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Abstract

In this report, three Hopfield neural networks are developed to realize a new Adaptive Mini-
mum Prediction-Error Deconvolution procedure. The first neural network is developed to detect
the reflectivity sequence. The second neural network is developed to determine the magnitudes of
the detected reflections. The third neural network is developed to estimate the seismic wavelet.
A Block-Component Method is proposed for simultaneocus reflectivity estimation and wavelet
extraction based on these three neural networks. These three neural networks and the Block-
Component Method are simulated for broad-band and narrow-band wavelets. Real seismic data
are processed using the Block-Component Method, and the results are compared with those
using the MVD Filter and the maximum-likelihood based SMLR Detector [8,9].

Compared with existing deconvolution methods, the Neural Network Adaptive Minimum
Prediction-Error Deconvolution method of this report has the following advantages: (1) it is
totally realized by standard Hopfield neural networks which are suitable for hardware imple-
mentation; (2) the new Block-Component Method gives better results for real seismic data
processing than the MLD-based Block Component Method; (3) the Neural Reflectivity Estima-
tor gives much better results than the SMLR Detector in the case of a narrow-band wavelet
and low signal-to-noise ratio; and, (4) it needs very weak assumptions about the wavelet and
the reflectivity sequence, i.e., it is suitable for a nonminimum-phase wavelet, non-Gaussian or
colored measurement noise, and, the reflectivity sequence can be random or deterministic.

1 INTRODUCTION

Seismic signal processing is very time-consuming and expensive. Some of the fastest computers all
around the world run every day to process large volumes of seismic data, in order to determine where
there is oil or natural gas. Developing some fast algorithms to speed up seismic data processing,
especially some hardware-realizable methods, is therefore of great importance.

Recent research has shown that the massive parallel processing architectures and algorithms
of artificial neural networks have many computational advantages over traditional computers. For
example, the Hopfield neural network [5,6,12], which is suitable for analog VLSI and optical real-
izations [1,3,11], has proven to be a powerful tool to solve a wide variety of optimization problems
[6,12). In this report, we develop three Hopfield neural networks which are collectively used for
seismic deconvolution or seismic wavelet extraction; we also develop a Neural Block-Component
Method for simultaneous deconvolution and wavelet extraction. The criteria functions of these
neural networks are adaptive versions of the prediction-error of the seismic trace; hence, we refer
to our new method as “Adaptive Minimum Prediction-Error Deconvolution (AMPED)”.
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In Section 2, the AMPED method is formulated and compared with the Maximum-Likelihood
Deconvolution ( MLD ) method [8,9). In Section 3, the dynamics of the Hopfield neural network and
its application to optimization problems are briefly reviewed. In Section 4, a Neural Reflectivity
Estimator, which consists of two Hopfield neural networks, is developed for reflectivity detection
and amplitude estimation. In Section 5, a Neural Wavelet Extractor, which consists of one Hopfield
neural network, is developed for wavelet extraction. In Section 6, the Neural Reflectivity Estimator
and the Neural Wavelet Extractor are combined to form a new Block-Component Method ( BCM )
for simultaneous reflectivity estimation and wavelet extraction. Simulations are provided through-
out Sections 4-6 to demonstrate the performance of the corresponding neural networks and to
compare the new approaches with the well-known MVD Filter and the maximum-likelihood based
SMLR Detector [8,9]. In Section 7, the new BCM is applied to a 30-trace real seismic section, and,
results are compared with those using the MVD Filter and SMLR Detector. Conclusions are given
in Section 8.

2 ADAPTIVE MINIMUM PREDICTION-ERROR DECONYVO-
LUTION

Consider the following convolutional model for seismic trace z,

N
2k = ZVk—i”i + ng, k= 1,2, v N (1)

i=t

where V; is the seismic source wavelet, with Vi = 0 for k < 0; y; is the earth’s reflectivity sequence;
n; is the measurement noise; and, there are N data samples.

The cost function for Minimum Prediction-Error Deconvolution (MPED) is the following prediction-
error of the seismic trace
1 N N .
=3 Ellzk - Z; Vi—ipsi)®. (2)
= =

The objective of MPED is to obtain estimates of the reflectivity sequence and wavelet which min-
imize cost function E. The neural network approaches developed in later sections actually realize
an Adaptive Minimum Prediction-Error Deconvolution (AMPED) procedure in which cost function
(2) changes during the optimization procedure according to the magnitudes of the reflections which
are to be detected.

MPED makes no assumptions about the wavelet, the reflectivity sequence, or the measurement
noise, i.e., the wavelet can be non-minimum phase, the measurement noise can be any random
process, Gaussian or non-Gaussian, white or colored, and the reflectivity sequence can be random
or deterministic ( hence, one is able to back away from the somewhat controversial random reflection

model, if one so desires ).

How are MPED and Maximum-Likelihood Deconvolution (MLD) [8,9] related ? In MLD, the
reflectivity sequence p; is modeled as a Bernoulli-Gaussian sequence [8], i.e.,

Bi = ity (3)

where y; is a Bernoulli sequence with Pr{g; = 1] = A and Pr[g; = 0] = 1 - A, and r; is a zero-
mean white Gaussian sequence with variance v,. The log-likelihood function used in MLD is [9] (



concatenate Eq.(1) using Eq.(3), for k = 1,2, ..., N, to obtain z=WQr+ 12 )

L[_ q$...).. = _%In(vrvn) - £T£/2vr - (_Z_ - WQz)T(l - WQI)/ZU,;

+ m(gin(A)+ [N — m(@lin(1 - )) @
where 4 is the parameter vector for the wavelet ( matrix W depends on £ ); ¢ = (1,92, - wgn)T is
the Bernoulli component of the reflectivity sequence ( matrix  depends on g ), r=(r1,72 .y *N)T
is the Gaussian component of the reflectivity sequence; 8 = (v,,vn,A) Where v, is the variance of

the measurement noise; z is the vector of measurement data of length N; and, m(q) is the number
of unity components of g.

If we don’t model the reflectivity sequence as a Bernoulli-Gaussian process, but instead model it
as a deterministic product sequence, ( i.e., g and r are deterministic sequences where g indicates the
locations of reflections and r represents the magnitudes of the reflections ), then the > log-likelihood
function simplifies to

L[8,q,1,v4l2] = -‘12!17‘(”11) — (2= WQr)T(z - WQr)/2v,. (5)

In this case L[#] is a scaled version of the prediction-error. In fact, if v, need not be estimated,
then

E@,q1lz) = ~(L+in(v))on

= %(z - WQr) (2~ WQr)
= Prediction — Error; (6)
hence, in the case of the non-random reflectivity model, the criterion functions of MPED and MLD

are the same; however, due to the adaptive nature of AMPED, AMPED is different from MLD
even for the deterministic reflectivity model.

In the case of a random reflectivity model, Eq.(4) is the correct likelihood function, and in this
case the log-likelihood function is different from the prediction-error. Performance comparisons of
the MLD-based methods and the AMPED-based methods are given in Sections 4, 6 and 7.

3 HOPFIELD NEURAL NETWORK AND ITS APPLICATION
TO OPTIMIZATION PROBLEMS

A Hopfield neural network is a single-layer feedback neural network [5,6,12). Let T;; denote the
connection weight from neuron j to neuron i, I; denote the externally supplied input to neuron i,
and ¢; denote the output of neuron i, then the dynamics of a Hopfield neural network are

t+1= o o Din 20 (™

where t = 0,1,2,...,i = 1,2,..., N, N is the total number of neurons, and

N
Dit)= Y Tiei(t) + L. (8)
1#i=1
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This is the discrete-time version of the Hopfield neural network [6,12], i.e., it is the Hopfield neural
network that has reached its stable state, and whose stable neuron outputs are either zero or one.
Figure 1 shows a standard hardware diagram of a Hopfield neural network [5,6,12], in which the
small solid squares denote the connection weights T;;, and the amplifiers approximate the non-linear
function in Eq.(7).

The Hopfield neural network has the following energy function

(NN N
E=-33 Y Tiegi- > Lg. (9)

1=1i#j=1 =1

If we choose T;; to be symmetric, then it can be shown that this energy function will never increase
as the states of the neurons (g!s) change. Specifically, let AE(t) denote the change of the energy
function due to the change of ¢; from ¢;(t — 1) to ¢i(t) ( we define Ag;(t) = gi(t) — gi(t — 1) ); then,
from Eqgs.(9) and (8), we have

N
=( ). Tigi(t) + L)Agi(?)
i#£j=1
= —Di(®)Ag(2). (10)

AE(Y)

If Agi(t) = gi(t) = g:i(t — 1) < 0 which means g;(z — 1) = 1 and g¢;(¢) = 0, then from Eqs.(7)
and (8) we have D;(t) < 0, hence AE;(t) = —Di(t)Agi(t) < 0; if Agi(t) = ¢i(t) —qi(t —1) > 0
which means g;(t — 1) = 0 and ¢;(t) = 1, then from Eqs.(7) and (8) we have D;y(t) > 0, hence
AE;(t) = =D;i(£)Ag;(t) < 0. In conclusion, as the Hopfield neural network operates from iteration
to iteration, we always have AE;(t) < 0 which means that the network will converge to a state at
which the energy function E is locally minimized.

In Eqs.(8) and (9) we assume that ¢ # j. This is equivalent to replacing ¢ # j = 1 in Eqs.(8)
and (9) by j = 1 but Tj; = 0, for i = 1,2,..., N. In fact, it was shown in [5,6,12] that if i equals j
but T}; # 0, we cannot always have AE;(t) < 0 as ¢; changes; hence, in the following development
of the neural networks for MPED, we will choose Tj; = 0.

One of the most important applications of a Hopfield neural network is to optimization problems
[6,12]). The key step in these applications is to relate the cost function of an optimization problem
to the energy function, Eq.(9), of the network. Since the energy function can be used to define
the connection weights of, and the inputs to the network, relating a specific problem to a specific
energy function provides the information for a detailed circuit diagram of the network. When the
network reaches its stable state, for which the energy function is locally minimized, the output of
the network gives the solution to the optimization problem.

The basic idea in this paper is to relate different versions of cost function (2) with energy
function (9), to obtain estimates of the reflectivity sequence and/or the wavelet, depending on
what we assume is known or unknown.

4 NEURAL REFLECTIVITY ESTIMATOR

A . Construction of the Network

In this report, we model the reflectivity sequence y; by a product model, i.e., Eq.(3), whereg;isa
0-1 sequence ( which can be deterministic or random ) that indicates the locations of the reflectivity
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sequence; and, r; is any sequence ( deterministic or random ) that represents the magnitude of the
reflectivity sequence. We determine g¢; and r; separately, each by its own Hopfield neural network.
First, we set r; in Eq.(3) equal to a constant a, substitute y; = g; into Eq.(2), and construct a
Hopfield neural network for the resulting prediction-error function. This neural network gives us
estimates of ¢; which indicate the locations of the reflectivities that have a magnitude corresponding
to a. Then, we set ¢; in Eq.(3) equal to the just estimated g;, substitute p; = g;r; into Eq.(2), and
construct 2 Hopfield neural network for the corresponding prediction-error function. This neural
network gives us estimates of r;. After the reflections corresponding to a are detected and their
magnitudes estimated, they are removed from the trace; then, this updated trace is used to form a
new prediction-error which is used to detect the reflections corresponding to the next a. By varying
the constant a, we can detect the locations and determine the magnitudes of all the reflections.
The details are given below.

Setting r; in Eq.(3) equal to a and substituting the result into Eq.(2), we have

1 N N
E = 3 Z[zk - X:Vk_.-q;oz]2
k=1 i=1

o? N N
= 5 Ylala=) Ve-ial ' (11)

k=1 i=1
Since « is a constant, minimizing E is equivalent to minimizing

1 & 5
E = 3 (/o= Vi-ial
k=1

=1
1 N 2k N N 1 N NN
= 3 E(;‘)z - Z E Vi-igizx/a+ 5 Z Z E Vi—jVi-igig;. (12)
k=1 k=1i=1 k=1 i=1 j=1

Comparing Eqs.(12) and (9), we observe that the first term in Eq.(9) does not have T; terms,
whereas the comparable term in Eq.(12) does have i = j terms. Because the energy function in
Eq.(9) is equivalent to

1 N N N
= —EZ_ETuqeqj - ZI«I.' (13)
=1 j=1 i=1
where Tj; = 0 for i = 1,2, ..., N, the following term must be added to Eq.(12) in order to represent
it in the form of Eq.(13):

1 N N 9
-3 Y3 Vidial(e - 1) (14)
1=1 k=1
Since ¢; = 0 or 1, this additional term always equals zero; hence it has no influence on the value
of E. Adding this term to Eq.(12), we obtain the energy function which is used to construct a

Hopfield neural network for detecting the reflectivity sequence:

LN N AL A
E = 3 Y lzfa =Y Vi-ig)® - 5 YD) Viligai—1)
k=1 i=1 i=1k=1
JN N N
= -z 2 [ Y VimiVi-jlaigs

t=1i#j=1 k=1

N N N 1 N
=Y -Y VEi2+ Y Viim/olai + 5 >z (15)
=1 k=1 k=1 k=1
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Comparing Eq.(15) with Eq.(9) and ignoring the constant term § "}, 22/a?, we obtain

N
Tij= - Vi-iVi-; (16)
k=1
N 1 N
I; = Z Vi—izk /o — 3 Z sz_,- 17)
k=1 k=1

for i # j, where1 <i,j< N;and, T; =0fori=1,2,...,N.

Figure 2 depicts a hardware diagram for the neural network with connective weights given by
Eq.(16) and inputs determined by Eq.(17). If T;; > 0, positive amplifier j ( denoted by small
triangles ) is connected to the resistor; otherwise, negative amplifier j ( denoted by small triangles
with a small circle ) is connected. Since Vi = 0 for & < 0, input I; in Eq.(17) can be rewritten as
I; = Vo(zi/a) + Vi(zigr /@) + - - -+ Vn-i(zn]a) = (1/2) YN, V2.;; Hence, if, as shown in Fig.2, we
let zx/a (k = 1,2,...,N) be the external inputs to the circuit, then the solid squares in the figure
will all be determined by wavelet V;.. For example, the top square in the column corresponding to
gz has the value (1/2) S0, V2, if we assume that external voltage V in Fig.2 is unity; the next
(in top-down direction) N — 1 squares have values Vp, V4, ..., VN —2 respectively; and, the remaining
N —1 squares are determined by T3; of Eq.(16).

The neural network with connective weights determined by Eq.(16) and inputs by Eq.(17)
can be viewed as a detector of reflections which have a magnitude corresponding to a. The true
magnitudes of these reflections do not equal a. We shall now develop another Hopfield neural
network to determine the true magnitudes of the detected reflections.

Suppose a set of K, reflections, [g;,i € I.), has been detected for value @, where I, is an index
set with K, elements (K, can equal zero). Substituting Eq.(3) into Eq.(2) and noticing that the
g:’s belonging to [g;, ¢ € I,] equal unity and all other ¢;’s equal zero, we have

1 N
E = 3 Slar = Y Vicigiri?

=1 i=1
1 N
= 5 z:[zk - Z Vk_,-r.-]z (18)

From the physical meaning of the reflectivity sequence, we have |r;| < 1; hence, we can represent
r;, approximately, as
M
1 .
= (2; Fp.‘_,‘) -1 iel, (19)
where p;; = 0 or 1. Viewing the p;;’s (i € In,j = 1,2, ..., M) as outputs of neurons, the task here

is to construct a Hopfield neural network with energy function Eq.(18) in which r; is represented
by Eq.(19). Substituting Eq.(19) into Eq.(18), we have

1Y 41 2
E = 3 E[zk + Z Vii — 2 Z FVk—iPs'j]
k=1 i€l i€la j=1
1 N M M 1 1
P = _2.2 Z Z E z Eh—_TEF{Vk-iIVk—izPiljlpimiz

k=11i1€la j1=1i2€la j2=1



N M

N
- Z Z Z g.l:l-vk_.-(zk + 2 Vi-i)pij + % Z[Zh + Z Vi), (20)

k=1t€la j=1 i€l k=1 i€la

In order for the diagonal elements of the connection matrix to be zero, we add the following zero
term to Eq.(20),

1 Mo,
9 E Z E F-TVI:—.'P-'&(P:‘:' -1), (21)
=14i€la j=l
and obtain

M 1

M N
1 1
E = 2 Z Z Z Z Z 2511 9321 Vimiy Vimia Pir 1 Pinia
11€1a 51=1 i1 #i2€le f1#ja=1 k=1

- 33 Yl Vanila + 3 Vi) - 5 Vil
i€ls j=1k=1 icl,
4 consiant. (22)

Comparing Eq.(22) with Eq.(9) and ignoring the constant term, we obtain

N
1 1
Tirinie = — Z E,’;'_._]FTV’#-'Q Vi—iz (23)
k=1
Y1 v 11 .,
Ii; = ;[FVk-i(Zk + ezl k—i) — 241 ) (24)
= s€ia

for i) # iz and j; # j2, where i1,i2 € In,1 < j1,52 £ M; and, Tjj55 =0 fori € L, 5 = 1,2,..., M.

The number of neurons in this neural network is Ko M. If the reflectivity sequence is sparse,
very few reflections will be detected for a specific value of a so that K, will be very small (however,
our method is not limited to sparse reflectivity sequences). From Eq.(19), we see that in order for
the r; to have a representative error less than ¢, M should satisfy z5=r < €. For e =0.01, M =8
is sufficient; hence, if K is small, we need relatively few neurons to determine the amplitudes of
the detected reflections.

Although we have used two indexes for neuron p;;, p;; can also be represented using only one
index s = (i — 1)M + j, where i = 1,2, ..., Ko, § = 1,2,..., M, 50 that s = 1,2,..., KoM. Since the
KoM neurons are fully connected with each other, the network with connections (23) and inputs
(24) is no different than the standard Hopfield neural network. In fact, we can represent T, j, ij,
in (23) by only two indexes s; = (i1 — 1)M + j1 and 83 = (i2 — 1)M + j2, and L;; in (24) by only
one index s = (i - I)M +j, where ilyi2ai € Iaa 1 < jlaj?aj < M’ and 1 < 81,82,8 < -KaM~

The detailed steps of our Adaptive Minimum Prediction-Error ( AMPE ) Neural Reflectivity
Estimator are (for a given wavelet):

e Step 1: Choose a to be a large positive value, and run the neural network with connective
weights given by Eq.(16) and inputs given by Eq.(17) to obtain a set of K, detected reflections

[qi3i € Ia];



e Step 2: Run the neural network with connective weights determined by Eq.(23) and inputs
determined by Eq.(24), and substitute the converged p;; into Eq.(19) to obtain the magnitudes
of the detected reflections;

e Step 3: Convolve the wavelet with the estimated reflectivity sequence corresponding to a
(locations are detected in Step 1 and amplitudes are determined in Step 2), and subtract this
convolved sequence from the seismic trace to obtain an updated trace;

e Step 4: Update o using a = & — ¢, where ¢ is a small positive number, and repeat by going
to Step 1 for the new a and updated seismic trace, until a equals a preset minimum a.

e Step 5: Choose a to be a large negative value (in the sense of absolute value) and choose ¢
to be a small negative value (also in the sense of absolute value), repeat Steps 1 to 4 to detect
and determine the magnitudes of negative reflections.

Because of Step 3, the cost functions for the neural networks change during the deconvolution
procedure. When a reflection is detected and its magnitude estimated, it is removed from the
trace, where “removed” ( which is used through out this report ) is in the sense of the operation
of Step 3. In this way, the prediction-error is changing adaptively according to the magnitudes of
the reflections. This is why we call this estimator an “AMPE Neural Reflectivity Estimator”.

There is an alternative procedure to implement this AMPE Neural Reflectivity Estimator: we
start from the maximum positive a, then switch to the maximum negative a, then switch back to
the second largest positive a, then switch to the second largest negative a, etc., until we get to
the minimum negative a. In this way, we first detect and estimate both large positive and large
negative reflections. In the simulations and real data processing that are described below, we use
this alternative procedure.

B . Simulations

We simulated the AMPE Neural Reflectivity Estimator for known broad-band [8] and narrow-
band wavelet cases [2). The true reflectivity sequence, which is shown in Fig.3, was chosen to
be a Bernoulli-Gaussian sequence (Eq.(3)) with A = 0.08 and v, = 0.08. ( If we just want to
simulate the AMPE Neural Reflectivity Estimator, the reflectivity sequence need not be Bernoulli-
Gaussian. Because we want to compare our new method with the MVD Filter and the maximum-
likelihood based SMLR Detector, where a Bernoulli-Gaussian model of the reflectivity sequence
is a prerequisite, we choose our simulated reflectivity sequence to be Bernoulli-Gaussian. ) The
broad-band and narrow-band wavelets are depicted in Figs.4 and 5, respectively. Convolving the
reflectivity sequence in Fig.3 with the wavelets in Figs. 4 and 5, and adding white Gaussian noises
to the results, we obtained the seismic traces shown in Figs. 6 and 7. The signal-to-noise ratio
(SNR) was 4 in both cases, where

SNR= ¥ (25)
Un
in which
N
P=> W} (26)
k=1



represents the energy of the wavelet, and vy, is the variance of the measurement noise.

Applying the AMPE Neural Reflectivity Estimator to the two traces of Figs.6 and 7, we obtain
the estimated reflectivity sequences shown in Figs.8 and 11, respectively. The initial ¢;’s for Step
1 of the AMPE Neural Reflectivity Estimator were chosen to be zero. The initial p;;’s in Step 2 of
the AMPE Neural Reflectivity Estimator were chosen in such a way that the corresponding initial
r:'s (Eq.(19)) were zero ( i.e., pn = 1,p;; = 0 for j = 2,3,..., M ). We chose M = 8. The initial a
was chosen to be 0.42, and the initial negative @ was chosen to be -0.42; the |eo| was chosen to be
0.02; and, the minimum positive (negative) a was chosen to be 0.06 (-0.06). We chose the initial
positive and negative a’s to be about twice the magnitudes of the maximum true positive and
negative reflections, respectively. The two neural networks for location detection and amplitude
estimation each converged in 1 to 4 iterations, where “one iteration” indicates that the outputs
of neurons change from ¢;(t) to gi(¢ + 1) according to Eqs.(7) and (8) for all i = 1,2,...,,N; and,
“convergence” means that the outputs of neurons did not change from one iteration to the next.

In order to compare the new AMPE Neural Reflectivity Estimator with some existing methods,
we deconvolved the traces of Figs.6 and 7 using a pure MVD Filter and an SMLR Detector [8,9]. The
purpose for comparing the new detector with pure MVD is to see what improvements are obtained
via detection, whereas the purpose for comparing the new detector with the SMLR detector is to
compare the new detector with a well-established statistical detector. Estimates of the reflectivity
sequence using a pure MVD Filter are shown in Figs.9 and 12, for the traces of Figs.6 and 7,
respectively, whereas stimates of the reflectivity sequence using the SMLR Detector are shown in
Figs.10 and 13, for the traces of Figs.6 and 7, respectively.

Comparing Fig.8 with Figs.9 and 10 we see that for the broad-band case the new estimator
gives comparable results to both the MVD Filter and SMLR Detector.

Comparing Fig.11 with Figs.12 and 13 we see that our new AMPE Neural Reflectivity Estimator
gives much better results than the MVD Filter and SMLR Detector for the narrow-band wavelet
and low SNR case. We also simulated the AMPE Neural Reflectivity Estimator and the SMLR
Detector for four other SNR cases using the same narrow-band wavelet. Figure 14 shows the
results. Except for very high SNR’s, the AMPE Neural Reflectivity Estimator outperformed the
SMLR Detector. We conjecture that the relatively invariant performance of the AMPE Neural
Reflectivity Estimator as SNR varies is due to its adaptive objective function.

Since the cost functions for the two neural networks in the AMPE Neural Reflectivity Estimator
change adaptively according to a, it is interesting to show the estimated reflections for some specific
a’s. It is even more interesting to show the entire procedure, i.e., starting with the original trace,
show: the first estimated largest reflections; then the updated trace obtained by removing these
first-estimated large reflections; then the estimated reflections obtained for this updated trace; then
the next updated trace; etc., until the estimated reflections for the minimum o are removed from
the trace. This last trace is considered to be noise. This entire procedure is shown in Fig.15 for
the broad-band trace of Fig.6. We show only the results for those a’s for which reflections were
detected (for many a’s, no reflections were detected).

It is interesting to observe the reflection at the time point 119. When it was first detected,
its amplitude estimate was too large ( see the right-hand figure of DATA 1 ). As a result, we
removed too much from the trace corresponding to this positive reflection; however, as the adaptive
optimization proceeded, we later obtained a negative reflection at the same time point ( see the
right-hand figure of DATA 7 ) which offset the overly large positive estimate obtained earlier. This



result suggests that even if we make some mistakes in the early stages, our method can still give
correct final estimates by providing corrective estimates in later stages.

C . Discussions

From our simulation results we draw the following conclusions: (1) the AMPE Neural Reflec-
tivity Estimator gives much better results than the MVD Filter and the SMLR Detector in the
case of a narrow-band wavelet and low SNR ( Figs.11-14 ); (2) the AMPE Neural Reflectivity
Estimator is relatively insensitive to SNR, i.e., it gives almost the same results for a wide range of
SNR cases for which the SMLR Detector shows very different performance ( Fig.14 ); and, (3) for
the broad-band wavelet case, the performances of the AMPE Neural Reflectivity Estimator and
the SMLR Detector are quite similar ( Figs.8 and 10 ).

A significant advantage of the new AMPE Neural Reflectivity Estimator is that it gives good
results in the case of a narrow-band wavelet and low SNR. The real seismic wavelet is usually
narrow-band, and real seismic data is usually corrupted by a high level of noise, especially for data
coming from great depths; hence, this advantage makes the AMPE Neural Reflectivity Estimator
a very attractive method for real data processing. See Section 7 for real data processing results.

Why does this new method have such an advantage ? A theoretical analysis is under investiga-
tion. A qualitative explanation is given next.

Our new method does not optimize a single criterion function, i.e., for different magnitude
reflections we have different criterion functions. Perhaps these different criterion functions are
individually suited for detecting the reflections of different magnitudes; thus, better performance is
obtained. In the MVD Filter, SMLR Detector, and most commonly used deconvolution methods,
the associated criterion function is the same for processing the entire trace, i.e., large reflections
and small reflections are treated the same. This single criterion function may not be suitable for
detecting some reflections. In other words, a single criterion function provides a compromised
measure for all the reflections ( large and small ), whereas our adaptive criterion function method
does not.

5 NEURAL WAVELET EXTRACTOR

A . Construction of the Network

Suppose Vo = 0 and g; = 0 for i < 0, then Eq.(2) can be rewritten as

1 N N -
=3 kgllzk - ;Pk-—i ] (27)
Normalizing V; to satisfy |Vi| < 1, then V; can be expressed, approximately, as (similar to Eq.(19))
Mo
V;= (21 Fm,-j) -1 (28)
J=

where z;;=0 or 1. Substituting Eq.(28) into Eq.(27), we have

L N M N \
E = 3 kX:l[Zk - Zl Mk—i z; 21 + Z} Bi—i
= 1= i= 1=
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N
Yk =2k + Zﬂk-i- (30)

i=1

In the development of this section’s Neural Wavelet Extractor, we assume that y; is given. Now
view z;; (i = 1,2,...,N;j = 1,2,..., M) as outputs of neurons. The purpose here is to construct
a Hopfield neural network, where energy function, E, is given by Eq.(29). Similar to the neural
networks developed in the last section, we add the following term to Eq.(29) for the purpose of
conceling the diagonal elements of the connection matrix:

1 N N M 1 .
-3 3y E__ll‘k-ixi.i(‘”fj -1). (31)
k=1i=1j=1

This term always equals zero because z;; = 0 or 1. Adding this term to Eq.(29) and dropping
g:: constant term %Ei’:l y2, we have the energy function for constructing the Neural Wavelet
tractor:

M

E = 520 2 2 ) gigeihh-ibk-pTis

i=1 j=1i#p=1 j#q=1k=1

i=1j=1 k=1
1 N M NM N M
= 5222 Y Timeiite = 22 2 Liizis (32)
=1 j=1p=1¢=1 i=1 3=1
where N
1
Tijpa = = D grvezMk-itk-p (33)
k=1
N
1 11
Ij; = Z[—Z"‘l Brk—iYk — 51 Pi] (34)
k=1

fori #£ pand j # ¢, in which 1 < i,p < N,1 < j,q £ M. Additionally, T;j;; = 0 for 1 =
1,2,..,N,j=1,2,...,.M.
This Neural Wavelet Extractor has NM neurons, where M neurons determine the value of

wavelet Vi at one time point, and there are N time points. Usually Vi = 0 for ¥ > L, where
L < N; hence, this network can be simplified to have LM neurons, as described next.

Simplified Neural Wavelet Extractor

I Vi = 0 for k > L, then the Neural Wavelet Extractor (with connective weights and inputs
given by Eqs.(33) and (34), respectively) can be simplified to have only LM neurons: the connective
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weights are still given by Eq.(33), but the inputs are changed to

N1 11 N
Li; = Z[Fﬂk—ﬂlk - EFI‘k—i] + Y, Tijm (35)
k=1 p=L+1

where 1 <i,p< L,1<j,q< M.
The derivation of the Simplified Neural Wavelet Extractor is given in Appendix A.

One fundamental difference between our Neural Wavelet Extractor (including the Simplified
Neural Wavelet Extractor) and the neural networks developed in the last section is the choice of
initial states of the neurons. The initial states of the neurons of the AMPE Neural Reflectivity
Estimator are chosen in such a way that the corresponding ¢; and r; are zero; however, the initial
states of the MPE Neural Wavelet Extractor cannot be so easily chosen. In fact, unless the initial
states of the Neural Wavelet Extractor are chosen in such a way that the corresponding initial V;
(Eq.(28)) is close to the true wavelet value, the Neural Wavelet Extractor may converge to incorrect
wavelets. In this paper, we chose these initial states by using an initial guess wavelet, provided
by the Iterative Least-Squares Wavelet Extraction Algorithm given in Appendix B. This Iterative
Least-Squares Wavelet Extraction Algorithm gives more accurate initial wavelet estimates than the
“minimum-eigenvalue estimator” used in MLD [8,9].

B . Simulations

We simulated the Simplified Neural Wavelet Extractor for the two synthetic seismic traces of
Figs. 6 and 7. In the simulations, we chose M = 8 and L = 50. The results are shown in Figs.
16 and 17 for the traces of Figs. 6 and 7, respectively. Convergence occurred after three iterations
for both cases, where “convergence” means that the neuron states did not change from iteration to
iteration.

C . Discussions

The Simplified Neural Wavelet Extractor is very effective, as seen from its fast convergence and
relatively accurate estimates. Usually, it is sufficient to choose M=8 ( so that the approximation
error is less than 2-7 which is less than one percent of mazV;) and L = 50 (if the sample interval
is 4 ms, L=50 corresponds to 200 ms, after which the wavelet usually decays to zero); hence, this
Simplified Neural Wavelet Extractor needs only about 400 neurons.

A disadvantage of this Simplified Neural Wavelet Extractor is that it needs a relatively accurate
initial guess wavelet. We simulated it with some less accurate initial guess wavelets, and the final
estimated wavelets were incorrect. For example, we simulated it with the initial guess wavelet
provided by the “minimum-eigenvalue estimator” used in MLD ([8,9], and got an incorrect final
wavelet estimate. From these simulations, it seems that this new AMPE Simplified Neural Wavelet
Extractor is not as robust as MLD is to the choice of the initial guess wavelet. This is not a serious
problem in practice, because for real seismic data we often have some knowledge about the wavelet,
based either on our experiences from previous processings or from using other methods applied
to similar data. This knowledge can provide us with a relatively accurate initial guess wavelet.
Of course, we now have a new advanced wavelet estimator (the Iterative Least-Squares Wavelet
Extraction Algorithm) which can be used to provide an accurate initial guess wavelet.
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6 BLOCK-COMPONENT METHOD FOR SIMULTANEOUS
WAVELET EXTRACTION AND REFLECTIVITY ESTIMA-
TION

We now have an AMPE Neural Reflectivity Estimator, which estimates the reflectivity sequence
under the condition that the wavelet is known, and, a MPE Simplified Neural Wavelet Extractor,
which estimates the wavelet under the condition that the reflectivity sequence is known. It is
natural to combine these neural networks ( i.e., to view them as computing blocks ) to develop a
Block-Component Method (BCM) for simultaneous wavelet extraction and reflectivity estimation.
This BCM is shown in Fig.18. In this BCM, convergence is accepted when the outputs of the
Neural Reflectivity Estimator and the Neural Wavelet Extractor do not change from iteration to
iteration.

We simulated the BCM for the traces of Figs.6 and 7. The final estimates of the reflectivity
sequence are shown in Figs.19 and 20 for the traces of Figs.6 and 7, respectively. The final estimates
of the wavelets are shown in Figs.21 and 22 for the traces of Figs.6 and 7, respectively. In these
simulations, the: initial g;’s for Step 1 of the Neural Reflectivity Estimator were chosen to be zero;
initial p;;’s in Step 2 of the Neural Reflectivity Estimator were chosen in such a way that the
corresponding initial r;’s (Eq.(19)) were zero; initial a was chosen to be 0.42, and initial negative
o was chosen to be -0.42; |eo| was chosen to be 0.02; minimum positive (negative) a was chosen
to be 0.06 (-0.06); and, initial states of the neurons of the MPE Neural Wavelet Extractor were
chosen to match the initial wavelet estimate obtained from the Iterative Least-Squares Algorithm
in Appendix B.

From these simulation results we see that the BCM gave slightly worse results than the pure
AMPE Neural Reflectivity Estimator and the pure Simplified Neural Wavelet Extractor (compare
Figs.19 and 8, 20 and 11, 21 and 16, and 22 and 17), but that was to be expected, because in the
present case both the wavelet and reflectivity sequence are unknown.

7 REAL SEISMIC DATA PROCESSING

In this section we apply the new BCM to a section of real seismic data. Figure 23 shows the
input section (prestacked data), the estimated reflectivity, and, the estimated wavelets. In this
processing, we chose the: initial positive a and initial negative c to be large enough (in the sense
of absolute value) such that no reflections would be detected for such initial a; ¢ = 0.02; and,
Qmin = 0.03 for positive reflections, and ayin = —0.03 for negative reflections. For the 30 traces in
the input section, we used the Iterative Least-Squares Algorithm only for one trace (the fifth trace
down from the top trace) to get the initial wavelet estimate; the initial wavelets for all other traces
were then chosen to be the final converged wavelet of this trace.

In real data processing, it is important to know how to handle backscatter [9]. Our AMPE
Neural Reflectivity Estimator can deal with backscatter in a very effective way, by choosing different
Qpmin- If we choose apmin to be large, only larger reflections will be detected; hence, the backscatter
and small reflections are filtered out. If we choose amin to be small, smaller reflections will be
detected in which some are considered to be backscatter. Consequently, if we only want to see
larger reflections, we choose amis to be larger; and, if we want to see smaller reflections as well as
larger reflections, we choose apmin to be smaller. Figures 24 and 25 show the results for the same
input section but for different amin’s. Also shown are results obtained from the MVD Filter and
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SMLR Detector using the extracted wavelets determined from our BCM for the amin = 0.03 case
( the results using the extracted wavelets of other ap;n cases were almost the same ). Both the
SMLR and neural BCM results are of higher resolution than the MVD results. Observe also that
as Qmin i8 chosen to be smaller and smaller, more and more reflections are indeed detected. All the
neural BCM results depicted in Figs.24 and 25 were obtained in one processing of the data, i.e.,
lowering amin does not alter the results for larger amia’s; it just adds more reflections.

8 CONCLUSIONS

In this report, three Hopfield neural networks were developed for seismic reflectivity detection,
reflectivity magnitude estimation, and wavelet extraction, respectively. These neural networks
were combined into a Block-Component Method to realize an Adaptive Minimum Prediction-Error
Deconvolution procedure which performs reflectivity estimation and wavelet extraction simultane-
ously. Simulations were performed for broad-band and narrow-band wavelets and different SNR
cases; and, real seismic data was also processed. All results were quite good.

The neural network approaches of this report: (1) are directly suitable for VLSI or optical
hardware realizations, since the basic computing element — the Hopfield Neural Network, is suitable
for VLSI or optical realization [1,3,11]; (2) show that the Neural Reflectivity Estimator gives much
better results than the MVD Filter and even the high resolution SMLR Detector in the case of a
narrow-band wavelet and low SNR, which is often the case in real seismic data; (3) require very
weak modeling assumptions, i.e., the wavelet can be non-minimum phase and we do not need a
parametric model, the measurement noise can be non-Gaussian and colored, and, the reflectivity
sequence can be random or deterministic; and, (4) show that backscatter can be treated in a very
effective way.
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A APPENDIX A

Assume Vi = 0 for k > L; then, from Eq.(28), we have z;; = 1 and z;; = 0 fori > L,j = 1,2,..., M.
Using this fact, Eq.(32) can be rewritten as ( our purpose is to simplify the argument p from
1<p<Ntol<p<l)

1 N M L M N M
E = Y Z Z[Z Z Tijipatpq + E 2 Tij00%pe + 2Li5)zi;
i=1 j=1 p=1¢=1 p=L+14¢=1
1 N M L M N
= —5 220D Tiine®or + > Tijp + 205235
=1 j=1 p=1¢=1 p=L+41
1 N ML M ,
= 73 YD 130 D TijpeTee + 20515 (A1)
i=1 3=1 p=l1¢=
where .
1
Ii=1I;+ 3 Y Tijm. (A.2)
p=L+1

Using the fact in the first sentence of this paragraph, Eq.(A.1) can be further rewritten as ( now
our purpose is to simplify the argument i from 1<i<Nto1<i< L)

-5 E Z[E Z Tijpe®pq + 2135)2:;5

t-l J-l p_l q—l
M

E

1

-3 Z E[Z Z TijpeTpg + 21-;]-"1:
i=L41 =1 p=1¢=1

1 L M L M

= =3 E[Z 2 Tijp00%pq + 205125

1=1 j=1 p=1¢=1

1 M N N

=522 Y Tamlepe = 3 I (A.3)
p=1g¢=1 i=L+1 1=L+1
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Since YN ., I, is a constant, it can be dropped from Eq.(A.3). Define

1 N
I =I; + 3 Y. Tmayis (A.4)
m=L+1

then we have, from Eq.(A.3), that

M L M L M
Yo Tijpemiszeg — D ) Lijise (A.5)

j=1p=1¢=1 i=1j=1

E=-

N =

L
=1

From Eqs.(A.4), (A.2), and (34), and the fact that T};p1 = Tp1,i5, we have

N
I = Li+ ), Tijm
p=L+l
N1 11 , N
= Z[—2j_lﬂk-iyk""5—45_1l‘k—-‘]+ Y. Tijpm- (A.6)
k=1 p=L+1

Equation (A.5) is the energy function of the Simplified Neural Wavelet Extractor, with T;; 5, given
by Eq.(33) and I} given by Eq.(A.6).

B APPENDIX B : An Iterative Least-Squares Algorithm for
Initial Wavelet Estimation

We begin by modeling the wavelet by an ARMA model, whose transfer function is

where we normalize the wavelet so that Vp = 1. From Egs.(1) and (B.1), ignoring the measurement
noise ny, we have

n n
2= O2kai — > Bipe—i + p- (B.2)
=1 i=1

Assume . .
fi(®) = aizk—i = ) Bipe—i (B.3)

i=1 i=1

where

8= [01,"',an,ﬂ,,--~,ﬂnlr (B4)

denotes the ARMA parameters we want to estimate. Let
Z = zi — fi(8), (B.5)

then we obtain the ARMA parameter estimates by minimizing the sum of all the squared error
terms, i.e., we minimize

N
s@) =Y & (B.6)

k=1
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with respect to 8.

We use the following Levenberg-Marquardt [4] iterative algorithm to solve this non-linear opti-
mization problem

§1 =0 — (XTX; + pd) ' XT Z; (B.7)

where §' denotes the i’th estimate of 8; p; is an acceleration constant;

= [21 - fl(Q")a ***y2ZN — fN(.éi)]T; (B.8)
and

o v

X; = (B.9)

o i

in which 6; denotes the j'th component of 8. Next, we see how to calculate Z; and X;, and how to
~0
choose 8.

First, we see how to obtain Z;. From Eqs.(B.2) and (B.3), we have
i = 2k — fi(8)- (B.10)
Substitute Eq.(B.10) into (B.3) to see that
n n
O = Y eizk—i— Y Bilzi—i — fu-i(0)]
i=1 i=1

i(ai = Bi)z-i + zn:ﬂifk—i(_a.)- (B.11)

i=1 i=1

i

This is a recursive formula for fi(@). In order to use this recursive formula to calculate fi(€)
(k = 1,2,...,N), we need to know the initial values of fx(8): fo(8), f-1(8),- -, f-n41(8). Since
zr = 0 and pi = 0 for k£ < 0, we have, from Eq.(B.3), that

fo(8) = f-1(8) =+ = f-n41(8) = 0; (B.12)

hence, Z; (Eq.(B.8)) can be obtained from Eq.(B.11) with initial conditions in Eq.(B.12).

Next, we see how to obtain X;. The elements of X; are -gg.% and %& where k = 1,2,...,N and
i=1,2,...,n. From Eq.(B.3), we have

Ok _ Opi—j
a _1—21 ﬂJ a a; ’ (B' 13)
0f _ Opk—j
- . B.14
aﬂ‘ —HUk Jz—; ﬁ] aﬁ‘ ( )
From Eq.(B.10), we have
al‘k - _ afk(g.) (B 15)
08; 00; - )
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Substituting Eq.(B.15) into Eqs.(B.13) and (B.14), we have

3f 8 fr—;
=zrp-i + JE—I: ﬂ: 80,1 (B‘lﬁ)

0f _ E 0 fk-j
6ﬂx T i=1 ﬂJ aﬁlJ (B.17)

Eqs.(B.16) and (B.17) are recursive equations to calculate «5‘{* and %é‘ where £ = 1,2,...,N and
i=1,2,...,n. From Eq.(B.12), the initial conditions for Egs. (B 16) and (B.17) are

8fe _ -1 _ . _ 8fwnr _
Poi= P =T G (B-18)
Ofo _0f1 _ . . _ _ Ofont1 _
%%~ OB T (B.19)

where i = 1,2,...,n. Signal px—; in Eq.(B.17) is obtained from Eq.(B.10). In summary, X;
(Eq.(B.9)) can be obtained from Eqs.(B.16) and (B.17) with initial conditions (B.18) and (B. 19).

Finally, we need a method to choose Q . Our approach is to approximate the nth-order ARMA
model in Eq.(B.1) by a 2nth-order AR model, i.e.,
1

—_— B.20
1- 21—1 Yiz™ ( )

V(2)=

Comparing Eqs.(B.1) and (B.20), we have

1- 3k, fir™ 1
= - = - B.21
1-5 0, @iz 1-352 4z (B.21)

or,

n 2n n
1= Biz )1 -Y 1z =1-) ez (B.22)
=1 i=1 i=1
Equating the cofficients of z~* on both sides of Eq.(B.22), we have
a=Hh+n (B.23)
=P -Bn+r (B.24)
0 = fn = Ba-1N =+ = Brn1 + Tni (B.25)
and .
0= "ﬁn'rj—n = Bn-1Vj—nt1— "' — ﬂl?j-l +v; j=n+1,--+,2n. (B.26)

Hence, if we can obtain v for | = 1,2,..,2n, then §; (i = 1,2,...,n) can be obtained from
Eq.(B.26), because it contains exactly n equations; and, a; (i = 1,2,...,n) can then be obtained
from Eqs.(B.23)-(B.25).

Because Vj is now modeled as an AR(2n) model with AR parameters 3 (I = 1,2,..,, 2n), we
have, from Eqs.(1) and (B.20) (ignore the noise nx), that

2n
Ze =) Vi%k—i + Hk- (B.27)

i=1
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Using the Yule-Walker equations [10] for Eq.(B.27), we obtain the estimates of 7; from

M R N Sl
T2 | o h 1 -+ pan-2 P2 (B.28)
T2n Pan—1 Pam—2 *** 1 ﬁZn
where
p; = tjlTo, (B.29)
and
LY
fj = — 2k 2kt s (B.30)
N_J k=1

j=0,1,..,.2n—1.

Our final Iterative Least-Squares Algorithm for initial wavelet estimation is summarized in
Fig.B1.
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Figure 1: The Hopfield neural network.
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Figure 3: The true reflectivity sequence.
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Figure 4: The true broad-band wavelet.
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Figure 5: The true narrow-band wavelet.
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Figure 6: The seismic trace obtained by convolving the true reflectivity sequence in Fig.3 with the
broad-band wavelet of Fig.4 and adding a white Gaussian noise with SNR=4.
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Figure 7: The seismic trace obtained by convolving the true reflectivity sequence in Fig.3 with the
narrow-band wavelet of Fig.5 and adding a white Gaussian noise with SNR=4.
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Figure 8: Estimate of the reflectivity sequence using the MPE Neural Reflectivity Estimator for
the broad-band trace of Fig.6. }
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Figure 11: Estimate of the reflectivity sequence using the MPE Neural Reflectivity Estimator for
the narrow-band trace of Fig.7.
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Figure 12: Estimate of the reflectivity sequence using the MVD PFilter for the narrow-band trace
of Fig.7.
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Figure 13: Estimate of the reflectivity sequence using the SMLR. Detector for the narrow-band
trace of Fig.T.
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DATA 0 Estimated reflections for a = —0.42,
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Figure 15: Estimated refiections for different ’s and the corresponding updated traces. Data 0 is
the original trace which is identical to Fig.6; Data i (i=1,2, ..., 9) is the updated trace after the
reflections in the immediate upper-right figure are removed from Data i-1.
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DATA 5 / Estimated reflections for @ = 0.15 and —0.15 .
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Figure 15: Continued.
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Figure 17: Estimate of the narrow-band wavelet using the Simplified Neural Wavelet Extractor.
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Figure 18; Block-Component Method for simultaneous wavelet extraction and reflectivity estima-
tion.
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Figure 19: Estimate of the reflectivity sequence using the BCM for the broad-band trace of Fig.6.
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Figure 20: Estimate of the reflectivity sequence using the BCM for the narrow-band trace of Fig.7.
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Figure 21: Estimate of the broad-band wavelet using the BCM.
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Figure 22: Estimate of the narrow-band wavelet using the BCM.
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Reflectivity and wavelet estimates using the neural BCM.
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Figure 24: Estimated reflectivity using the neural BCM for o = 0.075, and Minimum-Variance
Deconvolution and SMLR Detection using extracted wavelets from the neural BCM.
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Figure 25: Estimated reflectivity using the neural BCM for o _ = 0.06, o = 0.045,
o _=0.03and o = 0.015,
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ubstitute the results into Eq.(B.28) to obtain ¥ 4(k=1,2, .., 2n)

Y

Substitute the estimated '?k into Eqs.(B.23)-(B.26), and solve
these linear equations to obtain the estimated o.; and B; ;
set _'éo equal to these estimated o ; and B; .

|

Use Eq.(B.7) to obtain the updated estimate 6" , where Z,
is obtained from Egs.(B.8), (B.11) and (B.12); X; is obtained
from Egs.(B.9), (B.16)-(B.19), and (B.10); and, p; is chosen
by trial and error.

tse Eqs.(B.29) and (B.30) to calculate  ; (=0,1, ... 2n-1)and

i

S ||§M-§i|| small enough

fici+1]

Figure 81: The Iterative Least-Squares Algorithm for initial wavelet estimation.
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