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Abstract

Minimum variance beamforming is a powerful technique in adaptive array pro-
cessing that allows the reception of a signal of interest while nulling unwanted
interfering signals. In the presence of a high input signal-to-noise ratio (SNR),
however, the technique is very sensitive to amplitude and phase perturbations of
the array processing system and the processor may attempt to null the signal of
interest as if it were an interfering signal. The result is a substantial degradation
of the output SNR of the beamformer over that achieved for the error-free system.

This dissertation presents and analyzes robust constraints that protect a mini-
mum variance beamformer from the effects of small phase anomalies resulting from
factors such as random channel phase errors, array placement errors, steering er-
rors, and/or frequency miscalibration. The use of robust constraints is shown to
eliminate the need for precise phase calibration of the array. This is an important
contribution because, in most practical applications, precise phase calibration is
more difficult than is accurate amplitude calibration.

The approach taken in this thesis is to first demonstrate that the robust con-
straints can be derived directly from an analysis of the beamformer output power.
A critical parameter which depends on both the beamformer weighting coefficients
and the phase errors is identified. It is shown that performance degradation will

only occur when this parameter lies within a circular region in the complex plane.

xi



Robust constraints for the array weights are then identified which force the pa-
rameter value to be external to the circular region, regardless of the specific values
of sufficiently small phase errors. An identical sct of robust constraints is shown
to arise when derivative constraints are placed on individual array elements.

A closed-form solution for the weight coefficients achieved with robust con-
straints is derived for the specific case of a narrowband adaptive array processor.
Equations are developed that predict SNR performance resulting from the use of
the robust constraints. An adaptive processor for the robust system is developed
using & modified Generalized Sidelobe Canceller structure. Performance of the
robust system is illustrated using both simulation experiments with synthesized
input data and computations on actual array data. The results obtained confirm

the effectiveness of the constraints in phase-perturbed environments.
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Chapter 1

Introduction

Adaptive processing is a method that allows systems to track time-varying signal
environments. It has been used in conjunction with arrays of multiple sensors
as well as with single-channel communication systems. The term adaptive array

processing refers to the case of multiple sensor systems.

Sensors which are placed at differing spatial locations provide valuable time
delay information that can be exploited to enhance desired signals while simul-
taneously minimizing the effect of unwanted interference signals. This allows,
for example, the reception of a desired signal in an environment consisting of
other signals which have the same carrier frequency. Practical applications range
from underwater acoustic hydrophone arrays to antenna arrays that receive radio
frequency information.

Adaptive array techniques are frequently used in unknown environments to
reduce the effect of unwanted signals [1,2]. Unfortunately, at high input signal-
to-noise ratio (SNR) levels, slight phase perturbations can cause substantial per-

formance degradation [3]. Vural [4] has observed that adaptive algorithms are

1



less sensitive to perturbations in low SNR environments. Many researchers have
offered techniques to make adaptive algorithms more robust to these perturbation
effects. Zahm [5] originally proposed artificially adding white noise into the input
signal during parameter calculations. This artificial noise injection approach has
the effect of lowering the apparent SNR and thus lessening the adaptive proces-
sor’s sensitivity to errors. Unfortunately, this method also reduces the ability of
the adaptive algorithm to reject unwanted signals (jammers) from the processor
output. Jablon [6] further analyzed the single jammer case and suggested an im-
plementation scheme for artificial noise injection. For the case of a single desired
signal and one jammer with known power levels, he derived a closed-form expres-
sion for the optimal noise injection level. Unfortunately, the a priori power level
information required for this method is not always available. Jablon (7] also stud-
ied the reduction in effective beamwidth which results with the use of an adaptive
beamformer in the presence of perturbations. Cox et al. [8] studied the concept
of bounding the norm of the weight vector using quadratic inequality constraints
to provide robust performance. This approach is similar to artificial white noise
injection, however, and consequently it also requires a priori knowledge of the

signal environment to determine the optimal weight bound.

Other authors have studied combinations of existing robust techniques. Er and
Cantoni [9] supplemented the approach of quadratic inequality constraints with
eigenvector null constraints which are designed to span the space of all possible
perturbed signals. Hoffman and Buckley [10] used linear hyperslab constraints
(also known as soft linear constraints) in addition to quadratic inequality con-

straints on the weight vector.

2
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Although these methods provide improved performance in the presence of gen-
eral array perturbations, they do not take advantage of the special structure that
exists for the case of small phase perturbations. In fact, it is shown in this disser-
tation that eigenvector null constraints cannot be used with such perturbations.
Small phase perturbations arise due to such common problems as array element
placement error, non-isotropic propagation mediums, misalignment of the array
relative to the signal of interest (steering errors), and frequency calibration errors.
Under conditions of high input SNR, array designers have found it difficult, if not
impossible, to design phase calibration methods which prevent severe performance
degradation when traditional adaptive array algorithms are employed. As will be
shown, errors as small as one thousandth of a wavelength at each array element
can cause significant degradation of the adaptive array output SNR. This disser-
tation examines the small phase perturbation case in detail and presents a new

approach for this important class of problems.

The remainder of this dissertation is divided into five chapters. Chapter 2 re-
views adaptive array processing, signal models, and an adaptive implementation
scheme known as the Generalized Sidelobe Canceller. Closed-form equations are
presented that predict output SNR performance in the presence of phase pertur-
bations. Existing techniques that combat performance degradation are explained

and examined.

Chapter 3 develops an analysis of the perturbation problem and presents new
robust constraints that exploit the special structure of small phase errors within
an adaptive array. These constraints are transformed into a new structure that
provides a closed-form weight vector solution and allows a modified Generalized

Sidelobe Canceller to be used for adaptive implementation of the robust system.

3



Chapter 4 analyzes the new robust constraints and shows their equivalence
to derivative constraints placed at individual array elements. Closed-form ex-
pressions for robust SNR performance are developed and compared to non-robust
performance.

Chapter 5 presents simulation results for the new technique and includes per-
formance measurements using actual data from a radio frequency linear array.
Predicted performance is compared to simulated performance to verify the anal-
ysis of the previous chapter.

Chapter 6 summarizes the work and describes areas for future research.



Chapter 2

Background

2.1 Adaptive Array Processing

Adaptive array processing provides advantages over conventional processing in
many practical applications. Traditionally, non-adaptive array techniques direct
the mainlobe of the array response toward the signal of interest [11]. The array
response in such systems is susceptible to sidelobe leakage. If a strong interference
signal (jammer) is incident on the array from a direction corresponding to one of
the sidelobes of the array response, for example, the output of the conventional
processor may contain more power from the jammer than from the signal of in-
terest. Adaptive techniques have an advantage over non-adaptive beamforming
in that they are capable of changing the array response in order to effectively null
any jammer that appears in the sidelobes. A well researched and powerful area in
adaptive array processing that achieves this desired effect is linearly-constrained

minimum variance beamforming.



2.1.1 Preliminaries

Array processing uses several sensors located in different positions to receive signal
energy from the surrounding environment. By selectively combining the output of
these sensors, the processor can constructively sum a desired incoming signal and
simultaneously reduce the power of unwanted interfering signals to enhance the
signal-to-interference-plus-noise ratio (SINR) observed at the processor output.

A typical sensor array is shown in Fig. 2.1. Each of N array elements is located

Ye
A x, & Ammay
k El "y, "

Figure 2.1: Narrowband Array Environment

in 3-dimensional space with Cartesian coordinates given by a position vector ay,

T

Yk 3 k=l,2,...,N . (21)

(]2

ax

2k

In an ideal system, each sensor is assumed to be omni-directional and the medium

of propagation is assumed to be isotropic. The signal of interest is assumed to

6
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be narrowband and located in the far-field of the array (i.e. to produce planer
propagation wavefronts at the array). The unit magnitude directional vector u

for a particular propagating signal is given by,

— sin (@) cos () |
u =| —cos(®)cos(®) |, (2.2)

- sin ()
where © and @ represent polar coordinate angles. The symbol © denotes the
azimuth angle measured clockwise from the positive y-axis within the x-y plane,
and @ is the elevation angle above the x-y plane. The output response of the
kth element at time ¢t is z, (). This continuous-time output signal is sampled at
uniform time intervals spaced by T seconds to create a sampled signal denoted as
zi (n),

zx(t) = 2x(nT) = zi(n), n=12,... . (2.3)
The output for each array element is assumed to consist of a desired signal s, (n)

and a background noise-plus-interference term ny (n),
zk(n) = sk(n) + ni(n). (2.4)

For the narrowband case, the signal is further assumed to be an unmodulated

complex exponential of the form,
se(n) = g,ef¢eI FAUIUnT (2.5)

where o, is the signal magnitude term, £ is the signal phase, 2T"alu is the phase
delay of the k'* array element relative to the coordinate origin, ) is the spatial
wavelength, w is the temporal frequency, and { represents complex conjugate

transpose. Note that the only element-dependent component in this expression is

7



s2n o . . o e
the phase term ¢’ a0 The N-dimensional vector containing these phase terms

is called the steering vector and is given by,

[ dl - [ ejgfa;“ ]
d i Fau
d&| 2|4 (2.6)
dn el Fayu

In a similar manner, the individual output responses zx(n), signal responses si (n),
and noise responses n,(n) are elements of the vectors x, s, n, respectively. Note
that the time sample index “n” has been dropped for notational convenience. It
is used only when needed to differentiate between different time samples. The

relevant spatial sample vectors are then,

3] S n
T2 S2 N2
- A A
X=| z3 sy S=| s3 ) and n= n3 | (27)
N SN nN
where,
X =s +n (2.8)

The signal vector can be written as a complex-scaled version of the steering vector

d,

s =o,e%d. (2.9)

/
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2.1.2 Array Beamforming

The output y of a narrowband array beamformer is defined as the inner product

of the complex data vector x with a complex weight vector w,

y =wix, (2.10)

where the weight vector w contains a single complex coefficient for each array

element,

w,

we

>

wN

The output power of the beamformer is the expected value of the output magni-

tude squared. Thus, for a fixed weight vector w,

E[lylz] = E[lw"xﬂ, (2.12)
= E[w*xxfw], (2.13)
= wiE [xxf] w, (2.14)

and the term E xx*] is the correlation matriz and is denoted by R.,. The

beamformer output power can then be expressed as,

E [jyl’] = w!Rz.w. (2.15)



2.1.3 Linearly-Constrained Adaptive Beamforming
Multiple Constraints

The object in linearly-constrained adaptive beamforming is to minimize the out-
put power of the beamformer while maintaining one or more linear constraints on

the weight vector. Thus, the equation which defines w is,
min wiR,,w  subjectto Clw=f. (2.16)

The constraint matrix C contains M column vectors that define the constraints,
while f is a vector whose M elements contain the constraint value for each column

of C. Thus,

: - Al

ey |, and £2 f2 | (2.17)

Q
>
0
(2]
~

) - fm

= -n

Figure 2.2 illustrates the geometry for a 2-dimensional real example which employs
one constraint. The concentric rings represent contours of constant value of the
quadratic power output function in Eq. (2.15). The upper diagonal line represents
the constraint that the weight vector must satisfy and any weight vector which
satisfies the constraint must terminate on this line. The optimal weight solution
Wopt is defined by the point where the constraint line is tangent to the lowest
contour level. At this point, the output power is minimized and the constraints
are satisfied. Linearly-constrained adaptive beamforming is also termed minimum

variance beamforming (MVB) [11].

10

S

/

A



k)

Constraint Hyperplane
th=f\

wa=0

Ouctput Power
ontours

wTRxxw

Figure 2.2: Output Power Contours with a Linear Constraint

The solution to the constrained minimization problem in Eq. (2.16) is well

known [12] and given by,
wou = RZIC(CTRZIC) T, (2.18)

When the environment consists of independent and equal variance noise at each
sensor, the system operates in spatially white noise and R;; = 1. The optimal

weight vector in this case is termed the guiescent weight vector wy,

w,=C(ctc) . (2.19)

Single Constraint Case

When only one constraint is employed, Eq. (2.16) simplifies to,

min wiR..w  subjectto clw=f. (2.20)

11



An important special case occurs when the steering vector d for the signal of
interest is used as the single constraint vector and the array is constrained to
have unity gain, i.e.,

cfd and fE1L (2.21)

The defining equation for this case is then,
min wiR,,w subjectto diw =1, (2.22)

and the quiescent weight vector w, is given by,

w, = c(ctc)™'r, (2.23)
= d(dtd), (2.24)

d
- (2.25)

Equivalently, w, is a scaled version of the desired steering vector d. In this system,
the output is constrained to pass any signal which is incident on the array from
a direction defined by the steering vector d while simultaneously minimizing the
total output power. Incident waveforms that do not have the same steering vector

as the signal of interest are then susceptible to nulling.

2.1.4 Adaptive Implementations

In many practical array applications, the correlation matrix R., is not known
a priori. In these cases, direct application of Eq. (2.18) to calculate the weight
vector requires an estimate of the correlation matrix. Alternatively, methods exist
that iteratively converge to the optimal weight vector wop, without estimating
and inverting the correlation matrix R,,. The following sections describe these

adaptive techniques.

12



The Least-Mean-Square Algorithm

The Least-Mcan-Square (LMS) method is an adaptive algorithm that uses an
estimate for the gradient of a quadratic function. When a reference signal r(n) is

available, the LMS algorithm is given by,
w(n + 1) = w(n) + 2ux(n) [r(n) — y(n)]*, (2.26)

where u is the adaptive step size parameter. Widrow [13] has shown that this
procedure results in a weight vector which converges in the mean to a value which

minimizes mean-square error (mse) where,
2
mse=E [Ir(n) - y(n)| ] . (2.27)

In many array applications, however, no reference signal is available and alterna-

tive adaptive methods must be applied.

The Generalized Sidelobe Canceller (GSC)

Griffiths and Jim [14] have described an adaptive structure for the power min-
imization problem defined in Eq. (2.16). In their approach, the constrained
problem is decomposed so that it can be solved in an unconstrained fashion. The
resulting structure is known as the Generalized Sidelobe Canceller (GSC) and is
depicted in Fig. 2.3. Tseng [15] offers an excellent proof that the GSC solves the
same problem as stated in Eq. (2.16).
In the GSC, the weight vector is expressed as the difference of two orthogonal
components,
w=w, — W,w,, (2.28)
where both the quiescent weight vector w, and the matrix W, are non-adaptive.

The adaptive portion of the processor, w,, is used to minimize the output power

13



% 1) y .

N\
)
N

Y W = -

Figure 2.3: The Generalized Sidelobe Canceller (GSC) Structure

E [lylz]. The columns of W, are chosen to be any linearly independent set of
vectors that span the orthogonal space of the columns of the constraint matrix

C. Equivalently,

C'W, =0, (2.29)

where 0 is a matrix containing all zeros. As a result of this condition, the vector
x, has dimension N — M or, equivalently, contains a number of elements equal to
the number of degrees of freedom (DOF) in the constrained system.

With the GSC structure, an unconstrained LMS algorithm can be implemented
to update the reduced-dimensional adaptive weight vector w,. The output y, (n)
produced by the quiescent weight vector w, is used as the reference signal r(n)
in the LMS algorithm. The final output y(n) is treated as the LMS error e(n).
The GSC vectors x,(n) and w,(n) are used as the LMS data and weight vectors,

respectively.

14
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The upper path of the GSC can be viewed as a fixed filter (defined by the con-
straint equations) for the desired signal. Since the columns of W, are orthogonal
to the desired signal constraint, signals that meet the constraints are blocked in
the lower path. Thus, W is referred to as the blocking matriz. Minimum output
power is achieved when the adaptive weights w, cancel signals in the upper path
which are correlated with those in the lower path. Since the desired signal is
blocked in the lower path, it cannot be cancelled by the adaptive weights. Hence,
the desired signal always passes through the system. Other signals that appear

in both upper and lower paths are reduced in power at the system output.

2.2 Phase Perturbation in Arrays

Although adaptive array processing is a very powerful technique for the reception
of a desired signal in the presence of jammers, its performance may be sensitive to
sensor phase errors. Phase errors (perturbations) can result from several sources.
One such common source is element placement error. Differences in propagation
delay from those expected for ideal placement cause inaccuracies between the as-
sumed and actual steering vectors. Since a priori knowledge of the desired signal
frequency is necessary when designing the constraint vector, frequency errors can
also cause problems. Anticipated arrival direction information is also needed to
calculate the desired signal steering vector, hence, such errors may cause pertur-
bation. In addition, when the environment is not isotropic, channel phase errors
can cause misaligned steering vectors. Whenever the actual steering vector differs

from the computed steering vector, SINR degradation may occur.

15



2.2.1 Misaligned Desired Signal

When phase anomalies occur, the actual steering vector d is perturbed from the
theoretical steering vector d. Even when this difference is small, adaptive beam-
formers may interpret the misaligned signal as a jammer {16} and attempt to null
it, as illustrated in Fig. 2.4. The constraint ensures that the projection of w on d
is constant. However, as the perturbed steering vector d deviates from its nominal

value, the constrained adaptive beamformer reduces the signal output wid.

Hyperplane Constraint
dw=1

Perturbed Steering Vector
Unpenurbed Steering Vector

.2

w

Constrained Weight
Vector Effectively
Nulling the Perturbed
Steering Vector

Figure 2.4: Misaligned Signal Being Nulled by Adaptive Constrained Weight

2.2.2 SINR Degradation

To demonstrate the effects of phase errors, the output SINR of a minimum vari-
ance beamformer was computed as a function of array element placement pertur-

bation values. The results are shown in Fig. 2.5. For these computations, a
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Figure 2.5: SINR for Adaptive Arrays with Various Perturbations

30 dB narrowband signal in spatially white noise was used as the signal environ-
ment. A single linear constraint consisting of the non-perturbed steering vector
was employed. A 36 element array was used that consisted of 3 circular rings with
radii ), 32, and 2. Each ring contained 12 uniformly spaced elements. Three
smaller subarrays containing 18, 12, and 6 elements, respectively, were drawn from

this array as shown in Fig. 2.6.

Five random trials were performed for each perturbation value for each array
size. Each trial consisted of independent uniform random displacements of each
array element in the X, Y, and Z directions. The maximum value of the uniform

distribution is given on the abscissa of the plot. The continuous lines represent
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Figure 2.6: Elements of 36 Element Circular Array Used for Perturbation Simu-
lations: (2) 36 elements, (b) 18 elements, (c) 12 elements, (d) 6 elements

polynomial best-fit curves for the trials. These results demonstrate that the out-
put SINR for each perturbation value was reduced as more elements were used in

the array. This effect has also been observed by Compton [17].

2.2.3 Quantitative Analysis of Degradation

Hudson [18] has derived a formula for the output SNR performance of a single-
constraint narrowband adaptive array for a desired signal (with steering vector d)

in spatially white noise. For a particular value of the perturbed steering vector
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-~

&, the output SNR is,

(N-SNR)Q
SNR, = .
[+ N SNR 2+ N-SNR)(I=9)’ (2:30)
where SN R; is the input SNR at each sensor and,
~ 2
a |did
= A (2.31)

In this expression, the perturbed steering vector d has been assumed to be scaled
so that ||d}j2 = N.

Jablon [16] extended the analysis to cases in which the perturbed steering vec-
tor d is unknown, but the statistics of the perturbation are known. His equation

for the mean output signal-to-interference-plus-noise ratio is,

(SNR;) N
1+ (SNR)*N(N -1)0%’

SINR, = (2.32)

where ¢ is the variance of the random perturbation at each element. Although,
the SINR compares signal power to noise plus interference power [16]. Jablon
argues that the output SNR depends little on the presence of additional jammers,
and thus, SNR, = SINR,. Equation (2.32) is valid under certain assumptions,
one of which is that the jammer power is greater than the signal power.

One measurement of performance degradation is defined by the value of the
random perturbation variance ¢4 which produces a 3 dB reduction in perfor-

mance. From Eq. (2.32), this value is given by,

1
(SNR;)*N(N -1)

o3 = (2.33)
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2.3 Existing Methods of SINR Improvement

Many methods have been devcloped that attempt to combat perturbation effects
in adaptive processors. The following sections summarize some of these tech-

niques.

2.3.1 Steering Derivative Constraint

A special case of perturbation error results when phase error is caused by a steer-
ing error. This occurs when the constraint steering vector d is calculated for a
signal with azimuth of ©¢ and the actual steering vector d corresponds to an ar-
rival azimuth of ©,. Under these conditions, a phase mismatch exists and SINR
performance degrades. One approach taken in such cases is to add a derivative
constraint [19,20,21] to the steering vector constraint so as to protect the system.

The steering derivative constraint approach consists of adding a constraint
that forces the first derivative with respect to azimuth of the array beampattern
to be zero at the desired signal azimuth ©. With this constraint, the adaptive
beamformer is unable to place a null which is close in azimuth to the desired signal
direction. Hence, if the desired signal strays slightly from its nominal direction,
degradation does not occur.

The beampattern response in direction © is real function defined as the square
of the magnitude of the output response, |y|2, when the input consists only of the
steering vector d (©) for that direction. In general, the beampattern response is
computed as a continuous function of © over the range of azimuthal angles of
interest. It can also be defined over a range of elevation angles ® or as a function

of both azimuth and elevation.
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Er and Cantoni [19] derived the first partial derivative of the beampattern with
respect to azimuth evaluated at © = ©q for the broadband case. The narrowband

version of their constraint reduces to,

) _ . _ -t _
Bloe, =vid=idlw s a34

where the elements of the vector d are given by,

. 2 :
d. & j—;l [-‘?- (aLu)] PR k=1,2,...,N.  (235)

e=6,

It should be noted that these expressions represent a sufficient (but not necessary)
condition to ensure that the first derivative of the beampattern is zero. Since
this result is in the form of a linear equality constraint, it can be added to the
original steering constraint d'w = 1 to form an expanded constraint matrix C

and constraint value vector f as,

C=|q d|, and f= : (2.36)

This new adaptive beamformer still meets the steering constraint but is now robust
to steering errors. The optimal weight vector w,, can be found by substituting
C and f in the closed-form solution given in Eq. (2.18) or adaptively by using the
GSC.

2.3.2 Artificial Noise Injection

The technique of artificial noise injection has been well studied [16] and is ac-
knowledged as being effective in combatting perturbation effects. The method

decreases the apparent output SINR ratio of a perturbed array by artificially
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adding spatially white noise to the signal for the purposes of calculation of the
optimal weights. These weights are then used on the signal without the additional
noise (i.e. noise is not added to the actual input data). The benefits of noise in-
jection can be shown by analyzing the output power of the minimum variance
beamformer with a desired signal in spatially white noise. Assuming that the
signal and noise are uncorrelated, the correlation matrix for the input data vector

becomes,

R.. = ss! + 021, (2.37)

where o2 is the input spatial white noise power. Substitution of Eq. (2.9) yields

an equation in terms of the steering vector d,
R,. = o2dd! + 021, (2.38)
The output power is given by,

wiR..w = o2widdiw + a2|lw]?, (2.39)

o +ailiwl?, (2.40)

where the constraint d'w = 1 has been used to simplify the expression.

When the adaptive beamformer results in reduced power for the perturbed sig-
nal of interest, the magnitude of the weight vector increases significantly (refer to
Fig. 2.4). Increasing the magnitude of the weight vector increases the total output
power, as shown by Eq. (2.40). Since adaptive beamforming minimizes output
power subject to the linear constraint, there is a self-governing effect that keeps
the adaptive beamformer from completely nulling a perturbed signal. Increases
in spatial white noise power (caused by increasing the magnitude of the weight

vector w) will eventually offset any power savings accrued by nulling the signal of
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interest. As a result, by artificially “penalizing” the beamformer for an increased
magnitude of the weight vector, the adaptive process is less able to null the per-
turbed signal. This “penalty” to improve SINR performance is implemented by
artificially increasing the noise power o2 during calculation of the optimal weight
vector.

Jablon [16] has derived an equation which specifies the amount of noise injec-
tion power required to produce maximal output SINR. The equation for the case

of one narrowband signal of interest and one narrowband jammer is,

2 opt _ ((SNR.~)2 (INR)N?(N -1) oi)* , (2.41)

o} v;?

2
where a—;ﬁ’i is the optimal added noise-to-noise injection ratio, /N R; is the input
n

interference-to-noise ratio at each clement, 0% is the variance of random pertur-

bation, 1 is a vector containing all ones, and,
v, & Lotg, (2.42)
7 N 2
where d; is the steering vector for the single jammer. In many practical applica-

tions, it is not realistic to assume that both signal and jammer powers are known

a priori and, as a result, this method cannot be applied.

2.3.3 Quadratic Inequality Constraints

Another method of achieving robust performance is the imposition of a quadratic

inequality constraint on the weight vector. The new set of constraints is given by,
Ctw=f and w'w < 17, (2.43)

where - is real valued scalar used to bound the norm of the weight vector. Cox et

al. [8) have implemented this method in an iterative adaptive array that requires
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little additional computation. Hudson [18] showed that applying this bound is
equivalent to the method of noise injection. Hence, the analysis and discussion of

the previous section are applicable to this method.

2.3.4 Eigenvector and Quadratic Inequality Constraints

Er and Cantoni [9] suggested supplementing the inequality constraint technique
with additional linear constraints. Their approach was to minimize the effects of

error in the adaptive array response. The linear constraints were expressed as,

elw=0 i=1,2...,m, (2.44)

where e; is one of m non-zero eigenvectors of the correlation matrix formed over
all possible perturbed signal steering vectors.

This algorithm uses two techniques to obtain robust performance. The first is
weight bounding while the second takes advantage of a preferred steering vector
subspace that includes all perturbed steering vectors. The linear constraints en-
sure that this subspace is nulled. However, it is shown in Chapter 3 that small
random phase perturbations do not create a preferred complex subspace. As a

result, this approach is not applicable to the small phase perturbation problem.

2.4 Summary

Linearly-constrained adaptive beamforming provides flexibility by allowing the
use of multiple linear constraints in addition to a steering constraint. When the
input SINR of these systems is high, the output SINR is very sensitive to phase

perturbations that occur at individual array elements. A relatively small amount
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of phase error can create a dramatic loss in output SINR. Closed-form expressions
have been derived to predict the loss in SINR performance for both known and
stochastic perturbation models.

Previous methods which have been proposed to protect the array processor
output from perturbation effects include derivative constraints, noise injection, a
quadratic inequality constraint, and subspace nulling constraints. Each of these
methods has a drawback that prevents it from being widely used. The derivative
constraint method only provides robust performance for steering errors and other
types of phase perturbation are not necessarily protected. The techniques based
on noise injection and the quadratic inequality constraint require that a param-
eter be set for optimal performance. Unfortunately, this parameter can only be
determined a priori for special cases. Subspace nulling constraints are not appro-
priate for small random phase errors at individual elements because these error
do not span a preferred complex subspace.

The next chapter develops a method that provides robust protection in the
presence of small random phase errors. One advantage of the new technique is
that it can be implemented without @ priori knowledge of signal and interference

powers. As a result, it has application to many practical problems.
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Chapter 3

Robust Technique Development

In this chapter, a technique is developed that prevents the output signal power loss
that occurs in phase-perturbed, minimum-variance beamformers. Additionally, a

modified form of the GSC is developed to implement the technique adaptively.

3.1 Linear Constraints

The addition of linear constraints is one technique that has been used to provide
robust performance in adaptive arrays. By further constraining the subspace
for the weight vector, this method prevents the adaptive array processor from
trying to null signals arriving from slightly perturbed directions. For example,
the combination of a derivative constraint on the array response (which is in the
form of a linear constraint) and the steering vector constraint forces a given point
in the array response to have both a specified gain value and a zero derivative
with respect to arrival angle. This method indirectly constrains the array gain in

the neighborhood of this point to have a near constant value.
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Appendix A presents an analysis which shows that the space of all complex
steering vectors formed from all combinations of small phase errors of independent
and identically distributed (i.i.d.), zero-mean symmetrically distributed random
variables has no preferred subspace. Er and Cantoni's method (9] exploits situa-
tions in which the perturbed steering vectors have a favored subspace. Since this

is not the case for small phase perturbations, their approach does not apply.

3.2 Output Power Analysis

In this section, the perturbation problem is examined from a new point of view.
Instead of taking a subspace approach, the beamformer output power is analyzed
directly. This approach offers insight as to the cause of the severe SINR degrada-
tion observed in perturbed system..

Under conditions of element perturbations, the steering vector d for the signal

of interest differs from the desired vector d. The difference is represented by the

error vector A,

d2d+a, (3.1)
and the perturbed signal vector § is then,
§ =0, (d+ A). (3.2)
This leads to an expression for the modified correlation matrix,
R.. = 88! +02], (3.3)
= o2(d+A)(d+A) +d2lL (3.4)
Under these conditions, the output power is computed as,

wiR,,w = o?wi(d+A)(d+A) w+oiwliw, (3.5)
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= o?(wld+ wia) (d'w + Alw) + o2||lw|. (3.6)
Substitution of the linear constraint d'w = 1 yields,

wiR,,w = o? (1 + w"A) (1 + A"w) + a2|lw]?, (3.7)

o? (1 + w*A) (1 + w"A)‘ + o|lw]l?, (3.8)
and the final form for the output power under perturbed conditions becomes,
wiR,w = o2|]1 + wlA]? + 02| w|2. (3.9)

The minimization of power in Eq. (3.9) is a trade-off between minimizing
the power term |1 + w!A|? and the noise term ||w(|?>. The degree to which each
term is minimized depends on the relative powers of 02 and o2. To reduce the
signal power significantly in a slightly perturbed environment (i.e. when the norm
of A is small), the weight vector norm would have to increase dramatically. In
low SNR environments, the resulting increase in the noise power term inhibits
such an increase. However, in large SNR situations, 02 << o2 and the penalty
for increasing the weight vector norm is diminished. The result is a decrease in
output signal power and a relatively small increase in output noise power. Hence,
error-induced output SNR degradation is more severe at higher values of input
SNR.

Noise injection may be viewed as a technique whereby the weight vector is
optimized under simulated low SNR conditions. Equivalently, the object of noise
injection is to artificially cause the output power to become large when the norm of
w is increased. This is accomplished by artificially increasing o2. Restricting the
norm of w also restricts the term wtA and the SINR remains high. The extreme

case would be to inject a near-infinite amount of noise. Under this condition, the
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autocorrelation matrix is dominated by its diagonal and the weight vector is equal
to the quiescent value.

There are two main problems with the artificial noise injection method. First,
the proper amount of noise to add cannot be calculated without a priori informa-
tion regarding the input signal and interference power levels. Secondly, optimal
values for the level of noise injection have only be calculated for the case of one

narrowband signal and one narrowband jammer.

3.3 SINR Degradation

A preventative measure against SINR degradation is now presented. If the signal
output power for a perturbed array is inhibited from being attenuated (i.e. by
forcing |1 + wtA|? > 1 in Eq. (3.9)), then the adaptive beamformer is not able
to use the error term A to cause a drop in output signal power. If output signal
power cannot be reduced, the noise power cannot increase because of the the
minimum output power criteria. Hence, a new constraint is proposed for the

adaptive beamformer in addition to its previous linear constraint,

1+ wiA? > 1. (3.10)

3.3.1 Region of Degradation

After some algebra, Eq. (3.10) can be rewritten as,

(1+wia) (1+wta) 2 1, (3.11)
1+wtA + Alw +wlaAalw > 1, (3.12)
®(wia) > -wiaalw, (3.13)
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2R (wta) = —wiap, (3.14)
—|wtAP
R(wia) 2 =5, (3.15)

where R (-) denotes real part. A generic representation of this constraint in the

complex plane is shown in Fig. 3.1. If wtA is kept exterior to the signal-noise

\" L.
~~——Region for wiA_
where signal-noise
Y tradeoffs take place
T+ -2

Figure 3.1: Signal Degradation Region for w'A

trade-off circle shown in the figure, the adaptive beamformer will be prevented
from cancelling signal power. However, constraints which force wt A to lie outside
the circle cannot be imposed without knowledge of the error vector A. Such
knowledge is an impractical requirement. In fact, if A is known, it can be used

to correct the desired signal steering vector and the array will then operate as an

error free (unperturbed) system.
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3.3.2 Robust Constraints

To achieve the goal of avoiding the signal-noise trade-off zone in Fig. 3.1, each

term of the inner product w!A is constrained to have a non-negative real part,
R(wplde) 20 k=1,2,...,N. (3.16)

Since each term of w!' A has a non-negative real component, the sum forming the

inner product will also have a non-negative real component,
®(wla)>0. (3.17)

This inequality represents a sufficient constraint to prevent signal-noise trade off

(see Fig. 3.2). Hence, by construction, signal-noise power trade-off cannot

Real

b
N-

Region for wia —-S ‘ Constrained

where signal-noise ' region for
tradeoffs take place { 2 wiA

Figure 3.2: w'A Tradeoff Region Disjoint From Constraint Region

occur.
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3.4 Small Phase Error Approximation

The robust method proposed adds constraints to the original single constraint

system of Eq. (2.22),

min wiR, . w such that diw =1,

and R (wplk) 2 0, k=1,2,...,N. (3.18)

These inequalities cannot be evaluated without knowledge of each error vector
element A. Fortunately, such knowledge can be obtained by assuming that the
the error vector elements contain only small phase errors. The definition of “small”
in this context is defined below.

Each element Jk of the perturbed steering vector can be written as a phase

shifted version of the unperturbed steering vector element d,,
di, = dpe?OPx, (3.19)

where Ap, is the random real-valued phase error variable for element & in radians.

Expanding the exponential term using the Maclaurin series yields,

APk = 1 4 jAp, - A,f!“z - jAg!"s +.... (3.20)

Equation (3.19) then becomes,
d, = di (1 + jOpx - Ag!"z - jAé’!“s + ) , (3.21)
= dp+d; (jApk - A;"z - jAgl"S + ) , (3.22)

and use of Eq. (3.1) yields the expansion form for the error vector element A,

: Ap?  Apd
A =di (]Apk-— g'k -2 g:‘ +) (323)
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For small errors (i.e. é;,& << 1), the error vector element A, retains only its

first order term,

Ar = di(jOpsi), (3.24)

~ Ape’idy. (3.25)

Under these conditions, the error vector element A; has a 7 phase shift relative
to the steering vector element d. Small fluctuations in the phase error Ap, only
affect the magnitude of the error vector element A, (i.e. the phase component of
the error vector element A, is not significantly altered). The small phase error

situation is depicted in Fig. 3.3.

Unpenurbed Steerin
j Imag Vccpl%r Element d, &

A, Error Vector
— 'k Element

Region Where
Pertur!

Steering Yector
Element d; Can
Sweep

Note That Different

Small Phase Perturbations

Cause Differenct Error

Vector Elements, But

-j All Possible Error Vector
Elements Have Approximately

The Same Complex Phase

Figure 3.3: Small Phase Perturbations Create Approximately Constant Phase of
Error Vector Elements
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3.4.1 Simplification of Constraints

With the small phase approximation, it will be shown that the inequality con-
straints in Eq. (3.16) can be reduced to equality constraints. Substituting the
small error approximation from Eq. (3.25) into the the inequality constraint of

Eq. (3.18) and noting that Q represents the complex imaginary part yields,

R(wiA) = O, (3.26)
sn(w,:Apkdkef%) > 0, (3.27)
ApiS (w,’,dk) < 0. (3.28)

Since the phase error Apy is assumed to be a random variable that can take on
positive, zero, or negative values, the inequality in Eq. (3.28) can only be met if
S (widy) = 0. As a result, the inequality constraints in Eq. (3.16) can be satisfied

with either of the following two equivalent sets of equality constraints:

R (wiAx) =0 k=1,2,...,N, (3.29)

S (djwi) =0 k=1,2,...,N. (3.30)

The inequality constraints in Eq. (3.16) are preferred over the equality con-
straints in Egs. (3.29) and (3.30) due to the fact that they provide a larger
feasible region for the weight vector w. A discussion of this approach is given
in Appendix B where the error term is biased in an attempt to force Apr > 0.
This approach is shown to reduce the inequality constraints to the same equality

constraints of Eqgs. (3.29) and (3.30).
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3.4.2 New Constraint Problem

The analysis in the last section transformed the inequality constraints of Eq.

(3-16) into equality constraints. This allows Eq. (3.18) to be rewritten as,

rr‘l"i’nw*R,,w such that diw =1,

and S (drwe) =0, k=12,...,N. (3.31)
These additional constraints imply that,
®(wta) =0, (3.32)

and ensure that wt A is outside the signal power trade-off circle in Fig. 3.1. In fact,
the equality constraints force w!A to lie on the imaginary axis in Fig. 3.1. Hence,
these constraints are sufficient to provide robust SINR performance. Although it
is might be desirable to achieve Eq. (3.32) without the very restrictive equality
constraints on individual weight elements shown in Eq. (3.31), the random and
independent nature of the elements of the error vector A require the use of such

restrictive constraints on the individual weight elements.

3.4.3 Transformation into Real Domain

Except for the imaginary-part operator S (-) in Eq. (3.31), the formulation ap-
pears to be a traditional power minimization problem with multiple linear con-
straints. If they were linear constraints, the problem could be solved by placing
all the constraints in the matrix C and then using the closed-form solution for
the optimal weight vector w,p, in Eq. (2.18), or by adaptively converging to the
optimal weight vector with the GSC as described in Chapter 2. Unfortunately,

the S (-) operator makes the problem a non-linear one in the complex domain.
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Real Formulation of the Problem

The nonlincarly-constrained power minimization problem in Eq. (3.31) can be
converted to a linearly-constrained problem by converting the complex valued
problem to a real valued problem. Details of the restructuring are given in Ap-
pendix C. Each complex matrix or vector can be broken down as the sum of two

real matrices:

w = w,+jw;, (3.33)
d = d,+jd,, (3.34)
R:: = Ruzr +jRazz, (3.35)
f = f+3fs (3.36)

where the subscripts “r” and “i” represent the real and imaginary components
of each matrix. Applying the restructuring shown in Appendix C yields a new

format for each matrix, each with all real components,

W,

wp £ : (3.37)
Wi
d, -d;

Dy £ , (3.38)
d;, d,
R: r —Rzzi

R..p 2 * : (3.39)
L Rf.l:zi R-zzr
Ir

fp (3.40)
i
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For the case of a single steering constraint, f = 1, Eq. (3.40) reduces to,

1
fr= . (3.41)

0

For notational convenience, the two columns of the transformed matrix Dp in Eq.

(3.38) are denoted by dg; and dga,

|
A

DR = de dR2 , (342)

.
where,
d, —d;
dp & ,and dpe £ . (3.43)
d; d,

With these transformed matrices, the transformed problem for the original
minimum variance beamformer from Eq. (2.22) (i.e. without the additional robust

constraints) becomes,
min whR..gWr subjectto DEwg = fg, (3.44)
R

where “T” represents real transpose. The optimal weight vector in the real struc-
ture format w,p,p can be calculated using the closed-form solution given by Eq.
(2.18),
—p-l TR-1 -1
Wopr,r = Rz pDr (DRRZIDR) ™ fr. (3.45)

This real formulation of the original problem utilizes the following two real
constraints:

dh,wr = 1, (3.46)

dr,wr = 0. (3.47)
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By using Eq. (3.43) it can be shown that these two real constraints can be written

as,

®(dtw) = 1, (3.48)

]
1

3 (d'w) (3.49)

This form is equivalent to the original single complex constraint diw = 1. The
advantages of this new real structure are apparent: the non-linear R (-) and S (-)
constraints in the complex domain have been written as real linear constraints.
with the new real structure. Any additional S () constraints can then be added

as simple linear constraints.

Addition of Robust Real Constraints

In the transformed representation, the previous R (wtA,) = 0 constraints on the
weight vector w from Eq. (3.31) can be added as real linear constraints to the

problem stated in Eq. (3.44). To illustrate, the robust constraints are expanded

as follows:
S (dwx) = 0, (3.50)
S (ks — jdii) (Wk,r + Jwes)) = 0, (3.51)
—d W r +diwri = 0, k=12,...,N, (3.52)

where the “r” and “i” subscripts represent the real and imaginary parts of dx and

wy. Eq. (3.52) can then be written as,

AT wr=0, k=1,2,...,N, (3.53)
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where the vector Ag i of length 2N contains all zeros except in positions k and

k+ N,

Apk = A (3.54)

In summary, the steering and robust constraints in the real structured format

from Eqs. (3.46), (3.47), and (3.53) can be written as,

dpTwr = 1, (3.55)
dpe’wr = 0, (3.56)
AL wr = 0, k=1,2,...,N. (3.57)

It can be shown, however, that the constraint in Eq. (3.56) is & linear combination

of the mutually independent constraints in Eq. (3.57),
S Apx= = dp,. (3.58)

As a result, Eq. (3.56) is a redundant constraint. The remaining constraints of

Egs. (3.55) and (3.57) can be placed into a real constraint matrix Cp of size
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(2N)x(N + 1) with the real constraint values in the vector fr of size (N + 1)x1,

. 1
| | I .
N
Crt |dp Any -+ Apw |v emd f22] [ (3.59)
- o L 0
The final matrix form of the real constraint equation is then,
Chwr = fr. (3.60)

The real transformed problem has a closed-form solution given by Eq. (2.18) with

appropriate substitutions, i.e.,
-1
Woptp = R::rCr (CtRR;zl RCR) fr. (3.61)

The complex optimal weight vector wop; can be obtained from real version Wep
by selecting the real and imaginary components from Wop  as defined in Eq.

(3.37).

3.4.4 GSC Implementation

Since implementation of robust constraints can be achieved through power mini-
mization with real linear constraints, a real domain form of the Generalized Side-
lobe Canceller can be used to iteratively solve for the optimal weights. The real
domain form of the GSC is shown in Fig. 3.4. In a manner analogous to the
complex form of the GSC in Eq. (2.28), the real form of the weight vector wg is

divided into orthogonal components,

WR = Wq,R - W,'Rw,‘g, (362)
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Figure 3.4: Real Form of the GSC With Robust Constraints

where the columns of the matrix W, r are linearly independent vectors that span

the orthogonal space of the real constraint matrix Cr. Thus,

CIW,r=0. (3.63)
The complex data vector x is transformed in a similar fashion as,
|
a | X ~Xi|a
Xi Xr
L
The lower path data matrix X, g is defined as,
| l
xa.R g Wznxn-é- Xga,Rt Xa,R2 |° (3-65)
]

where X, 1 and X, ge are the two real columns of X4 r. Note that X, p does

not share the block symmetry properties of the previously defined matrices (e.g.
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Dr, Xng, etc.). The particular method for organizing the computations is shown
in Appendix C. The real output yr is a row vector which contains the real and

imaginary components of the complex version of the output y,
Iy
Yr= [yra -yt] . (366)

The LMS adaptive algorithm for this system is derived in Appendix C and
involves minimizing the output power using an instantaneous gradient. The re-

sulting adaptive weight update wg, r(n + 1),
Wa r(n + 1) = wg r(n) + 2uXa,r(n)yk(n), (3.67)

where the time sample index has been included to denote the iteration number.
Thus, the GSC format can be used with the transformed structure with only slight
modifications. The choice for u must be small enough to ensure convergence. A

sufficient condition on g [13] is,
0 < p < Trace (WTzR22r W, R) » (3.68)

or, equivalently,

= a (3.69)

p= Trace (WZ:RR:::Rwa,R) ’

where 0 < a < 1.

3.4.5 Optional Use of Additional Constraints

In many practical applications of interest, additional linear constraints are used
to supplement the steering and robust constraints to enhance performance. Each

additional complex constraint for the form ctw = f, can be restructured into the
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real domain and added to the constraint matrix Cp and constraint value vector

fr. The transformed constraints becomes,

A Ckr —Cki | A
Ck,R= = Ck,R1 Ck,R2 |° (370)
Ck,i Ck,r
AL
and,
Jr,
fr 2 |7, (3.71)
S
which yields two real constraints,
ctrmWe = fer (3.72)
el roWk = fii- (3.73)

These constraints can then be appended to Cg and fr to form the newly con-

strained problem.

3.5 Summary

In this chapter, a new approach was presented to prevent the output SINR degra-
dation that occurs in phase-perturbed minimum variance beamformers. An out-
put signal power degradation region was defined and constraints developed to re-
main in its exterior. A consequence of preventing output signal power degradation
is the inhibition of an increase in output noise power. Hence, SINR performance
is preserved. These constraints were arranged in linear form by restructuring the
complex-valued problem into a real-valued problem. Consequently, a closed-form

solution was developed for the optimal weight vector. The Generalized Sidelobe

43



Canceller was modified to implement the restructured constraints and provide an

iterative means for implementation.
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Chapter 4

Analysis of New Algorithm

The robust constraints developed in Chapter 3 were specifically chosen to protect
the output power of the desired signal in an adaptive array processor under con-
ditions of small uncorrelated phase errors. This chapter shows that these robust
constraints can also be derived from the application of derivative constraints to
individual array elements.

Although the robust constraints protect the output SINR under small phase
perturbations, larger phase errors may cause degradation. In this chapter, analytic

expressions are derived to predict SINR performance as a function of phase error.

4.1 The Steering Derivative Constraint

Before deriving the robust constraints as individual derivative constraints, it is
useful to observe that the steering derivative constraint described in Chapter 2 is
actually a special case of the robust constraints, i.e., adding a steering derivative

constraint to the robust constraint system is redundant.
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Following the analysis by Tseng [22], the approach taken in applying a steering

derivative constraint uses the partial derivative of the output magnitude squared,

Alyl?
gyL =0, (4.1)
00 6=6,

where Oy is the arrival angle of the desired signal. Application of the chain rule

yields,
63/2 » N
_(;El = &y + v, (4.2)
- g+ (88v) (@
= 2®(8%y"), (4.5)

and substitution into Eq. (4.1) then yields,

R (353" )|oe, = © (4.6)

As shown in Eq. (2.34), this operation is applied when y is the output due to an
input which consists of only the desired signal. The partial gg— 66 then has a
=60

linear form,

0 o
#loe, = wld, (4.7)

where d is a vector with elements determined by the partial derivative operation.
The steering constraint d'w = 1 ensures that the output is unity under signal-only

conditions. As a result,

R (89 )oce, = © (4.8)
R ((whd) (wid)") = o, (4.9)
se(a*w) = 0. (4.10)
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This approach ensures that any weight vector w meeting the derivative constraint
in Eq. (4.10) is robust to small steering errors between the actual and designed
directions. It will be shown that the steering derivative constraint is already
satisfied with the robust constraints of Eq. (3.29).

In order to demonstrate that this is, in fact, the case, each element of the

steering vector d is expressed in terms of the angle of arrival of the signal,
dy = e//(®), (4.11)

where fi (©) represents a real function of the angle of arrival ©. Each element dj
of the derivative vector d can be expressed as the partial derivative of the steering

vector element with respect to the arrival angle,

: ad

de = 'a@k’ (4.12)
- j_afsée)em(eJ, (4.13)
_ .0k (©)
= i~ g (4.14)

In this expression, fi (©) is real and thus Q%égl is also a real quantity. Therefore,
the elements of the derivative vector d are magnitude scaled and % shifted ver-
sions of the elements of the steering vector. This is identical to the relationship

described in Eq. (3.25) for use in the robust constraints of Eq. (3.29), i.e.,
Ay = Appidy = jApids. (4.15)

Thus, the robust constraints R (wpAx) = 0 are sufficient to ensure that the real
part of each term of diw is zero. Hence, the derivative constraint (&tw) =0
is satisfied with the robust constraints.

The steering derivative constraint has been shown to be a special form of the

robust error constraints. The difference is that only one constraint is needed to
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protect against azimuth steering errors compared to the N constraints needed to
protect against random phase perturbations at each element. This is because there
is only one parameter that is assumed in error: the azimuth arrival angle ©. With
random phase perturbations at each element, there is an independent phase error
at each element, therefore, each element needs a separate constraint equation
(totaling N constraints). The phase errors due to steering errors are perfectly
correlated between elements, and so they only span one degree of freedom in
the real structured transformed space described in Chapter 3. Thus, only one

constraint is needed to protect against azimuth steering errors.

The next section will show how the derivative constraint technique can be
applied to each element phase error instead of the steering error. The resulting

constraints will be shown to be equivalent to the robust constraints.

4.2 Derivative Constraints for Array Elements

This section illustrates that robust constraints can be developed from deriva-
tive constraints on individual array elements. The previous derivative constraint,
R (c.l'w) = 0, is generalized from that of a single steering constraint on the arrival
angle to include a constraint on the random phase term on each array element.
This approach ensures that he output power of the desired signal is insensitive to

small changes in the phase of each element.
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4.2.1 Development of Derivative Constraints

A phase-perturbed steering vector element can be expressed as a function of its

random phase error term Apy,
(ik = dkejApk. (4.16)

The phase error term Ap, is induced by steering error, frequency error, and/or
random perturbation phase effects at each array element.
As in Eq. (4.1), the partial derivative with respect to each individual array

element phase error term Ap; is set to zero,

Ayl?
aApk

=0, k=1,2,...,N. (4.17)
Apk=0

In a derivation that is analogous to that used in Eq. (4.2) to Eq. (4.5), this

derivative can be expressed as,

Olyl® _ ey ., sy
dApr sApcY + ahpY (418)

= R (ﬁ:y’) . (4.19)

Substitution of Eq. (4.19) into Eq. (4.17) yields,

2 (s8')

The partial derivative is then evaluated by substituting the beamformer output

=0, k=12,...,N. (4.20)
Apk;:O

y= wid corresponding to the perturbed desired signal vector d,

a(wa)
o _ 2\W9
Ap = “9bps (4.21)
8 (Zhe, widee' 2Pk wz)
= 6Apk .
= jwideelOPk, (4.23)
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Since y* = 1 at the nominal unperturbed phase error value of Apx = 0, the

substitution of Eq. (4.23) into Eq. (4.20) yields,

%(;&”ﬁy‘) Apeeo 0, (4.24)
sa(a—gvﬁ) Ao = © (4.25)
%(jw,:dkejAp“) Api=o = 0, (4.26)
R (efwide) = 0, (4.27)

S(djwe) = O, k=12,...,N (4.28)

This latter expression is identical to the robust constraints in Eq. (3.31). Thus,
application of derivative constraints to each individual element produces the same

power protection constraints that were developed in Chapter 3.

4.2.2 Discussion

Application of a derivative constraint to each individual element provides protec-
tion against independent phase errors at these elements. It is a natural extension
of the use of a single derivative constraint to protect against steering errors. The
form of the original derivative constraint described in Chapter 2, d'w = 0, uses
a single complex degree of freedom. Application of an analogous derivative con-
straint to each individual element would require N degrees of freedom. Since
there are only N — 1 degrees of freedom available in the system, the set of equa-

tions would be overdetermined and inconsistent. Use of the derivative constraint

R (&tw) = 0 developed by Tseng [22], however, requires only half of a complex
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degree of freedom. Application of an analogous derivative constraint to each in-
dividual element therefore requires only % complex degrees of freedom and yields
a set of equations that is underdctermined and consistent.

The individual derivative constraints require more degrees of freedom than a
single steering derivative constraint, but the resulting system is more robust to
random phase perturbations. A steering error produces correlated phase errors
between array elements. When interelement phase perturbations are uncorrelated,
the steering constraint does not provide protection. Since the multiple individual
derivative constraints do not assume a correlation between element phase errors,

they protect the system output for this important class of problems.

4.3 Phase Constraints on Weights

Examination of the robust constraints yields an interesting interpretation. The
elements of the weight vector w and steering vector d can be expressed in mag-
nitude and phase notation as,

dy = &%, (4.29)

we = ugel®k (4.30)

With this notation, the robust constraints of Eq. (3.31) become,

S (diwe) = 0, (4.31)
S (e Puee®) = 0, (4.32)
vesin (¢x = 6k) = 0. (4.33)

Except for the trivial cases when vx = 0, the sin (¢x — 0x) term in this equation

implies that each weight vector element must be colinear with its corresponding
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steering vector element, as illustrated in Fig. 4.1. Equivalently, the robust
Imag
Error Vector Stecrin%Vecmr
Element A d K lement
Real

Constraint for All Possiblc

Weight Vector Elements w,

Figure 4.1: Phase Constraint on Weight Vector Elements

constraints can be interpreted as phase constraints on the weight vector elements.

Wang (23] suggested the use of real weights on complex data generated from
a linear array that was steered to the broadside. His approach was equivalent
to the application of phase constraints described above for the special case of
broadside steering. Wang’s intent was to simplify computation by removing half
of the weight coefficients (i.e. remove the imaginary portion of each weight vector
element). Hudson [18] analyzed this real weight concept and noted that it provides
robust performance to steering errors. What this chapter has shown is that the
N robust constraints are not necessary to provide robust performance for steering
errors. Although the N robust constraints are sufficient to provide protection
for steering errors, only a single constraint is necessary for steering protection.

Thus, the analysis presented in this chapter extends Hudson’s analysis to show
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that the real weight concept is not only applicable for random steering errors, but

to individual phase errors at each element as well.

4.4 Robust Constraints for Magnitude Errors

It was shown in the last section that restricting the phase of the weight vector
elements provides robust performance due to small phase errors. A natural ques-
tion that arises is the possibility of restricting the magnitude of the weight vector
elements to provide robust performance due to small magnitude errors. This is
impossible, however, due to simple contradictions in the problem statement.

As shown in Eq. (3.29), the general form for the robust constraints is,
R (wpAix) =0, k=1,2,...,N. (4.34)
In the presence of magnitude errors, the model for the error vector element A, is,
Ay = Amydy, (4.35)

where Am,. is the real valued amplitude error. The primary difference between
the magnitude only error model in Eq. (4.35) and the small phase error in Eq.
(3.25) is the absence of the I phase shift term. Substituting Eq. (4.35) into Eq.
(4.34) yields,

1l
L

R (w;Amk dk) (4-36)

R(widi) = O, k=1,2,...,N. (4.37)

This result implies that the real part of each term of the inner product wid must

equal zero, hence the real part of the entire inner product must also equal zero,
R (wid) = ® (dtw) =0. (4.38)

53



However, this result is in direct contradiction with the steering constraint in Eq.
(2.22) which requires d'w = 1. An analogous robust form for protection due to
magnitude errors is therefore not possible.

It may seem that the original steering constraint could be modified to have a
Z phase shift resulting in d'w = ¢’ % and still satisfy Eq. (4.38). However, Eq.
(4.38) is a direct result of using the steering constraint d'w = 1. Adding a phase
shift to the constraint value results in an equal phase shift in Eq. (4.38) and the

result is still in contradiction.

4.5 Degrees of Freedom

An important concept in linearly-constrained minimum variance beamforming is
the number of independent narrowband jammers that can be nulled. As Compton
[24] noted, the number of complex degrees of freedom can be calculated as the
number of array elements N minus the number of complex constraints employed.
For the case of a single steering constraint, the number of available complex
degrees of freedom is,

DOFopiginar =N - 1. (4.39)

With the constrained beamformer in the real domain, there are 2N real weights.
Use of the robust constraints leads to a real domain constraint matrix Cg, Eq.
(3.59), which contains N +1 linearly independent real constraints. Of these, one is
the steering vector constraint dp, and N are robust real linear vector constraints
Apy for k=1,2,...,N. Therefore, there are 2N — (N +1) = N =1 real degrees
of freedom. The number of complex degrees of freedom is one half of the number

of real degrees of freedom. Thus, the robust constraints results in (N — 1)/2
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complex degrees of freedom.. The greatest integer value less than or equal to this
number then represents the available degrees of freedom with respect to complex

signals,

N-1
DOFpopust = [TJ- (4.40)

4.6 Degradation For Large Phase Errors

When the phase error at each array element increases, the small phase assump-
tion is violated and the output SINR decreases even when the robust constraints
are employed. This section develops an analytic expression for the SINR perfor-
mance as a function of phase error which will be achieved while using the robust

constraints.

As mentioned previously, the phase errors at each element can be due to several
types of perturbations. Steering errors and frequency errors fall into a group
called single error sources since each error is defined by a single parameter (© for
steering and w for frequency). Random phase errors and random placement errors
fall into the category of multiple error sources since many parameters contribute
to the total error (i.e. the N independent random phases at each element). Two
types of SINR performance equations are developed: one for single error sources
and one for multiple error sources. The single error source equation assumes that
the perturbed steering vector d is known. The multiple error source equation

assumes that only certain statistics of the error are known.
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4.6.1 Single Error Sources

The equation developed in this section assumes that the perturbed steering vector
d is known as a function of a single error parameter. Hence, it is appropriate for
SINR evaluation under conditions of steering or frequency error.

The SINR equation for use with the robust constraints is a modified version of
the result obtained without robust constraints shown in Eq. (2.30) and repeated
here (remembering that SNR and SINR can be used interchangeable due to the
minor difference in performance output),

(N-SNR)Q
1+ N-SNR;(2+ N-SNR;))(1-Q)

SNR, = (4.41)

The approach used here alters the perturbed steering vector d to reflect the effects
induced by the use of the robust constraints.

Each element of the phase perturbed steering vector d) can be written as a
function of the unperturbed steering vector element dj. with an error phase shift

of Apg,
dp = dyelOPx, (4.42)
= dy [cos (Apx) + jsin(Apk)], k=1,2,...,N. (4.43)
The robust constraints result in the nulling of signal vector components which
have been phase shifted by J radians. It is this property that allows the robust
constraints to prevent SINR degradation under the conditions of small phase
errors. The phase shift in Eq. (4.43) is contained in the jsin (Apx) term and is
eliminated from the perturbed signal when the robust constraints are employed.
The robust form of the actual steering vector element then becomes,
di,roBUST = di €Os (Api) k=1,2,...,N. (4.44)
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The steering vector d in Eq. (4.41) is required to have a norm of VN. The

normalized version of robust steering vector is denoted by d ROBUST,NORM and is

given by,
- vNd
dropust.Norm = ~—=—2BU5T (4.43)
ldroBUsTl
The resulting SINR for use with the robust constraints then becomes,
N - SNR:)QrosysT
SINR, = ( .
ROBUST = TN SNR, 2+ N-SNR) (1~ Onogosr)’ 1)
where, )
dtd

N

4.6.2 Multiple Error Sources

The output SINR performance for multiple error sources using the robust con-
straints can be calculated by using a modified form of the original SINR perfor-

mance equation given in Eq. (2.32),

(SNR) N

SINR, = :
1+ (SNR)*N (N -1)d3

(4.48)

The term o2 represents the variance of each independent and identically dis-

tributed (i.i.d) error vector element Ax. Thus,

03 = E[Ac-mal?, (4.49)

= E[|Ad?] - Imal?, (4.50)

where m, is the probability mean of A,. The remainder of this section presents

a derivation for 0%.

As shown in Eq. (3.19), each phase perturbed steering vector element dy can

be written as a phase shifted version of the unperturbed steering vector element
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dk,
dy = dye?DPx, (4.51)
Use of the Maclaurin series expansion of e?APk and dropping lower order terms
2
under the small error approximation (i.e. égL << 1) leads to an the error vector

element A, which retains only its first order term,
Ar = di (JAPx). (4.52)

In Chapter 3, it was shown that the robust constraints null all components which
are phase shifted by 7 radians with respect to the steering vector element. As a
result, the small errors in Eq. (4.52) are eliminated. At larger values of phase
error, the second order term é-zi&z of the Maclaurin series in Eq. (3.23) becomes
significant. This term does not contain a % phase shift and therefore is not
nulled by the robust constraints. The second-order term is then the portion of
the error that contributes to SINR degradation, assuming higher order terms are

insignificant. The value of the term is given by,

—Ap.2
Ak,roBusT = dk ( 2pk ) . (4.53)

Since the magnitude of each steering vector component is unity, Eq. (2.6), the

second moment of the robust error element is,

2 2 -Ap’ :
E[lAk,tzoausrl] = |&l"E{\——] |/ (4.54)

%E‘ (Ap*). (4.55)

The variance for the robust error is calculated from Eq. (4.50) as,

oA nrosust = E [lAk,ROBUST|2] — |ma,roBustl?, (4.56)
1
= 7E (2pi*) - Ima,roBUsTI, (4.57)
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where ma ropust is the mean for the robust error. Finally, the SINR which
results when robust constraints are employed is calculated by substituting the
robust error variance 03 popysr for the original error variance 0} in Eq. (4.48).

The result is,

(SNR;))N
14 (SNR)®* N (N - 1) 0% posusr

SIN R, proBUsT = (4.58)

In summary, the same equation can be used to measure SINR performance with
and without the addition of the robust constraints provided that the error variance
is modified appropriately. The robust constraints have the effect of minimizing
the error variance of a phase perturbed signal by removing the first order term
from the Maclaurin expansion. The higher order terms still contribute to the error

thereby contributing to SINR degradation.

4.7 SINR Improvement

For the case of small phase perturbations, the robust constraints provide near
optimal SINR performance. At greater error values, however, less protection
is provided. It is useful to quantify the level of phase perturbation at which
performance achieved using the robust constraints begins to degrade significantly
from ideal performance. Traditionally, the 3 dB point is used to characterize such
a limit.

The point at which the SINR degrades by 3 dB with respect to the optimal
processor is determined by examining the robust SINR performance in Eq. (4.58)

as a function of phase perturbation. The value which produces half the optimal

59



level of (SNR;) N is,

1
2 =

(4.59)

When the phase errors are uniformly distributed about zero with maximum and
minimum phase radian values of 3 and —, the robust variance 03 ropysr USing
Eq. (4.57) is equal to % (Appendix D). Substitution of this value into Eq. (4.59)

yields the maximum perturbation which produces 3 dB of SINR degradation,

Vi _ - (4.60)
45 (SNR)’N(N -1)’
45
Yadp = \] SNEEN(N=1)' (4.61)

Yaap = ﬁ. (4.62)

In this expression, the variable 7 is defined as,
n& (SNR)Y’N(N-1). (4.63)

When the robust constraints are not used, the 3 dB point is calculated from

Eq. (2.33) using an error variance of 63 = %3 (Appendix D),

1

% = (SNRYN(N-1)’ (4.64)
Yian _ L (4.65)
3 (SNR;)*)N(N -1)’

Yaap = % (4.66)

As the amount of phase error increases past the 3 dB point, it is useful to note
how much SINR improvement the robust constraints provide. A performance ratio

vsing is obtained by dividing the robust performance SINR, roBusT given in
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#,

Eq. (4.58) by the unprotected performance given in Eq. (2.32),

NSINR s SI I\iSRIo},\;rz;osusr’ (4.67)
1+ (SNR)*N(N-1)03 (4.68)

1+ (SNR)*N(N - 1) 0% roBusT .
_ 1+ 703 (4.69)

> )
1 + 104 roBUST

For those values of error which are significantly beyond both 3 dB points (i.e.

N4 ropust > 1 and no2 > 1), the improvement approaches a value given by,

oA
YSINR = 53—, (4.70)
OA,ROBUST
15

where 3 is expressed in radians. Hence, the expected SINR improvement while
using the robust constraints for relatively large phase errors (beyond the 3 dB
point) can be calculated as a direct function of the maximum amount of phase
error. Note that the improvement is independent of the SINR of the desired signal

and the number of array elements.

4.8 Partially Adaptive Beamforming

Partially adaptive beamforming is a method of adding constraints for the purpose
of reducing the number of computations required in generating the optimal weight
vector [25,26]). Various approaches have been suggested as the basis for adding
such constraints [27,28,29). The robust constraints derived in this dissertation
can be used in such a fashion. Approximately one half of the number of degrees

of freedom in an array will be removed by this processor. Since these constraints
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are linear, they can be used with other partially adaptive techniques to reduce

the number of degrees of freedom even further.

4.9 Summary

In this chapter, various analyses of the robust constraints have been presented.
First, the steering derivative constraint was shown to be a special case of the
robust constraints. Application of a derivative constraint to each individual array
element output was shown to be equivalent to applying the robust constraints. It
was also shown that the robust constraints can be interpreted as phase constraints
on the weight vector elements. Equivalently, only the magnitude of each complex
weight vector element is allowed to adapt when robust constraints are employed.
The phase of each weight vector element is constrained to match the phase of the
corresponding element of the steering vector for the desired signal. Performance
prediction equations were devcloped for two types of perturbation: those pro-
duced by a single parameter (such as steering error) and those which result from
multiple, uncorrelated parameters (such as placement error). The 3 dB roll-off
point and subsequent improvement beyond the 3 dB point were developed from

these prediction equations for the case of random uniform phase distributions.
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Chapter 5

Simulations and Experimental

Results

This chapter presents the results of computer simulation experiments on minimum
variance beamformers in the presence of phase perturbations. Comparisons were
performed between the single steering constraint method and the new robust

constraint method.

The first section describes simulations performed using the closed-form solu-
tion for various types of phase error. The second section presents results relating
to the number of degrees of freedom available for the robust technique. Com-
parisons with theoretical performances levels calculated in Chapter 4 are given.
The next section illustrates adaptive convergence of the modified GSC to the
closed-form solution derived for the robust system. The final section illustrates
the application of the robust constraints to actual array data obtained from a real

environment.

63



Simulations comparing the robust method to previously discussed techniques
are not presented duc to the fact that substantially different modelling assump-
tions are used for these different methods. Noise injection and weight bound-
ing, for example, require a priori knowledge of the input signal power and input
jammer power to determine the optimal noise injection level and weight bound,
respectively (the optimal levels can be calculated for a most one jammer). The
robust constraints do not use a priori knowledge of the signal environment. As
stated previously, the method of adding eigenvector null constraints is ineffective
for small phase perturbations. The simulations presented in the following sec-
tions compare the robust constraint performance to the original single steering

constraint method of minimum variance beamforming.

5.1 Small Phase Errors

Simulations were performed under four types of random phase anomalies: random
phase errors, array element placement errors, steering errors, and frequency errors.
All simulations used one of three different array geometries for array element
placement. The first was a ten element linear array with half wavelength spacing
between elements. Azimuthal angles were measured in a clockwise direction from
broadside of the array. The second array was a two-dimensional, thirty-six element
array consisting of three concentric rings, each containing twelve array elements
(see Fig. 5.1). The radii for the rings were -%, A, and % The third array was a
four element square configuration with % element spacing on each side. As with
the linear array, all azimuth directions were measured clockwise from the y-axis.

Elevations were measured upward from the plane containing the array elements.
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3-RING, 36-ELEMENT CIRCULAR ARRAY
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Figure 5.1: Geometry of 36 Element Circular Array
5.1.1 Channel Phase Errors

In a nonhomogeneous propagation medium, wavefront distortion of the desired
signal can cause the signal’s spatial propagation to deviate from that of an ideal
plane wave. Calibration errors in the receiver can also cause phase errors [9]. Both
types of phase errors were modeled as random phase shifts Ap, from the nominal

value at each array element. Thus,

. t
de = eJ(zfak“‘*APk)’ (5.1)
- JXaUIAD: (5.2)
= dpelOPx, k=12,...,N, (5.3)
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where each random variable Ap, had a specified probability distribution.

The output SINR results obtained for a random phase error simulation of the
three-ring circular array are shown in Fig. 5.2. The probability density function for
each random phase error Ap, was uniform centered at the origin and independent
from element to element. The abscissa represents the maximum value (denoted

by %) of the uniform distribution. The signal environment consisted of a
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Figure 5.2: SINR Performance for Uniformly Distributed Phase Perturbations

narrowband desired signal and three narrowband jammers in a background of
spatially white noise with signal parameters as shown in Table 5.1.
Jablon [16] observed that jammers do not significantly affect the output SINR

performance of an array provided that enough degrees of freedom exist to null
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Narrowband Azimuth | Elevation | Wavelength | SNR
Signal Type (Degrees) | (Degrees)

Desired Signal 70 10 A 30 dB
Jammer -120 10 A 40 dB |
Jammer 0 10 A 40 dB
Jammer 110 10 A 40 dB

Table 5.1: Signal Parameters for Simulation in Fig. 5.2

these jammers. The experiments described here have verified that this is also the
case for systems which use the robust constraints. In Fig. 5.2, the upper line indi-
cates the ideal SINR performance of the original minimum variance beamformer
with no phase perturbations. The symbol “0” shown in the figure represents
SINR performance for random trials with phase perturbation. The degradation
observed is consistent with that shown in Fig. 2.5. The symbol “x” represents the
performance obtained from trials using the robust constraints. In all cases, three

trials were performed at each perturbation value.

The dotted line that runs through the perturbed trials in Fig. 5.2 is the pre-
dicted performance from Eq. (2.32). This equation requires knowledge of the
variance 03 of the random variables Ap,. Since Ap, was uniformly distributed

2 . .
about the origin, its variance was -’% as shown in Appendix D.

The predicted performance for the robust technique is the line that runs
through the “x” symbols in the graph. It was calculated using the robust pre-
diction equation derived in Eq. (4.58). The robust variance 03 ropysr Was

calculated using Eq. (4.57) to have a value of %;- (see Appendix D).

Figure 5.2 shows that the robust method clearly outperforms the original single

steering constraint technique. At small levels of perturbation, the performance
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using the robust constraints was essentially equivalent to that of the unperturbed
array. The performance of the original single steering constraint method degraded
significantly, even for small values of phase error.

To examine the performance for relatively large phase errors, a simulation
was extended to a maximum perturbation of ¥ = 0.05 wavelengths. The de-
sired signal and phase error had identical parameters to the previous simulation

except that jammers were not present (see Table 5.2). The results, shown

Narrowband Azimuth [ Elevation | Wavelength | SNR
Signal Type _ (Degrees) (Degrees)

[ Desired Signal | 70 | 10 | A [30dB |

Table 5.2: Signal Parameters for Simulation in Fig. 5.3

in Fig. 5.3, demonstrated that robust constraints offered improved SINR perfor-
mance for these cases, but that the improvement was not as dramatic as was the
case for smaller errors.  This reduction in performance occurs because devia-
tions from the small phase error approximation (Fig. 3.3) cause the error vector
elements A, to have components which are no longer perpendicular to the desired
signal steering vector elements dy. Since only the perpendicular components are
removed by using the robust constraints, the remaining non-perpendicular com-
ponents contribute to SINR degradation. The dotted and dashed curves in this
figure were computed using the same prediction formulas as used in Fig. 5.2. At
the maximum error of 0.05), the ratio of SINR performance for the robust sys-
tem to that for the single-constraint system was calculated to be 22 dB using Eq.

(4.71). This value agrees well with the experimental results.
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Figure 5.3: SINR Performance for Large Phase Error without Jammers Present

The second series of simulation experiments were conducted using the ten el-
ement linear array. The environment consisted of a narrowband signal in the
presence of a single narrowband jammer with the parameters shown in Table 5.3.
Fig. 5.4 shows the SINR degradation observed for this case. Theoretical
predictions of performance also matched the simulation performance for this al-
ternate array geometry case. At a given level of perturbation, the performance of
the original and robust methods were superior to that observed in the previous
simulation experiments. This difference is due to the fact that there were fewer

array elements and that the input SNR was smaller. The prediction performance
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Figure 5.4: SINR Performance for the Ten Element Linear Array

results shown in Egs. (2.32) and (4.58) indicate that a decrease of these two

parameters induce in increase in output SINR.

5.1.2 Element Placement Errors

Phase errors in an array can also be caused by misplacement of the individual
elements from their designed positions. The resulting altered propagation delays
for the desired signal produces errors between the actual and predicted steering
vectors of the desired signal. The nominal position for each array element relative
to the origin was denoted by the vector a; as defined in Eq. (2.1). Under condi-

tions of array placement error, the actual perturbed location vector is denoted as
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Narrowband Azimuth | Elevation | Wavelength | SNR
Signal Type | (Degrees) | (Degrees)

Desired Signal [ 30 0 A 20 dB
Jammer | 70 0 A 20 dB

Table 5.3: Signal Parameters for Simulation in Fig. 5.4

a, and defined relative to the presumed location vector a, as,

- A
a, = ax + Aa,,

(5.4)

where the error location vector Aa, contains the relative Cartesian error values,

Aak =

Aak,:

Aak’y

Aak'z

(5.5)

Substitution of Eq. (5.4) into the definition of the steering vector elements in Eq.

(2.6) yields,

.2,5 ?u
= eI 7% ,

= eﬁ;(aHAak)'u

= e¥alugAalu

= de¥lay,

(5.6)
(5.7)
(5.8)

(5.9)

2 t . . .
Hence, the term /¥ Aau represents the phase shift of the predicted steering

vector element d; due to the placement error Aa.

Simulation trials were performed in which the three error components Aay. .,

Aay,, and Aay,, were generated as independent random variables with uniform

distributions. The SINR performance for these experiments was computed as a
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function of the maximum placement error of the array elements in a fashion sim-
ilar to the results shown in the previous section. The thirty-six element circular
array of Fig. 5.1 was used with one desired narrowband signal and one narrow-

band jammer with parameters shown in Table 5.4. The output SINR results

Narrowband Azimuth | Elevation | Wavelength | SNR

Signal Type (Degrees) | (Degrees)
Desired Signal | 45 20 A 25 dB

Jammer I 90 15 A 30 dB

Table 5.4: Signal Parameters for Simulation in Fig. 5.5

are shown in Fig. 5.5. The predicted performance shown was computed using
Egs. (2.32) and (4.58) using the original error variance 0% and the robust error
variance 04 popyst & calculated in Appendix D. The robust technique pro-
vided SINR performance near optimal levels for small perturbations (under 0.002
)) and significant performance improvement at higher placement errors. Again,

simulation results matched the theoretical predictions.

5.1.3 Steering Errors

The perturbed steering direction vector i is defined relative to the designed di-

rection vector u in Eq. (2.2) by,

i2u+Au (5.10)

The perturbed steering vector element d, may be expressed as,

. t~
dp = ¥y (5.11)

_ gkat(urdu) (5.12)
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Figure 5.5: SINR Performance for Array Placement Errors

gFatu FalAu (5.13)

P |
= dedFabu (5.14)

PPN |
where the phase error in Eq. (5.14) is due to the term EELHALY

Simulation experiments were performed with the desired narrowband signal
changing arrival directions over azimuth errors as large as 0.1°. The 36 element
circular array was used with a desired narrowband signal and three narrowband
jammers. The specific signal parameters used for these experiments are shown in
Table 5.5. The simulations results and predicted performance curves are shown

in Fig. 5.6 with the latter taken from Eqs. (2.30) and (4.46).
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Although the SINR performance equation developed for the steering vector
constraint system was generated for the case of a narrowband signal in spatially
white noise, its predicted performance almost perfectly describes the results ob-
tained with 3 jammers. This finding further supports the assumption that the
presence of jammers does not significantly degrade SINR performance. As a re-
sult, these prediction equations can be effectively used in multiple jammer envi-
ronments provided that the number of jammers is less than or equal to the number

of degrees of freedom available.

For these experiments, the use of the robust constraints was observed to pro-

vide near perfect performance for steering errors less than 0.05°. In these same
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Narrowband Azimuth | Elevation | Wavelength | SNR
Signal Type (Degrees) | (Degrees)

Desired Signal 20 10 A 30 dB
Jammer -130 10 A 40 dB
Jammer -20 10 A 40 dB
Jammer 70 10 A 40 dB |

Table 5.5: Signal Parameters for Simulation in Fig. 5.6

experiments, the single constraint method degraded the output SINR performance
by over 40 dB. At levels greater than 0.05°, performance for the robust method
degraded but was still superior to original minimum variance beamforming.
Comparisons were performed between the use of the robust constraints and the
use of the steering derivative constraint in the presence of steering errors. Both
methods provided similar output SINR performance. This is consistent with the
analysis in Chapter 4 that shows that the steering constraint is a special case of

the robust constraints.

5.1.4 Frequency Errors

An additional source of error in an array is caused by differences between the
actual received desired signal frequency and that which was anticipated a priori.

A perturbed frequency f as a function of the nominal frequency value f,
f=f+A4f. (5.15)
By noting the relationship between frequency f and wavelength ) of a signal,

f= ; (5.16)
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where c is the speed of propagation, the steering vector element dj. for the desired

signal is given by,
2l ol
dj = &7 Ak, (5.17)

The perturbed steering vector element d, due to frequency errors then becomes,

i, = aly (5.18)
_ i=4tbalu (5.19)
o alugEMalu (5.20)
) (5.21)

2w t
In this case, the phase shift error term is €’ =lagu gq, (5.21) can be expressed
as a function of wavelength perturbation A A+ by substituting wavelength

values appropriately for the frequency values, i.e.,

Af = f-1, (5.22)
= §—§ (5.23)
Y +CAA - ; (5.24)
= )\—(-:\:-?-/\_Zi)\).' (5.25)

A simulation was performed for a narrowband desired signal with wavelength

errors of up to 1% using the signal parameters shown in Table 5.6. The 36

Narrowband Azimuth | Elevation | Wavelength | SNR
Signal Type (Degrees) | (Degrees)

Desired Signal 60 10 A 10dB

Table 5.6: Signal Parameters for Simulation in Fig. 5.7

element circular array was used and results obtained are shown in Fig. 5.7. The
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Figure 5.7: SINR Performance for Frequency Errors

robust technique provided excellent SINR protection up to an error of 0.005A when

it began to degrade. At that value, the original minimum variance beamformer

had lost 20 dB in performance.

5.2 Effects of Numerous Jammers

In order to test the degrees of freedom available, the 36-element array was used
with a 30 dB narrowband desired signal. In these experiments, the signal fre-
quency was reduced by a factor of % over that illustrated in Fig. 5.1. As a result,

the outer radius of the array was 1.25) rather than 1.5X. Jammers with 40 dB
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SNR were introduced from random arrival angles constrained to be outside the
mainlobe of the quiescent beampattern. All signals were incident at an elevation
of 10°. The array was randomly perturbed with uniform phase perturbations at
each array element with a maximum perturbation of 0.025 wavelengths. Again,
three types of SINR simulations were run and are shown in Fig. 5.8. The symbol
“4" in the figure represents a trial in which the steering constraint was altered
to match the perturbed steering vector d (i.e. the zero error case); the symbol
“o” represents the performance of the perturbed array for trials with a single,
unadjusted steering constraint; and the symbol “x” represents the performance

of the perturbed array trials using robust constraints. ~ The theoretical maxi-
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mum number of jammers that can be nulled by an array with a single steering
constraint is N — 1, or 35 for these experiments. Figure 5.8 shows that while some
degradation in performance of the single-constraint system was observed above
this number of jammers, several specific trials resulted in good performance even
with more than 50 jammers present.

With the robust constraints, the maximum theoretical number of jammers is
given by Eq. (4.40) as 17 jammers. The experiments indicate that the use of the
robust constraints provided good performance for fewer than ten jammers and
significant degradation for more than twenty jammers. This simulation confirms
the theoretical findings in Chapter 4 that adding the robust constraints results in
a loss of half the degrees of freedom.

This phenomena was due to linear dependencies. Since the jammers were
randomly selected, some cases produced jammers which were nearly linear com-
binations of others. In such case, the minimum variance beamformer was still

capable of nulling more than 35 jammers.

5.3 Robust Generalized Sidelobe Canceller

In this section, simulations are presented which illustrate the performance of the
GSC in its original and modified robust form. The ten element linear array was
used with uniform phase perturbations having a maximum deviation of 0.01A. The
normalized adaptive step size « for the iterative simulations was set to 0.001. This
relatively small value for o was chosen to minimize misadjustment. The adaptive
weight vectors w, and w, p were initialized to zero values and the simulation was

run for 25,000 iterations. The environment consisted of a single desired §ignal
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with no jammers, as shown in Table 5.7.

The SINR for the original and robust

Narrowband Azimuth | Elevation | Wavelength | SNR
Signal Type (Degrees) (Degrees)
[Desired Signal [ 10 [ 10 | ) [20dB]

Table 5.7: Signal Parameters for Simulation in Fig. 5.9

methods are shown for a single experiment in Fig. 5.9.
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line at 30 dB represents the closed-form predicted robust performance as given in

Eq. (4.58). The horizontal dotted-dashed line at 20.3 dB represents the predicted

performance for the single constraint system as given in Eq. (2.32).
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The original GSC decayed to predicted levels after 10,000 iterations while the
robust GSC stayed between 1 and 2 dB below its closed-form predicted perfor-
mance mark. This latter discrepancy is due to the misadjustment within the LMS
algorithm which is known to cause imperfections between ideal and actual results
[13]. The misadjustment can be decreased be choosing a smaller step size a at the
cost of increasing the time necessary for the GSC to adapt to a changing signal

environment.

Fig. 5.10 shows the noise powers of the iterative and robust systems for the

simulation in Fig. 5.9. The original complex GSC shows a significant increase in
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Figure 5.10: Noise Performance Comparison Between the Original GSC and the
Modified GSC with Robust Constraints
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noise power while the robust GSC remains relatively constant. This is consistent
with the discussion presented in Chapter 3.

A second simulation was conducted to illustrate the performance for the the
case of a narrowband desired signal in the presence of a narrowband jammer and
spatially white noise (Table 5.8 dctails the signal parameters). The four element

square array described earlier was used with a steering error of 5°.  The SINR

Narrowband Azimuth | Elevation | Wavelength | SNR
L_lgnal Type " (Degrees) | (Degrees) |

Desired Signal [ 0 0 ) 30 dB

Jammer | 30 0 A 30 dB

Table 5.8: Signal Parameters for Simulation in Fig. 5.11

performance results obtained for 100,000 iterations with the updating factor a
set to 0.0025 are shown in Fig. 5.11.  The closed-form predicted performance
levels are indicated by horizontal lines for the original single constraint method,
robust method, and the error-free (calibrated) system. Note that the SINR for the
robust method was significantly below the SINR of the calibrated method. This
was due to the relatively large amount of perturbation that, in fact, violates the
small phase error assumption in the robust analysis of Chapter 4. The iterations
for both the robust method and the original method converged to their respective
predicted values.

The poor performance of the original GSC was accompanied by a correspond-
ing increase of the output noise power as shown in Fig. 5.12.  The noise power
of the robust method quickly leveled off while the noise power of the original GSC

continued to increase. Both methods, however, effectively nulled the jammer.
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Figure 5.11: SINR Performance Comparison Between the Original GSC and the
Modified GSC with Robust Constraints and One Jammer

This result is illustrated in Fig. 5.13. Although the output jammer power de-
creased for the original GSC, its output SINR also decreased during this interval
as shown in Fig. 5.11. A decrease in the jammer output power normally results
in an increase in output SINR. However, in this case, the increase in output noise

power more than compensated for the decrease in jammer power.
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Figure 5.12: Noise Performance Comparison Between the Original GSC and the
Modified GSC with Robust Constraints and One Jammer

5.4 Experimental Data Results

Experimental data from a RF linear array' was used to compare the original
minimum variance beamformer and the new robust approach. The array consisted
of thirty-six vertical whip antennas spaced at intervals of twenty meters for a total
aperture of 700 meters. A narrowband signal was present at 7.335 MHz at an
azimuth of —6° relative to broadside. The signal was quadrature down-converted
to 2 KHz and sampled at a rate of 10 KHz to generate 256 complex samples for

each array element [30].

1Array data was generated and supplied courtesy of the Rome Air Development Center
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The Discrete Fourier Transform (DFT) was taken of each time series to exam-
ine the phase properties of the desired signal. Bin 52 of the DFT contained the
majority of the energy for the desired signal. Since the array was linear, the phase
of Bin 52 should have increased linearly for each array element. However, in the
majority of the array elements, the observed phase did not closely fit this linear
model, hence, their errors did not qualify as small phase anomalies. Nine of the
array elements with the best linear phase properties were chosen for experimental
use. The specific selections were element numbers 2, 5, 7, 8, 10, 12, 27, 34, and
35. The outputs of these nine complex data channels were individually magnitude

scaled and used to form into data vectors x (n) for n = 1,2,...,256. Constant
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magnitude scaling was performed on each data stream to ensure that the diago-
nal elements of the estimated correlation matrix R.. had equal values. Scaling
in this manner represents a first order attempt at minimizing the amplitude error

between array elements. This matrix was formed as,

256
x(n)x! (n). (5.26)

n=1

- Ree =5

The weights Woptoprcrnar 2094 Wopt rosust Were generated from Eqgs. (2.18) and
(3.61), respectively, using the estimated correlation matrix R... The respective
output data streams yorrcryaL(n) and yropust(n) were then generated over the
same data series using the computed weight vector. Figures 5.14 and 5.15 show the
magnitudes of the DFT’s of the time series data yorrcina .(n) and yrosust(n).

A strong spectral peak from the narrowband signal was observed for the
robust method at Bin 52, as expected. The single steering constraint method
both strongly attenuated this signal peak and increased the background noise
level.

A conventional beamformer that used the quiescent weight vector w, to gen-
erate its output was also examined. This non-adaptive weight system provides
optimal performance under conditions of a spatially white noise background and
no perturbation errors. Its performance is relatively unaffected by small phase
errors and it therefore offers a reasonable upper bound for SINR comparisons in
a spatially white noise environment. Since the signal is approximately narrow-
band, its power was calculated as the square of the magnitude of the DFT of the
signal at Bin 52. The noise power was calculated using an average over bins 100
to 200, inclusive, representing a spectral region well outside that of the desired

signal. The output SINR was calculated as signal power divided by total noise

86



L]
framy
as FFT OF ORIGINAL OUTPUT DATA SEQUENCE
= 20} 4

15f 4

10}

?
MAGNITUDE OF FFT IN dB
wn
="
—_———
—_—
=
—_——

o,
-10 ‘
0 50 100 150 200 250
- FFTBIN
s Figure 5.14: DFT of Output of Traditional Minimum Variance Beamformer with
a Single Steering Constraint
o
power over all frequency bins. Table 5.9 shows the results obtained for the three
- beamformers examined in this study.
= Weight Signal | Average Noise | SNR
Vector Power | Power/Bin | Estimate
- w, 55,980 0.2520 29.38 dB
Wopt,ORIGINAL 574.3 9.613 -6.320 dB
Wopt,ROBUST 52,910 2.752 18.76 dB
o]
Table 5.9: Comparative Performances for Different Weight Vectors
~
- The robust constraints provided over 25 dB SINR improvement compared to
the original single steering constraint system. It falls 10 dB below that of the
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output SINR achieved with w,. This is likely due to the presence of uncompen-
sated amplitude errors and estimation errors induced by using a sample correla-
tion matrix R., instead of the the true correlation matrix R... It should also
be noted that the presence of a strong jammer in the data would have substan-
tially degraded the performance of the quiescent beamformer. The robust system,

however, would have remained relatively unaffected.

5.5 Summary

Experimental results have been presented in which small phase errors were in-

troduced by randomly changing the incoming phase of the signal at each array
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element input, perturbing the location of each array element, applying a steer-
ing constraint that was perturbed in azimuth, and applying a steering constraint
that was perturbed in frequency. In all cases studied, degraded performance was
observed as the amount of perturbation increased. The performance prediction
equations developed in Chapter 4 for the robust method proved accurate under all
simulations. A simulation that increased the number of jammers confirmed that
the number of degrees of freedom available is approximately halved when robust
constraints are used. Simulations with the robust form of the Generalized Side-
lobe Canceller demonstrated performance improvement over the original structure
using iterative computation of the optimal weight vector from synthesized data.
Actual RF array data of a narrowband signal was also used to demonstrate robust
effectiveness. More than 25 dB gain in SINR over the original minimum variance

approach was achieved with the addition of the robust constraints.
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Chapter 6

Conclusion

6.1 Review

In unperturbed environments, linearly-constrained minimum variance beamform-
ing provides a means of receiving a signal of interest in the presence of unwanted
jammers. Unfortunately, when the input SNR is high, the existence of small
phase errors seriously degrades the SINR performance of the system. The robust
constraints developed in this dissertation have been definitively shown to prevent
SINR degradation in such cases. This is an important contribution because pre-
cise phase calibration is more difficult than is accurate amplitude calibration in

most practical applications.

The robust constraint approach was developed from two seemingly different
points of view. The first involved a detailed examination of the signal output

power observed in a minimum variance beamformer while the second arose from
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the direct application of derivative constraints to the output of each individual ar-
ray element. Both methods, however, directly constrained the adaptive processor
from reducing the desired signal output power under phase perturbed conditions.

It is somewhat surprising that the technique of applying derivative constraints
to each element had not previously been attempted. One possible explanation
is that only complex lincar constraints had been examined. Individual complex
constraints would lead to an over-constrained problem with an inconsistent set
of complex linear equations. This is due, in part, to that fact that the familiar
complex linear form of the derivative constraint is a sufficient but not necessary
condition. The new robust constraints represent both sufficient and necessary
conditions and require approximately half the number of complex degrees of free-
dom.

In this dissertation, it was shown that the technique of applying null linear
constraints to subspaces as an approach to combatting perturbations effects is
ineffective for the case of small random phase errors since these errors have no
preferred complex subspace. A key contribution to this thesis, however, is the
definition of robust null linear constraints that are applied after the complex
signal is restructured into the real domain.

Not surprisingly, closed-form and iterative techniques for deriving optimal
weight vectors in the real domain (with the addition of robust constraints) have a
parallel form to traditional methods derived in the complex domain. By carefully
analyzing the output of the complex form of the GSC, a similar real form was
implemented using the robust constraints.

It was shown that the robust constraints can also be interpreted as phase con-

straints on the complex weight vector elements. As a result, use of this technique
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restricts the complex phase of the weight vector elements and allows only their

magnitudes to adapt.

Equations were developed that predict SINR performance when the robust
constraints are employed. By comparing their results with the equations for the
single constraint adaptive beamformer, improvement values can be calculated for

any given array environment.

The robust constraint procedure was shown to provide SINR performance im-
provement in both computer simulation experiments and with the use of actual
RF array data. The experimental performance observed was consistent with the-

oretical predictions in both cases.

6.2 Areas for Future Research

Direction of Arrival Estimation

The technique of minimum variance beamforming has been used for direction
of arrival (DOA) estimation. An analogous method using the addition of the
robust constraints may provide DOA estimates in the presence of array phase
anomalies. The cost trade-off of using such a technique can be compared to the
cost of losing approximately half the degrees of freedom as described in Chapter 4.
One consideration is that since the robust constraints inherently protect against

steering errors, resolution will be lost in the DOA estimation of incoming signals.
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Use of an Estimated Correlation Matrix

An estimated correlation matrix can be used in the closed-form solutions for the
robust algorithm. The predicted performance of using such an estimate is un-
known and would provide valuable information on the number of samples required

for adequate performance in a perturbed environment.

Hybrid Techniques

The robust constraints developed in this dissertation protect SNR against small
phase errors but do not protect against amplitude errors. Possible combinations
of these constraints with previously developed robust techniques (noise injection,

weight bounding, etc.) may prove fruitful under other types of perturbation.
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Appendix A

Subspace Result with Small

Phase Perturbations

This Appendix presents an analysis which demonstrates that the space formed
from all combinations of steering vectors having small phase errors produced
by independent and identically distributed (i.i.d), zero-mean, symmetrically dis-
tributed random variables has no preferred subspace.

Given d(©g, o, p) is the steering vector for a signal from azimuth and eleva-

tion direction ©y, o with an array perturbed by the vector p where,

yyl

P2
p3 |» (A1)

>

- pN -
and each p; is the phase perturbation value for element k. The probability density

function of the phase errors of all N array elements is defined as p(p). The
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correlation matrix formed as an integral over all possible steering vectors due to

perturbations is,

Q= [ - [ (p)d(®0, 20, )d" (@0, &0, P)dp- (A2)

Looking at the (3, 7) element of the matrix Q yields,

Ql, = /p -+ [ p(p) di(€o, 20,p)d}(€0, 20, p;)dp. (A.3)
The probability densities being i.i.d. yields,

N
p(p)= [ p(p). (A4)
k=1
Substituting Eq. (A.4) into Eq. (A.3) for the case i # j yields,

[QJ;; =/P (ps) di(eo,q’o,Pi)dPi/P (;) d;(Go, Po, P;)dp; kl;[ _/P(Pk) dpe, (A.5)
i,y

=m (di(Bo, B0, pi)) m (¢} (S0, P, p3)) » (A.6)

where m (-) represents the probability mean.

The next part will show that for small phase perturbations, the mean of the
steering vector equals the unperturbed steering vector. Due to a phase error of
p; radians, the perturbed steering vector element can be represented as a phase

shifted version of the unperturbed steering vector element,
di(©g, o, p:) = d; (G0, o, p: = 0) €%, (A.7)

where d; (©9, ®o,p: = 0) is notation for the unperturbed steering vector element.

Expanding the exponential term using the Maclaurin series yields,

12
di(©o, ®o, pi) = di (©0, o, Pi = 0) (1 + jpi + %;)— +.. ) . (A.8)
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N 2 .
For small errors (i.e. IS-%)—l << 1), the second and higher order terms are in-

significant and can be ignored,
di(©¢, Do, p:) = di (€0, Do, pi = 0) (1 + jpi) . (A.9)

Examining the mean of the steering vector element over the probability space of
all possible errors and noting that p; me- represents maximum perturbed deviation
yields,

m (@0, 80,5) 2 [ p(pi) (@0, B0, p)dpi. (A.10)

-~ Py, mazx

Substituting Eq. (A.9) into Eq. (A.10) yiclds,

m (di(Oo, Po, pi))

Ps,maz

= p (pt) di (901 q)Ospi = O) (1 + ]pt) dpi: (All)

—Pi,maz

Pr.mazr

= d; (©o, ®o,pi = 0) (/ |

—Pr,max

Ps,max
p(p:)dp: + p(p:) jpidpi | , (A.12)
=P maz

= d; (9, Do, pi = 0) (1 + ’ P (p:) jpidpi + /om’muP(Pi) jp.-dp,-) .(A.13)

=Pi,maz
By substituting —p; for p; in the first integral and noting that the probability

density function is symmetric (i.e. p(p:;) = p(—p;)) yields,

m (di(©e, o, pi))
= d;(©o, ®o,pi = 0) (1 - /(; " p(pi) pedps + /o "™ p (pi)jpidpi) » (A.14)
= d; (8o, Do, p: = 0) (1 = 0), (A.15)
— d; (o, B, p: = 0). (A.16)

Substitution into Eq. (A.6) yields the correlation matrix elements for the non-

diagonal terms,

[Q);; = di (G0, ®o, pi = 0)d; (€0, Po,p; =0) for i#j. (A.17)
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For the diagonal terms of the correlation matrix Q (i.e. i = j) Eq. (A.3) becomes,

[Q}u = /P (i) di(eoa‘I’O,Pi)d;(eo,q’o,Pi)dpi H /P (px) dpr, (A.18)

ki
= E[ldi( 0, ®0,p)*], (A.19)
= var (di(Qp, Lo, pi)) + m (di(©0, B0, 1)), (A.20)
= wvar (di(©o, o, p:)) + Id: (€0, @0, p: = 0) |, (A.21)
By noting that the power to each element is equal,
|d; (©0, @0, pi = 0) | = |d; (B0, ®o,p; = 0) > ¥4, 3, (A.22)

and representing Eq. (A.17) and Eq. (A.21) in matrix notation yiclds,
Q =d (90, by, P= 0) dt (@o, o, P= 0) + var (di (eo, (I)o,p,' = 0)) I (A.23)

Equation (A.23) represents the sum of the correlation matrix for the unperturbed

signal with the addition of a scaled identity matrix.
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Appendix B

Biasing the Error Term

One possible approach to imposing the inequality in the constraint of Eq. (3.18) is
to constrain the error scalar Ap, to be non-negative. This would have the potential
benefit of producing a larger feasible solution space for the weight vector w. This
Appendix shows that attempting to enlarge the constraint region in this fashion
does not achieve the desired result. However, the topic needs to be addressed to
ensure that no other methods exist to enlarge the feasible solution space.

The non-negative constraint can be achieved by biasing the desired steering

vector element to the edge of all possible perturbed steering elements. Hence,
d=d- Apax, (B.1)

where Anax is & vector whose elements contain the maximum error under the
small perturbation assumption. This has the effect of forcing Apy in Eq. (3.25)

to be strictly positive. Applying algebra to Eq. (3.25) yields,

1 -
= —A;e 72 B.
dk Apk Ake s ( 2)
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where Ay is the error for each element assumed under the small phase approxi-

mation. Expanding the steering vector constraint into its terms yields,
N
Y diwp=1. (B.3)
k=1
Substitution into Eq. (B.2) renders,
LA |
e’7 Z‘l EA’:W* =1. (B.4)
The Z phase shift implies that the real part of the summation is zero,
X1
R (k{:. Z;;A;wk) = 0. (B.5)
Note that each term A}w; is constrained to be greater than or equal to zero from
Eq. (3.18). Also, each Ap; is greater than zero due to biasing. The fact that
each term is greater than or equal to zero and the sum is equal to zero implies

that each term must be strictly equal to zero, hence,
R (Ajwe) =0, (B.6)

which is identical to Eq. (3.29). So even using the biased-error method to imple-

ment the inequality constraints on the weight elements still results in the same

equality constraints as derived in Chapter 3.
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Appendix C

Complex to Real Restructuring

This appendix justifies the complex to real transformation of the matrices used
in Chapter 3. The object of the first section is to show that using transformed
matrices to solve the linearly-constrained power minimization problem is equiva-
lent to using the original complex form of the matrices. The second section shows

how the GSC structure can be altered to accommodate the real transformation.

C.1 Linearly Constrained Power Minimization
Equivalence

The transformation is defined as follows. Each of the matrices and vectors of
interest can be broken down into their real and complex component vectors, noted

with subscripts “r” and “i”’, respectively,

w = W, jwi, (Cl)
d = d.+jd;, (C:2)
Rzz = R’.czr + jR'zzir (C'3)
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f = f+if (C.4)

The real transformed versions of these matrices are denoted with the subscript R

and defined in Eqgs. (3.37) through (3.40) and repeated here,

wr
wp 2 , (C.5)
Wi
d, -d;
Dp 2 , (C.6)
d; d.
A Rzzr "szi
R:zp = ) (C.7)
Ra-zi Rx:cr
Ir
fr £ (C.8)
¥

The legitimacy of using this transformation in the minimum variance beamforming

problem is verified below.

The linearly-constrained power minimization equation was given in Eq. (2.22)

and is repeated here,
n‘nhi,nw*Rﬂw subject to diw = f, (C.9)

where f = 1. The object is to show that the problem in Eq. (C.9) is equivalent
to,

I\I\Irif;l wlhR..rwr Such that Dlwp = fr. (C.10)
Expanding the output power term wiR_;w in Eq. (C.9) and noting that it is in

quadratic form (i.e. its imaginary part will always equal zero) yields,
wiRew =(w, + jwi)' (Razr + jRzz:) (Wr +Wi), (C.11)
=wIR;;,W, = WI RuziW; + W Rz, Wi + W Rygi Wy (C.12)
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Expanding the real transformed power version WrRzrWR yields,

T

W, R:z, —Razi W,
wIR.;rWR= * = , (C.13)

Wi R*.:zi R::zr Wy

=wT Rz, Wy — wfR,,,-w,— + w;rR.n,.wi + w?Ru,-w,.. (C.14)

The right side of Eq. (C.14) matches the right side of Eq. (C.12), implying that

both forms of the output power are equivalent,
wiRz.w = WhRzzrWR. (C.15)

The equivalence between the complex and real transformed linear constraints
in Egs. (C.9) and (C.10) will be demonstrated. Starting with the complex linear

constraint d*w = f and expanding yields,

dtw = f, (C.16)
(d, +jdo)! (we +jwWs) = fo+ ki, (C-17)
(dzw, + d,Tw,-) +3 (dfw,- - d;-rw,.) = fe+ifi (C.18)

Pairing the real and imaginary terms in Eq. (C.18) as two separate real constraints

yields two equations:

dTw, +dlw; = f, (C.19)
dTw; -diw, = fi (C.20)
which can be written in matrix form,
T
d, -d; w Wy
' | = , (C.21)
di d,- Wi Wi
D’{Z‘Wn = fR. (C22)
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Hence, dfw = f is an equivalent constraint to DEwg = fr. Consequently, the
constrained problem in complex form in Eq. (C.9) is equivalent to the real version
in Eq. (C.10). Therefore, using either form to solve for the optimal weight vector

Wop in Eq. (2.18) will yield the same real and imaginary components for wop.

C.2 Transformed GSC

The last section showed how a closed-form solution could be found for use with
the robust constraints. This section develops an altered form of the original
GSC that can iteratively compute the optimal weights. Part of the derivation
parallels Widrow, McCool, and Ball’s [31] derivation for the complex form of the
LMS algorithm. All “r” and “i” subscripts designate real and imaginary parts,
respectively.

The analogous outputs to ¥, y., and y, of the original GSC in Fig. 2.3 are

defined below for the new real structure in Fig. 3.4,

Yr 2 e =) 2 i, yrel, (C.23)
Ya,R é [yarv _'yci] g [ya,Rl: ya,RZ] ’ (C'24)
Yaq,.R é [yqr, -yqi] é [yq.Rh yq,R2] . (C.25)

The matrix W, p is constructed by generating its columns to span the orthogonal

space of the constraint matrix Cg,
WTrCr=0, (C.26)
where 0 is a matrix containing all zero entries. Examining the complex output y

of an linear array processor yields,

y = Yr + 3, (C27)
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= wix, (C.28)
= (wr = jw)T (%, + 3%, (C.29)
= (wfxr + w;"xi) +3 (wz'x,- - w?x,) : (C.30)

The real weight vector wg is defined in Eq. (C.5) and the real data matrix Xp

is defined as,

>

A Xr -X(

XR le sz . (C-31)

b

The lower path data matrix X, r contains two column vectors Xq,r1 and Xg g2

xi xnr

generated as,

Xa,r1 = Wj pXR1, (C.32)

Xa,pz2 = Wi pXpa. (C.33)
This can be written in matrix notation as,
Xa,r= Wf rXR (C.34)

By noting from Fig. 3.4 that wg = wg r — W rW, R, the real and imaginary

parts of the output y from Eq. (C.30) can be written as,

A

Yy = YR = Wﬁxnx = Wz:nxm - WZ:Rxa,m, (C.35)
Jay

Yi = —Yr2= —-w']n;xM = —wg:Rxm + W:Rxa.kz. (C-36)

The criterion used in deriving an update vector is minimizing the output power

of the processor is,

. 2 . 2 2
pin Elyl* & gmin B (¥ +47). (C.37)
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The instantaneous gradient (i.e. the gradient taken while ignoring the expecta-

tion) is given as,

VWa.R (yvz' + y;z) 2erWa,n (yr) + 2yivwa,n (%) » (C-38)

= 2y, (—Xa,r1) + 2Ui (Xa,R2) - (C.39)
The adaptive weight vector update is (note that time sample notation is added),

wor(n+1) = war(n) —uVw,r (yf(n) + yf(n)) ) (C.40)
= wq,r(n) + 21 (yr(n)Xa,m1(n) — yi(n)Xa,r2(n)), (CAL)

= wa,r(n) + 2pXa,r(n)yE (7). (C.42)
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Appendix D

Error Variance Expressions

D.1 Uniform Phase Perturbation

D.1.1 Variance without Robust Constraints

The error variance o for the case of uniform phase errors can be calculated in
a straight forward manner. Since Ap; is uniformly distributed about the origin
(thus has a mean of zero) and the error is only in phase (i.e. Ax = Apy), and
noting that 3 represents the maximum value of the uniform probability density

function, the variance is calculated as,

03 = E[lAf] - Imal (D.1)
= E[lap? -0, (D.2)
= [ ap’p(opn) dop, (D.3)
v 9 1
= /_wApk (ﬁ) dAps, (D.4)
_ 1 Apks v
_ ﬁ( ’ ]_w, (D.5)
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5503 e

= - (D.7)

D.1.2 Variance with Robust Constraints

The variance of the error with robust constraints is calculated for the case of
uniformly distributed phase errors at each element. From Eq. (4.57), the robust

variance for a general probability density can be calculated as,

OA ROBUST = E[lAk.ROBUSTiz] — |ma,rosustl’ (D.8)

1
= ZE [Apk4] —~ |ma,roBusTl*. (D.9)

The uniform density distribution for the original phase error at each element Ap
is assumed to have mean zero and have maximum and minimum values of 1 and
—1), thus having a uniform density value of ﬁ over that range. Solving Eq. (D.9)

first requires finding the fourth moment [32] of the phase error random variable

Apk ’

Elan] = [ ontp(ap)ddp, (D.10)
¥
- 515 /_ ,Apctdp, (D.11)
- _I_(Apksr (D.12)
W\ 5 |’
_ 1 .¢5 ws
30 o
_ v -
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The mean of the uniform phase error with the robust constraints ma, ropusT is

calculated by taking the expectation of the error approximation in Eq. (4.53),

ma,ROBUST

I

E [Ak] s

ol (=)

-%E[80),

d 00
-?k /_ o Apkzp (Apk) dApx,

de v of 1
-3 /_wAPk (ﬁ) dApk,

_de (ép_k”]”"
4 3 'p,

55 (%)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)
(D.20)

(D.21)

(D.22)

The robust variance is calculated by inserting Eq. (D.14) and Eq. (D.22) into

Eq. (D.9) and noting that |dx| = 1 from Eq. (2.6) yields,
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A,ROBUST

1
ZE [Apk"] — |ma.roBustl’.

1 4 2 1/,2 2
Z(?)-ldkl (?) ,

vt 9l
20 36’
¢4
Is'.

(D.23)
(D.24)

(D.25)

(D.26)



D.2 Array Placement Errors

D.2.1 Variance without Robust Constraints

Array placement errors cause phase errors in the resulting steering vector d. The
placement is assumed to be uniformly random with zero mean in the x, y, and 2
Cartesian coordinate directions. The placement variance for each direction equals
-":’,72 as was calculated earlier in the appendix for a uniform density where 3 and
—1 are the maximum and minimum values, respectfully, for the density function.
The variance is calculated as a direct result of the error phase shift implied in Eq.

(5.9),
27

3 Aalu. (D.27)

Apk =

Using the definitions for u and Aa, in Eqs. (2.2) and (5.5) yields,

Apy = _T% (Aax sin (©)cos () + Aak,ycos (©)cos (@) + Aa,.sin (P)).
(D.28)
Since each error value Aax z,Aax,y, and Aax,. are all zero mean, the mean of the
phase error E [Apy] is zero.
Since the random variable Apy is zero mean, the variance of the error 0%

equals the second moment of the phase error E [Apkz],

ok = E[ap?], (D.29)
= (‘T"”’)2 [E[86} -] sin (B)cos? (@) + E [aa},, | cos? (©)cos? (9)
+E [Ad} ] sin? (®) + 2 [Aax,q] E [Aax,] sin (©)cos (©)cos” (2)
+2E [Aak,z) E [Da, o] sin (©)cos (®)sin (@)
+2E [Aax ) E |Aay, ) cos (©)cos (®)sin (8)] , (D-30)
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where the independence between the x, y, and z coordinate errors has been used.
By noting that E[Aak.] = E[Aax,] = E[Aax,:] = 0 and also E [Aai',] =
E [Aai y] =F [Aa?c z] = Lz yields,

3

0’

(—)2‘—) ("b ) sin? (©)cos? (@) + cos? (©)cos? (&) + sin” (9)) (D.31)

= (—i—ﬂ) ( ) (sm (©) + cos (9)) cos? (®) + sin (<I>)) (D.32)
= (-—i—ﬂ) ( ) cos2 (®) + sin ((I>)) (D.33)
2

Note that the variance is independent of the direction of the desired signal.

D.2.2 Variance with Robust Constraints

To calculate the effective variance using the robust constraints, the fourth moment
of the phase error E [Apkz] needs to be computed: By taking the fourth power of
Aprand applying the expectation operator to each term, all first power terms of
Aay z,Aay,y, and Aag,. will be zero since they are all zero mean. By examining
the remaining terms and noting that E [Aa,“'z] =F [Aa;‘c'y] =E [Aa‘,‘c'z] =¥

yields,

(—_:\211)4 [E [Aa'?:,z] sin® (©)cos* (®)
+E [Aa}t,y] cos* (©)cos® (@) + E [Aat,g] sin® ()

FE [Apk"]

+6E [Ad} .| E [Aa ] sin® (B)cos? (©)cos* (2)

+6E [Ad? ] E [Aaf ;] sin® (B)sin® (®)cos? (2)

+6E [Ad}, | E [Aa},.] cos? (©)sin® (@)cos? @], (D.35)
- (’2%)4 [%4 (sin® (©)cos* (&)
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+ cos® (©)cos* (@) + sin* (<I)))
+6 (%2) (%2) (sin2 (©)cos? (O)cos* (P)
+cos? (©)sin® ($)cos? (d)))] , (D.36)
= (2%)4 [%4 ((sin4 (©) + cos* (@)) cos® (@) + sin* (<I)))
+23£c052 (®) (sin2 (©)cos? (0©)cos? (D)
+sin? (©)sin? (®) + cos? (©)sin® (4)))] , (D.37)
27 4

= (.7\.)4 [? ((sin‘l (©) + cos* (@)) cos* (®) + sin* (‘I’))

+2T1'{J4cos2 (®) (sin2 (©)cos? (©)cos? (&) + sin® (d)))] . (D.38)

The final robust variance equation uses the second and fourth moments,

1 . 9
OA.ROBUST = ZE _APk4 — |ma,roBustl’, (D.39)
A ) _ 272
- %E Apy —|E [dk Az’"‘] : (D.40)
2
1 1. 4 E|[Ap?
= ZE _APk"' - |dk|2(—[4—])_, (D.41)
1 4 21\ 2
= Z[E [ap*] - (E [ap?]) ] (D.42)

where E [Apk"] and E [Apkz] are given by Egs. (D.38) and (D.34).
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