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SYSTOLIC NEURAL NETWORK Auther: Te-Ho Chen

EE 599 term project partner: Juinn-yan Chen

professor: B. J. Sheu Date: November 28, 1990

A Introduction:
In this project, we tried to implement systolic neural array to take advantage of
benefits of neural network, that massively parallel computation and learning
algorithm available for neural networks, and benefits of systolic array , that
compressing multi-dimensionnal PE into one-dimensional PEs. And this system
can satisfy the requirements of digital signal / image processing.

B. work partition:
I take care of system level and control unit, and Mt Juinn-yan Chen works on
processing element.

C. system architecture: (Fig 1)

-use interface chip as one I/O port, host issue macroinstruction and dimension,

then download data via DMA.

. control unit includes 4 major parts:
a.memory access part: for download data to each local memory.
b. fault detection and recovery parts: detect faulty PE , correct error and recover
by spare PE.
c. I/O port: recept data , macrocode and dimension from fost, upload data, faulty
signal to host. '
d. contol unit: to control operation of each PE , and to broadcast and collect

data.

D. implementation:
1. fault detection and recovery part:

.use microprogramming
-advantage: easy to design, maintain, and expand; great portability and
compatibility with different performance and different architecture of
host and PEs,
.disadvantage: slower than dedicated control finite state machine.

(could use high speed memory to improve )
microprogram and supporting hardware isin Fig 2.
-



.use 2 level microprogram to speedup the accessing speed for most
operations are repetious and commonly used.
.use program table on top of microprogram for portability with host.
.4 major operations in microprogram:
a. next address operation: next operation is at next address.
opcode=00.

b.conditionnal branch operation: next operation’s address depends
on condition in the microcode. opcode=01.

c.while do operation: could be done by combination of next
address and conditional branch operations, and use a dedicated
counter to count the iteration number. opcode=11.

d.stop operation: for the last operation in nanoprogram, test if
repetition enough ( content of dedicated counter for dimension
of macroinstruction of host). If yes, microprogram go to next
operation, else nanoprogram go to first nancoperation and
trigger dimension counter to count down. opcode=10.

refer to Fig 3,4

fault tolerant algorithm use weighted check sum to detect and correct error
( ref 1) Fig 5. Flowchart and corresponding microoperation is in Fig 6.
For multiple faulty PEs, the algorithm need a little modification. ( ref 1).

. Error detection in microprogram and counter:
.use parity bits to detect one or two adjacent faulty bits.( ref 2)
Fig 7, Fig 8.

. required ALU , register and bus even some nanoprogram are the same
with PE’s. ( my partner took care of that part)



.after completion of error detection and correction, recovery operation can
be accomplished by dedicated microprogram ( not combinational ckt, in
order to facilitate the scaling (increase PE number ). Fig 9.

v

2.control unit:
.to control and monitor each PE’s operation .
.to broadcast and collect data to and from each PE.
.accomplished by microprogramming.
.macroprogram (for PEs) format is composed of opcode and iteration
number.

Fig 10.

3 1/ O port and memory access parts : future work.

E. discussion
.could do RBP and HMM algorithm .(ref 3) v
.also can do normal algorithm by ring architecture. eg. vector quantization.
Fig 12.
. most operations in PE can be done in pipeline by dedicated buses and registers,
and so does parallel processing among PEs. High performance is expected.
For 4 PEs, 256*256 image, 2*2 window, 1024 codewords, the throuput for each
PE is 1/ 15 nsec, then throughput of whole system is 2 frames/ sec; copression rate
is 3.2:1.
.This system could be general-purpose scalable digital signal processing array
(extra application can be done by adding or modifying microprogram). ‘/
.also can be special purpose accelerator by using dedicated microprogram in
small ROM to set up the configuration .
.suitable to apply to HDTV for image compression and store.
.also suitable for PC for image processing: this system doesn’t need high speed
host because of macroinstruction. ( more image and less text is the future trend).



.could be self - organized system by expanding I /O part and memory
management.

.also could be emulator for neural network and multiprocessors system.
.This project isn’t finished yet, and needs lots of work.

Reference:

1.”VLSI array processors “ by S. Y. Kung
Prentice - Hall , 1988,,’02-—408.

2. “ Microprogrammed control and reliable design of small computers “ \/
by George D. Kraft / Wing N. Toy.
Prentice - Hall inc. , 1981, P 297 and 277.

3.“ A systolic neural network architecture for hidden Markov Models “
by Jenq - Neng Hwang, John A. Vlontzos, and Sun-Yuan Kung. v
IEEE Trans. on ASSP, vol. 37, NO. 12, Dec 1989#1967 -1979.
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Fig 1. Systolic array neural network architecture. (4 PE’s are shown ,

more PE’s and LM’s can be added with modification of

program memory content in control unit.)




mware/hardware implementation:

macroinstruction from Host
opcode dimension
microprogram ¢
/ branchto A 0
CSAR | —  branchto B 0
> branch to C 0
-
? ™1 leave for future nanoprogram
c A . /] .
- PC operation 1 1 || Operation 1.1
+1 operation 2 1 operation 1.2
operation 1 1 —®! operation 1.3
operation 3 1 ! .
c load operation 4 1
> reset 1
operation 2.1
MIR leave for future operation 2.2
B operation 2.3
operation 1 1 .
operation 2 1
operation 5 1
operation 2 1 operation 5.1
operation 4 1 operation 5.2
reset 1 .
\ ~ 3 operation 3.1
. operation 3.2
I operation 3.3
conditio )
load o
sop ¥ i
— load
-1
counter next —p PC
CS%K —
\
¢ while do
Fig 2. two level Yy
microprogram +1
counter ****
p| TESEL
Tese 1. next 2. conditional

3. stop 4. while do
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architecture for 4 kinds of operation: ( in nanoprogram )

. 1. next address operation

direct contro l

or encoded control.

Nanoprogram’s .gg—

decoder

nanoprogram output
010
connect to device
next=1
+1
next addn
CSAR . PC

2. conditional branch operation:

condition

branch address

test reg.

ot

EXOR

-
Bl

‘ conditional=1

bu.ger -

disable

* to device

| 5 tonanoprogram

3. while do operation:

PC r CSAR

condition branch address A 01
loop operation 1 11
condition branch address A o |
-
read out for j

+1
counter

. @——1 whiledo =1 for 11

Fig 3. microoperation format and supporting hardware.
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4. stop operation: the last operation in nanooperation sequence.

1
T 7 L
flag of microprogram
micro ofp  connect to devices stop * (z:zru%te:g o microp
@ =l ~ANB ((iglgunt down for
oose I ension)
0 micrd +]1
PC for to mi
load micn'g ] oA [0 MiCTOprogram
PC nano CS5AR Ly
: | » to nanoprogram

Fig 4. stop oeration

Fault tolerant for microprogram and counter:

1. fault tolerant for microprogram:
. assume only one bit error or 2 bit adjacent errors considered.

.use one parity bit for ease (m -out-of-2mi could detect multiple adjacent errors, but
complicated, and un-systematic)

microprogram memory

L ] | |
address or control test or control

Fig7 interleaved coding fault detection for microprogram



Weighted checksum error correcting code:

1. MVM: A 7] b Tl wsl=wl*A, ws2=w2*A
X | = Sl=wsl*x, S2=ws2*x
wsl sl
ws2 s2
2. OPU: B B
AN N\
GN oN wsl=w1*G, ws2=w2*G
H \""/ N*N Sl=wsl*H, S2=ws2*H
WSZ]*N/ N‘/h SzloN
3.VMM: N
W W S S
( Xl *N ) AN‘N S S =|b 1*N 1 2
Ines 250

wsl=A*wl, ws2=A* w2, sl= X*ws], s2 = X*ws2

wil=[1,1,1....1], w2=[1, 2, 22, 23,..., 213,

R1=w1*X-S1, R2=w2* X-52( depend on format of ws1,2)
IF R1# 0 and R2 # 0 then R2/R1=2"1 b; error , and correct b; = b; - R1.

Implementation in neural PE for case of R1:

wsli wsl
& R A E DMA = = Xi ﬁ'om DMA
j=1.N
N .
: operation 2
operation 1

b

] bifromPEs?
+ J g‘ -

operation 3 S1
pex operation 4
Fig 5. weighted check sum coding



Microprogramming for weighted check sum coding and fault tolerant:

take MVM as example:
flowchart processing time microprogram
START Host download the
‘ instruction.
alaulate 1. ion 1
M Host download A operation
wsl, ws2
J 2. tion 2 for S1
Host download X opewration 2 for 51,2
calculate 3. operation 1 for wl*x , w2*x
sl,s2,R1 .
»oe 4, tion 3 forR1,
R2 collecting results from operation 3 tor k2
PEs
NO  after collection. 5. operation 4 for condition.

compute R2/R1
get 2”1 inform

FT j error, and
correct bj

Fig 6. flowchart of weighted check
sum code

Analyze all the microoperation in the specific

microprogram, there are 3 major operatios:

1: next address operation : next operation is placed
at next address.

2: conditional branch operation: next operation’s
address depends on condition.

3: While do command: like loop operation, except
testing at beginning of each loop to see continue

or not,

~|0—



2. fanit tolerant for counter: also use single parity bit.

present next parity change
S | el | yes
-—--01 10 no
—011 | -—100 yes
-0111 1000 no

From the table, we find that
1). If the rightmost 0 occurs in an even-number bit, then parity change.
2). otherwise no.

i eration impl tation:
parity generation implementation cock

J counter output

4 3 2 1 0
O O (@]
l L 5 Parity
—» O N |, Fl—»
'* " R D T
AND ANDI l I | I
clock

Fig 8. counter parity bit generation.



Recover circuit after knowing falty PE:

g e

7 8 10
c
1=0 2=
0 PEG g < 0 Max 1
: 10 Controlg -« =
=1 unit 11 c2=1
condition 1 2 3 4 | 5 6 7 8 |19 (10
c2cl
normal 0T | O 0 0 1 T|O 010
PEA4 fault 0T | O o|l1]0]T|O]|]O}]O
PE3 fault 0T o |1 flo]|o|[T]|o|o]|1
PE2 fault 0T 1 0 0 0 0 1 1
PE] fault 1T | © ojojo 1 (1|1

T=1: when vector is partitioned

T=0: otherwise

The above words can be directly stored as microprogram. ( ¢1 , MUX 6 excluded ).
from weighted . '
check sum —y adv: easy to increase PE number.
ckt Rreg.

**' to MUXs

Fig 9. recover y microprogram.




. Control unit:

MVM ( matrix - vector multiplication ) : [ A 1j2#12[ X 11241

partition method:
X5,X6,X7,X8,X9,X10,X11, X12 .
1
3
Pﬁ - P
Wi w21 Ww3,1 W4,1
Wia w22 W3,2 W4,2
Wy 1 Ww2,12 W3,12 W4,12
W, w61 w7,1 w8,1
; W6, 12 w7,12 ws,12
gst, 12 w10,1 wi11,1 wi2,1
9,1 . . .
: w10,12 Wwil1,12 W12,12
Wo, 12
weght arrangement is different from original because serially not parallely input vector.
nstruction
1 mvimato PE1| mvma —_— —_— —_—
2 m%g'laIOPEZ mvm a mvm a - -
3 mvmatoPE3 mvm a mvm a mvm a
3
4 mvm ato PE4| mvma mvma mvma mvm a
mvm a mvm a mvm a mvm a
37 mvmb 3 to PE]l mvin b mvm a mvma mvm a
332 |mvmb3toPE2Z mvmb mvm b mvma mvm a
39 mvmb3toPE3| mvmb mvm b mvm b mvm a
vinb3to PE4| ____ mvm b mvm b mvm b

mvm a: weighted sum processing, mvm b : threshold activation. 36, 1 means dimension.

could use microprogram to do control .

Fig 10. control unit microprogram.
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image(i)=(x1 x2 x3 x4:)!

codewords = () C5 Cy3 ... CiN

Cn Cz GCi3 Cuy
Ci2 Cy3 Cay Cay C21 C22 Ca3 ... Con
13 Cu Cu Ca
14 gZI gsz 43
31 C62 C73 C84 Cn1 Cn2Cns - ONND
52 63 74 8
Cay Cioz Cus Cigs - min [ (image-C ;)]
, . : =Max [ 2C; image - C;%]
Crva 0 0 0 assume :Cizis known
( If unknown, use original
equation)
Ciz
mvm
operation in PE i
/ Max/min
AN
mvm
operation in PE i
after N iterations o/p M/m

Fig 12. one of the application except RBP, HMM of systolic
neural circuit.
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Term Project for EE599 Report writen by

Juinn-Yan Chen

VLSI Implementation for Systolic Neurial Network

Introduction

The original idea of this report comes from the publication of S.Y. Kung, “ A systolic Neur-
ial Network Architecture for Hidden Markov Models”, IEEE Transactions on Acoustics, Speech

and Signal Processing. vol 37, No 12. DEc 1989.

In S.Y. Kung’s paper , he advocates a systolic neurial network architecture for implementat-
ing the hidden Marcov Models ( HMM’s ). He also gives a unified algorithm formulation for re-

current back-propagation ( RBP ) network and HMM s for architectural design.

However, we find this architecture is very powerful and not just only suitable for Artificial
Neurial Network ( ANN ) but also signal processing. We can find the data processing portion be-
tween ANN and Signal Processing is very similar. Therefore, we want to modify this structure to

adapt more applicastions.

—|5—



) Work Partition
This work will be acomplished by two-people team work. One is for the overall system ar-
chitecture design. One is for the design of Processor Element ( PE ).
Teho Chen will be responsible for the overall system architecture which includes
1 . Host computer.
2 . Ring Controller.
3. Fault Tolerance Architecture.

His work will concentrate on finding algorithms for a specific application , and implement

\ ) these algorithms in a systolic procedure, then send macro commands to each PE and monitor

its opeartion.
I will be responsible for the VLSI Implemetation of the PEwhich includes

1. Control Portion.
2 . Data Communication Portion.
3 . Data Processing Portion.
My work will concentrate on decompose the mavro command received from Host Comput-
er into several micro commands , find algorithms for these micro commands then implement

them with a systolic procedure.

-16-



Algorithm

It can be shown that operations in both the retrieving and learning phase of RPB’sand
HMM'’s can be formulated as consecutive matrix-vector multiplication ( MVM ) , consecutive
outer-product updating ( OPU ) and consecutive vector-matrix multiplication ( VMM ) problems.
In terms of the array structure all these formulations lead to a universal ring systolic array archi-
tecture. We can find all these operations call for an MAC (multiplication and accumulation ) pro-

cessor. So, we can integrate the three architectures for these operation into one processor element.

Below are the algorithm for MVM, OPU and VMM
MVM:
yd+l)=2 wijaj(1+l)
a(1+1) = fi(u;(1+1),6,(1+1))
where u; is the net inputs, 6; is the external inputs, fi is the nonlinear activation function,
a is the activation function, w;; is the weighting function.
OPU:
Aw;; <= Aw;j + gi(1+1)h;(A+1)
wij <= wy; © nAwy;
where @ is a minus opoeration in RBP’s and a multiplication operation in HMM’s
and gi(+1)=3;(+1)f’(+1), hj(+1)=a;(1) for RBP’s

g;(1+1)=5;(+ 1)f;(6(1+1)) , hy(+1)=2;) for HMM’s

"{’7"




VMM :
&) = Z gi(1+1w;;
where §; is the back-propagated corrective signal.
* Overlook for the overall system
It’s clear that we can have more operations except these three operation. However, for a
ANN application, these will be enough. So, we will concentrate on integrating these three op-
erations into a single PE. Other algorithms such as FFT, Convolution and Viterbi are mainly
composed of MVM, OPU and VMM operation. Therefore, it is desirable to design a program-
mable PE that will be used not only in ANN.
* General Operatio
For this purpose , we devided the overall system into Host Computer, Ring Controller, PE
and connection. The Host Computer will analysis whole problem and choose a specific pro-
gram to work. This specific program will be decomposed into consecutive MVM, OPU and
VMM operations. And these operatioins will be recognized as macro commands.
* First Version of micro instruction
The PE will receieve macro command and decompose this command into several micro in-
structions. These micro instructions will control the switch of bus to ensure accurate data flow
and processing.
* RISC approach of micro instruction

@ After we got the original micro instruction steps , we found there are many overlap ther.

—|8-



Therefore , we can redece these instruction steps into compact instructions. We should notice
the data cannot be the internal bus simutaneously. Besides, the multiplication and the addition
should be seperate apart at least one step.
* Pipeline apoproach
In order to increase the speed of the processor, we can break the internal bus into more bus
line. Then we can overlap more steps together because they do not occupy the same bus.
* Circuit Design Consideration
* The speed of the PE will be limited by multiplier. We choose wallice multiplier . Because
wallice structure can be seprated into 4*4 muiplier block and wallice tree block, we can add a
pipeline procedure here and increase the speed of the PE. Actually , in this report ,we do not do
pipeline here.
*Adder will be Carry Look Ahead Adder

* Register and memory will use standard cell design.

—-19-



Host Computer

Control Line

»

Data Link

Overall System Architecture for Ring Systolic Array
* Host Computer load data and commands into PE through Ring Controller.

* For a specific algorithm, Host Computer will chose a specific program composed of macro

command sequences.

* Data such as w;; , Aw; , g; , h;, § and 1...will be loaded into External Local Memory from

Host Computer directly.

—~Z0-



Host Command

System Clock
4-bit 16-bit
Instru Control
Clock PC Macro Micro
Instruction Micro Instru
| Generator Counter Decoder ™= ™= Decoder
Instru
61 ¢2
ci3 Output Buffer Input Buffer C8
DH Micro Instruction

c2—K

=X c1—=X

Cache

Memory
e

L

R

\/ L B |
Multiplier
C6

A

Cl4

-3

“X

Sub / Adder )

Processing Element Building Blocks for Ring Systolic Array




MVM OPERATION

* Algorithm
u+1) = wije; 1)
* Associative Ring Structure
t 2]l ¢— a2l @ - 3p) ap 3
U |[—] u - - - - {Up] — U,
w11 w22 W-1,n-1 Vn,n
W12 w23 Va-1,n Vn,1
Win w21 Wa-1,n-2 Va,n-1
* Associative Data Processing Structure
Wij
31
|
uj (+1)
* Associative Original Micro Instruction Bus Control
0 initialize zero A=0 B=0
dtep | Micro instru description |l k2 €3 k4 k5 k6 k7 k8 k9 c10cI1eIZ2ki3kid
1 load aj(l) 1
2 aj () o L output 1 1 1
3 Wij —»- R 1 1
Do multiply
4 wijaj(1)+ui(l+l)>B 1[ 1
Do addition
S | B— A (u(l1+1)) 1

-22-



* Associative Reduced approach of Micro Instruction

Step [ Micro instru description  c1 |2 [c3 [c4 c5 [c6 [c7 [c8 [c9 [c1dc11fc12c13c14]
1’ Group1,2,4 1| [1]1] 1)1 1
2 Group 3,5 1 1

* Time comsumiing 1x addition + 1xmultiplication




OPU OPERATION
* Algorithm :
Aw;; <= Awy; + gi(1+1 dh(+1)

Wij & Wjj @ nAwij

* Associatative Ring Structure :

[ h) (+1)e— hy(+ e <& hy 1 (+])t— hn(l+'—:|v

g1 (+1 ft— g2(+1Det— - -*gmlﬂzlkn— En(l+1)wg—

:L) W11 Awy; W22 Awp Wnln AWpin1 Who AWng
W12 Awyp W23 Awps Woln AWpin Va1 Awp,
Win Awl,n w21 AW21 Wn-l,n-ZAWn.1,n.2 Wn,n-1 Awn.n-l

* Associatative Data Processing Structure

| b+

—24 -



y * Associative Original Micro Instruction Bus Control

Step | Micro instru description 1 k2 k3 4 k5 k6 7 k8 9 kl10c11ciZe13k1d
1 | 10ad g;(+1)to L from G 1 1
2 | read hjQ+1) to buffer 1
3 h;(+1) -~ R buffer 1 1 1
Do multiplication
4 | read Aw;; from cache 1 1
> | Awim-A I
| ¢ | Do addition —»~ B 1T
7 | restore Awj; tocache,R | 1 1 1
8 | load 1 from G 1 1
Do multiplication
7 | load w;; fromcache | ! 1
10 wij —p A 1
111 Do addition 1l 1 |
@ Testore wjj
* Associative Reduced Micro Instruction
Step | Micro instru description [c1 c2 €3 [c4 k5 |6 [c7 [c8 9 k10c11c12c13c14
1’ Group 1,5 1 1 1
2 Group 2,3,10 1 111 1
3 Group 4,6 1 111 1
4 Group 7, 11 1 1 1
5| Step8 1 1
6 Step 9 1 1

-25-~
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* Algorithm:

n
B0 = Z sy

VMM

* Associative Ring Structure

OPERATION

t g1 Dg—82(1+L0g— <—g.,-1(1+1)<—8n(1+1~3
81— S (1) .. @) - 8n(1)|
w11 w22 ¥a-1,0-1 Va,n
w12 w23 Va-1,n Vn,1
Win w21 Va-1,n-2 Va.n-1
* Associative Data Processing Structure
giQ+1)
* Associative Original Micro Instruction Bus Control
Step | Micro instru description kI k2 k3 k4 5 k6 k7 k8 k9 k10ciikciZei3kid
1 [ readg j (+) to buffer 1
2 | gj (+1) —pm L,output 1 1 1
3 | feachw; fromcache to K| 1 1
Do multiplication
4 | Do addition 1| 1
5 B A 1

-26-



* Associative Reduced approach of Micro Instruction

Step | Micro instru description  fc1 2 |c3 4 [c5 |6 [c7 [c8 [c9 [cidc1tic1x13c14
1’ Group 1,2,4 1| [1]1] [1]1 1
2 Group 3,5 1 1 1

* Time comsumiing 1x addition + 1xmultiplication

4
-

“2p-
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a0b0

a3bl a2bl albla0bl Ond a3b0 a2b0 alb0

carry s3 s2 sl s

a3b2 a2b2 alb2alb2

s3 s2 sl sO
carry

g ) a3b3 a2b3 alb3 a0b3

cary 83 52 sl s0

m7 m6 m5 mé m3m2 ml mO

Building Block of 4x4 multiplier

* the three small building blocks are 4-bit carry look ahead adder
* time comsuming is (1IXAND gate delay + 3x Carry-Look -Ahead-Adder delay)

9
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* Algorithm for an 8x8 Wallice multiplier

——

BLxAL
|
|

| B
+| BHXAH

I
| BLxAH
J

* For an 8x8 multiplier, we need 4x4 multiplier, 3-input wallice tree, and a
carry propagate adder.

BL AL
4x4 multiplier
BL AL ZI; ;‘F BL AL
4x4 multiplier 4x4 multiplier 4x4 multiplier
/ VvV VvV y/ VvV VvV
// /A 7 A 1 7/
3-input wallice 3-input wallice /] /
Carry Propagate Adder
Y
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ABSTRACT

In this project, a general purpose 4-input, 4-output, 3-layered,
fully-connected Back Error Propagation network is realized by using
array processors. This chip is designed to be scalable and
reconfigurable meaning that a network of any number of layers,
inputs, outputs and connections can be realized using multi-chip
configuration.  Fast on-chip learning is also provided with each
layer's weights updated simultaneously. Some measure of fault
tolerance is also incorporated for this chip to prevent process time
error from rendering the chip useless.
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In this project, a general purpose 3-layer, 4-input, 4-output Back-
Error Propagation network is realized by using array processor
design. The choice is made due to its following advantages:

(1) fast forward propagation time: the I/O can be pipelined in and
out of the chip with pipeline period a= 1.

(2) it offers on-chip, local, simultaneous weight updates. This
enhances the learning speed of the algorithm.

(3) weights can be both loaded and unloaded before and after
training process, so one can store the trained weights for different
applications and just load the appropriate weight among different
learned applications.

Two 4x4 arrays of PE's are used to realize the network. As S.Y.
Kung suggested, each array can be further projected into a 1X4
systolic array. However, as pointed out in the appendix, this method
suffers the drawback that the I/O can not be pipelined, and the I/O
rate is effective 1/4 of that of the 4x4 design. There is thus a trade-
off between speed and area used. Moreover, the systolic array
design will be unsuitable for training as it has longer training time
and will have to use either additional dedicated circuitry or off-chip
learning. The 4x4 array is very suitable for the learning process as
the data for backward propagation actually travel along the
transpose of the array. It is also shown in the appendix that as the
problem size grows, the time required for learning actually grows
almost linearly . This is again a very good reason for choosing this
design method.

As compared with some commercial products, this chip definitely
has less number of neurons and synapses. However, it can be easily
explained as follows:



(1) this design tries to maximize the speed of operation at a cost of
area used. Most of the commercial chips use memory to store
information of synapse weights and neuron outputs, and the PE's are
actually shared among neurons. However, that will result in a
slower chip, especially for learning.

(2) because actual layout of chip is not done, so only an estimation of
the numbers of PE's is given. From the EE599 VLSI for DSP class
project, I found out that a PE with an 8 bit multiplier, a 16 bit adder,
and many latches and registers will occupy approximately 1020A
x1459A of area. If lum technology is used, a PE will results in 0.015
cm? of area.
So two 4x4 array will result in about 0.5 cm2 of area. Therefore,

conservative estimation was given for the array size thus the
number of neurons and synapse weights.

(3) since this chip is scalable and reconfigurable, multi-chip
configuration can be used to increase the network to any size the
problem requires.

Moreover, from the VLSI DSP class project, it was found out that
the PE can finish all required operation within 20ns. Thus, a 50 Mhz
system clock is used for this chip. However, because of this chip is
designed to be scalable, the number of pins on the chip is large. In
order to constrain the pin number to be within 300, the I/O is forced
to multiplex its higher byte with its lower byte thus results in an 1/O
rate of 25 Mhz. This is still in reasonable range of speed. This is a
trade-off between the number of pins on IC (the scalability) and the
speed of I/O operation.

Since each PE must be able to take data for both the forward and
backward operations, it must have 16-bit data bus for all its 4 sides.
Some kind of routing is required within each PE, and special design
consideration is also given as some 16 bits and 8 bits data lines have
to connect. Because each of the 4 sides of a PE has a 16-bit data bus,
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the number of pins on the chip is therefore large as seen from the
chip floor plan. This can be improved if the weights within the PE
arrays can be switched to realize the transpose of original array.
However, additional connection and logic circuit will be required. So
for simplicity, it is not implemented this way.

Each of the sigmoid function and its prime is realized by using
table look-up from a 16x8 ROM circuit on the chip. I chose 16 points
because I want to use as small of an area as possible to realize these
functions. The results are shown in appendix with quantization error
also. One can increase the precision easily by following the analysis
in the appendix.

Even though the array processor approach looks straightforward
on the surface, beneath it are many design choices, trade-offs and
difficulties. = There remain many optimizations to be done in both the
system level and physical layout level. Nevertheless, the proposed
architecture provides a very good starting point for a full IC design
process.



Appendix 1

Network topology of a Back-Error Propagation Network

input layer hidden layer output layer
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For Backpropagation network

Forward Operation:
the data propagate from input to output layer.

aa?.'zmlb_ki :é: :::
a;m/ww/ \ aj

for input unit, output of neuron i= input at neuron i =ai
for hidden and output layers, the neuron output is

calculated as follows:
Sj = Zi ai Wj’

1
a = 3= ., _.
1= 1S = frexp(s)
Backward Operation:

the data propagate from output layer back to input layer.

for output layer:

5 = -2 £(S;) where 1jis the trained pattern

for all hidden layers, it is necessary to change weights between
it and the previous layer first , then one can calculate the delta
for the hidden layer.

a; o
wji

the Delta rule

Awj; - . a; .
ji=" 33 1N is the leaming rate

for the hidden layer:
8;= [{z Wi 1(S))

NOTE: for backward propagation, the transpose of the W matrix is used
while for forward operation it is W that is used



Appendix 2

Why Not a Systolic Array

b31 b32 b33 b34
0 0 0 1]
0 0 0 0
0 0 0 0
0 0 0 0
b21 b22 b23 b24
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

«ee C4 €3 c2 c1

wiil wi2 w13 wid
w21 w22 w23 w24
w31 w32 w33 w34
wéd1 _w42 w43 wd4

[W] x [b] = [c]

where bil - bi4 represent the ith set of data

As can be seen from above, even though the output is one number each clk cycle,

the input can only be applied every 4 clk cycles-- it is not pipelined. So the effective
rate for input and output is 1/4 of that using a 4x4 array. This may render the chip
unsuitable for real-time processing. This is a trade off between hardware and speed.

Moreover, the systolic array is not suitable for calculating weight changes, and
dedicated hardware or off-chip learning may become necessary. So the 4x4 array
actually makes design simpler and learning faster than what the systolic array can
offer. There is again some trade off of hardware vs.simplicity and speed.



Appendix 3

Forward / backward operations and their data flow path in PE arrays

Forward Operation

input layer hidden layer output layer

g 1 x1 st/ \al s a1
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direction of data flow _l/
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Backward Operation
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<j direction of data flow




DATA FLOW DIADRAM OF BACKWARD PATH

Note: for one chip operation, it is only necessary to change
the weights, which can be done in one clock cycle, and ‘t1-at’ ‘t2-a2' ‘t3-a3' ‘t4-a4'

it will not be necessary to propagate the Delta's through
array of the first layer to generate Delta's further..
However,for multi-chips topology, it might be
necessary. X
Delta Function generator
|
uol |0n |O| lou -Cl : - a
z = =
i
wii > wi2 > w13 ™ wid — _ o I
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| i
A -l L 1
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| i
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g 3 =
] y y
2 y |
w41 >l wa2T ™| was > wad >
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Delta Function generator
Delta Function generator -

NOTE: before each layer's d;'s are propagated back to the previous layer ,

the weights between the layers are first modified by the Delta rule.

._.z]f_o--



accumulate for forward

Appendix 4 PE / chip floor plan

L | 1aten @ register |OR[8 input bits OR gate @ represent a junction where only 8 out the 16
lines are connrcted.
Orrepresents transmission gate 16 bits adder ® : 8 bits multiplier
Fir ‘ai
connect’  multiply for forward, accumilate for backward 1 I\

‘}/I *‘6 41 Y s

?
w+§ iforward
Y8 A8
loa forward+8<_> ‘li!
3 8
[- o]
L ek fen———| [ | Ll
forward+d ¢
Lclk o i L ‘
b—-test
- ctk w
5| testlwo é
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o Y Ttest 6
L 1
£ = [RoM OR
Y] [ ©
8 | O tes -test U
16 =716 + \?=& -
'; test forwar
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-
2 76 AR
16 )
Y

NoteJROM| is actually an 8 or 16 bit fixed number in 2's complement format
used to check the integrity of the muitiplier and adder,thus the
integrity of the PE. The product of 2 number add the negative
of the correct result should give a 0,if not error occurs.

muitiply accumulate

PE - :
PE ™ accumulate multiply

backward i
forward operation rd operation

Note :because ai is a broadcasted signal, the weight update for the

whole array can be done locally and simultaneously in one
clock cycle

PE Wji Floor Plan
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Note: becaust the same PE is used for both forward and
backward operation with one side being able to take either

8 or 16 bits of inputs ,it is necessary to make them all 16 bits
with some bits not necessaryly connected for different
operations. This cause the need for the connector @
shown in the flow plan.

<+.®<_¥.

16 8

this connector simply outputs the higher 8 bits of the 16 bits
input signal or puts the 8 bits input to the higher byte of the
16bits number

multiply accumulate
16
PE 2 FE N tipl
. A multi
—>—™ accumulate ) - Py

forward operation backward operation
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data path in PE / chip for forward operation
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‘ data path i i i
1 Appendix 6 p In PE / chip for weight update

L] Fib L] K]
‘connect’ * o)

A1 ,”15 41

Not‘#@ is actually an 8 or 16 bit fixed number in 2's complement format

used to check the integrity of the multiplier and adder,thus the
integrity of the PE. The product of 2 number add the negative
of the correct result should give a 0,if not error occurs.

WEIGHT UPDATE

...46_-



N: learning rate

Y

S OUTPUT

ROM
f
LA i
— A store1 _—
CH en2
,L ®— en2
N i *CAXTE
4X8
18
N i 1B
4x8 1B
1B

4x8

LATCH

4x8

x8

;\ 4%8

WEIGHT UP DATE

..4.7__



data path in PE / chip for delta calculation

Appendix 7
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Appendix 8 signals and operation

Signals and Operation

On the chip there are the following signals that need to be fed by the host

test self test for fault tolerant connection path set up
load load wiji's
forward help each PE to make the right connection for forward operatio
eni-eni2 set up the topology for either multi- or uni- chip operation
connect1-8 to make the network not fully connected
store1 store first layer's ai and Si
store?2 store 2nd layer's ai and Si
clk system clock which is about 1/20ns =50Mhz
Vdd power supply
C\ D power supply
w i change 2nd layer weights
w2 change the first layer weights
calculate the 2nd layer delta's
calculate the ast layer delta's

there are 32 pins required for the above 32 signls
with the (4x8)x8+4=260 pins on the chip floor plan,
there are a total of 292 pins on this chip .

this rather large number of pins id due to the fact that
this chip is fully scalable-- any number of neurons and
layers are possible.

For one chip operation, there are 4 phases to consider
(1) test phase

(2) load phase

(3) forward phase

(4) backward phase

TEST PHASE

the test signal nees to be on for one clock cycle , and at the end of next cycle the
connection logic circuit should have the topology set up since it only employs simple 2
level logic. If more then 2 PE's in an array are detected faulty, the chip shoule be
rejected at the production stage by using testing probes.
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LOAD PHASE

wil wi2 wi3 wi4 (weights in each row) are pipelined down when the signal load is On.
It takes 1 clock cycle to load one row, so for 4 rows it takes 4 clock cycles to finish
the loading. Note for the 2nd array of weights,because its topology is the transpose of
the first array, so we have to enable the 8, signal as well. This is generally true for
any hidden layer weights

it is also necessary to load the connect bits to determine if the synapse connection
exist. It a connection between neurons does not exist, the corresponding weight is
loaded as '0' and also the corresponding connection bit is set to '0' to prohibit
future weight update, so that weight remains at ‘0’

FORWARD PHASE

after the weights have been loaded, we can apply the following
signaltoestablish the right path for forward phase

en1 en2 en3 en4 end en12

all these signals must be '1' during the period of forward training. All the
other eni's are set to '0' for 1 chip operation.

Note : if the net work has been properly trained, it will not neeed to apply the
backward phase, and the input can be pipelined into the system , and the output
will be pipelined out at the same rate. Because the number of pins is very
large, it was necessary to multiplex the higher byte with the lower byte for
both the input and output. Thus, the rate data does in and comes out is half of
that of the system clock, so the speed is about 25 Mhz which is still O.K. for
most applications.

If backward operation is to be expected, storet and store2 should go to '1' to enable
the weighted sum Sj and neuron output ai to be stored. For one chip ooperation, it

2 latches and 4 PE's (6 clk cycles) to finish the first signal propergation, and it
should be kept on for 4 clk cycles for all the pipelined signal to be captured. Similar
comments can be applied to store2 signal.

BACKWARD PHASE

this is necessary for the network to learn to adjust the weights

for proper operation, after one forward operation has completed for one input set,
thehost computer compares the answer with the desired answer, and the error ti-ai
are fed back. the following signals have to be set to ;'1' for proper operation topology
en6 en9 en8, and en7 is set to '0’

there are also other signals that can go on only at the right time and they are shown
as below

—&/—



ong———— 2 clk

cycle
wi
1 clk
-t
1
- 7 clk - finishes
w2 cycles hp_/re
1 clk
-

8, (not needed nuless for
multi-chip operation)

note: it takes 11 clk cycles to finish 1 chip backward phase, and out of which 7
is the big factor. But the 7 cycles consists of 3 latches used for 2
multiplications and 4 cycles for signals to propagate down the array. So it is
obvious that as the array size increases using many chips, the learning time
will increase almost linearly with the arrsy size or problem size. This is
actual an indication of pretty fast learning time as in many case the learning
time will vary expotentially with the problem size. There are some unused
signals which will be necessary for multi-chip topology.
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Appendix 9

/0O BUFFER DESIGN

Since this chip is design to be scalable - being able to
expand the number of neurons and layers, it will be
inevitable to have many pins on the chip for this off-chip
interconnection purpose.

Therefore, the I/O has to be multiplexed so the first 4 bits
of data is fed in/out first, then at the next clock cycle the
last 4 bits. So the speed is effectively reduced by half.
This is a trade off between speed and flexibility and
expandability

But since the clock is about 50Mhz, the data I/O is then about
25Mhz. It is still quite fast for most real time problems.

Lo E

input buffer (1B) = 2D !
cu—=| L4 TR L4
1\ 8 ‘&\ 8 J
=t L4
CLK—wt L8
T
J( \
| '
+4 1, 4 CLK—> L4
| oo T 1
output buffer (OB) — 2D “CLi—»t L4
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L
..5‘3..




Appendix 10 Fault tolerance design with example of data flow in case of PE failure

THE REAL ARRAY OF PE'S WITH FAULT TOLERANCE FEATURE

lo‘

FAULT TOLERANCE CONTROL LOGIC

|
I
! ——y,?———-—-l-—gﬁ-————-'-qi'}__———-l-gl)- ————— L

Wi1-w3 { Y1-Y3

X1-X3

The control logic generate output signals to establish the right connection among
PE's so we will have a virtual 4x4 standard array.

For simplicity, all the rest diagram will employ only the virtual PE array, and it
should be understood that the real array actually looks like this diagram.



Chip fails if for each PE arrays more than one Fi are '1’

The Fi in each chip is generated in the TEST phrase of this chip operation.

It uses the stored numbers in the PE and multiplt 2 of then then subtract the

other. If the subtracted number is the correct number, 16 bits of '0' will resulit.
These correctness of the operation can then be checked by ORing these 16 bits. If
the result is wrong , the OR will output a '1' for the Fi. Otherwise, it will be '0'

for correct operation.

If any one of the 12 lower 3 rows of PE's fails (any one of the signals F1-F12
goes to'1’), the 3 shaded duplicated PE's will operate. But no more than 1 PE
can fail in the array -- if so, chip fails.

The cortrol logic inputs F1 -F12 and outputs the Following signals
W1-W3, X1- X3, Y1-Y3,Z1-Z3, C1=C12, and they are as follow

Wi=F1 X1=F1+F2 Y1=F1+F2+F3

W2=F5 X2=F5+F6 Y2=F5+F6+F7

W3=F9 X3=F9+F10 Y3=F9+F10+F11

C1=W1 C4=X1 C7=Y1 C10=21
C2=-W1+W2 C5=X1+X2  CB=Y1+Y2 C11=21+22

C3=W1+W2+W3 C6=X3+X2+X1 CO9=Y1+Y2+Y3 C12=21+22+23

And here are some example of how it works
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Example of array data flow in case of a PE failure
Let F7=1

FAULT TOLERANCE CONTROL LOGIC

——-

Cé co Ci12

-9-___..!._":__—__ g g
c3




THE VIRTUAL ARRAY OF PE'S

PE

PET—" PE }—>»

PET— PE

— PE+— PE+—" PE T PE |—

PE

—| PET—> PE
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Appendix 11

Realization of Sigmoid and Sigmoid Prime Functions

Sigmoid function f(x)=1/(1+exp(-x)) and its first derivative Sigmoid Prime

f'(x)=exp(-x)/(1+exp(-x)) 2can be generated by basically 2 methods

(1) using analog circuits, but this requires A/D and D/A operations ,
which may complicate the design and the circuits are not reliable.

(2) using table look-up which is a lot simpler and straight forward.

However, since both operands for multiplication are 8 bits 2's complement
numbers, the resulting number must be 16 bits long. Therefore, ideally we
need a RAM or ROM part that converts an16 bits input address number to

Sigmoid and Sigmoid prime realization with quantization error

a 8 bits data output. This is a 64kx8 memory capacity which is definitely
too large for this application, especially many of them have to be used
by this chip to achieve the pipeline operation.

Nevertheless, since both f(x) and f'(x) pretty much saturate beyond
x=+5 and x=-5, with a little logic we can closely approximate these
functions by using only a few of the 16 address bits.

As an example, if | only want to choose 16 points to approximate these
functions, and the inputs and outputs of multiplication are as below:

4L4

at5 8 a8 |a7 8 a0

x4.u

We can just choose the higher 8 bits for address generation
of the 16 numbers as follows

a5 | at4la13| at2! a11l a10 ad a8 if a15 =0 (positive number),addr3=1 if any of a10
toal4 =1.

addr4

if a15 =1 (negative), addr3=1if all of a10 to a14
are 1.
addri

This selection makes any number less than -8

addr2 equal -8 and any number greater than 7 equal 7.

addr3= a15 (a10+at1+a12+a13+al14)+al15(a10 a1t a12 a13 al4)

- 5?.-



and conceptually it looks like the following

addr1-addr4

ails -a8 addr 24)(8
generator | ROM T’ output of f(x) or f(x)
a0-a7  discard them
a0 - a15 ROM
AN - ] output of f(x)
) for N oo
forf 8

and here are some data for this implementation

input number
7_and up

addr4-addr1

output for f
0001.0000= 1

0000.0000=0

6 to7

0001.0000= 1

S 106

0000.0000=0

0001.0000= 1

0000.0000=0

4 105

0001.0000= 1

0000.0000=0

304

0000.1111=0.9375

0000.0001= 0.0625

2103

0000.1110=0.875

0000.0010=0.125

to2

0000.1100=0.75

0000.0011=0.1875

to1and -1

0000.1000=0.5

0000.0100=0.25

to -2

0000.0100= 0.25

0000.0011=0.1875

to -3

0000.0010=0.125

0000.0010=0.125

to-4

0000.0001= 0.0625

0000.0001= 0.0625

to -5

0000.0000=0

0000.0000=0

to -6

0000.0000=0

0000.0000=0

to -7

0000.0000= 0

0000.0000=0

to -8

0000.0000=0

0000.0000=0

and down

0000.0000=0

0000.0000= 0




Graphs of f(x) and f'(x) showing quantization error
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Appendix 12

multichip configuration

One Chip Operation With Simplified Data Fiow

4 inputs
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2 chips can be used to realize a 2 hidden layers network
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A 3-layer, 8-input, 8-output net work can be implemented by using 4
chips shown on the next page

input layer hidden layer output layer
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