).

2.4 The Divergence-Free Constraint

Thus far, the constraints on the velocity field of a moving body represented by a density
image were shown to be the continuity constraint (9) and the incompressibility constraint
(14). These two constraints may be imposed directly; however, in practice we have found
that it was easier to impose the incompressibility constraint and a linear combination
of the two constraints.

Equating (9) and (14) yields,

V. (fs)y=Vf-s
The left hand side can be expanded as V - (fs) = fV -s + V f . s, resulting in
fV-s=0 (15)

In continuum theory, (15) is referred to as the continuity equation for incompressible
media. Equation (15) states that for an incompressible medium the divergence of the
velocity field must be zero for regions where f is non-zero. That is,

V.s=0 (16)



This is the divergence-free constraint which incompressible density images must obey.
For regions where f = 0, where it is void of ‘particles’, we also assume the velocity field
to be divergence-free for mathematical simplicity.

We end this section by noting that when imposing the divergence-free constraint

(16), the incompressibility constraint (14) should also be imposed, since the latter was
used in deriving (16).

3 Problem Description

3.1 Formulation

Computation of the velocity field using the incompressibility and the divergence-free
constraints is an ill-posed problem, i.e., the solution is not necessarily unique and may
be sensitive to small changes in the data.

The cost functional eg(s) is defined as

es(s)=/n(ui-i-uz+u§+vi+v;+v§+w§+w:+wf)dQ (17)
where

Q = {(z,y,2)eR® : 0<z<T.,0<y<T,0<z<T}
daQ dx dy dz
R = the real line

and (7,,T,,T,) is the spatial extent of the imaging volume.
Combining the cost es (17) and the two constraints, the optimization problem be-
comes

minimize  eg(s)

1
subjectto fou+ fov+ fow+fi=0 and u,+v,+w,=0 (18)

Rather than solving the above optimization problem directly, we consider the equivalent
problem.

mintmize es(s)

subject to er(s) =0 and ep(s) =0 (19)

where
er(s) = [(fu+ fyo + fow+ £ 40
en(s) = fn (us + v, + w,)? dQ

Since (19) is a convex minimization problem over convex constraints, one could ap-
ply the method of Lagrange multipliers to find an optimal solution. However, due to
the complexity of the problem and the difficulty in finding the Lagrange multipliers,
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we confine our attention to finding an approximate solution to (19) by unconstrained
minimization of the penalty function

e(s) = es(s) + 11 er(s) + 72 ep(s) | (20)

where v; and 7, are a pair of real positive constants. We note that an approximate choice
of 71 and 7, is an important theoretical problem; however, we have found in practice
that acceptable solutions may be obtained by minimizing e(s) over a fairly wide range
of values for v, and 4;. By way of justification of this approximate solution, we note
that in practice, the data contains noise, and the use of hard constraints as in (18) may
result in poor solutions due to the incorporation of the noise into the computed velocity
fields. In contrast, the solution obtained by minimizing (20) does not require that the
constraints be exactly met, and consequently may be more robust to noise.

In the optical flow formulation of Horn and Schunck [4], a global constraint—a 2-D
version of es above—was introduced so that a solution may be obtained. The penalty
method presented in this section is identical to their approach. In fact, if 9, = 0, our
method yields a straight-forward extension of optical flow solution [4] to 3-D.

3.2 Solution by Minimization of the Penalty e(s)

In this section, we present a solution minimizing the penalty functional e(s).

e(s)=L{(ui+u:+u§+vz+v;+vf+w:+w;+wf) (21)
+ n (feut fyo+ faw+ £+ 7 (v + vy +w.)"} dQ
where s = (u,v,w) and v, and ¥, are real positive constants.
Let F be the integrand of (21). Then, from the calculus of variations the solution sq

must satisfy the following set of Euler-Lagrange equations with either the Dirichlet or
the Neumann boundary conditions.

o, 8. 8
5. 9. 08
= B - F -2 F — 5 22
0= hoghe gyt (22)
6. 8. 0
0 = Fu=goFu =5 Fa, = 3R

The substitution of the partials into the Euler-Lagrange equation (22) results in the
following set of partial differential equations (PDEs).

Vzu = 71 fx(fzu+fyv+.f:w+ft) - 72 (uzz+vzy+w:g)
Vi = " fy(fzu + fyv + fow + ft) - T2 (uzy T Vyy + wyz) (23)
Viw = 7 Felfou + fyv + fow + fo) — 72 (2ez + vy, +w,;)



where V? is the Laplacian operator. The solution satisfies equation (23) on the interior

of Q. On the boundary 69, we impose either the Dirichlet or Neumann boundary
conditions (see Appendix A).

If we let 45 = 0, in (23) then the problem is identical to the optical flow problem [4]
extended to 3-D; and the solution satisfies the PDEs.

Viu = 7 folfou + fyv + fow + f)
Vi = oy fy(feut fo + faw + f) (24)
Viw = v fi(fou+ fov + fow + fo)

As in [4] the Laplacian may be discretized as Vg = k(g — g) where « is a constant

depending on the differential mask and g is the local average of g. Algebraic manipulation
and a symbolic inversion of the 3 by 3 matrix result in a Jacobi type iterative algorithm.

S I i f, + M f, + BV, + f,
- 3

(6/m) + f2+ 2 + f2

@ f, + 80, + 5, +
(e/m)+ 2+ f2+ f2

(n+1) _  =(n) ﬁ'(n)fz + 6(n)f!l + w(")fz + ft
w = w - f 2 2 2
(s/m)+ f2+ f2 +

If the most recent updated values are used in the iteration above, we obtain a Gauss-
Seidel iteration. The successive over-relaxation (SOR) method [16] may also be used.

In Jacobi type iterations, convergence is guaranteed if the row-sum criterion [16] is
met. Unfortunately, the row-sum criterion cannot be checked since the row elements
depend on the image f. However, we have implemented (25) in 3-D and obtained
convergence for a large class of images. It is more difficult to obtain a Jacobi type
iterative formula for the case 4, # 0 as this involves a symbolic inversion of a more
complex 3 by 3 matrix. Although this symbolic inversion can be done, we chose to use
the conjugate gradient algorithm where convergence is guaranteed [17].

o) = g

(25)

3.3 Discretization of the PDE

To compute a solution for the PDEs in (23), the equations must be discretized. Assuming
uniform sampling, let the spatial sample grid spacings be A,,A,, and A, for the z,y
and z-axis respectively, and let

fise = F(2,9,2) l(zw,2)=(i Ao, j Ay, k Ar)s (z,y,2) €Q (26)

The partial derivatives ( fz, fy, f:, f:) and the velocity components (u,v,w) are similarly
discretized.

Using lexicographical ordering {18], the image samples f;;. can be vector-stacked
as £ = [fooo , - fN.—x.N,-l.N,-llT where (N, Ny, N.) denotes the discrete



spatial extent of the imaging volume. The vectors, f,,f,,f;,f;, u, v and w are similarly
constructed. The solution vector x is then defined as

x=[v] . (27)
w

To express the PDEs of (23) in the discrete domain, the matrices below are defined.

Hp = [D,|D,|D,]

H; = [diag(f;)| diag(fy) | diag(f:)]
D? + D2 + D? 0 0
Q = 0 D? + DZ + D? 0 (28)
0 0 D + D! + D?

diag(f.) = N x N diagonal matrix with elements of f, in the diagonal

where D.,D, and D, are matrix representations of partial differential operators with
respect to x,y and z respectively, and N = NN, N,. With this discretization, (23) has
the following discrete form.

= Q-n Hf H;+9, Hf Hp

v HTf, (29)

Ax=b, where { t

Boundary Conditions

Equation (29), is not completely defined without a boundary condition. For example,
assuming a central difference scheme, partial differentiation along the z-axis (i.e. D.)
is not defined at boundaries z = 0 and z = T,. A Dirichlet or a2 Neumann boundary
condition (see Appendix A) can be used to define the elements of A corresponding to
the boundary 99Q.

If we know the value of s on the boundary 912, then the natural choice is the Dirichlet
boundary condition. In this case, the value of x, the discrete version of s, is known on
Q. Hence, the matrix equation (29) can be reduced to a smaller dimension discarding
the elements corresponding to the boundary 9Q. The algorithm only computes elements
of x corresponding to the interior of . Therefore, the differential operators of (29)—
assuming the usual central difference derivative, five point Laplacian, etc—are defined
everywhere in the interior of £ and (29) may be solved.

If we have no knowledge of the value of s on the boundary 912, we insist that the
Neumann boundary condition (35) be satisfied. The Neumann boundary condition for
our problem becomes

Uz + 72("’: + vy + wz) =0
v, + "/2(“:: + vy + wz) =0 atz = 0, and z = Tz (30)
We + 72(“2 + vy + w")

Il
o
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uy + Yo(us+v,+w;) = 0
vy + Yz +vy+w,) = 0 aty=0,andy=7T, (31)
wy, + Yo uz+vy+w;) = 0
u, + 72(“; + vy + 'Wz) =0
v: + Yaur+vy,+tw;) = 0 at 2=0, and 2z = T, (32)
w, + 72(“: + vy + wz) =0

The Neumann boundary condition is not well-defined at edges or vertices of (2, as the
normal vector n is not continuous there. At an edge we may insist that boundary
conditions corresponding to the two intersecting boundary planes both be satisfied; and
at a corner, we impose three boundary conditions for the three intersecting boundary
planes.

4 Results

In this section, results obtained by the conjugate gradient implementation of the al-
gorithm of the previous section are presented. The 2-D version of the incompressibil-
ity constraint—the brightness constraint of optical flow—has been studied extensively;
therefore, results obtained (1) with the incompressibility constraint only; and (2) with
both incompressibility and divergence-free constraints are compared. It is demonstrated
that for density images of moving incompressible objects, using the divergence-free con-
straint with the incompressibility constraint provides solutions consistent with our in-
tuition of the motion of deforming objects. In all cases presented (except cine CT), the
Dirichlet boundary condition was used since at spatial boundaries of the images, the
motion was known to be zero. For cine CT of a beating heart, the Dirichlet boundary
condition was used for the four boundary planes normal to the z-y plane; and the Neu-
mann boundary condition was used for the remaining planes, i.e., first and last slices of
the 3-D image (planes z =0 and z = N, — 1).

4.1 Simulated Images

All simulated images presented in this section were constructed so that the conservation
of mass is obeyed. Regions of images were allowed to deform but they were not allowed
to change in the area that they occupy in both time frames. Hence, these simulated
images clearly satisfies the conservation of mass (7). The incompressibility constraint
was imposed on the motion by maintaining a constant gray level for each fixed point of
the image as the objects deformed. Thus, the velocity field generated by the simulated
images of Figures 1 and 5 were constructed to satisfy the incompressibility and the
divergence-free constraints.

2-D images

For illustration purposes, 2-D examples are presented first. Experiment 1 of Figure 1
shows a 64x64 image sequence of a translating circle. The boundary of the outer circle
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(of radius 25 pixels) is fixed whereas the inner circle (of radius 13 pixels) translates one
pixel down. A physical example of this type of motion is a situation in which the inner
region is solid and the outer doughnut is fluid. The images represent the densities of these
~ regions. As the inner circle translates, the outer region (the outer boundary is fixed)
experiences motion such that along the left and right regions of the doughnut, upward
motion should prevail to evacuate (bottom) and replenish (top) the regions affected by
the inner region’s motion.

The incompressibility constraint alone does not give results that show such motion.
Figure 2 (a) shows the result obtained using only the incompressibility constrain. Here,
a general downward motion is shown which does not agree with preceding arguments.
When using both constraints, the motion within the doughnut region is seen to accom-
modate the motion of the inner circle as described above. This is clearly indicated in
Figure 2 (b).

Experiment 2 of Figure 1 shows a 64x64 image sequence of a diagonally translating
circle. The boundary of the outer circle is fixed as for the first experiment, and the inner
circle translates 1 pixel diagonally. Both circles are of the same radius as in the first
experiment. Figure 3 illustrate that that the algorithm is not direction sensitive and
depicts similar results as in experiment 1.

Experiment 3 of Figure 1 shows a 64x64 image sequence of a deforming ellipse.
The outer ellipse (a circle of radius 25) is fixed in both frames and the inner ellipse
deforms from a major and minor axis of (13, 10) to (15, 130/15). These numbers were
chosen to guarantee the conservation of mass—i.e. the equation of continuity (9). Again,
the utility of the divergence-free constraint for density images is clearly illustrated in
Figure 4.

These experiments in 2-D clearly indicate the advantage of using the divergence-free
constraint for density images.

3-D images

Experiment 4 of Figure 5 shows a 16x16x8 image sequence of a translating ellipsoid.
The outer ellipsoid is fixed in both frames and the inner ellipsoid translates down one
voxel. As for the experiments in 2-D, the algorithm was performed with and without
the divergence-free constraint. Figure 6 shows the two 3-D vector fields plotted as a
function of 3-D space, projected onto a plane. Figure 6 (a)—without the divergence-free
constraint—does indicate a general downward motion. However, the motion deep within
the inner ellipsoid is significantly smaller than it should be. Figure 6 (b) does not have
this undesirable effect due to the divergence-free constraint.
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Figure 1: Simulated images for experiments 1, 2 and 3. (a) Experiment 1: Vertically
translating circle, time frames 1 and 2. (b) Experiment 2: Diagonally translating circle,
time frames 1 and 2. (c) Experiment 3: Deforming ellipse, time frames 1 and 2. The
boundary of the outer region is fixed and the motion arises from the inner regions
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Figure 5: Simulated images for experiment 4: Vertically translating ellipsoid, time frames
1 and 2. The outer ellipsoid is fixed and the inner ellipsoid translates down one voxel.
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Figure 6: Results of experiment 4. 3-D vector field as a function of a 3-D space is
projected onto a plane. (a) Incompressibility constraint only. (b) Incompressibility and
divergence-free constraints.
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4.2 Cine CT of a beating heart

Images from the Imatron C-100 Ultrafast Scanner [1] were used to evaluate the per-
formance of the algorithm for real data. Low noise in the sequence of cardiac images
provided by the Ultrafast Scanner was particularly attractive since the algorithm is based
on partial derivatives of the given images. Of 17 consecutive frames of a beating heart,
the algorithm was run on the first two frames. Both frames were originally 256 x 256 x 8.
These were cut to reduce the computational burden to 128x128x8 with the heart at
the center of the new image. The reduced images were further processed with a simple
2x2 averaging filter (in the z-y plane) to give a pair of 64x64x8 images. The algorithm
was performed on this image.

It is difficult to depict a 3-D velocity field as a function of 3-D space. For a simple
motion, such as in experiment 4, the method used in Figure 6 proved useful; however,
for complicated motion, these illustrations are difficult to interpret. We present a partial
result here by overlaying the velocity vectors onto a plane of the heart image. A complete
result can be presented in this manner for any plane desired. Figure 7 shows the fourth
slice at time frames 1 and 2 overlayed with the z and y components of the computed
velocity.

The motion of the heart in one time frame is small since the Imatron C-100 provides
17 frames per heart beat. Careful examination of both images indicate that the algorithm
provides reasonable estimates of the velocity field.
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Figure 7: Cine CT of a beating heart overlayed with velocity field vectors. Top: level 4
time 1. Bottom: level 4 time 2.
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5 Summary

The goal of this work was to quantify the motion of a beating heart given a cine CT
sequence of cardiac images. Since all motion is completely characterized by the velocity
field generated by the motion, knowing (or computing) the velocity field completely
quantifies the motion. This work was a first attempt at computing the velocity field
generated by a cine CT sequence and thus quantifying the motion of a beating heart.
However, the algorithm developed also works for other types of images as long as the
images are density images of incompressible objects. The algorithm presented in this
paper should result in a solution that is agreeable when applied to density images.
We summarize the content of this paper as below.

1. Mathematical relationships of continuum theory was reviewed and successfully

utilized as constraints on the velocity field generated by the motion of a deforming
body.

2. The problem of computing 3-D velocity field from sequences of 3-D density images
was formulated as an optimization problem minimizing a cost functional.

3. The minimization problem was solved by Euler-Lagrange equations resulting in a
set of coupled elliptic PDEs.

4. The algorithm was successfully run for simple simulated images and cine CT image
of a human heart.

5. The incompressibility constraint is a 3-D version of the well-known brightness
constraint of optical flow. The divergence-free constraint introduced in this work
is new although a few investigators have alluded to using this constraint in the
formulation {13, 19].
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Appendix A: The Euler-Lagrange equations for op-
timizing the penalty function e(s)

If g is a Gateaux differentiable functional on a vector space X, a necessary condition
[20] for g to achieve an extremum at s € X is that the Gateaux differential

89(Seze;h) =0 vhe X
We derive the Euler-Lagrange equations for the functional

e(s) =/‘;F(s,as) dQ

where
s = (u,v,w)
05 = (UgyUy,UszyVsyVyyVsy Wy Wy, W;)
Q = [0,T,] x[0,T,] x [0, T;]
d = dzxdyd:

The problem is set in the space of continuously differentiable vector fields, C!(f2), to
ensure the existence of the penalty functional e(s, 8s), i.e., s, h= (hy, ke, h3) € C}(Q).
By the chain rule of partial differentiation,

d
EF(S + ah,a(s + ah)) Ia=0 = Fuhl + Fuzh]_z + Fu,hw + Fu,hlz

+ thz + Fv,hzz + Fv,h2y + Fv,hZ:
+ th3 + Fw,haz + Fw,h3y + Fw,hSz

Therefore,
Se(s;h) = / = F(s + ah,d(s + ch)) dQ |aco
- /0 (Fuhy + Fuhrz + Fu by + Fu by,) dQ
+ /n (Fohg + Fy oz + Fy hay + Fy has) d92

+ [[(Fuba + Fuhse + Fuyhay + Fuhas) 49

All three integrals above may be simplified using the divergence theorem of Gauss.
For example, we apply the divergence theorem to the first integral.

/n (Fuhy + Fu ko + Fu by + Fu hyy) d92

hl uy
= /{hl(F.,—g—F,,,—g—Fu,-%Fu,) + V.| mF, |}do
a ’ y h,F,,
F
) 3 8 us
= -ZF - dQ hy| Fu, | -d
fom(Fe = PSP = g Fu) 0+ f by F,] n
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where

0 = surface enclosing
dn = surface normal differential

Similar application of the divergence theorem to the other integrals yield

0 0 d

Se(s; h) = /n m(Fu = g2 Fay = 5 Fuy = 3-F) 402 (33)

8 8 8
+ /n ha(Fy = 5o Fou = 5oy = 5-Fu) 49
) ) 8
+ /0 ho(Fy = g2 Fau = 5o, = 5Fo,) 40
Fua F"a ch
‘*‘}( (hy| Fuy | +ha| Fo, | +hs| Fy, |)-dn
o0 Fus Fvs sz

We assume for the moment that the last integral above is zero.

The Gateaux differential ée(s;h) must be zero at the extremum s, for all h =
(h1, k2, h3) € CY(Q), it follows that in the first three integrands, the terms inside the
parenthesis of the volume integral must be zero and the Euler-Lagrange equations follow.

8 ) 8
0 = Fu-gFu-5. P~ F
8 E 8
0 = P —gF =5 Fy — 5P (34)
8 8 8
0 = Fo-gFu =5 Fe 5P

In order for the flux integral in (33) to be zero, which we assumed in deriving the Euler-
Lagrange equations above, we impose either Dirichlet or Neumann boundary condition.
Dirichlet boundary conditions give the values of s on Q. Therefore, any h =
(R1,h2,h3) in the set of admissible h must be zero on 9. Then the flux integrals
is zero and the Euler-Lagrange equation follows.
The Neumann boundary condition forces the integrand of the flux integral to zero
by imposing the constraint

F., F,, Fy,
Fy, |-dn = Fo, | -dn = Fy, | -dn = 0, on 30 (35)
F,, F,, F,,
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