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Abstract

We propose to combine a triangular element surface model with the linearized
reflectance map to formulate the shape from shading problem in this research.
The key idea is to approximate a smooth surface by the union of triangular
surface patches called triangular elements, and express the approximating sur-
face as a linear combination of a set of nodal basis functions. Since the surface
normal of a triangular element is uniquely determined by the heights of its three
vertices (or nodes), the image brightness can be directly related to the nodal
heights via a linearized reflectance map. The surface height can therefore be de-
termined by minimizing a quadratic cost functional corresponding to the squares
of the brightness error and solved effectively with the multigrid computational
technique. The proposed method does not require any integrability constraint
or artificial assumptions on boundary conditions. Simulation results for sev-
eral synthetic and real images are demonstrated to show the performance and
efficiency of our new method.

1 Introduction

The shape from shading (SFS) problem is one of the early computational vision problems.
It extracts the 3-D shape information or, more precisely, the surface height z(z,y) from a
single 2-D shading image, and can be therefore viewed as an inversion problem of the image
formation process. This problem was first formulated by Horn [9], [10] and has been studied
intensively for the last two decades (3], [5], (6], [12], [13], [14], [15], [19], [20], [22], 23], [26],
[27], [33], [35).
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Most research work is based on the variational approach [5], [12], [13], [15], [20], (26],
in which a surface orientation field, characterized by its slopes p(z,y) = 8z(z,y)/0z and
g(z,y) = 8z(z,y)/By, is determined to minimize a certain cost functional of the brightness
error. To achieve this objective, one usually uses the calculus of variations [4] to derive a
set of coupled Euler equations involving p(z,y) and ¢(z,y) from the given functional. The
Euler equations are then discretized into a system of difference equations and solved for
p(z,y) and ¢(z,y) numerically by iterative methods. Finally, the surface height 2(z,y) is
reconstructed by integrating p(z, y) and ¢(z, y). However, a straightforward implementation
of this approach does not work properly due to the nonintegrability of computed p(z, y) and
¢(z,y) and the ill-posed nature of the SFS problem. Methods for enforcing integrability
have been studied by Frankot and Chellappa [5] and Horn [12]. The ill-posedness of the SFS
problem has often been handled by introducing a regularization technique, which assumes
that the reconstructed surface is smooth [1], [15], [24]. As a result, it is common to impose
the integrability and the smoothness constraints on the surface by adding several penalty
terms in the cost functional weighted by factors called the Lagrangian multipliers. We refer
to [12] for a thorough survey of the development of the variational approach until 1989.

Even with modifications, there still exist two major difficulties in the variational ap-
proach. First, we are usually led to extremely complicated first-oder nonlinear partial
differential equations. It is difficult to find convergent iterative algorithms for their solution
[12], [13], [20]. Even if a converging algorithm is available, it is still not easy to characterize
and to accelerate its convergence rate. The number of iterations grows linearly with the
image size N was reported in [12], and the total computational complexity is therefore pro-
portional to O(N?2). Second, since the problem of minimizing a functional is transformed
to the solution of a set of partial differential equations, appropriate boundary conditions
are needed. No boundary boundary conditions tend to lead to the ambiguities in the solu-
tion and the instabilities in the algorithm [12]. Although the natural boundary conditions
are often used, they do not always give satisfactory results. How to impose appropriate
boundary conditions is still an open question.

A very different approach for the SFS problem was recently proposed by Pentland {23]. It
relates image brightness to surface height z(z,¥) in closed form with a linearized reflectance
map in the Fourier transform domain. The resulting algorithm is a non-optimization and

non-iterative one. Since the surface height z(z,y), rather than its slopes p(z, y) and ¢(z, y),



is computed directly from the algorithm, there is no integrability problem in this approach.
However, it has some shortcomings. The reconstructed surface is less accurate than that
obtained by the variational approach, since it is one-step algorithm which uses only the
global linearization of the reflectance map around the origin, and known physical informa-
tion cannot be easily incorporated in its formulation. Besides, this approach is sensitive to
the noise.

In this research, we propose a new approach to solve the SFS problem. On one hand, it is
similar to Horn’s approach in the sense that the formulation is based on the minimization of
a cost functional of brightness error. On the other hand, it is similar to Pentland’s approach
in the sense that the surface height is computed directly so that there is no integrability
problem. This new approach has several unique features. First, the minimization problem
is discretized and solved directly. Since we do not derive and solve Euler equations with
the variational principle, no boundary conditions are needed in our solution procedure.
Second, by linearizing the reflectance map, we can greatly simplify the problem to be a
quadratic functional minimization problem. It is much easier to understand the existence
and uniqueness of the solution and to find effective convergent iterative algorithms for its
computation from this viewpoint.

The basic idea of our approach is to approximate a smooth surface by the union of trian-
gular surface patches called triangular elements and to express the approximating surface as
a linear combination of a set of nodal basis functions of compact support. Since the surface
normal of a triangular element is linearly determined by the heights of its three vertices (or
nodes), only the nodal heights z; are used as variables and the image brightness can be re-
lated directly to the nodal heights via the reflectance map. Furthermore, by using the linear
approximation of the reflectance map, we can express the image brightness as a linear func-
tional of nodal heights. By defining the cost functional to be the square of the brightness
error, we are led to a quadratic functional minimization problem parameterized by nodal
heights. Clearly, the surface height can be obtained without any additional integrability
constraint or artificial assumptions on the boundary conditions. Besides, the optimization
problem is equivalent to the solution of a large sparse linear system of equations to which
very efficient multigrid computational algorithm can be applied. Empirically, we find that
the number of iterations for our algorithm is independent of the image size N so that the

computational complexity is only O(N).



This paper is organized as follows. In Section 2, we describe the triangular element
surface model and the image formation model, and formulate the SFS problem as a finite-
dimensional optimization problem which minimizes a quadratic cost functional consisting
of the squares of the brightness error. This formulation requires the knowledge of a stiffness
matrix and a load vector, and their construction is discussed in Section 3. It is shown
that the elements of the stiffness matrix and load vector only depend on the coefficients of
the linearized reflectance map. We develop a successive linearization scheme, in which the
linearization of the reflectance map is performed with respect to every local gradient point
of the triangular patch obtained from the previous iteration. The stiffness matrix is shown
to be singular in Section 4, which is consistent with the ill-posed nature of the SF'S problem.
In Section 5, we impose the smooth surface constraint by adding one extra cost term to
regularize the SFS problem so that the uniqueness of the minimum can be easily guaranteed.
The implementation details and experimental results are provided, respectively, in Sections

6 and 7.

2 Shape-From-Shading Problem Formulation

Consider the approximation of a smooth surface with a union of triangular surface patches
[16], [25]. The approximating surface can be expressed as a linear combination of basis
functions with local compact support known as the finite triangular elements. Based on
such a triangular element surface model, the orientation (i.e. the surface normal vector) of a
triangular patch can be determined by the heights of its three vertices (or nodes) in a linear
functional form. Combining this surface model with the reflectance map image formation
model which relates the image intensity to the surface normal vector, we can express the
image intensity directly in terms of the nodal heights of triangular elements. Thus, unlike
the conventional SFS problem formulation in which surface normal vectors and/or heights
are treated as independent variables, we use only the nodal heights of triangular elements

as independent variables, which is detailed below.



2.1 Triangular Element Surface Model

Consider a uniform triangulation of a square domain © with spacing k. As illustrated in
Fig. 1, the domain Q is divided into a set of nonoverlapping triangles T},
= U T, (2.1)
1<i<M,
where M, is the number of triangles. Let V}, denote the set of continuous piecewise linear
surfaces defined on Q and linear over all triangles T;. The nodal basis function ¢; € V}, are
the function which takes unity at ith node and zero at other nodes (see Fig. 2). It is easy to
see that any z € V}, can be represented as the linear combination of nodal basis functions,
Mn
z(z,y) = Z; zgi(z,y), (2.2)
i=
where 2; is the value of z(z, y) at the ith node and M, is the number of nodal basis functions.

The gradient (p, ¢) of the surface z(z,y) can be computed as

_ 9z(z,y) _ 2 9¢i(z,v)
pz,y)= —5— = ;z'—az , (2.3)
and
q(z,y) = az(” y) z'f 3¢e(a=,y) (2.4)
=1

Since the partial derivatives of ¢;(z,y) with respect to z and y are simply some constants
so that p(z,y) and ¢(=z,y) are linear functions of nodal heights z;. Note also that p(z,y)
and ¢(z,y) are piecewise constant functions on  and they take constant values on each

triangular domain T;.
2.2 Reflectance Map Image Formation Model

Generally speaking, the image formation is a very complex process which depends on the
projection angle, the surface reflection property and orientation, the light source type, and
other factors. In formulating the SFS problem, it is often to adopt a simplified model which
assumes the orthographic projection, the Lambertian surface, and a distant single point
light source so that the irradiance or brightness E at a given point (z,y) is primarily due to
the surface orientation at that point. This relationship is described by the image irradiance
equation [11], [14],

E(z,y) = R(p,9), (2.5)
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where R is called the reflectance map function. The form of R is usually chosen as

14psp+9a9 1 .q > 0
R(p,q) = { e e R e (2.62)
0, 14 psp+¢59 <0,
or equivalently,
n——S—, K20,
R(p,q) = 0\/ (1+p2+4%) K <0 K = —pcostsino — gsintsino + cosa, (2.6b)
) 1 <0,

where 7 is the albedo of the surface, (p,q) the gradient of the surface at point (z,y),
(=ps, —¢s, 1) the illumination direction pointing toward the light source, and 7 and o are
the tilt and slant angles that the illumination direction makes with x and z axis, respectively.
The Lambertian surface is a rough and matte surface such that it scatters the incident light
uniformly in all directions. Consequently, the image intensity of a small surface is not
dependent on the viewer’s direction but only on the orientation of the surface.

As given in (2.6), the reflectance map R is a nonlinear function which can be depicted
as nested contours in the gradient space (p,q). To remove the nonlinearity, techniques
based on the linear approximation of the reflectance map have been recently proposed [12],
[23]. That is, we take the Taylor series expansion of R(p,¢) about a certain reference point

(Po, go) through the first-order term,

(p, q) (p, q)

R(p,q) = R(po,q0) + (p — po) (po,90) (2.7)

|(Po'qo) +(7-g)—5 —

The reference point (po, o) can be either fixed or varying for different values of (p, g).

2.3 Image Formation on Modeled Surfaces

By substituting (2.3) and (2.4) into (2.7), we have

My
R(p,q)~oap+Bg+y=) ®izi+7, (2.8)
=1
where
a¢i(x, 0¢i(z,
#i(z,p) = o280 | pOHEN) o i g0)—apo— B0, (289)
z y
and where
IR(p,q) 9R(p,q)
= dp (ro.g0) * B= dq {ro.90) * (2'8b)



Thus, combining (2.5) and (2.8). one can establish a linear relationship between the image
brightness E(z,y) and nodal values z;, 1 <t < My,

My
E=oap+Bg+v=) ®izi+7. (2.9)

i=1
To estimate the nodal heights z; based on the shading information, we consider the cost

functional
£ = / /0 (E, - E,)? dz dy, (2.10)

where E, is the observed image intensity, E, is the image intensity formed by the recon-
structed surface via (2.9), and the subscript b denote the cost due to the brightness error.

By substituting (2.9) into (2.10), we obtain

& = /L[Eo-(%¢i25+7)]2dzdy

i=1
My My My
= //Q[EZ 8;8;2,2; — 2(E, — 7)Y ®izi + (Eo — v)] dz dy
i=1 j=1 i=1
1 Mn M, Man
= ;2202 / / 8;9; dz dy)ziz; — ) [2 / / (E, — 7)®; dz dy)z:
i=1j=1 2 i=1 Q
+//Q(Eo - 7)dz dy
= lZT‘AZ - sz 4 c. (2'11)

2

Thus, the elements a;,; and b; of matrix A and vector b can be determined, respectively, as

;=2 / /ﬂ &;0;dzdy, b =2 / /9 (Eo—7)®idsdy 1<ij< Ma  (212)

Following the finite-element terminology, A is called the stiffness matrix and b the
load vector. Our objective is to determine the nodal height vector z that minimizes the
quadratic functional (2.11). Note that the minimization problem can also be formulated as

the solution of a system of linear equations
Az =b. (2.13)

It is obvious that the quadratic functional gives a unique minimum only when the stiffness

matrix A is positive-definite. The property of A will be discussed in Section 4.



It is worthwhile to emphasize one major difference between our approach and the varia-
tional approach, namely, the role played by the discretization procedure. The discretization
is introduced by using the triangular element surface model and is performed in the very
beginning of the SFS problem formulation in our approach. As a result, we are led to a
finite-dimensional cost functional suitable for further minimization. In contrast, the vari-
ational approach use the calculus of variations to derive the partial differential equations
(PDEs) from an infinite-dimensional cost functional. The discretization is then applied
to PDEs for their solution and primarily serves as a computational tool. The triangular
element surface model provides some advantages. Since the surface heights are recovered di-
rectly, no additional integrability constraint is required. Besides, there is no need to impose

boundary conditions for PDEs.

3 Construction of Stiffness Matrices and Load Vectors

In this section, we will use (2.12) to derive the expression of the elements of stiffness matrix
A and load vector b in terms of the coefficients a, § and v in (2.8). Note that a;; = 0 if
¢+ and j are not the neighboring nodal points, since either ®;(z,y) or ®;(z,y) is zero for
(z,¥) € 2. Thus, we only have to determine a;; for j is equal to either the node i or one
of its six neighboring nodes jj,---,js as shown in Fig. 2. We use T},...,T, to denote
the 6 triangular domains surrounding node ¢, and Sk, ..., S, the triangular surface patches
defined on T%,...,T,. One can determine the gradients of the nodal basis function ¢;(z,y)
in triangles T%,...,T, from Fig. 2. They are
( (-h71,0), for (z,y) € Tk,

(0,=h71),  for (z,9) €Ty,
(28il2,9) 8¢ilz,9)y _ ) (b7, —h7Y), for (z,9) € T, (3.1)

dr ° Ay (h~1,0), for (z,¥) € Tn, :

(0,A71), for (z,y)€ T,
\ (_h-l’h-l)’ for (-T’y)eTp,

where h is the spacing.

3.1 Linearization of Reflectance Map

Consider the linearization of the reflectance map (2.8) by using different reference gradients

for different triangles. Let (poi,goi) be the reference gradient and «;, §; and v; be the



coefficients of the linearized reflectance map on triangular domain T;. By using (2.12), we
can express the elements of A and b in terms of a;, 8; and ¥; in a straightforward way.

The diagonal element a;; of A can be determined as

a;; = 2// Q?dmdy
[1]

= oAf[ (- Y dzdy+ [[ (-phPdzdy+ [[ (@nh™t - b7 dzdy
+ / /T (anh1)? dz dy + / /T (Boh~)? dz dy + / /T (—aph™ + B,h~)? dz dy]

= 203k + 151+ (am = Bn)Sm + @250 + 15+ (B — )75

= of + 87+ (am = Bm)* + 2 + B2 + (ap = Bp)?,

where ag,---,ap, and Bg,---, B, are coefficients of linearized reflectance maps on triangles
Tky- -, Tp, and S, -+, S, are the areas of the triangles which all equal to h?/2.

The off-diagonal element a; j, of A can be derived as

a;;, = 2/‘/0 @,‘Q,’, dx dy
= 2(//’!‘= ®;®;, dedy+ //T $;®; dz dy)
= 9 / /T (—axh™")(oxh™! - frh™') do dy + / fT (—aph™ + Bph™"Y(oph™) dz dy)
= las(Be — a)Sk + ay(Bp — 25)S,)
= or(Br — ar) + ap(Bp — ap).

Other off-diagonal elements a; j, - - - @; j, can be similarly determined. The results are sum-

marized in Table 1.

ai; | of + BF + (am — Bm)* + of + B; + (ap — Bp)*
@i jy ar(Bk — ax) + ap(Bp — o)

Q3,5 —(arBr + cuffr)

Bijy Bi(ei = B1) + Brm(am — Bm)

Qi,js am(ﬂm —am)+ an(ﬂn = an)

@i, js _(anﬂn + aoﬂo)

ai.je ﬂo(ao - ﬂo) + ﬂp(ap - ﬂp)

Table 1: elements of stiffness matrix A

Finally, the element b; of the load vector b can be obtained by

b = 2]/‘1(5.,-7)@.-“(1;,



= %[—ak //Tk(Eo - ) dzdy - B /fn(Eo -n)dzdy
Ham=pm) [ (Eo = tm) dudy + oo /L (Ex-,)dzdy
+8o [ [ (o= 1)z dy+ By =) [[ (B =) de

%[_ak(Ek — )8k = BUEL — 7)S1 + (am — B )(En — Y )Sm

+an(-En - Tn)Sn + ﬂo(Eo - %)So + (ﬂp - av)(EP - 7P)SP]
= h[—ak(Ek - 'Yk) - ﬂl(.El - 71) + (am - ﬂm)(Em - 7m)
+an(En - 1a) + Bo(Eo —70) + (Bp - ar)(Ep =)l (3.2)

where Eg, -+, E, denote the average brightness on the triangles T, - - -, 7).

If node 7 lies on the boundary of the image, the elements a;; and b; can also be de-

termined from the above equations by setting a and f zero on the triangles outside the

image.

Ezample: We use a simple but typical example to illustrate the construction of the stiffness

matrix A. As depicted in Fig. 3, we consider a square partitioned into 8 triangular domains

with 9 nodal points where the triangles and nodes are ordered in a rowwise fashion. Then,

A is a 9 X 9 matrix of the form

a

a2
0

@14

a15
0

0
0
0

ayz
a2
a3
0
azs
Q26
0
0
0

0 a14 G135 0 0 0 0 1
a3 0 azs axg O 0 0

Q33 ()] 0 a3sg 0 0 0

0 @44 a5 0 ayr agg 0

0 ag45 ass ase 0 ass asg |,
azg 0 ase agge 0 0 ae

0 ay7 O 0 ay azg O

0 ags ass 0 azs ags agy

0 0 asop agg 0 <@gy @gg |

where the elements can be determined from Table 1. We list some values below as example,

an = of + 6%,
a1z = ax(f2 — az),
a1s = —(o1 B + azf2),

ass = (B — a1) + as(fs — ag),

azs = Ba(asz — B2) + B3(as — B3),

az2 = & + B3 + (a2 — f2)?,

ass = o + B% + (as — fe)® + a2 + B3 + (a3 — B3)?,
asg = —(a7f7 + asfs),

asg = a3(f3 — az) + as(fs — as),

asg = Ps(ae — B6) + Br(ar — Br),

where a; and §; are coefficients of linearized reflectance maps on triangles 7;, 1 < ¢ < 8.

Similarly, one can use (3.2) to compute the elements of the load vector. o.
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Note that node 5 in the above example is a typical case for nodes not lying on the

boundaries. We can represent the corresponding nodal operator by a 7-point stencil as

illustrated in Fig. 4.

3.2 Successive Linearization Scheme

One special case of the linearization scheme is to choose the reference (po,qo) to be the

same for all triangular surface patches. We call it the global linearization and denote the

corresponding stiffness matrix by A,. The elements a;; of Ay can be further simplified

and summarized in Table 2. Since the values of a, 3 and 7 are the same for all triangular

domains, their subscripts are dropped.

@i 2(a® - of + §%)
Qijyy Bije 2a(f — a)
i jry Bijs —2af
Qi sy Qi jg 20(a - B)

Table 2: Coefficients of global stiffness matrix A,

Suppose that we do not have any a priori knowledge of the reconstructed surface, we

may set all initial nodal values zero and proceed as follows.

Algorithm I: The basic SFS algorithm

Initialization (k = 0)

Set the reference gradient (p3;, ¢3;) at every triangle T; to be (0,0), and construct the
global stiffness matrix AJ and the load vector b°. Solve Az% = bP for nodal values

20,

Iterations (k =1,2,--)

Set the reference gradient (pk;, ¢5;) at triangle T; to be the local gradient determined
by nodal values z*~1 and construct the corresponding stiffness matrix A} and load
vector b¥, where the subscript | denotes local linearization. Solve AfzF = b* for

nodal values z*.

If ||z¥ — 2*~1|| < ¢, where ¢ is a predefined small quantity, then z* is the desired
solution. Otherwise, go to the next iteration.

In the above algorithm, we use a successive linearization scheme, where the linearization

of the reflectance map is performed based on the local gradients obtained from the previous

iteration. The motivation is simple. There are two kinds of error introduced in our SFS

formulation: the surface approximation error introduced by the triangular element model,
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and the reflectance map approximation error due to linearization. The first kind of error
depends on the spacing h and can be reduced by using smaller spacings. The second kind of
error can be reduced by approximating the reflectance map to the original nonlinear one as
close as possible. Since the coefficients a; and §; are functions of local reference gradients
(Poi, g0i), the choice of (poi, goi) is important. To determine an appropriate local reference
gradient, we need good surface information. By doing the successive linearization, we can
get more and more accurate surface gradients and surface values.

It is also important to point out two related issues. First, both A, and A; are singular
so that we have to find ways to remove their singularities before the solution of the corre-
sponding systems of equations. This will be detailed in Sections 4 and 5. Second, we do
not have a convergence theory for the successive linearization procedure so far. However, it
works for all our test problems in combination with the regularization technique described

in Section 5.

4 Singularities of Stiffness Matrices

The stiffness matrix A is sparse since each nodal basis function ¢;(z,y) has a compact
support and overlaps with only a finite number ( < 6 ) of neighboring nodal basis functions.
It is evident from (2.12) that a;; = @;; so that A is symmetric. Besides, for any nonzero

vector z, we have

Mn Mn M’l
zTAz = E Z 2ia;,jZj = 2//9[2 ®;2]* dz dy > 0, (4.1)
i=1 j=1 =1

so that A is positive semidefinite. However, A is singular and, consequently, the cost func-
tional given in (2.11) does not have a unique minimum. In this section, we will investigate
the reasons (or physical interpretations) for the singularity of A and discuss ways to re-
move the singularity. Let us start with the easier case, i.e. the stiffness matrix with global
linearization. The general stiffness matrix with local linearization will then be examined in

Section 4.2.

4.1 Stiffness Matrix with Global Linearization

One reason for Ay to be singular can be explained by the well known fact that we cannot

determine the absolute heights of the object surface from its image since the brightness

12



of a surface patch is only determined by its gradient. According to Table 2, it is easy
to verify that the row sum of A, is zero for every row. Let u be the vector of 1’, i.e.

u=[1,1,...,1]7. We have Aju = 0. Therefore, if Ayz* = b,
Ay(z"+cu)=b, (4.2)

where c is an arbitrary constant. This singularity is clearly the inherent limitation of the
SFS problem. However, it can be removed by introducing an arbitrary reference nodal
point.

Another reason for A4 to be singular can be understood by considering a single triangular
patch. Suppose that one node is chosen to be the reference. There are still two nodal heights
to be determined. Since the image irradiance equation R(p,q) = E, where E is the average
brightness on the patch, only provides one constraint, the two equations consisting of these
two relative nodal heights have to be linearly dependent. Hence, we conclude that the global
stiffness matrix Ay has a null space of dimension at least two.

The singularity of A, may also be resulted from special values of a and 8. That is, if
a=0,8=0o0ra=p, we are not able to relate the gradient of a surface patch to its
image intensity via (2.9). To see this, let us consider the triangular surfaces Sg, -, Sy over
the triangular domains Tk, -, T, as specified in Fig. 2. If @ = 0 (or # = 0), the image
intensities of surfaces Si and S, (or S; and S,) are independent of p (or ¢) and thus the
nodal height z;. This phenomenon can also be explained by using Table 2. Note that

a5, = 8ij, = 8ij, =5, =0, if a=0,
Gij, = Gijg = Qi = i35 =0, if 8=0.

Similarly, we have
a'.vjl = aivj! = a"-J'a = a",js = 0’ ’f a = ﬂ'

It follows that if @ = B, the image intensities of surfaces S, and S, cannot be used to
determine the nodal height 2;.
Motivated by the previous discussion, the sufficient conditions for the quadratic cost

functional (2.11) to have a unique minimum can be states as follows.

Theorem 1 The quadratic functional (2.11) with A = A, has a unique minimum, if the

following two conditions are satisfied.
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1. There are two neighboring nodal points whose heights are given.
2. a#0,8+#0, and a # B.

Proof. Without loss of generality, it is assumed that we know the two nodal heights of the
triangular surface S; over the domain T; as depicted in Fig. 3. If z; and z4 are given,
since a # 0 we can use the linearized reflectance map and the image irradiance equation to
determine the value of z5. Similarly, we can argue that z; (or z4) can be obtained from given
z4 and 25 (or z; and z5). In turn, similarly the nodal heights of adjacent triangular surface
patches S;, Sg can be determined since they share two common nodes with Sy. Thus, by
this manner, all nodal values 2; can be uniquely determined. m]

In practice, to achieve the first condition we may simply select two neighboring nodal
points in an estimated plane region as the zero reference points. Since a and g are functions
of the reference gradient (po, o), the second condition can be satisfied by choosing a proper
value of (pg, go). To give an example, consider the reflectance map (2.6) with the illumination
direction (ps, ¢s, 1) and (po, go) = (0, 0). It is straightforward to see that the second condition
is satisfied except p, = 0, gs = 0, or p; = ¢s. If the illumination direction happens to be
these cases, we may move the reference gradient slightly around the origin so that the second

condition is still satisfied.

4.2 Stiffness Matrix with Local Linearization

For general stiffness matrix A, we can also state the sufficient conditions for the quadratic

cost functional (2.11) to have a unique minimum as follows.

Theorem 2 The quadratic functional (2.11) has a unique minimum, if the following two

conditions are satisfied.
1. There are two neighboring nodal points whose heights are given.

2. a; # 0,8; # 0 and a; # B; for the linearized reflectance map defined on every domain
T;.

Its proof is omitted since it is very similar to that of Theorem 1, Note that these conditions
are not necessary but sufficient. For example, (2.11) may have a unique minimum even

if the second condition is not satisfied. As before, the first condition can be satisfied by
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selecting two neighboring nodes in an estimated plane region as the zero reference points. To
attain the second condition, one possibility is to consider the selection of a proper reference
gradient for each triangle patch. This can be achieved by checking the values of a;, §;
and perturbing the reference point slightly whenever necessary. Another possibility is to

introduce a regularization method to ensure the well-poseness of the SFS problem.

5 Regularization with Smooth Surface Constraint

Regularization is often achieved by adding some terms to the cost functional so that the
regularized problem is well-posed [1], [24], [32]. It is preferable that we associate the addi-
tional term with some physical interpretation. As discussed in Section 4, the nonuniqueness
of the minimum of the quadratic functional (2.11) is primarily due to some free nodal vari-
ables which may have arbitrary values without affecting the cost functional. Therefore, to
obtain a unique solution we have to restrict these free variables by some constraint, say,
the smoothness surface constraint, so that each node is related to its neighboring nodes
through other means. Another reason to impose the smoothness constraint is to make our
algorithm less sensitive to noises such as the sensor noise, the quantization noise, and the
imperfect reflectance map model for real images.

To impose the smooth surface constraint, we define a new cost functional
E =&+ AE,. (5.1)

where & is the original cost functional given by (2.11), A is the smoothing factor, and the

smoothing cost functional £, can be chosen as a discrete version of

1
bro=y [[G2 43D daay, (52)
or
1
Eoc = 3 / (22, + 2z§y +22,)dz dy (5.3)

and where the subscript ¢ is used since the cost functions are expressed in terms of continuous
variables z and y. The cost functionals (5.2) and (5.3), known as the membrane and the
thin plate model, are proportional to the small deflection bending energy of a membrane
and a thin plate and characterize surfaces of C® and C? continuity, respectively [29],[31].

Both models have the property of rotational invariance. Since the membrane model leads
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to excessive flattened surfaces, the thin plate model is more frequently used for 2-D surface
interpolation. We will focus on the thin plate model.
By discretizing (5.3), we obtain

1
& = W Z E[(z‘n;+l.u9 - 2zn,,nv + Zng—1mny )2 + 2(zn,+l,ny+1 = Zngmy+l

nz ny

2 2
= Zny+l,ny + zﬂz'”y) + (z"x»’lg'i‘l - 22”3',;” + z":-ny-l) ]
where h is the spacing. We can also express (5.3) in matrix form as

£, = 57"Bs, (5.4)

where z is the vector of nodal variables and B is the smoothness matrix which is sparse and
symmetric. It is convenient to view the matrix-vector product Bz as a local nodal operator

operating on a 2-D array. The local nodal operator is of the following stencil form

1
1 2 -8 2
B: 5 1 -8 20 -8 1 (5.5)
2 -8 2
1

where h denotes the spacing between nodal points. Some special operator stencils for nodal
points near the boundary are given in Fig. 6 [29],[31].
Substituting (5.4) and (2.11) into (5.1), we obtain

£= %ZT Cz-bTz 4, (5.6)

where
C=A+ )\B.

The following theorem states the conditions for the existence and uniqueness of the minimum
of (5.6).

Theorem 3 The quadratic functional (5.6) has a unique minimum, if the following two

conditions are satisfied.

1. There is one nodal point whose height is given.
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2. If there ezists at least one pair of coefficients (e, ;) and (aj,8;) of the linearized
reflectance maps over triangular domains T; and T; satisfying

Bi , B

a; ' o

#

Proof. Since matrices A and B are both positive semidefinite, C = A + AB with A > 0
is also positive semidefinite. Thus, the minimum of the quadratic functional (5.6) exists.
In the following, we want to show that, under condition 2, the positive semidefinite matrix
C has only one eigenvalue equal to 0, which is associated with the eigenvector (1,1,---,1).
As a consequence, if both conditions 1 and 2 are met, the minimum is unique.

It is sufficient to prove that zZTCz = 0 only if z is a constant vector. Let us rewrite

2T Cz as

zZ(A + AB)z
= zTAz+ \zTBz

27Cz

Note that for nonzero A, above equation is zero only when both 2T Az and zTBz are zero
since each term represents nonnegative energy. Recall that 27 Bz is the discretized version
of
/ / (22, + 223_.!, + z;‘;y) dz dy

which becomes zero only when z(z,y) is a linear function over 2. Hence, zTBz is zero
only when (p,q) is constant over the whole domain ©. On the other hand, from (2.8)
and (4.1), we know that the term zT Az is zero only when 2,’2’; ®;z; = 0 or, equivalently,
arpx + Brqr = 0 for every triangular domain T%.

Thus, zT Cz is zero only when aixp+ Brq = 0 for every triangular domain T} with respect
to some constant (p,q). This implies all (ax,Bk), 1 £ k < My, are orthogonal to a certain
(p,¢). Now, consider the case where two coefficients (a1, 8:1) and (ag,B2) are not linearly
dependent. For 2T Cz to be zero, we have to require (p, g) = (0,0). In addition, if one nodal
point is assigned with value ¢, if follows that z = (¢, ¢, -, ¢)7. ]

As discussed earlier, since only relative nodal heights have to be determined, we can pick
an arbitrary point as reference to satisfy the first condition. The second condition usually
holds in practice when we perform the local linearization of the reflectance map based on

reconstructed surface obtained from the previous iteration. Therefore, the unique minimum
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of (5.6) can be easily guaranteed. Note that the conditions in Theorem 3 are sufficient but
not necessary. For example, in the initialization stage of the successive linearization scheme
described in Section 3.2, even though condition 2 in Theorem 3 does not satisfy, the unique
minimum of (5.6) is still guaranteed by conditions of Theorem 1.

We incorporate the regularization into the basic SFS algorithm to obtain a modified

SFS algorithm, which is the algorithm used in our experiments described in Section 7.
Algorithm II: The modified SFS algorithm with regularization.

Initialization (k= 0)
Set the reference gradient (p3;,¢f;) at triangle T; to be (0,0), and construct the co-
efficient matrix C° = AJ + AB and the load vector b®. Solve C°2° = b° for nodal

values z°.

Iterations (k=1,2,---)
Set the reference gradient (pf;, ¢f;) at triangle T; to be the local gradient determined by
nodal values z*~1, and construct the corresponding coefficient matrix C* = Af" + 2B

and load vector b*. Solve C*z* = b* for nodal values z*.
If ||z¥ — z*-1|| < ¢, where ¢ is a predefined small quantity, then z* is the desired
solution. Otherwise, go to the next iteration.

6 Implementation Details

In this section, we discuss some implementation details: the triangulation of an image, the

multigrid computational method, and the surface interpolation technique.

6.1 Triangulation of an Image

Recall that the construction of the load vector b requires the average intensity Ej over
triangular domain T,k = 1,...,M;. To determine the average intensity E), we have
to first partition discrete image points so that they are contained by triangular domains.
Consider the case where the spacing between every adjacent nodal point is A = 4. Two
possible partitioning schemes are depicted in Fig. 6, where the 2-D subscript notation is
used for convenience. As shown in Figs. 6(a) and (b), nodal points belong to a subset of
image points in the first scheme whereas they are located between the image points in the
second scheme. The average intensity over a triangular domain can be obtained by summing
up all the intensity values inside the triangle and some fractions of intensity values for nodes

lying on the boundary of the triangle, and then divide it by the area of the triangle. The
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average intensities E; for schemes given in Fig. 6(a) and (b) can be computed, respectively,

as
Er = [(En,+2mng41 + En430y41 + Bno43,n,42)
+%(En,+l,ny+l + En 42,ny42 + Eng43ny+3 + En 41,0,
+En. 42, + En 43y + Enztany+1 + En 440,42 + En. 440 +3)
42 (Brany + 2yt + Bnattmy 1))/ (47/2),
and

Ey = [(Enz+1.ny + En=+2,ny + Ens+3,ﬂy + En=+2,ny+l + Enz+3,ny+1 + Enz+3,ny+2)
1
+§(En=.ny + En 41,np41 + Enc42ny42 + Eno43,n,43)1/(R?/2),

where h2/2 = 8 is the area of every triangle. It turns out that these two schemes give
similar results. In all experiments reported in Section 7, the first scheme with A = 1,2,4 is

used to triangularize the input image.

6.2 Multigrid Computational Method

The minimization of (5.6) is equivalent to the solution of the linear system Cz = b. Let
N = M, be the number of unknowns. To solve the system Cz = b with direct methods such
as Gaussian elimination requires O(N?3) operations and O(N?) storages. In contrast, if the
system is solved by iterative methods such as preconditioned conjugate gradient (PCG) and
multigrid methods, we only have to store the nonzero element of C, which is proportional
to O(N). Among various iterative methods, the multigrid method is considered to be
optimal in the sense that the number of operations required is only proportional to O(N)
[2], [8). It has also been reported recently that the PCG method with the hierarchical
basis preconditioner [28], [34] provides another efficient computational alternative, and is
applicable to several computational vision problems such as surface interpolation. We use
the multigrid method for our experiments, which will be briefly described below.

Let us rewrite the system Cz = b as
Chrzn = by, (6.1)

where the subscript & is added to denote explicitly that the discretization is performed with

respect to a grid Q, of spacing h. To solve (6.1), most single-grid relaxation methods share
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one common limitation. That is, the low frequency components of the error decay slowly
whereas the middle or high frequency components of the error decay relatively fast. To
accelerate the convergence rate of the error in the low-frequency region, one may consider
to use a grid of larger spacing, say, Q24. This idea leads naturally to a two-grid method.
In the two-grid method, the solution is obtained by combining the original fine grid
solution with the interpolated correction of the smooth error component computed on the

coarse grid. The two-grid method consists of the following three steps [18]:

1. Presmoothing: Select a relaxation operator S, for solving (6.1). Typically, S is the
Gauss-seidel or Jacobi relaxation methods. Thus, with a given initial estimate zgo)’
one can apply the relaxation operations v; times and obtain zg) as the result. The
corresponding residual is

r, = by — Chzﬁl).

2. Coarse-grid correction: The residual rp can be projected to a coarser grid §225 by

using a restriction operator I?#,
rop = Izhr;,.

Then, we assume an exact solver is available on the grid Q,, so that one can determine

the solution z;, of the coarse-grid equations easily,
Canzan = rap.

Finally, we interpolate the coarse grid correction zy; into the fine grid and add it to

the fine grid solution such that
z}f) = z?) + Ié‘,,zz;.,

wher I{,‘h denotes an interpolation operator.

3. Postsmoothing : Using zf) as the initial value, we apply the Sy iteration v, times and

the resulting approximate solution is zf’).

The main weakness of the two-grid method is that an exact solver is assumed available

on the coarse grid. Although this is generally an unreasonable assumption, it is easy to see
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that the problem on the coarse grid can itself been solved by a two-grid method. Thus, by
applying the two-grid method recursively, we obtain a multigrid method, where successive
sequence of coarser grids are employed until very few discretization points are involved that
a direct solver is applicable. There are three types of multigrid methods according to the
recursion patterns: the V-cycle, W-cycle and full multigrid algorithm [2], (8], [18]. The
V-cycle multigrid is simple, yet works well for most linear problems.

In our experiment, we use the V-cycle multigrid scheme with the lexicographical Gauss-
seidel relaxation method as the smoothing operator. We choose the full-weighting restriction
restriction operator to transfer the residual from finer grids to coarser grids and the linear
interpolation operator to transfer the correction from coarser grids to finer grids [18]. The
coefficient matrices Cap, Cap,- -, Cotp ++Cary, (L = log MM - 1) for coarser grids are
defined as

Con=Aay+2AByy, 1<Z1L1,

where A, and By, are the stiffness and smoothing matrices on grid Qy,, and can be

constructed using the same approaches described in Sections 3 and 5, respectively.

6.3 Surface Interpolation Technique

When the number of nodes in the triangular element model is less than the number of
pixels in the observed image, we have to perform surface interpolation based computed
nodal heights to increase the resolution of the final result. This problem has been well
studied in the context of surface reconstruction from stereo images [7], [28], [29], [31).

One well known scheme is the variational spline fitting algorithm [7], [29], [31]. By using

this algorithm, we minimize the cost functional
& = Eq+ X6, (6.2)

with &; and £, defined below. Let 3; be the desired height at point ¢, and z; be the height
computed through successive linearization if ¢ happens to be a nodal point or 0 if ¢ is a point
to be interpolated. Besides, suppose that we first order the nodal points with¢ =1,---, M,
and then the interpolated points i = M, +1,---, M;, where M; is the total number of nodal
and interpolated points. Then,

. 1 M,

&4 = 2 > (& - =),

i=1
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and
A
=3 TRz,

where B is the smoothing matrix characterized by the local stencil

1
4| 2 -8 2
B: —|1 -8 20 -8 1],
bl 2 _8 2
1

and stencils given in Fig. 6, where h; denotes the spacing between adjacent interpolated
points, Note that the B is similar to B given by (5.5) except their dimensions. The B is an
M, x M,, matrix whereas B is an M; X M; matrix.

Let us write (6.2) in matrix form as
£ = %ETCZ -bTz 46, (6.3)

where

and where D is a diagonal matrix with element 1 for the row corresponding to a known
data point and 0 otherwise and b the zero-padded vector whose element is z; for node i.
The problem (6.3) can also be solved efficiently by the multigrid method (29}, [30] or the
PCG method with the hierarchical basis preconditioner [28].

From our numerical experience, the SFS algorithm with surface interpolation oftens
leads to a surface much smoother than the original one (see Test Problem 4 in Section 7).
Thus, in order to preserve the quality of the reconstructed surface, it is advisable to use
h = 1in the finest level. In other words, all image points are chosen to be nodal points of
triangles. However, the surface interpolation scheme may be applicable for an image having

large smooth surfaces and triangularized with nonuniform patches.

7 Experimental Results

We have tested our algorithm on several synthetic and real images. Unless specified ex-
plicitly, all nodal points of finest triangles coincide with the image points so that the finest

grid has the spacing & = 1 and no interpolation is performed. For all test images, we use
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the global linearization scheme in the first iteration. Then, a few more successive itera-
tions, where the local linearization of the reflectance map is performed, are used. Since the
reconstructed surface of the previous iteration serves as the initial estimate of the current
iteration, the number of multigrid V-cycles required to reach a given error bound decreases
as the successive linearization scheme proceeds. All the following experimental results are
obtained after 10 successive iterations with around 20 multigrid V-cycles in total. Since the
number of iterations required for satisfactory results is independent of the problem size N,
the computational complexity is proportional to O(N). Thus, it is very computationally
efficient. To give a rough idea, for our testes images the multigrid V-cycles required to
solve the 10 successive approximating problems are typically 10, 2, 1,1,:--1, and it takes
less than 20 minutes to reconstruct the surface for a 256 x 256 image on a Sun-4 sparc
workstation.

To illustrate the quality of the reconstructed surface, we present the 3-D surface plot
of the reconstructed surface as well as three shaded views which are produced with three
illuminating directions: the orthogonal direction, the same and the opposite directions used
to generate the original image [12]. The parameters of the tilt, slant, albedo and bias have
been chosen experimentally in our test and reported in the figure captions. Note that several
approaches to estimate these parameters have been recently studied [19], [21], [35].

Test Problem 1: Terrain

The tested image is a complicated synthetic image generated from the digital terrain
model (DTM). Fig. 7(a) shows the 128 x 128 original DTM image of a wrinkled and
steep surface (called the alto-relievo surface [12], [17]) of mountain area illuminated from
northeast direction. The 3-D plot of the reconstructed surface and the shaded views of the
reconstructed surface illuminated from the northeast, southwest and northwest directions
are shown, respectively, in Fig. 7(b)-(e). Note that the original image in Fig. 7(a) and the
reconstructed image in Fig. 7(c) are very similar, except that the reconstructed image is
slightly smoother. The smoothing effect is due to the smoothing factor (A = 1000). The
reconstructed image is not too sensitive to the variation of A in a certain range. However, the
reconstructed surface tends to have visible local fluctuations not appearing in the original
image for very small A, and becomes too smooth for very large A. The range of good A
values depends on the problem. This observation is in general true for all our test problems.

Test Problem 2: Lunar Surface
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The tested image is a 128 x 128 real image of the lunar surface as shown in Fig. 8(2).
The 3-D plot of the reconstructed surface and the shaded views of the reconstructed surface
illuminated from the same, the opposite and the orthogonal directions with A = 1000 are
shown, respectively, in Fig. 8(b)-(e). It is interesting that even though the lunar surface may
not be Lambertian, we obtained good estimate of the surface with the Lambertian model. In
addition, we observe that, compared with the other three tested images, the reconstructed
surface of this image is relatively insensitive to the variation of the parameters, i.e. tilt,
albedo, slant, and bias, used in the reflectance map.

Test Problem 3: Pepper

The tested image is a 256 X 256 real image of a pepper which has a smooth surface as
shown in Fig. 9(a). The 3-D plot of the reconstructed surface and the shaded views of the
reconstructed surface illuminated from the same, the opposite and the orthogonal directions
with A = 1000 are shown, respectively, in Fig. 9(b)-(e). Note that this surface has only
slowly changing slopes (called the basso-relievo surface [12], [17]). As a result, compared
with the alto-relievo surface, it takes fewer iterations, say, 5 or 6, to achieve satisfactory
results.

Test Problem 4: Lenna

The tested image is the 256 x 256 Lenna image as shown in Fig. 10(a). This image con-
sists of both smooth and rapid varying areas with discontinuities in the surface orientation.
The 3-D plot of the reconstructed surface and the shaded views of the reconstructed surface
illuminated from the same, the opposite and the orthogonal directions with A = 2000 are
shown, respectively, in Fig. 10(b)-(e). This kind of test problem is considered difficult,
since it contains several objects (possibly non-Lambertian) with different reflectivities and
shadows. Besides, the lightening condition is not ideal. However, with the assumption of
homogeneous reflectivity and Lambertian over the entire image, our algorithm still produces
- good results. Pay attention to the almost perfect reconstructed surface, especially in the
regions of face, hat, hairs and the boundaries along the hat and hair lines. By comparing
Fig. 10(c) with the original image in Fig. 10(a), we see that they are very similar.

We also test the idea of using a large triangular patches such as 2 = 2 and 4 in the
finest grid and interpolating the result with the algorithm described in Section 6.3. The
reconstructed surfaces and shaded views with the same illuminating directions are shown

in Fig. 11. The result with A = 1, i.e. no interpolation, is shown in the same figure for
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comparison. It is no surprise that larger triangular elements lead to smoother surfaces and
degraded final results. Therefore, in order to get better results, we recommend to use finer

triangular elements.

8 Conclusion

We presented a new efficient algorithm for the SFS problem in this research. Our algorithm
recovers surface heights directly without any additional integrability constraint or artificial
boundary assumption. It is based on the linear approximation of the reflectance map and a
triangular element surface model, in which we express a surface as a linear combination of
nodal basis functions. The nodal heights are determined by minimizing the cost functional,
the total brightness error parameterized by nodal heights. This is equivalent to solving a
large sparse linear system, to which the efficient multigrid method can be easily applied.
We discussed the existence and uniqueness of the solution by investigating the properties
of the stiffness matrix. A regularization technique using the smooth surface constraint was
introduced to ensure the well-poseness of the SIS problem A successive linearization scheme
was developed to obtain more and more correct surface and gradient information. Another
advantage of our algorithm is that it maps naturally onto massively parallel architectures
where each process covers one or several nodes.

Along our approach, there are several interesting problems worth further study. Real
image in general may contain several objects having different irradiance models. Since
no restrictive assumptions like the constant reflectivity and single illumination direction
over the entire image are required for our algorithm, it seems that we may generalize our
algorithm for complicated images by examining different reflectance map models in different
segmented regions of the image. It is also natural to use our framework in the context of
stereo images and develop a more efficient stereo SFS algorithm, which is under our current
study.
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Figure Captions

A uniform triangulation of a square domain 2.

A nodal basis function ¢;.

A simple example of a triangularized domain.

The 7-point stencil nodal operator.

The stencil forms of the nodal operators for B near the boundary.
Triangulation schemes of a discrete image

Results of our algorithm applied to the synthetic 128 x 128 DTM image: (a) original
image generated with (tilt, slant, albedo, bias) = (30, 40, 230, 10), (b) reconstructed
surface, (c)-(d) shaded views of (b) with the same, opposite and orthogonal illumina-

tion directions, with the parameter tilt equal to 30, 210 and 120, respectively.

Results of our algorithm applied to the real 128 x 128 lunar image: (a) original
image, (b) reconsructed surface with (tilt, slant, albedo, bias) = (20, 60, 240, 10), (c)-
(d) shaded views of (b) with the same, opposite and orthogonal illumination directions,
with the parameter tilt equal to 20, 200 and 110, respectively.

Results of our algorithm applied to the real 256 x 256 Pepper image: (a) original
image, (b) reconsructed surface with (tilt, slant, albedo, bias) = (40, 45 245 0), (c)-(d)
shaded views of (b) with the same, opposite and orthogonal illumination directions,
with the parameter tilt equal to 40, 220 and -50, respectively.

Results of our algorithm applied to the real 256 x 256 Lenna image: (a) original
image, (b) reconsructed surface with (tilt, slant, albedo, bias) = (30, 60 245 3), (c)-(d)
shaded views of (b) with the same, opposite and orthogonal illumination directions,
with the parameter tilt equal to 30, 210 and -60, respectively.
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Figure 11:  Results of surface interpolation for the 256 X 256 Lenna image: (a) surface inter-
polated from 64 x 64 nodal points (b = 4), (b) surface interpolated from 128 x 128
nodal points (h = 2), (c) surface reconstructed without interpolation (k = 1), (d)-(f)
are the shaded views of (a)-(c), respectively.
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Fig. 2. A nodal basis function ¢;,
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Fig. 3. A simple example of a triangularized domain.

Fig. 4. The 7-stencil nodal operator.
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Fig. 5. The stencil forms of the nodal operators for B near the boundary

O :image pixel

@ : nodal point

Fig. 6. Triangulation schemes of a discrete image
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Figure 8:  Results of our algorithm applied to the synthetic 128 x 128 DTM image: (a) original image
generated with (tilt, slant, albedo, bias) = (30, 40, 230, 10), (b) reconstructed surface, (c)-(d) shaded
views of (b) with the same, opposite and orthogonal illumination directions, with the parameter tilt equal
to 30, 210 and 120, respectively.
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Figure 9:  Results of our algorithm applied to the real 128 x 128 lunar image: (a) original image, (b)
reconsructed surface with (tilt, slant, albedo, bias) = (20, 60, 240, 10), (c)-(d) shaded views of (b) with
the same, opposite and orthogonal illumination directions, with the parameter tilt equal to 20, 200 and
110, respectively.
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Figure 10:  Results of our algorithm applied to the real 256 x 256 Pepper image: (a) original image, (b)
reconsructed surface with (tilt, slant, albedo, bias) = (40, 45 245 0), (c)-(d) shaded views of (b) with the

same, opposite and orthogonal illumination directions, with the parameter tilt equal to 40, 220 and -50,
respectively.
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Figure 11: Results of our algorithm applied to the real 256 x 256 Lenna image: (a) original image, (b)
reconsructed surface with (tilt, slant, albedo, bias) = (30, 60 250 3), (c)-(d) shaded views of (b) with the
same, opposite and orthogonal illumination directions, with the parameter tilt equal to 30, 210 and -60,

respectively.
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Figure 12:  Results of surface interpolation for the 256 x 256 Lenna image:(a) surface interpolated from
64 x 64 nodal points (h = 4), (b) surface interpolated from 128 x 128 nodal points (h = 2), (c) surface
reconstructed without interpolation (h = 1), (d)-(f) are the shaded views of (a)-(c), respectively.
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