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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES *

TAKANG KU! AND C.-C. JAY KUO!

Abstract. Various Toeplitz preconditioners Py have recently been proposed so that the N x N
symmetric positive definite Toeplitz system Tyx = b can be solved effectively by the preconditioned
conjugate gradient (PCG) method. It was proved that, if Ty is generated by a positive function in the
Wiener class, the spectra of the preconditioned matrices PﬁlTN are clustered between (1 —¢,1+¢)
except a finite number of outliers. In this research, we characterize the spectra of PﬁlTN more precisely
for rational Toeplitz matrices Ty with preconditioners proposed by Strang [19) and the authors [15).
We prove that the number of outliers depends on the order of the rational generating function, and the
clustering radius ¢ is proportional to the magnitude of the last element in the generating sequence used
to construct these preconditioners. For the special case with Ty generated by a geometric sequence,
our approach can be used to determine the exact eigenvalue distribution of PA',ITN analytically.
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1. Introduction. The system of linear equations associated with the symmetric positive definite
(SPD) Toeplitz matrices arises in many applications such as time series analysis and digital signal pro-
cessing. Conventionally, the N x N symmetric Toeplitz system Tnyx = b is solved by algorithms based
on Levinson recursion formula [10],{16] with O(/N?) operations. Superfast algorithms with O(N log®N)
complexity have been studied intensively in the last ten years [1], [2], [3], [13]. More recently, Strang
[19] proposed to use an iterative method, i.e. the preconditioned conjugate gradient (PCG) method, to
solve the SPD Toeplitz system and, as a consequence, the design of eflective Toeplitz preconditioners
has received much attention.

Strang’s preconditioner Sy [19] is obtained by preserving the central half diagonals of Ty and
using them to form a circulant matrix. Since Sy is circulant, the matrix-vector product S;,lv can be
conveniently computed via Fast Fourier Transform (FFT) with O(N log N) operations. It has been
shown by R. Chan and Strang [5] [7] that the spectrum of Sy T is clustered around 1 except a finite
number of outliers for Toeplitz matrices generated by positive functions in the Wiener class, Another
preconditioner Cy was proposed by T. Chan [8] and is defined to be the circulant matrix which
minimizes the Frobenius norm |[Ry — Tn||F over all circulant matrices Ry of size N x N. This turns
out to be a simple optimization problem, and the elements of Cy can be computed directly from the
elements of Tyy. The spectrum of Cy' Ty is asymptotically equivalent to that of Sy'Tw [6]. In addition
to preconditioners in circulant form, preconditioners in skew-circulant form [9] have been studied by
Huckle {14). We recently proposed a general approach for constructing Toeplitz preconditioners [15].
Under this framework, preconditioners proposed by Strang, Chan and Huckle can be viewed as special
cases and, more interestingly, preconditioners which are neither circulant nor skew-circulant can also
be derived.

In (15}, four new preconditioners K; n, i = 1,2,3,4 were constructed, and it was demonstrated
numerically that they have better convergence performances than other preconditioners for rational
Toeplitz matrices. It was also observed in [15] that for positive definite rational Toeplitz matrices
Tx in the Wiener class with order (p,q), the spectra of PE‘TN with preconditoners Sy and K; n,
i = 1,2,3,4, have strong regularities. These regularities can be roughly stated as follows. Let the
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eigenvalues of P,;lTN be classfied into two classes, i.e. clustered eigenvalues and outliers, depending
on whether they converge to 1 asymptotically. Then, (1) the number of outliers is at most 2 max(p, q);
and (2) the clustered eigenvalues are confined to an interval (1 —¢, 1+ ¢) with the radius ¢ proportional
to the magnitude of the last element in the generating sequence used to construct the preconditioners.
The main objective of this research is to prove these spectral regularities analytically.

With the above spectral regularities, the number of iterations required to reduce the norm of the
residual ||b — Twxi|| by a constant factor does not increase with the problem size N so that the
solution of the system Tyx = b requires max(p, g) x O(N log N) operations. In addition, the superior
performance of preconditioners K; x can be easily explained. That is, for a rational positive definite
Txn in the Wiener class, the last elements used to construct K; v and Sy are, respectively, ¢y and
t[ny2) so that the corresponding radii are ex = O(tn) and €5 = O(t[ny2)). Since O(tn) << O(trny2))
for sufficiently large N, the PCG method with preconditioners K; y converge faster than that with
preconditioner Sy .

It is worthwhile to point out that there exist direct methods which solve rational Toeplitz systems
with max(p, ¢) x O(N) operations [11], [22], [23]. However, the PCG method has three advantages
in comparison with direct methods. First, to implement the PCG algorithm, we only need a finite
segment of the generating sequence t,, n = 0,1,:--, N = 1, which is provided by the problem, rather
than the precise formula of the rational generating function. Second, the PCG method can be easily
parallelized due to the parallelism provided by FFT, and it is possible to reduce the time complexity
to max(p, ¢) x O(log N). In contrast, the proposed direct methods are sequential algorithms, and the
time complexity cannot be further reduced. Third, the PCG method is more widely applicable. For
example, it can also be applied to Toeplitz systems with nonrational Toeplitz generating functions or
those arise from the multidimensional space.

This paper is organized as follows. In Section 2, we review briefly the construction of preconditioners
K; n and summarize some of their spectral properties studied in [15] In Sections 3 and 4, we prove
the desired spectral properties of K; NTN described above, The main idea is to transform the original
generalized eigenvalue problem to an equivalent problem with nearly banded Toeplitz matrices. A
similar approach can be used to study the spectral properties of Sy N'TN, which is presented in Section
5. In Section 6, we use the analysis in Sections 3-5 to determine the exact eigenvalue distribution of
K ~Twn and S;,lTN for Toeplitz matrices with the geometric generating sequence.

2. Construction and spectral properties of Toeplitz preconditioners K; v, i=1,2,3,4.
Let Ty, be a sequence of m x m symmetric positive definite Toeplitz matrices with generating sequence
tn. Then,

to 13} - In-2 In-a

131 to t S 7
TN = . tl to .
iN-2 . . . t
tn-1 In-2 - 14} to

Preconditioners K; n, i = 1,2,3,4, for Ty are constructed by relating Ty to a 2N x 2N circulant
matrix Ran,

Ron = Tn ATwn
2N = ATy Tn )
where ATy is determined by the elements of Ty to make Ran circulant, i.e.,
¢ tn-1 . s h
| FV ¢ in-y . s
(2.1) ATy = . tN-1 ¢ . . ,
ta . . . tN-1
4 to . tn-1 c

with a constant ¢. If the behavior of the sequence 1, is known, we choose ¢ to be i. Otherwise, any
le] € |tn-1] can be used.



Consider the following augmented circulant system,
@2 a awlz]=[]
The solution of the above circulant system can be computed efficiently via FFT with O(Nlog N)
operations. Since the system (2.2) is equivalent to
(Tv + ATn)x =b,
this implies that (T + ATx)~'b can be computed efficiently and
Kiyn =Ty + ATy,

can be used as a preconditioner for Tx. Three other preconditioners can be constructed in a similar
way by assuming negative, even and odd periodicities for x and b. We summarize the augmented
systems and preconditioners as follows:

In ATN x ]=[ b ] and Kon =Tn — ATN,

| ATy Ty | [ —x -b
[ In ATn ] | b
A%v TNN J:x ] = [ Jnb ] and Kan =Ty + JInATy,

Tv ATy ] b
A;""N TNN _;‘Nx ] = [ —Jxb ] and K4,N =Tn - INATyN,

where Jy is the N x N symmetric elementary matrix which has, by definition, ones along the secondary
diagonal and zeros elsewhere (JN.,, =1ifi+j=N+1landJn;; =0ifi+j#N+1).

Since precondltxoners Kin, i =1,2,3,4, correspond to 2N-circulant systems, the matrix-vector
product K; v for an arbltrary v can be achieved via 2N-pomt FFT with O(N log N') operations.
However, we should point out that K, n is circulant and K2 n is skew-circulant so that it is possible
to perform K ‘Nv and K2 NV via N-pomt FFT. Although preconditioners K3 5 and K4 n are nei-

ther circulant nor skew-circulant, K3 v and K,, NV can be computed via N-point fast Cosine and
Sine transforms, respectively. The operation counts for N-point fast Cosine {or Sine) transform are
approximately equal to that of N-point FFT in both the order and proportwnal constants [17] (18],
[25). Therefore, the computational cost for the preconditioning step K Nv with i = 1,2,3,4 is about
the same. For more details in implementing the PCG algonthm, we refér to [15).

To understand the relationship between the spectra of K 'NTN, i = 1,2,3,4, we can rewrite the

eigenvalue of K NTN as

K ATV MTR'Tn + Kin = Tn)) = MI+TR'(Kin ~ Tn))
(2.3) = 14+ XT3 (Kin ~TN)),

and examine the relationship between the spectra of Tﬁl(K,"N — Tx). This is characterized by the
following theorem.
THEOREM 1. Lel Q; be the sei of the absolute values of the eigenvalues of TNI(K. N —=Tn), te

Qi={IM\:(Kin—-TN)x= ATyx}, i=1,2,3,4.

Then, @1 = Q2 = Q3 = Qa.

Proof. See [15]. u]

The above theorem can be stated alternatlvely as follows. Let A be an arbitrary eigenvalue of
T ' (Kin —Tn), there exists an eigenvalue of Ty YK~ —TN), where j # i, with magmt,ude |A|. From
(2.3), spectra of Ty (Kin — TN) clustered around zero is equivalent to those of K; NTN clustered

around unity. Since spectra of TN (K; n — Tn) are clustered in a very similar pattern, so are those of
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We assume that the generating sequence ¢, for the sequence of Toeplitz matrices T;, satisfies the
following two conditions:

00

(2.4) Y ltal < o,
-oa
3 m I3
(2.5) T(e?) =) tae™™? 2 6>0, V0,
-0

and the resulting matrices are said to be generated by a positive function in the Wiener class. Since
T'(e*%) describes the asymptotic eigenvalue distribution of T}, the above conditions assume that eigen-
values of T}, are bounded and uniformly positive, asymptotically. With (2.4) and (2.5), we can derive
two spectral properties of K ,{,TN.

THEOREM 2. Preconditioners K; n, i = 1,2,3,4, for symmetric positive definite Toeplilz malrices
with the generating sequence satisfying (2.4) and (2.5) are uniformly positive definite and bounded for
sufficiently large N.

Proof. See [15). m]

THEOREM 3. Lei Ty be the N x N mairiz in a sequence of m x m symmelric positive definile
Toeplitz mairices T,,, with the generating sequence satisfying (2.4) and (2.5). The eigenvalues of the
matriz TA',I(K.-,N —Ty) are clustered between (—¢, +¢€) ezcept a finite number of outliers for sufficiently
large N(e).

Proof. See [15]. (n]

Theorems 2 and 3 hold for both rational or nonrational Toeplitz matrices satisfying (2.4) and (2.5).
However, when Ty is additionally rational, we are able to obtain stronger results and characterize the
spectra of K ,{,TN more precisely. In Sections 3 and 4, we will focus on the spectrum of K[’ }VTN, from

which the spectra of K ,{,TN, i = 2,3, 4, can be estimated based on Theorem 1.

3. Rational generating functions for ATy. Due to (2.3), the spectral properties of X’ }VTN

can be determined by examing those of T,;‘ATN, where ATy is given in (2.1) with ¢ = ty. Let t,,
—00 < n < 00, be the generating sequence of a sequence of m x m Toeplitz matrices Tp,. The Laurent
series

T(2) = i tnz"",

is known as the generating function of these matrices. If matrices T;;, are symmetric, we can decompose
T(z) into

(3.1) T(z) = To (™)) + T4 (2),
where
(3.2) Te(z"Y) = %0 + ’gtnz'".

Thus, T(z) is completely characterized by T+ (z~!). Additionally, if

A(z™Y) _ao+ayz7 4 .-+ apz?
B(z7') ~ l14biz70 4. 4 bgz—9

(3.3) Te(z7Y) = ;
where polynomials A(z~!) and B(z~!) have no common factor and apb, # 0. We call Ty(z71) a
rational function of order (p,q) and matrices T;,, rational Toeplitz matrices. Note that bp = 1. From
(3.1) and (3.3), we have

_AETYH
= B(1)

A(2)

-+



It is well known [12] that there exists an isomorphism between the ring of the power series P(z) =
Y neoPnz™ (or P(z~")) and the ring of semi-infinite lower (or upper) triangular Toeplitz matrices with
P0,P1," "4 Pn, -+ as the first column (or row). The power series multiplication is isomorphic to matrix
multiplication. By applying the isomorphism to (3.4) and focusing on the leading N x N blocks of the
corresponding matrices, we can derive the following relationship [12]

(3.5) Ty = LaLy' + UUY,

where L, (or U,) is an N x N lower (or upper) triangular Toeplitz matrix with first N coefficients
in A(z) as its first column (or row). Matrices Ly and U are defined similarly. We can also establish
expressions similar to (3.5) for ATx. To do so, we first note that the sequence #,, is recursively defined
for large n. This is stated as follows.

LEMMA 1. The sequence t, generated by (3.2) and (3.8) follows the recursion,

(3.6) tng1 = =(brtn + batn_1 + - -+ + bgln_g41), n > max(p, q).
Proof. From (3.2) and (3.3), we have

o0
(% + Etnz'")(l dbyzt bz ) =ag a2 4o+ apz7P
n=1
The proof is completed by comparing the coefficients of the above equation. o
With Lemma 1, the number of outliers of TﬁlATN can be determined by the following lemma.
LEMMA 2. Let Ty be an N x N symmetric Toeplitz matriz generated by T(z) with Ty.(z~") given by
(3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). T,(,'lATN has asymptotically
at most 2 max(p, q) nonzero eigenvalues (outliers).
Proof. For N = 2M, we define a matrix

[ty N1 in-2 - i3 2 ty
v in IN-y - L7 i3 ta
AEy = IngM-1 INgM-2 INgM-3 - larg2 M 41 las
tar M1 tMez - INeM-3 INgM-2 INgM-)
%) i3 4 e INoy iy 41
) ta i3 cve IN-2 tn-1 iy

Since elements ¢, in AEy satisfies (3.6), there are only max(p, ¢) independent rows in the upper half
and the lower half of AEy, respectively. Therefore, the rank of AEy is at most 2max(p,q). Let
APy = AENy — ATy,
_| AGMm 0
APy = [ 0 AGY ] '
where
AGuy = AG m — AG2a i,
and where AG) » and AGs u are M x M lower triangular Toeplitz matrices with the following first
columns,
AGia:  [0,tne1 tNee, - INgM -2 EvaM -],
AGyym: (0,tn-1,tN=2," - tMe2, trr41]-
It is easy to verify that the /, and I, norms of APy are both less than
NtM-1

T= z Ital.

n=M+1



Consequently, we have
lAPNII, < (HAPNILIAPNII) 2 < .

Since that T goes to zero as N goes to infinity due to (2.4), and that the eigenvalues of Ty ! are bounded
due to (2.5), the spectra of Ty ' ATy and Ty ! AEpn are asymptotically equivalent. It follows that both
TR'AEN and T'ATy has at most 2max(p, ¢) nonzero eigenvalues asymptotically. The case with
odd N can be proved in a similar way with a slightly modified AEy. (m]

As a consequence of Lemma 2, Ty ! ATy has at least N —2max(p, ¢) eigenvalues converging to 0 as
the problem size N becomes large. For the rest of this section and Section 4, we will study the clustering
property of these eigenvalues. Our approach is outlined as follows. First, we associate ATy with some
appropriate rational generating function T(z) = T4+(2~!) 4+ T4(2). The forms of T4 (2~!) for p < ¢ and
p > ¢ are given in Lemmas 3 and 4, respectively. We then transform the generalized eigenvalue problem
involving Ty ' ATy into another generalized eigenvalue problem involving Q,’,,‘AQN. We show that
Qn and AQy are nearly banded Toeplitz matrices in Lemma 5 and examine the spectral property of
Q,'VIAQN in Lemma 6.

Since T is a symmetric rational Toeplitz matrix, and the elements of ATy are those of Ty with
reverse ordering, it is not surprising that ATy can also be generated by a certain rational function,
which will be determined below. Let us use the elements i, of a given Ty with N > max(p,q) to
construct a new sequence i,. The cases p < ¢ and p > ¢ are considered separately.

Case 1: p<q.
We choose
i tN-n, 0<n<q—1,
3.7 i, = -
( ) " { _(Zz=l bq—ktn—k)/bq, g<n.

Note that elements #, above with n > ¢ are obtained based on the recursion (3.8) examined from the
reverse direction.

Case 2: p > q.

We decompose T4 (z~!) into

(3.8) Ty(z7') = Fe(z™) + Th4(271),
where

(3.8a) FozY) = fo+ fiz7 4o 4 fpgz™ P9
and

A(z7Y) _ap+ajz' 4 a2’

-1y _
(3.8b) Ti4+(z7) = B(z-1) T o l4bizl b2

s§<gq.

Let ;,, be the generating sequence of T 4(27!). There exists a simple relationship between the
elements of generating sequences for Ty (27!) and T 4(z71), i.e,,

1, = tl.n“f’fm OS"SP—‘L
" t1n n>p-—gq.

With respect to T1,4+(z~*) and Fy(z~!), we choose the corresponding {1, and i3, respectively, as

£ ={tl'N""’ . 0<n<q-1,
" _(2z=l bq-ktl."“k)/bQ! q S n,

and

i =] fu-ny N-p+g<n<h,
Zn = o, elsewhere.



Finally, we define
(3.9) in = il,n +i3n.

_ We associate the sequence i, given by (3.7) or (3.9) with a sequence of symmetric Toeplitz matrices
Tm- It is straightforward to verify that

= ATy with N > max(p,q).
The generating function for matrices Ty, is
T(2) =T (27Y) + T4 (2), where T, (z"')== + Z th2™".
n=1

The forms of T+(z‘1) with p < ¢ and p > g are described, respectively, in Lemmas 3 and 4.
LeMMA 3. If Ty is generated by T(z) with Ty (2~") given by (3.3), and p< ¢ < N, then ATy is
generated by T(z) with

C(z7') _ecoterz7l+---+cgz7?

. iy
(3.10) =)= D(z7Y) T 1+ dyz-1+ -+ dgz-0’
where
b71b_i, 0<i<yq 2. d;t! 0<i<gq

.= q 91—t - t=1 - JtJ' =t=9,
(3.10a) di = { o N ¢ { 2 i>a
and where

- in n #0
(3.10b) i = { % ne0
with £, given by (3.7).
Proof. By (3.7), the sequence #, satisfies the recursion

(3.11) {y = —(difg—1 +dafe—2+ - +dgp_y), for k>gq,

with d; given by (3.10a). Let us define G¢(z27*), for k > ¢, as
Gk(z'k) = ({g +dyliy + dzt.g-g + -4 dqfk_,)z"‘
It is evident from (3.11) that Gk(z~*) = 0 for k > ¢. Therefore, we have

Z(Zd i)t + EGk(z'k)

i=1 j=0
= cotcrzt 4o degz

(+diz= 4+ dgz )T (27Y)

with ¢; and #! defined in (3.10a) and (3.10b), respectively. This completes the proof. (]
LEMMA 4. If Tn is generated by T(z) with Ty (z7?) given by (3.3), and q < p < N, then ATy is
generated by T(z) with

(3'12) T‘i'(z-l) = Dgz:i; + F‘l‘(z)z_N:
where

blb,_i, 0<i<gq oo dith 0<i<gq
e g “9—b =t =% . Jl—]' >1>9,
(3.12a) d,_{ 0 i>q, ¢ {0 i>q



and where
- t
(3.12b) 7 = { n n#0
with t,, given by (3.9). )
Proof. Due to (3.8), we can express T (27!) as
Ty(z71) = Fy(zY) + T4 (7)),

where

. N - ©0

P = 30 fwenz™ Tl =504 hiae

n=N-p+y¢ n=1

It is clear from Lemma 3 and (3.8a) that

—_ X (=)
— -N -1y —
Fo(z) = Fa(2)z™, T = DY)
Thus, the proof is completed. O
We can rewrite (3.12) to be
. -1
(3.13) Ty (z7 ) = Giz") with  Ci(z71) = C(z™Y) + D(z™")Fy(2)z~V.

Applying the isomorphism to (3.10) or (3.13) and focusing on the leading N x N blocks of the corre-
sponding matrices, we obtain

Tv = LL7' +U.USY,

where L. (or U.) is an N x N lower (or upper) triangular Toeplitz matrix with the first N coefficients
of C(z) (p < g) or C1(2) (p > ¢) as its first column (or row). Matrices L4 and Uy are defined similarly.
Since ATy = Ty, we obtain

(3.14) ATy = L L7+ UUSE.

4. Spectral properties of T,;lATN. With the results given by (3.5) and (3.14), we then trans-
form the generalized eigenvalue problem,

(4.1) ATnx = AT,

to an equivalent generalized eigenvalue problem,

(4.2) AQNY = AQny,

where

(4.2a) Qn = LyTnUy = LUy + LyU,,

and

(4.2b) AQN = LyATnUy = Ly L L3 Uy + LiUUTUs.

It is clear that (4.1) and (4.2) have identical eigenvalues and their eigenvectors are related via x = Upy.
The reason of transforming the generalized eigenvalue problem of Ty 1ATy to that of Q' AQy is that
QN and AQy are nearly banded Toeplitz matrices which can be analyzed more easily. The properties
of matrices @y and AQp are characterized below.
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LEMMA 5. Lel T,, be a sequence of m x m symmelric Toeplilz matriz generaied by T(z) with
T4 (z7!) given by (3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). The
southeast (N — max(p, ¢)) X (N — max(p,q)) blocks of Qn and AQn are symmetric banded Toeplit:
matrices with generating funclions

(4.3) Q(z) = A(="")B(z) + B("")A(2),
and

(4.4) AQ(z2) = by29C(2~1)B(z71) 4 byz~9C(2) B(2),
respectively.

Proof. Consider two Toeplitz matrices Fiy and Gy of size N x N, where Fy is a lower triangular
Toeplitz matrix with lower bandwidth » and the generating function F(z), Gy an upper triangular
Toeplitz matrix with upper bandwidth s and the generating function G(z~!). It is easy to verify
that the product FyGy, except its northwest r x s block, is a banded Toeplitz matrix with the lower
bandwidth r, upper bandwidth s and generating function F(z)G(z~!). We generalize the above result
to @n = LUy + LU, and find that the southeast (¥ — max(p, ¢)) x (N — max(p, ¢)) block of Qu is
a symmetric banded Toeplitz matrix with the generating function

Q(z) = A(z"")B(2) + B(z~1)A(2).

Since the product of lower (or upper) triangular Toeplitz matrices is commutative, we can rewrite
(4.2b) as

OQn=0QN+AQTy  where  AQuy = LiLeL7'Us.

When p < ¢, the product L;,L.:L;l results in a lower triangular Toeplitz matrix with the generating
function B(z)C(z)D~!(z). The matrix AQy,~, except the first g columns, is a Toeplitz matrix with
the generating function

AQu(2) = B(IC(2)D(:)B(s™).
We can use (3.10a) to relate D(z) with B(27!), i.e.

g g
D(z) =Y dnz" =072 by_nz=0™ = b7 129 B(z7").
n=0 n=0
Thus, AQy ~(2) = B(2)C(2)bgz~7. Similarly, AQ{'N, except the first g rows, is a Toeplitz matrix
with the generating function AQ) n(z~!). Therefore, the southeast (N — q) x (N — q) block of AQy
is a symmetric banded Toelitz matrix with the generating function

AQ(z) = AQ n(2) + AQI'N(z‘l) = b, (z9B(z~1)C(z~Y) + 71 B(2)C(2)),

where the coefficients of B(z) and C(z) are given in Lemma 3.
When p > ¢, the generating function of matrix L. is C1(z) in (3.13). Consequently, AQ n, except
the first ¢ columns, is a Toeplitz matrix with the generating function

AQi n(z) = B(2)Ci1(z)D~Y(2)B(z7Y)
B(2)C(2)D~!(2)B(z~") + 2" B(2)F4 (z7")B(z7Y),

with the coefficients of Fy.(z~!) given in (3.8a). Recall that the orders of polynomials B(z~') and
Fy(z™") are ¢ and p — q, respectively. The lowest order of the polynomial z¥ B(z)Fy(z=1)B(z~!) is
N — p, and the elements of the leading N x N Toeplitz matrix generated by zN B(z)F4(z')B(z~!)
are zeros except the southwest p diagonals. Therefore, the matrix AQ) ~, except the first ¢ columns
and the southwest p diagonals, is a Toeplitz matrix with the generating function

AQy n(2) = B(z)C(2)D1(2)B(z~1).
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Then, it follows that the southeast (N — p) x (N — p) block of AQy is a symmetric banded Toelitz
matrix with the generating function

AQ(z) = by (2B(z~1)C(z™") + z79B(2)C(2)),

where the coefficients of B(z~!) and C(z~!) are given in Lemma 4. The proof is completed. o
The following lemma gives the bound of the clustered eigenvalues of Q;{,‘AQN.
LEMMA 6. Let T, be a sequence of m x m symmetric Toeplitz malrices generated by T(z) with
T (z~1) given by (3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). Then,
QN AQnN has at least N — 2max(p, q) eigenvalues with magnitude bounded by

AQ(2)

(4.5) €= 20)

z2=e=i3nn/N

Proof. Let us denote the southeast (N — max(p, ¢)) x (N — max(p, ¢)) blocks of Qn and AQx by
QN-max(p,g) 304 AQN_max(p,q), Tespectively. By the minimax theorem (or Courant-Fisher Theorem)
of eigenvalues [20], [24), there are at least N — 2max(p, ) eigenvalues of Q5' AQy bounded by the
maximum and the minimum eigenvalues of Q,'vl_ max(p, q)AQN_ma,(,'q).

It is clear from Lemma 5 that Qn_max(p.q) 30d AQN_max(p,q) are symmetric banded Toeplitz
matrices with bandwidth < max(p, g). We can construct two N x N symmetric circulant matrices Ry
and ARy with QN _max(p,¢) a0d AQN_max(p,q) 2s their leading principal submatrices, respectively. By
the separation theorem (or intertwining theorem) of eigenvalues {20}, {24], we know that the eigenvalues
of Q;,'_mu(p' q)AQN_max(,',) are bounded by the maximun and the minimun eigenvalues of 'R,‘vl ARN.

It is well known that the eigenvalues of R;,l ARN are

AQ(e-u’m/N)/Q(e_iztn/N): n= 0: l; YTty N-1

Thus, the proof is completed. (m]
We then focus on the bound of (4.5). By using (3.1) and (3.3), we can further simplify AQ(z)/Q(z)
as
AQ(2)/Q(2) = [byz*B(z7")C(27") +bez9 B(2)C(2))I/[B(:™") B(2)T(2)]
(4.6) = [by22C(z~1))/[B(2)T(2)] + [bgz"1C(2)))/[B(z~")T(2)]

Since T(e'?) = A(e=*?)/B(e~"*) + A(e'®)/ B(e'®), and |T'(*)| is finite from (2.4), | B(e**)| is uniformly
positive, i.e.

(4.7) |B(e*)| > B > 0.
Combining (2.5), (4.6) and (4.7), we obtain

AQ(e™*)
Q(e=*)

(4.8)

2b,C(e~%)
. | 8 l

with arbitrary 6. _
We then focus our discussion on the bound of [b,C(e~*’)|. First, we have

g ¢ g q i
(4.9) bgCle™)) < D Ibgeil = D 1D bedifijl = DD bg-jtn-ins,

i=0 i=0 j=o i=0 j=o

where the last equality is due to (3.7), (3.10a) and (3.10b). Since i, satisfies the recursion (3.6), we
can use the equality

9
qu_jtjv_i.“' =0 if N> max(p:Q)'

j=o
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to simplify (4.9), i.e.

q q 9 9
|b,C(e"'°)| < Z|" Z bq-.itN-i-!-jl < E E |bq-i||tN—|‘+j|v

i=0  j=i+l i=0 j=i+1

(4.10) < N<n<N+q nlz 2 1Bg-3l-

=0 j=i+1
Furhtermore, the term 3 1 3"!_;., |bs—j|, can be bounded by
(4.11) >3k -,|<22|b -,|<(q+1)2|b|<(q+1)2'
=0 j=i41 i=0j=

where the last inequality is due to the following Lemma.
LEMMA 7. Let T, be a sequence of m x m symmetric Toeplitz mairices generated by T(z) with
Ty (z™1) given by (3.3), and the corresponding generating sequence salisfies (2.4) and (2.5), then

g
Z 16;] < 29.
j=0

Proof. Since B(z~!) is a polynomial in z of order g, we can factorize B(z™!) as

(4.12) B(z"Y) = zq:b.-z“‘ =(1=-rz7)(1=raz7l) (1 =rpz7h),
i=0

where r;, 1 < i < g, are poles of Ty.(z™!). A direct consequence of (2.4) is that all poles of T4 (z7!)
should lie inside the unit circle, i.e. |r;| <1, 1 <i<gq. It is clear from (4.12) that

Jb| < ( Z ) (max |r;])* < ( Z ) , Wwhere ( Z )E(—q-il:)m
Therefore, we have
¢ I
j§|b,-l<j§(j)=2°. o
Combining (4.8), (4.10) and (4.11), we have
max |AQ(e /N )/Q(e V)| < ___2,,“;? : Ny inl

Since |r;j] < 1, 1 € i < ¢, 1, is monotonously decreasing and

N<n<N+ ltal = Jtwl.
for sufficiently large N. Thus,
: . g+1
(4.13) max |AQ(e=2"N) 1Q(e="2"IN)| < 27 ﬂ; Ditw] _

By Lemma 6, there are at least N — 2max(p, q) eigenvalues of Q' AQy with magnitude bounded
by ex in (4.13). Since eigenvalues of T' ATx are equivalent to those of QNIAQN, there are at least
N — 2max(p, q) eigenvalues of TNlATN with magnitude bounded by ¢x as well. When ¢k is small
enough, there are at least N — 2max(p,q) eigenvalues of K; NTN, i = 1,2,3,4, clustered between
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(1 - €x, 1+ €x) for sufficiently large N. We summarize the analysis in this section into the following
theorem.

THEOREM 4. Let T, be a sequence of m x m symmetric Toeplitz malriz generated by T(z) with
Ty(z71) given by (3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). Asymp-
lotically, the spectra of the preconditioned Toeplitz matrices K,-" ,},TN, i =1,2,3,4, have the following
two properties:

P1: The number of outliers is at most 2 max(p, ¢).
P2: There are at least N — 2max(p, q) eigenvalues lie belween (1 — e€x, 1+ ex ), where ex is given by

(4.13). o

5. Discussion on Strang’s preconditioners. We will adopt a procedure similar to that de-
scribed in Sections 3 and 4 to examine the spectral properties of S;,lTN, where Sy is Strang’s precon-
ditioner. Only the case where p < ¢ and N is even will be discussed. Since the analysis for the cases
where p > g or N is odd can be performed in a straightforward way, it is omitted to avoid unnecessary
repetition.

Recall that Strang’s preconditioner Sy is obtained by preserving the central half diagonals of T
and using them to form a circulant matrix. That is, when N = 2M, Sy is defined as a symmetric
Toeplitz matrix with the first row

Sn [tﬂytlu RN FYSR TR S V% Y SR "»tl]-
Let us denote the difference between Sy and Ty by ASn, i.e.
ASN =Sy -Tn.

The number of outliers of SK,IATN can be determined by the following lemma.

LEMMA 8. Let Ty be an N x N symmetric Toeplitz matriz generated by T(z) with T4 (z™!) given by
(3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). Ty'ASN has asymptotically
al most 2max(p, q) nonzero eigenvalues (outliers).

Proof. The proof is similar to that of Lemma 2. We use

_ 0 AFy
Abw = [ AFE, 0 ]

to approximate ASy, where

M M- tmM-2 -+ U3 ta 4
M1 M M1 - . ta to
Mz tMyr o . . 2]
AFy = . . . e . .
IN-3 . . SRR 7V SRR F Y SR ¥ V
IN-2 IN-3 . SRRIR 7 VPSR 7 VA 7 ¥
| tN-1 tn-z EN-3 o IMge M UM

Since elements i, in AFys satisfies the recursion described in Lemma 1, there are only max(p,q)
independent rows in AFys. Therefore, the rank of AEy is at most 2max(p, ). Let us define APy =
AEyN — ASy. Then, we find that

0 AGM]

APy =
N [AG{, 0

where AG s is a symmetric Toeplitz matrix with the first row
AGp ¢ [ta,is4r,tars2, - in-3,in=2,tN-1)

It is easy to verify that, for sufficiently large N, the l; and I, norms of APy are both less than
(3672

r=2 Z [tn]-
n=M
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Consequently, we have
lAPNII, < (IAPNIL AP, ) < 7.

Since that T goes to zero as M goes to infinity due to (2.4), and that the eigenvalues of Tjy' are
bounded due to (2.5), the spectra of Ty 'ASy and Ty 'AEy are asymptotically equivalent. It follows
that both Ty 1AEN and TEIASN have at most 2 max(p, ¢) nonzero eigenvalues, asymptotically. The
case with odd N can be proved in a similar way with a slightly modified AEy. (n]

The matrix ASy can be expressed as

ASy = ASLN - ASz’N,
where

0 F 0 F
as=[ g, "] e asw=[ g, T

and where both Fy »s and F, pr are M x M upper triangular Toeplitz matrices with the following first
rows,

Fl,M : [tﬂlttM—l’tM—Z)"'ltzltl],
Fapr: [tar iser,taren, - Iz, tnoa).

We use 1,,, which satisfies (3.6), to construct two new sequences,
0, 0<n<M-1,
(5.1) 1,0 = { tNom M<n<M+4q-1, Gn= { % OsnsM-1
—(Xho1 b-tin-t)/by, M +g <, mo A=

and associate 5y, and 33, with two sequences of symmetric Toeplitz matrices S‘l'm and S’z_,,,, m=
1,2, ..., whose generating functions are defined as

oo
$51(2) = §1,4(z") + 51 +(2), where S 4(z"") = 10 4 ZEI,,.z'",
and
5a(2) = 824 (z7Y) + 52,4 (2), where Se sz Y= T'o + Z§2,"z‘",

respectively. One can easily verify that
Sin=ASny and Syny=ASy, with N >2max(p,q).

Then, by using the same approach for proving Lemma 3, we obtain the following lemma.
LEMMA 9. If Ty is generated by T(z) with Ty.(21) given by (3.3), then

z=MC(:mY) I Xt i 7 T

A _
(5.2a) S14() = Ty T T i g dg

and

MAGEY)  Got a4+ G270
B(z7!) T~ l4bizml4- 4 bgzme’

(5.2b) Sa4(z71) =
where the coefficients b; and d; are given by (3.3) and (3.8), and

_ [ Tioobitmsioj, 0<i<q, . _ [ T disimeioj, 0<Zi<yq,
= 7 C; = ¢l

“=1o i>q, =1o i>q,
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with § 5, given by (5.1). D
Thus, ASy can be decomposed into

(5.3) ASy = ASy v — ASyny = LeL3 + U:UTY = LaLy ! - UsUY.

where L; (or Ug) is an N x N lower (or upper) triangular Toeplitz matrix with the first N coefficients
of zM C(2) as its first column (or row), and matrices Lz, Ly and Lq (or Uz, Uy and Uy) are similarly
defined with respect to zM A(z), B(z) and D(z), respectively.

By using the decomposition formulas (3.5) and (5.3), we transform the generalized eigenvalue
problem,

(5.4) ASNx = ATnx,
into another generalized eigenvalue problem,
(5.5) AQsNY = AQny,

where

LiTnUy = LUy + LU,
LeASNUy = (LsLeL7 Uy + LyUsUT'Us) — (LaUs + LyUs).

QN
AQs N

The systems (5.4) and (5.5) have the same eigenvalues and their eigenvectors are related via x = Upy.
The matrix AQs,n is a nearly banded Toeplitz matrix characterized by the following lemma.
LEMMA 10. Let T}, be a sequence of m x m symmetric Toeplilz mairiz generated by T(z) with

Ti(z71) given by (3.3), and the corresponding generating sequence satisfies (2.4) and (2.5). The

southeast (N — max(p, q)) x (N — max(p,q)) block of AQs,n is a symmetric banded Toeplilz mairiz

with generating funciion,

(5.6) AQs(z) = B(z~1)5(2)B(z) = AQs,1(2) — AQs,2(2),

where

AQs,(2) bez=M=DB(2~1)C(271) + byzM 1 B(2)C(2),
AQsa(z) = z~MA(z"Y)B(z) + M B(z"1)A(z).

Since the generating sequence t, of Ty satisfies conditions (2.4) and (2.5), we can use arguments
given in the previous section and obtain

AQsale” )| o 2 g+ Ditm| _
Qe=¥®) |~ Bé ’

and

AQsa(e=®)|  2*a+ Ditwl _
Q™) |57 B |

for arbitrary 4. By using arguments similar to those in Lemma 6, we can derive that TN'ASy has at
least N — 2max(p, ¢) eigenvalues bounded by

292 (g + 1)liny2|
pé '

for sufficiently large N. The analysis in this section is concluded by the following Theorem.
THEOREM 5. Let Ty, be @ sequence of m x m symmetric Toeplitz matriz generated by T(z) with

Ty (2™1) given by (3.3), and the corresponding generaling sequence satisfies (2.4) and (2.5). Asymp-

totically, the spectrum of the preconditioned Toeplitz matriz S;,‘TN has the following two properties:

(5.7 s =2 =
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P1: The number of outliers is at most 2 max(p, ¢)-
P2: There are at least N — 2max(p, q) eigenvalues lie between (1 — es,1 + €s), where es is given by
(5.7).

Let us compare the preconditioners K; v and Sy. From Theorems 4 and 5, the spectra of K ,},TN
and S,T,‘TN have the same number of outliers, and the other eigenvalues are clustered around 1 within
radii ex and es given by (4.13) and (5.7), respectively. It is clear that the parameters ¢, 8 and §
are independent of the problem size N and that the terms |tx| and |tny2| determine the asymptotical
convergence rate of the PCG method. For sufficiently large N, we have

O(ex) = O(e2).

This implies that, after the first several iterations which eliminate the outliers, the residual reduced
by one iteration of the PCG method with preconditioners K; » is about the same as that reduced
by two iterations of the PCG method with preconditioner Sy. This has been confirmed in numerical
experiments reported in [15].

6. The special case with geometric generatmg sequences. It has been observed from
numerical experiments [15] [21] that the eigenvalues of K, Tn and Sy'Ty with Ty generated by the
geometric sequence t, = t", |t| < 1, are very regular. The observations are summarized as follows.

R1: The eigenvalues of KI,NTN are (1+1)~!, (1 —¢)~! and (1 —¢t¥)~! with multiplicities 1, 1

and N — 2, respectively.

R2: When N is even (N = 2M), the eigenvalues of Sy' Ty are (1+¢)~!, (1—¢)71, 1, (1 +M)!

and (1 —t¥)~1 with multiplicities 1, 1, 2, M — 2 and M — 2, respectively.
In this section, we provide an analytical approach to explain these two regularities.
First, we examine the preconditioner K; y. For the generating sequence t, = t", its generating
function is

A(z"') _ 0.5+0.5¢27!
B(z=!) T 1-tz"1

T(z) = Te(2~ ') + Te(z), where Te(z~Y) =

so that the order (p,q) of T4 (2~1) is (1,1). From Lemma 3, we obtain

— C(z"') _ tN(0.5+0.5t71271)
Ty (2 l)= D(z-1) - 1 =111 )

which is related to ATy = K| x — Ty. By using (4.3) and (4.4), we have

(6.1) Q(z) = A(z"Y)B(2) + B(z"1)A(z) = 1 - 2,

and

(6.2) AQ(z) = —t[zB(z~1)C(2~") + 27! B(2)C(2)] = -tV (1 - 7).

Note that ¢ = 1 and b, = —t are used in deriving (6.2). Due to (6.1) and (6.2), the southeast

(N —1) x (N —1) blocks of Qn and AQy are identity matrices multiplied by the constants 1 —¢% and
—~tN (1 —t2), respectively. Consider the following linear combination of Qx and AQy,

Vv = AQN +tVQn.

It is clear that the southeast (N —1) x (N —1) block of Vi is a zero matrix. Since the first two columns
are linearly independent, and any two columns of the last N — 1 columns of Vy are lmearly depedent,
Vv has a null space of dimension N —2. This implies that Q Nl AQN, or equlvalent,ly, TN ATy, has the
eigenvalue —t" with multiplicity N — 2. Therefore, (Ty + ATn)"'Tv = K|, ~Tn has the eigenvalue
(1 = t¥)~! with multiplicity N — 2.

To determine the remaining two eigenvalues, i.e. outliers, we will use the technique described in [4]
to transform the problem ATyx = ATnx to another equivalent problem. Consider the case with even
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N (N = 2M). Since that ATy and Ty are both symmetric Toeplitz matrices, they can be expressed
in the following block matrix form,

ATy p ATT ] [Tw T3 ]
ATy = » 2.M , d Th = f 2.M .
N=| ATy ATy e W=y Tim

Let Wy be the orthonormal matrix

W= 2 ]

where Ips and Jps are M x M identity and symmetric elementary matrices, respectively. By using the
transformation,

Wy ATy Wiy = AWR Ty Way,
we obtain two decoupled subproblems,

(6.3) (AT M — IMAT Mm)y- = A (T m = IMT2 M)y -,

(6.4) (AT M+ IMAT MY+ = A (Topr + I T2 M)y 40

where A_ and A, are also eigenvalues of the original problem ATyx = ATnyx. Since the first rows
of matrices on both sides of (6.3) are proportional by a constant —¢, A_ = —t with y. = e, (the
unit vector with 1 at the first element)-gatisfies (6.3). Similarly, we can argue that Ay = ¢ with
¥+ = e are the eigenvalue-eigenvector pair for (6.4). Thus, 1/(1 —t) and 1/(1 +t) are two outliers of
(Tn +ATN)”1T v=K L }vTN- When N is odd, the same result can be derived with a slightly modified
Wy given in [4].

By usmg the relationship among preconditioners K; , ¢ = 1,2, 3, 4, we can determine all eigenvalues
of K %Tn. They all have three distinct eigenvalues (two outliers and N — 2 clustered eigenvaues)
summarized in the following table.

Table 1. Eigenvalues of K- ,f,TN
[ T KinTw [ KonTn | KinTv | KinTn |
LA+ T T o+ T T+ T ] 1-9)7T
d | =0 | Q=0 [QF& T [+
M A=) T[a+t") [a=-¥)"" | a-t")"

Next, we examine Strang’s precondmoner Sy with even N. When N = 2M, the central two rows
of Sy — Ty are zeros. This implies that SN Tx has the eigenvalue 1 with multiplicity 2. By using
(5.2a) and (5.2b), we have

“M A -1 -MyM

~ -y, 2MC(zTh) o 27

Sl.+(z ) - D(z—l) - 1=t-1z-1"
-M z(,-1 -M M

N 1y _ FMAGETYH oM

S24(:7) = B(z-1) T 1-tz-V

respectively. By substituting A(z), B(z), C(z) and D(z) into (5.8) and using (6.1), we obtain
AQs(z) = —tM (=M 4 M)(1-17).

Then, the nonzero elements of AQg n—1, which is the southeast (N —1) x (N —1) block of AQs,~, only
occur along the &Mth diagonals and take the same value —tM (1—12). Consider the linear combination

of AQs,n and Qn,
Vin = AQsn +tMQn.
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By adding the k& + 1th column to the k + M + 1th column of V; y, for k =1,2,-..,(M — 1), we find
that the southeast (N — 1) x (M — 1) block of the resulting matrix is the zero matrix. Consequently,
any two columns of the last M — 1 columns of V| y are linearly dependent. Besides, since the first
M + 2 columns of Vl v are linearly independent, we conclude that ¥ » has a null space of dimension
M - 2 and that Qy !AQs,n has the eigenvalue —t¥ with multlphc.lty M — 2. Similarly, we can show
that

Van = DQsn —tMQn

has a null space of dimension M —2 by substractmg the k + 1th column from the k4 M + 1th column of
Van,fork=1,2,---, (M —1). Therefore, QN AQs N has the eigenvalue t™ with multiplicity M — 2.
As a consequence, Sy !Twn has the eigenvalues (1 + M ? and (1 — t™)~! with multiplicity M — 2.

To determine the remaining two eigenvalues of Sy Ty, we use the same transformation discussed
earlier and only have to consider the eigenvalues of the following two subproblems

(6.5) (Tim — IMTo,m)y- = A (S1,m = IMSo, M)y -,

(6.6) (T p + I Mm)Y+ = A4 (St + INS2,M)Y 4

where Sy p and Sy pr are the northwest and southwest M x M blocks of Sy, respectively. Since the
first rows of matrices on both sides of (6.5) is proportional by a constant 1 —¢, A_ = 1/(1 —t) with
y- = e, satisfies (6.5). Similarly, A1 = 1/(1+t) with y; = e, satisfies (6.6).

7. Conclusion. In this paper, we have proved several spectral properties of preconditioned ra-
tional Toeplitz matrices Py 1Tn with the preconditioner Sy proposed by Strang [19] and the precondi-
tioners K; y proposed by the authors [15]. The asymptotic eigenvalues of PN Tx are classfied into two
classes, i.e. the outliers and clustered eigenvalues. The number of outliers depends on the order of the
rational generating function. The clustered elgenvaluw are confined in the interval (1 — ¢,1+ ¢€) with
the radii ¢x = O(tN) and €5 = O(tpy2) for K, 'NTN and S,'vlTN, respectively. When the symmetric
Toeplitz matrix Ty is generated by the geomet.rlc sequence ™ with |t] < 1, the precise eigenvalue
distributions of K; NTN and SzMTgM have been determined analytically. Slnce the eigenvalues of

K;, ~NTn are more closely clustered than those of Sy'Tn, preconditioners K; v are more efficient for

solvmg rational Toeplitz systems.
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