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A DOMAIN DECOMPOSITION PRECONDITIONER BASED ON A
CHANGE TO A MULTILEVEL NODAL BASIS *
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Abstract. We present a domain decomposition method based on a simple change of basis on
the interfaces and vertices and we show that this leads to an effective preconditioner compared to
the ones previously considered such as the preconditioner by Bramble, Pasciak and Schatz (BPS)
(2], and the hierarchical basis domain decomposition (HBDD) preconditioner by Smith and Widlund
[8]. Our domain-decomposed preconditioner is based on Bramble, Pasciak and Xu’s multilevel nodal
basis preconditioner [3]. We show that analytically our method and the HBDD method give the same
order of condition number, namely, O(log2 %) for problems with smooth coefficients. Numerically our
method is much more effective and it appears to be O(1) for the model problem.
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1. Introduction. We consider second-order, self-adjoint, uniformly elliptic partial differential
equations on a two dimensional polygonal domain Q. The problems are solved numerically by using
piecewise linear finite elements. The domain is first divided into nonoverlapping subregions £2;’s which
are further divided into triangular finite elements. We denote H the diameter of a typical subregion
and h the diameter of its elements.

We begin with the linear system arising from a discretization of the problem and we first eliminate
the variables interior to the subregions ;. The resulting reduced system, the Schur complement,
involves only the variables associated with I, the set of edges and vertices of the subregions. This
system is then solved by a preconditioned conjugate gradient method, where the preconditioner is
constructed from certain problems associated with the interfaces I';; = 89Q; N 9Q; and vertices and a
global coarse problem associated with the vertices.

Many preconditioners have been proposed for the subproblems associated with the edges I';;. For
example, the method by Bramble, Pasciak, and Schatz [2] uses an operator similar to the square root of
the Laplacian operator as the subproblem. Recently Smith and Widlund [8] propose a computationally
more efficient hybrid preconditioning method which involves only a simple change of basis (between
nodal and hierarchical basis) with the unknowns on the edges I;}, They show that the new method
has a condition number which grows no faster than C(1 + log(4'))?, which is comparable to that of
the BPS method.

The domain-decomposed preconditioner we consider in this paper is inspired by the work of Smith
and Widlund [8]. In the same way that (8] uses the hierarchical basis on the edges to obtain a domain
decomposition method, we use the multilevel nodal basis of Bramble, Pasciak, and Xu [3] applied to the
reduced system on the interfaces (i.e. the edges and the vertices) to obtain our domain decomposition
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number is bounded by O(lo ) for smooth coefficient problems. Numerical experiments, however,
show that the condition number appears to be O(1) for the model problem. The computational cost
of our method is about the same as that of Smith and Widlund’s method.

2. The Multilevel Nodal Basis Algorithm and Domain Decomposition Methods. In
this section we provide the necessary background to define the MNBDD algorithm. We consider a
second-order, self-adjoint, uniformly elliptic, bilinear form a(u, v) on  with Dirichlet condition on 8<:

a(u,v) = (f,v) Vv€ H5(Q), ue€ Hy(Q).

Let VZ(Q) and V*(Q) be the spaces of continuous, piecewise linear functions, on the two triangulations,
which vanish on 892. We use elements which obey certain regularity assumptions, and obtain the
discrete variational problem:

a(un,va) = (f,on) Yon €VH(Q), w € VH(Q).

By introducing the standard nodal basis {¢;} for the space V%, the above finite dimensional variational
problem is reduced to a linear system:

Kz =b.

Here z is the vector of unknowns z;, b is the vector of components (f, ¢;), and K is the stiffness matrix
where K,'j = a(¢,~,¢,~).

Fic. 1. Mulitlevel Nodal Basis Functions

/><><\ level=1

/\ level=0

2.1. The Multilevel Nodal Basis Algorithm. The multilevel nodal basis method (3] is given
in terms of a set of nested sequence of finite element spaces,

W C eVt Tl 2,

which are successive refinements by a factor of two of V! = V#, Here V* is the set of piecewise linear

finite element functions after i levels of refinement from the original coarse triangulation. In other
. I=i .

words, V is the set of piecewise linear functions {¢’ YL (ni= dimV>) in V2 7'h that satisfies

¢£(y‘)=6j" Vj7l=l!""ni9

where {y} : I = 1,---,n;} is the set of all interior nodal points of the triangulation on which V;* is
defined. In short, {dr’ };_1 is the standard nodal basis for the space V;*. Figure 2.1 shows the multilevel
nodal basis functions in one dimension. The multilevel nodal basis preconditioner M of Bramble,
Pasciak, and Xu (3, 6] applied to v € V* takes the following form:

J n
(2.1) M=l =ad;'Qov+ Y (v, 4))é}
i=1 i=1
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where the operator A is a discretization of the elliptic operator —~A on Vg and Qo is the standard
orthogonal L? projection from V} to V. The parameter a is not present in the original formulation
of this preconditioner. Its inclusion here is inspired by the work of Smith and Widlund [8]. It can be
shown that this modified version has the same order of condition number bound as the unmodified one
(i.e. a = 1)) provided that o is independent of A and H.

The operator M~! involves transformations between standard nodal basis and multilevel nodal
basis (the second term in the above equation) as well as the solution of the problem corresponding to
the original coarse triangulation (the first term in the equation). In matrix form, this preconditioner
M can be written as:

-1 _ GD-IGT

where G and GT represent the transformation matrices from multllevel nodal basis to nodal basis and
vice versa, respectively; and D=! = blockdiag(ln,,In,_,, *, In,, @Ay ] solves the elliptic problem on
the coarse level while leaving the other levels unchanged. It was proved in (3] that for smooth coefficient
problems, the condition number of the preconditioned system n(M -1K) < CJ? where C is a constant
independent of h and H. In addition, this algorithm requires only O(n;) operations where ny is the
dimension of the finite element space V".

The matrix G transforms the input vector from multilevel nodal basis to nodal basis. The dimension
of the multilevel nodal basis is m = n; + nj_-; + - - - + ny + no while that of the standard nodal basis
is n = ny. Thus, G is a rectangular matrix of size n x m (which is unlike the square transformation
matrices for hierarchical basis). Let v = {vi,i = 1,---,n;};_, € RM where v} is the value at the nodal
point y} corresponding to level [, then

J m
Gv=) ) vidi

1=0 i=l

where ¢§,i=1,2,---n, is the set of basis functions in V}*.
The algorithm for G as applied to a vector v (of dimension m) is as follow:
Algorithm G : v; —» u,i=0,-.-J
for!{=0,.--,J—-1
vig1 = v + [P oy
end for
u=1yvy
end G
Here the I,“'l matrix is obtained from the choice of ¢;’s. On a two-dimensional uniform domain using
triangular elements, it corresponds to a seven-point interpolation operator.

2.2. Domain Decomposition Methods. Domain decomposition methods generally split the
space V" into N + 1 subspaces

VE= Vi V() @0 VS (Qw).

For each subregion £;, we thus have a subspace V(i) = V* n H}(Q;). The elements of V%, are
piecewise, discrete harmonic functions, i.e. they are orthogonal, in the sense of the bilinear form a(-, -),
to all the other subspaces.

First we partition the stiffness matrix ' and vector z into those corresponding to the interior of
the subregions and the edges and vertices. We then have

=, 5] [0]

If we apply block Gaussian elimination to eliminate the interior points, we obtain the following reduced
system or Schur complement for the edges and interfaces
Spzp =(Kp — KjgK;'K1p)zp = bp — KigK;'b; = bp.
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The Schur complement matrix Sg is in general dense. However, it is not necessary to generate this
matrix since, in the conjugate gradient iteration, this matrix is needed only in terms of matrix vector
products which can be computed by solving each subregion once and collecting the solution on the
interfaces and vertices.

2.3. Multilevel Nodal Basis Domain Decomposition Preconditioner. In this section,
we combine the ideas from previous sections to derive a new domain decomposition algorithm. The
symmetric form of the preconditioned system using multilevel nodal basis preconditioner can be written
as:

D 3GTKGD %z =}%

where GD~%z = z and § = D~%GTb. Let us partition the unknowns corresponding to the multilevel
nodal basis Z into those on the subregion interior £; and those on the interface £p and we eliminate
the subregion interior variables &y, we obtain the reduced system:

Spip =bg,

where 5‘3 is the Schur complement of D~ YGTKGD-4 after eliminating z;. Here we can also decom-
pose G according to the interior and interface unknowns so that

Gr Gis ]
G =
[ Gpr Gp

where Gy and Gp are the transformation (rectangular) matrices involving subregion interior points
and interface points respectively.

The above formulation requires many arithmetic operations when the Schur complement is applied
to a vector during the conjugate gradient iterations. By using the following lemmas, the above system
can be reduced to a simpler form.

LEMMA 2.1. G represents a change of basis which leaves the space of variables on T invariant (i.e.
Gpr=0).

Proof. Gpg; represents the contribution of the multilevel nodal bases in the subdomain interior to
the nodal basis on the interfaces during the transformation. Recall from previous sections that

J ny
(2.2) u=Gv= EZ vi ¢}
I1=0 i=1
where {¢§,i = 1,2,---n;} is the set of basis functions in V{*, and v{,i = 1,---,n; is the set of values

defined on the nodal points zj. Let u = (u7,up)” and v = (v7,vp) be the partitionings according to
subdomain interior and interfaces where u € R" and v € R™. If we evaluate the above expression at
node y on the interface I', we obtain

J

up = (Gpus) +(Garvr) =D $ D (vs)](8])i + D_(vn)i(¢])i

I=0 | jell Jjer

where (¢‘; )i is the value of the basis function at node j evaluated at node ¢ on level I. It can be verified
that

(#])i=0 Vj€Qandiel

since all multilevel nodal basis functions at the nodes interior to the subregions vanish on the interface.
In other words, the second term in the summation of equation 2.2 is identically equal to 0. Thus
Gpr=0and v’ = (vag)‘. 0

The following lemma is based on a similar one from Smith and Widlund’s paper (8]). The proof can
be obtained by a straightforward matrix manipulation.
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LEMMA 2.2. Let Gp; = 0 and D = blockdiag(Dy, Dg), then

Ss = D3 GLSsGp D3t

The above two lemmas imply that if we first eliminate the interior variables and then transform
to the multilevel nodal basis, we will be solving the same linear system as before (transformation to
multilevel nodal basis and then do the elimination). As a result, we are solving the following simpler
and smaller system:

D;*GTB'SBGBD;%?*?B =bp,

which is equivalent to solving the Schur complement system Sgzp = bp with the preconditioner
M~! = GgD~1G%. We call the preconditioner using this new formulation the multilevel nodal basis
domain decomposition (MNBDD) preconditioner. This method offers several possible advantages over
the standard multilevel nodal basis method by Bramble, Pasciak and Xu [3]. The conjugate gradient
iteration is carried out over a much smaller set of unknowns and we will show that the condition
number is smaller. The solution of the subproblems on the interfaces is easily parallelizable since they
are independent. One possible drawback, however, is that now it is necessary to solve each subregion
exactly in each iteration which adds more computational overhead.

Here the algorithm for Gy algorithm is similar to the one for G shown before except now the basis
functions used in the evaluation are restricted only to those on the interfaces. The operation of Gg on
a vector vg is defined by:

J m;

Gpup = ZZ(”B)§ &
ji=0i=1
where ¢j-, i=1,2,.--m; is the set of basis functions on T.

The MNBDD algorithm can be summarized as follow:
Algorithm MNBDD : input = r, output = z = Mg'r
Perform partial change of basis to the MN basis v = G4r
solve the coarse grid problem y = D;lv
Perform change of basis back to the nodal basis 2 = Ggy
end MNBDD

We need one more lemma from [8].
LEMMA 2.3. Let K be symmetric and posilive definite. Then the condition numbers of K and its
Schur complement satisfy

k(Schur(K)) < &(K).

Using Lemma 2.3 as well as the condition number bounds from [3], we arrive at the following main
theorem:

THEOREM 2.4. x(Mp'Sg) < O(logz(-’,{-)) for smooth coefficient problems.

Proof. By using Lemma 2.1 and 2.2 we obtain

$p = D3*GESsGaDRY.
By using Lemma 2.3, we obtain
w(D546TSpGD%) = x(5p)
< &(D"¥GTKGD™Y),

which is bounded by O(log? &), see [3]. O



It is also proved in [3] that the condition number bound in Theorem 2.4 depends also on the elliptic
regularity of the problem. For example, for smooth coefficient problems on convex polygonal domains,
the condition number is bounded by O(log %), and for certain discontinuous problems, the condition
number is bounded by O(log® £).

The hierarchical basis domain-decomposed (HBDD) [8] algorithm is similar to the BPS algorithm
by Bramble, Pasciak and Schatz [2]. The only difference is that the HBDD uses hierarchical basis
preconditioner for the edges while the BPS uses variants of Dryja’s preconditioner [5]. The MNBDD
algorithm, however, has one important difference; namely, in addition to the use of multilevel nodal
basis as preconditioners on the edges, the MNBDD algorithm also implements multilevel nodal basis
on the vertices. This introduces some redundancy on the vertices. This redundancy may be the reason
for its improved performance (see next section).

3. Numerical Results.

3.1. Two-subdomain Example. For two-subdomain case, since there is one edge and no ver-
tex, it is not necessary to solve a coarse problem.. We use the two-subdomain example of {8] with
different right hand side and we compare our results with those reported in [8]. We also include results
from using the Dryja’s (Is/?) [5] preconditioner. We use the domain & = ; U, where Q) and Q; are
unit squares aligned along an edge I' = §; N ;. We use the standard uniform mesh and the usual five
point discretization for the Laplacian and the iteration counts are listed in Table 3.1 (where n is the
number of unknowns on the interface). The right hand side is such that the solution is z(z—1)y(y—1)
and the stopping criterion is when the relative 2-norm of the residual falls below 10~6. The initial guess
used is u(®) = 1.0. We observe that while the iteration count for the HBDD continues to grow with
larger n, the other preconditioners seem to be bounded independent of n. While the iteration counts
using the HBDD preconditioners grow with n, we see that the iteration counts using MNBDD seem to
gradually levels off. Overall, we see the MNBDD preconditioner performs relatively well compared to
the others.

TABLE 1
iteration count versus n

[ n_T No precond | Dryja [ MNBDD [ HBDD ]

8 4 4 4 4
16 8 6 7 7
32 16 6 9 8
64 27 6 9 10
128 39 6 9 12

3.2. Many-subdomain Example. Next we consider the case of many subdomains. The unit
square  is subdivided uniformly into k x k square subdomains and the same model problem is solved
using uniform meshes. We compare our results with a set of experiments reported in [8]. We also
compare the condition numbers as well as iteration counts between our method, Smith and Widlund’s
method, and Bramble, Pasciak and Schatz’s method (BPS). For HBDD method, it is reported in
(8] that the contribution of the coarse problem should be scaled by a factor @ = 3.6 to achieve
fastest convergence. We also experiment with different a in our preconditioner and the o that gives
fastest convergence in our experiment is about 0.5. The numerical results using this a are included
under the method MNBDD(a = 0.5). The right hand side f is constructed such that the solution is
u(z,y) = z(z — 1)y(y — 1) and the stopping criterion is 105, Again, the initial guess is u(®) = 1.0.
The results are shown in Table 3.2.

Our first observation is that our condition number results for the HBDD method agree very well
with those reported in [8]. We also observe that the condition numbers using the MNBDD method are
much lower than the BPS and HBDD methods. The condition numbers grow very slowly with n while
this is not the case with the BPS and HBDD methods. With the use of the scaling factor o = 0.5, we
observe an even better performance and in fact, the condition numbers appear to be O(1).
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Through the numerical experiment on the model problem, we have showed that the MNBDD
preconditioner offers good convergence rates (better than BPS and HBDD for the model problem used
in our experiment) as well as low computational cost (O(n) for MNBDD and HBDD and O(n log n) for
BPS). The BPS, HBDD, and MNBDD algorithms have a similar property that the edge preconditioners
do not take into account the variation of coefficients in the original equation. It is not clear whether the
good condition number behavior will hold for problems with variable coefficients and it is our intention
to pursue this issue in the near future.

TABLE 2
Condition Numbers and iteration counts for the Many-subdomain Case

number of || HBDD(a = 3.6) BPS MNBDD{a = 1) | MNBDD(a = 0.5)
grid | subdomains k [ dter || & Jiterfj « | iter || & | iter
32x32 2x2 9.62 11 [ 11.85[ 11 | 2.27 8 2.24 7
32x32 4x4 7.96 11 || 8.75 | 14 || 2.88 9 2.19 8
32x32 8x8 H 5.30 10 || 6.08 | 12 || 3.09 9 2.10 7
64x64 2x2 1268 | 13 1647 | 12 || 2.34 8 2.32 8
64x64 4x4 11.84 | 13 13.03 | 15 || 2.96 9 2.28 8
64x64 8x8 8.52 12 9.79 | 15 || 3.21 10 2.21 8
64x64 16x16 5.41 10 6.32 | 13 || 3.21 10 2.11 7
128x128 4x4 1649 | 15 17.92 | 18 || 3.01 9 2.35 8
128x128 8x8 1254 | 15 14.18 | 16 |[ 3.30 10 2.35 8
128x128 16x16 8.69 13 10.21 | 15 || 3.31 10 2.24 8
128x128 |  32x32 5.42 10 6.36 | 13 | 3.22 10 2.11 7
256x256 4x4 21.90 | 17 || 23.45] 19 [ 3.03 9 2.39 8
256x256 8x8 1730 | 17 19.33 | 18 [[3.34 10 2.43 8
256256 16x16 1272 | 15 14.79 | 17 || 3.37 10 2.36 g
256x256 |  32x32 8.69 13 10.27 | 15 |[ 3.30 10 2.24 8
256x256 |  64x64 5.37 10 6.37 | 12 || 3.21 10 2.09 7
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