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Abstract

The processing of video signals often requires a tremendous computational
capability which can only be achieved by using highly parallel processing archi-
tectures. The inherent massive parallelism of artificial neural network architec-
ture for flexible information processing provides a new paradigm of video signal
processing. This dissertation describes the computational needs of supercomputing
neurocomputers for flexible information processing. Two neural network architec-
tures and the efficient VLSI implementation of video signal processors are
presented. In the first VLSI architecture, the motion information from a
sequence of image data can be estimated through a two-dimensional multiproces-
sor array in which each processing element consists of an analog neuroprocessor.
Massively parallel neurocomputing is done by compact and efficient neuroproces-
sors. Local data transfer between the neuroprocessors are performed by using
analog point-to-point interconnection scheme. Global data communication
between the host computer and neuroprocessors is carried out in the digital com-
mon bus. A mixed-signal VLSI neural chip that includes multiple neuroproces-
sors for fast video motion estimation has been designed. Measured results of the
programmable synapse, summing neuron, and associated winner-take-all circuitry
are presented. Based on the measurement data, system-level analysis on a
sequence of real images were conducted. The device mismatch effect of analog
synapse cells has been included during system-level analysis. A 1.5 x 2.8-cm?
chip in a 1.2-um CMOS technology can accommodate 64 velocity-selective neu-
roprocessors and achieve 83.2 Giga connections per second. The speed-up factor
over a Sun-4/75 SPARC-2 workstation is 24,242 for a system with 128 motion
estimation chips. In the second architecture, an analog systolic multiprocessor
for high-speed image restoration has been developed. For a two-dimensional
image, parallel processing is performed in the row direction and pipelined pro-

cessing is performed in the column direction. The mixed analog/digital design
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approach is also used for the implementation of the neural-based image restora-
tion system. Local data computation is executed by analog circuitry to achieve
full parallelism and to conserve power dissipation. Inter-processor communica-
tion is carried out in the digital format to maintain adequate signal strength
across the chips boundary and achieve direct scalability in neural network size.
A compact and efficient VLSI neural chip which includes multiple neuroproces-
sors for real-time digital image restoration has been designed. To use output of
neuron as an increment/decrement information to control the pixel register, each
neuron can process multiple-bit image information. A 8.0 x 6.0-mm? chip from
a 1.2-uym CMOS technology can accommodate 5 neuroprocessors and the speed-
up factor over the Sun-4/75 SPARC-2 workstation is 475. This chip achieves
21.6 Giga connections per second. The future powerful and cheap supercomput-
ing workstations will include flexible information processing capability for our

daily lives and scientific applications.
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Chapter 1

Introduction

With the advent of high-performance communication networking and com-
puter techniques, we are reaching an era of universal communications, where
everyone has easy and immediate access to widely distributed information
sources in many media including text, image, and audio. People can communi-
cate and share information without significant concern for time, location, or
medium. An integrated information processing system which can communicate
with the real world through audio and video channels will play a key role in
this era. A configuration of such an integrated information processing system is
shown in Fig. 1.1. Speech recognition and synthesis techniques provide the sys-
tems with audio capabilities. High-speed image processing, vision understanding,
and smart graphics provide the systems with visual capabilities. The system is
also equipped with microsensor and controller units to accomplish physical
actions. Such a powerful multi-media data-fusion machine can be used in many

places and will help people in their business, education and personal lives [1-4].

To support such an advanced integrated information system, very high speed
signal processing techniques are needed. For example, in modemn video telecon-
ferencing and high definition television (HDTV) applications, the required video
signal processing speed has been above one billion pixel operations per second.
According to the recent U.S. government report [5], intensive computation power

is increasingly required for future information processing applications. In 1993,
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100-giga operations-per-second systems for large-scale problems could emerge,
and the deployment of tera operations-per-second systems is anticipated to be in

1996.

There are several approaches to enhance the computational capabilities in
high-speed information processing. One of the approaches is to use the compu-
tational powers of computers and their development in various fields of computer
science and engineering, such as signal processing, mathematical and scientific
algorithms, and graph theory. The other approach is to mimic the computations
performed in the human brain, i.e. the neural network approach. However,
tremendous computational power is needed in both approaches. Very large scale
integration (VLSI) technology can help to develop algorithm-specific multiproces-
sor chips to fully exploit the inherent computational powers of various informa-

tion processing architectures.

Rapid advances in VLSI technologies have made possible the integration of
multiple-million transistors on a single chip. The use of VLSI circuits can
greatly reduce the machine size and enhance the performance and reliability of
microelectronic systems. Currently, VLSI microelectronics technology has
inspired many innovative designs in data processing architectures. In the
microprocessor domain, continuous progress on reduced instruction set computers
(RISC) enables the introduction of the Intel-i860 chip [6], and the SPARC chip
from SUN Microsystems Inc. [7]. In the digital signal processing (DSP) domain,
the TMS-320C40 chip from Texas Instruments Inc. [8] includes 6 communication
ports to facilitate various data communication schemes. In the dedicated neural

computing domain, the N64000 chip from Inova Microelectronics Inc. and
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Adaptive Solutions Inc. [9] includes 64 digital processors for general-purpose

neural network execution.

The artificial neural network architecture provides a new paradigm of paral-
lel processing [10,11]. Neuroscientists have revealed that the massive parallel
processing power in the human brain lies in the global and dense interconnec-
tions among a large number of identical logic elements or neurons. These neu-
rons are connected to each other with variable strengths by a network of pro-
grammable synapses. By using analog operational amplifiers and resistors, a fully
connected Hopfield neural network has been constructed for solving many
engineering optimization problems [12].

From recent studies, early vision processing has been shown to be "ill-
posed" problems. Examples of early vision processes are image restoration, edge
detection, computation of optical flow, shape from shading, structure from
motion, and etc [13]). To solve these problems, an extensive computational
power is required and thus limit the performance and the speed of machine
vision systems. The inherent massive parallelism of the artificial neural networks

can provide an excellent means to solve these problems.

In this dissertation, two neural systems and their associated VLSI architec-
tures and circuit-level designs for the motion estimation and the image restora-
tion are presented. The neural system for motion estimation fully explores the
local connectivity in most early vision algorithms. Since each pixel is affected
by the nearest neighbors, each neuroprocessor has to communicate data to the
neighboring neuroprocessors during the network operation. A new scheme to use

analog point-to-point interconnection and digital common bus is the key to
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implement three-dimensional interconnection in VLSI chips. In the image res-
toration neural system, each neuron is used to represent multiple bit information.
The key is to use the neuron result as an increment/decrement information to
control the pixel register. The pixel register content is combined in the synapse
array with a distributed digital-to-analog conversion operation. This architecture
reduces the number of neurons by a factor of 2¥ in the M-bit gray-level image

processing.

In Chapter 2, some related research topics are reviewed. The detailed sys-
tem design for motion estimation is discussed in Chapter 3. The detailed system
design for image restoration is discussed in Chapter 4. Chapter 5 concludes this

dissertation and suggests the future work along this research direction.
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Chapter 2

High Performance Computing Requirements

To achieve required high performance computational capability for modern
video signal processing applications, four related research topics are briefly
reviewed and discussed in this chapter. The first is VLSI technologies, the
second is multiprocessor architectures, the third is artificial neural networks, the

fourth is early vision processing.

2.1 VLSI Technologies

VLSI technology has produced dramatic advances over the past 20 years,
enabling the manufacture of high density integrated circuits (IC) with millions of
devices on a single die. At present, the device feature size for the memory
chips is around 0.5 pum, and for the processor chips is around 0.8um. The target
for the next-generation technology will be 0.25 pum [1]. In the chip complexity,
a 64 megabit dynamic RAM has started to appear in the market [2]. An 11-
million-transistor digital neural network execution engine has been developed [3].
In addition, speed performance of the memory chips has been pushed to lower
than 10 nsec [4], and the processor which reaches 100 MHz has also been

announced [5].

Multiple-layer interconnection techniques are crucial in realizing high-
performance VLSI chips, especially for emerging neurocomputing chips in which

the main computational power will come from their highly connected
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architecture. Currently, VLSI technologies provide different multi-layer intercon-
nections. One well-established process is the double-metal double-polysilicon pro-
cess. Its capability of supporting various device structures such as floating-gate
device and charge-couple device (CCD) makes it popular in today neural chip
implementations [6,7]. The triple-metal single-polysilicon process is also available
for very high speed integrated circuits (VHSIC).

The chip size of current million-transistor VLSI chips is approximately 1 to
2 ¢cm2 To increase the integration level, two possible methods are proposed.
The first method is the wafer-scale integration [8]. The second method is the
three-dimensional integration. Since the main part of neural networks shows a
regular and modular architecture, they are predetermined for the wafer-scale
integration technique. The inherent high fault tolerance of the neural networks is
also beneficial for the wafer-scale integration. Three-dimensional integration
offers interesting aspects for solving the problem of connectivity. One of the
most important 3D techniques is the silicon-on-insulator technique (SOI technol-
ogy). The concept of 3D integration is very fascinate for the integration of
neural networks. By integrating CCD arrays with neurocomputing arrays, a com-
pact VLSI neural system with both sensing and computing abilities can be

achieved.

A summary of VLSI technologies at present and at five years later is listed

in the Table 2.1.



Table 2.1 Summary of VLSI Design Technologies

Present (1991) Five Years Later (1996)
Memory Chip 64 Mega Bit 256 Mega Bit
Microprocessor Chip i860
DSP Chip 6-Processor 64-Processor
Product Advanced TV High Definition TV
Silicon 0.5 um 0.25 um
Compound Optical Communication Optical Computing
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2.2 Multiprocessor Architectures for Image Processing

With recent advances in VLSI design technologies, many multiprocessor
architectures have been proposed to provide massively parallel processing for
computer vision applications [9,10]. The Single Instruction Multiple Data
(SIMD) architecture is that in which all the parallel processors are synchronized
and they all respond to a single instruction from a single controller. There is
also Multiple Instruction Multiple Data (MIMD) architecture in which the
number of processors is normally a few orders of magnitude less than that in
SIMD machines, however, each processor is a powerful general purpose proces-
sor with its own program and data memory. Normally, MIMD machines fall into
two categories: shared memory and distributed memory machines, though many
architectures exhibit both paradigms. The systolic array architecture is also pro-

posed for vision applications [11,12].

In the following discussion, several multiprocessor architectures are
described. Their architecture topologies, salient features and limitations with
respect to solving vision problems are discussed. The main classification of these
architectures are distinguished according to the interconnection topology between

ProCESSOrs OT Processor-memories.
2.2.1 Mesh Connected Multiprocessors

Mesh connected multiprocessors have been one of the first multiprocessors
proposed for computer vision and image applications. For image processing
applications, meshes seem to be an obvious choice because the images map quite

naturally onto its structure. Figure 2.1 shows the topology of a mesh-connected
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Fig. 2.1 The topology of a mesh-connected multiprocessor.
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multiprocessor. In the mesh-connected configuration, the processing elements are
arranged in a two-dimensional array. The widely used configuration is the 4-
connected mesh in which each processor is bi-directionally connected to its four
nearest neighbors. The 6- and 8- connected meshes have also been used. Most
mesh-connected machines are based on the SIMD architecture. Each processing
element has its own local memory and receives the instructions broadcast by an

array controller.

The advantage of this architecture is that images map quite naturally onto
its structure. When the image size matches the size of the multiprocessor (e.g.,
N x N mesh for N x N image), maximum parallelism can be obtained for
those operations that require computations on individual pixels or a very small
neighborhood of pixels. The major drawback of this architecture is that data
communication across large distances is expensive and inefficient. Therefore,
unless the computation is regular and local, meshes do not perform well. Furth-
ermore, meshes have been proposed only as SIMD machines, and that means
lack of MIMD processing capability that is necessary to support high level
vision. In order to cost-effectively build a multiprocessor with thousands of pro-
cessors, individual processor must be small and simple. To most efficiently use
a mesh, it is required that the data size exactly match the processor size.

Several mesh-connected multiprocessors have been built. Examples of
mesh-connected computers include CLIP-4 [13], GRID [14], GAPP [15], and the
MPP [16). To alleviate the global communication problems in the mesh-
connected architecture, several enhancements have been proposed. Wrapped

around connections of the boundary processing elements is one way in which top
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row processing elements are connected to the bottom row processing elements
and the first column processing elements are connected to the last column pro-
cessing elements. This arrangement is called Torus. It reduces the long distance
communication time. Other enhancements include connecting processing elements

in rows and columns by busses to broadcast the common data.
2.2.2 Pyramid Multiprocessors

The concept of pyramid multiprocessors is essentially an extension of
meshes in the third dimension. This structure has been proposed in various
forms, but the main idea is that an image sized mesh-connected array is aug-
mented by layers of successively lower resolution mesh-connected arrays as
shown in Figure 2.2. Each array in a pyramid is typically one fourth as large as
the array below it. Except for the bottom array, each processing element in a
pyramid is connected to four processors in the level below it, in addition to the
neighbors connections in the same level. All the processing elements operate in
SIMD mode under the directions of a single controller. Pyramid multiprocessor
architecture provides straightforward implementation of the divide-and-conquer
based approach. It provides the capability for quickly changing the resolution of
an image, which can significantly improve the execution speed of some low
level algorithms, especially for those that depend upon communication between

cells that are spatially distant in an image.

However, pyramid processors are more difficult to build than meshes
because of the more complex arrangement for communication links. Hence, no

pyramid multiprocessor has been built commercially.
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Fig. 2.2 The topology of a pyramid multiprocessor.
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2.2.3 Hypercube Multiprocessors

Hypercube multiprocessors provide more efficient long distance communica-
tion that is absent in meshes or pyramids. Machines in this class consists of
processors connected by communication links whose arrangement is topologically
equivalent to a n-dimensional cube. A hypercube consists of N = 2" processing
elements for a n dimensional cube. Each processing element is connected to n
other processing elements such that their binary representations differ in exactly
one bit position. Therefore, any processing element can communicate with any
other processing element using at most n communication links. Figure 2.3 illus-

trates the organization of a hypercube multiprocessor.

Several commercially available machines have been built that use the hyper-
cube topology. Both SIMD and MIMD types of machines have been built. The
Connection machine is a SIMD hypercube multiprocessor [17]. In a connection
machine, two communication networks are provided. Each processing element is
connected to its four NEWS neighbors through a NEWS network, and groups of
processors are connected in a hypercube fashion that provides efficient long dis-
tant communication. Such a machine can be used for most low level vision algo-
rithms and some intermediate vision algorithms. MIMD hypercube multiproces-
sors are also commercially available. In fact, several companies have built
MIMD hypercubes of large sizes (up to 1024 processors). Examples include Intel
Hypercube [18], and Cosmic Hypercube [19].

A typical processor node in a machine consists of a general purpose
microprocessor, local memory and routing hardware. Each multiprocessor is con-

trolled by a host processor. The advantage of the hypercubes is that they provide
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Fig. 2.3 The organization of a hypercube multiprocessor.



efficient long distance communication between processors. One drawback with
hypercubes is that if a processor needs to communicate with a processor that is
not one of its nearest neighbors, the data must be routed via intervening proces-

sors; this can slow down the overall processing rates if it occurs frequently.
2.2.4. Shared Memory Multiprocessors

Shared memory multiprocessors proposed and built are normally MIMD
machines. Each processing element is a general purpose processor with a small
local memory. Each processing element has access to a large global memory
through an interconnection structure that connects the processing elements and
global memory. The design of an interconnection network itself has been a huge
area of research. Almost all the machines built today have variations of two
common interconnection networks: bus-based and multistage interconnection net-
works. Bus-based system have a limitation on the number of processors, due to
the bus access bottlenecks, and therefore, are not easily scalable. However,
design is relatively simple and cost-effective. Another class of shared memory
multiprocessors use multistage interconnection networks for processor-processor
or processor-memory interconnections. Some bottlenecks of bus-based systems
are alleviated in such a system; however, the interconnection networks are com-
plex to build. Scalability in such architectures is much better than that in bus-
based systems.

The main advantage of shared memory architecture is the ease of program-
ming and uniform view of the system. In other words, control of information
and synchronization is much easier compared to that in distributed memory sys-

tems. This class of machine is best suited for high level vision tasks. However,
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since communication between processor and all the interactions between coopera-
tive tasks are done through the global memory. The bottlenecks and hot-spots
will occur. Furthermore, accessing global memory is at least an order of magni-
tude higher than accessing local memories, and therefore, communication speed
is very slow compared with computation speed. Hence, such machines are
efficient for only large grain parallelism tasks which have little interactions and

exhibit regular memory access patterns.
2.2.5 Systolic Arrays

A systolic array multiprocessor consists of processors connected in a pipe-
lined fashion. On one machine cycle each processor takes values from its input
ports, performs the specified computation, and passes the results to its output
ports. A systolic array can be perceived as a one-way pipeline of processing sta-
tions. Once the pipe is filled with data, all of the processing stations function at
the same speed. Systolic array elements can be general purpose programmable
function units or special purpose fixed function units. The primary advantage
provided by the systolic array is high performance for relatively low cost. The
main disadvantage of the systolic array is that any evaluation of processing

results must wait until all the data has passed through the array.

CMU Warp systolic processor is an example of a programmable systolic
array designed and built for scientific and image processing applications [20].
The Warp machine is capable of performing 10 MFLOPS. Figure 2.4 shows the
organization of the Warp computer. A typical Warp array includes 10 cells. Data
flow through the array on two communication channels, X and Y. The

addresses for cells’ local memories and control signals are generated by the
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Interface Unit and propagate down the address channel. The direction of Y is
reconfigurable. The Warp machine can perform in many modes. It is mostly suit-

able for low and intermediate level vision processings.

2.3 Artificial Neural Network

Artificial neural networks consists of a large collection of simple processing
elements which are highly interconnected. Inspired by the physiology of the
human brain, these processing elements perform mathematical algorithms to carry
out information processing through their state responses to stimuli. Artificial
neural networks have demonstrated the ability to deliver simple, powerful solu-
tions in areas that for many years have challenged conventional computing
approaches [21]. Many different classes of artificial neural networks exist [22].
Table 2.2 presents some of the best known neural network models, together with
their properties. The neural networks can be characterized by a few key proper-
ties, such as network topology, retrieving procedure, training/learning procedure,

and input values.

The network topology gives the most distinguished feature. The grouped
neurons which are arranged into a disjointed structure will form a layer. In the
Hopfield model [23], for instance, a single layer of processing elements is used.
The output from each processing element feeds back to all of its neighbors. In
a Boltzmann machine [24] or Back Propagating network [25], the network con-
sists of one or more layers between the input and output processing elements.
Figure 2.5 shows several neural network topologies which include single-layer

network, single-layer network with feed-back, and multiple-layer feedforward
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Table 2.2 Major Neural network Models and Properties

Neural model | Primary applications Strengths Limitations
p Typed-character Oldest neural Cannot recognize
erceptron recognition network complex patterns
Retrieval of Larse-scale Does not learn,
Hopfield data/images in teg tion weights must
from fragments g be set
Mulilayer Simple network, .
Perceptron/ Pattem' . more general than cannolt recognize
Delta Rule recognition the perceptron complex patterns
Wide range: speech Most popular, Sup e.rv1sec.i
Back . . training with
. synthesis to loan - work well, and is
Propagation application scorin simple to learn abundant
PP g P examples
Simple network
Boltzmann Pattern recognition that uses noise Long training
Machine for radar/sonar function to reach time
global minimum
. Better performance
(S;lf' .. M;p P “tllfc(:llie o than many Extensive
gamzing geome Ch algorithmic learning
Map onto another .
techniques
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Fig. 2.5 Several neural networks.
(a) Single-layer network.
(b) Single-layer network with feedback.

(c) Three-layer network.
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network. The neuron transfer function and threshold voltage characterize the
retrieving process of an artificial neural network. Specific mathematical functions
including sigmoid, step, Gaussian and Boltzmann functions [26] are widely used
to model the neuron transfer function. The retrieving process can operate in
either synchronous or asynchronous mode. In the synchronous mode, all neuron
outputs are updated simultaneously. On the other hand, the neuron updating pro-
cess in the asynchronous mode is random and independent of the other neurons.
Most artificial neural networks in software computation operate synchronously,
while the biological neural networks operate in the fully asynchronous mode.
The training procedures can be divided into supervised learning and unsupervised
learning [27]. In the supervised learning, synapse weightings are tuned by the
difference between the retrieving patterns and expected patterns. In the unsuper-
vised learning, the network classifies the input without references. The neural
networks using unsupervised leaming can detect the pattern regularities and
group for each input patterns. The widely used learning rules include Hebbian
rule (28], Delta rule, competitive learning rule, Boltzmann learning rule, Hopfield
energy minimizing rule, and their derivatives. The input signal for an artificial

neural network can be discrete or continuous values.
Neural network models reflect highly parallel, regular, and modular architec-

tures that make them attractive for VLSI systems. The key issues for a success-

ful integration of such systems are:

(a) The processing units (neurons) can be compactly arranged so that enough
units appear on a chip to achieve the large networks needed to produce

interesting features.
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(b) The technology can offer solutions to the problem of complex connectivity

between the processing units.

(¢) The networks are capable of partitioning into smaller nets that fit on a
chip.

(d) The synapses can store the multi-valued weights.

(e) The neural network model must take into account the feasibilities or res-

trictions of the technology.

Two kinds of hardware implementation approaches have been proposed to
realize the true computing potential of massively parallel neural networks. The
first one is general-purpose neural systems that consist of programmable proces-
sor arrays for emulating a range of neural network models. The second one is
special-purpose neural systems that are dedicated hardware implementations of a

specific neural network model.

The general-purpose neural systems can be further divided into coprocessor
boards, and parallel processor arrays. Coprocessors boards usually consist of
floating-point or signal-processing accelerator supplied with a large memory.
These boards can be plugged into the backplane of an IBM PC or interface to a
SUN workstation or a DEC VAX. Parallel processor arrays are cellular arrays
[29] composed of a large number of primitive processing elements connected in
a regular- and usually restricted- topology. These two categories of general-
purpose systems differ basically in the number of the physical processing ele-
ments employed. Parallel processor arrays primarily attain high performance and

real parallelism through an increase in the number of processing elements. On
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the other hand, coprocessors attempt to achieve improved performance by

strengthening the processing/storage capacities of standard microprocessors.

Hardware accelerators such as the HNC Anza [21], and the SAIC Sigma-1
[30] have allowed neural network experiments to be carried out over 100 times
faster than the usual simulators of neural network models. These programmable
systems can implement large networks of virtual processing elements with a lim-
ited number of hardware processors. The processing elements utilized in these
systems are usually industry-standard signal-processing chips or microprocessors
such as the MC68020 (and its MC68881 floating-point) interconnected through a
standard parallel broadcast bus such as the VMEbus. Physical processors and
interconnections are multiplexed across a large number of virtual processing ele-
ments and virtual interconnections and demand large memories represent them.
Performance comparisons between these products involve capacity (the maximum
size of the neural network) and speed (the time to process a neural network).
Speed measurement usually takes the form of network updates per second for
both the training and retrieving phases. For instance, the Anza Plus supports
1000 processing elements with 1,000 interconnections. It can perform 1,500 con-
nection updates per second during training and 6,000 updates per second during
retrieving.

General-purpose neurocomputers based on parallel processor arrays actually
constitute a natural evolution from the coprocessors. Parallel processors arrays
optimize neural processing by distributing the network through a large number of
simpler processors. These neurocomputers usually consist of cellular arrays that

are broadly similar to the Connection Machine [17]. They basically differ in
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three aspects: the number of processors, the complexity of processor, and the

interconnection geometry.

The Computation Network Environment (Cone) [31] developed at IBM, is
an example of a system using parallel processor arrays. Cone is based on the
Network Emulation Processor (NEP), a cascadable unit that acts as a coprocessor
for a PC host. One can cascade NEP into as many as 256 NEPs in a unidirec-
tional interprocessor communication network (NEPbus) to support a total of
1,000 virtual processing elements and 4,000 interconnections. NEP is based on
the 5-MIPS (million instructions per second) TMS320 digital signal processor.
The unit includes a 64K x 16-bit static RAM data memory, a 4K x 16-bit
SRAM program memory, and three interfaces. Each NEP can simulate about 4K
of virtual processing elements and 16K of interconnections and perform 30 to 50

network updates per second.

The Neural Network Environment Transputer System (NNETS), developed
at The US National Aeronautics and Space Administration’s Johnson Space
Center in Houston, Texas, comprises forty 32-bit, 10-MIPS transputers. Each
transputer with 256 Kbytes of memory. These transputers interconnect via four

10-Mbit, full-duplex serial links.

For special-purpose neurocomputers approach, a specific neural network
model is directly implement in hardware to produce a very high performance
system. Most implementations are based on the Kohonen [32] and Hopfield asso-
ciative memory models because of their simplicity. Implementation technologies
for the special-purpose neurocomputers can be classified into two categories.

The first technology is the electronic implementation using analog, digital, or
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mixed-signal circuit techniques. The analog circuit approach is quite attractive in
terms of hardware size, power consumption, and speed. Analog neural networks
were used as sensory devices to preprocess the real world data, as reported by
Mead et al [33,34] and Abidi [35]. One major limitation of a pure analog
neural network is the difficulty to solve problems that require more neurons than
the network’s physical size. To circumvent this limitation, extra analog switch-
ing circuits are used to enhance the reconfigurability and scalability of analog
neural networks [36]. In addition, many other analog VLSI neural chips have
been reported [37,38]. The digital circuit approach offers greater flexibility, sca-
lability, and accuracy than the analog circuit approach. By using logic and
memory, a large problem can be partitioned and processed by the digital neural
networks. The major limitations of digital neural networks are in their larger sil-
icon area, slower speed, and expensive cost of interconnections between process-
ing elements. Many general-purpose digital VLSI neural chips were reported
[39,40].

A mixed-signal circuit approach which can preserve the advantages of both
digital and analog approaches and eliminate the limitations of them is very
attractive. The local numeric computation is done by compact analog neurons
and synapses. The fundamental computations required in the neural network,
such as summation, multiplication and the nonlinear transfer function, can be
implemented in a very simple and natural way. Long-distance communication is
carried out in the digital format to preserve signal strength across the chip boun-

dary and to achieve network scalability by using an array of neural chips.
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However, the present silicon integration scale is still very limited as com-
pared with biological systems. The other implementation technology is to use
optical and optoelectronic devices. Due to the inherent parallelism and spatial
property of the optics, the interconnection and synapse weighting problems in
multi-dimensional signal processing can be more efficiently addressed for certain
applications. The high sensitivity problem on the portability of the opto-

neurocomputer will be eliminated by combining electronics with the optics.

2.4 Early Vision Processing

Early vision consists of a set of processes that recover physical properties
of the visible three-dimensional surface from two-dimensional intensity arrays.
Most early vision problems are ill-posed problem. A problem is ill-posed when
the solution is not unique. Several examples include: edge detection,
stereomatching, the computation of the optical flow, structure from motion, shape
from shading and surface reconstruction. A central and common characteristic of
such vision approaches is the formation of a cost or energy function which,
when minimized, provides the desired solution. Because the function to be
minimized is very complex, with large dimensionality and multiple local minima,
sophisticated and computationally intensive minimization technique, such as
simulated annealing [41] were required. The collective computational capability
of neural network provides powerful new technique for solving such complex
minimization problems rapidly.

The first demonstration of this capability was by Hopfield and Tank [42]

for the traveling salesman problem. They showed that the Hopfield model can be
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used to achieve good solutions to this problem within a few network time con-
stants. A number of researchers have used this optimization capability of the
Hopfield model for specific early vision optimization problems. Such work
include implementations of shape from shading {43], and image restoration [44],
and image segmentation [45].

On the other hand, at the early vision processing, the image is treated
essentially as a set of samples or picture elements (pixels), without reference to
the structures or objects contained within the image. Thus the operations act on
the image on a pixel-by-pixel basis, as though it is a sampled waveform, with
the sample organized in a two-dimensional grid. The image is treated as raw

data rather than as a representation of some scene containing objects.

Algorithms that operate at this stage, in general, work on a large data set
(say a 256 x 256 pixel array) but with a high degree of parallelism. Since,
except possible near the image boundaries, the action of the algorithms should
be independent of pixel position. In addition, for many applications, speed is of
critical importance. For these types of algorithm conventional Von Neumann
architectures, which execute a series of instructions sequentially on the data, are
not well matched. Rather, one requires architectures with a high degree of paral-
lelism but with relatively simple individual processing elements. Ideally this
parallelism should be two-dimensional, so as to map onto the image data itself.

Many algorithms based on the neural network models have been developed
for solving early vision problems. In this dissertation, the image restoration and
computation of optical flow have been selected as two examples to demonstrate

the feasibility of this approach. The system architecture and circuit level design
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technique for these two examples will be described, following a brief introduc-

tion of the adopted algorithm, respectively.
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Chapter 3

Video Motion Estimation on Neural-Based VLSI Multiprocessors

Motion understanding is one of the most important visual functions, and has
numerous applications in robotics and industrial automation. The information
extracted from motion understanding process includes: segmentation of objects
due to their motion, depth from motion, and motion estimation. A very broad
set of applications are motivating a strong interest in sensing, interpretation, and
description of motion via a sequence of images. The applications areas include
[1-3]:

1. Bandwidth Compression

To transmit sequences of images on channels with limited bandwidth is made
possible if motion is extracted and coded. It can be applied to video con-

ferencing, TV signal transmission, and so on.

2. Medical Applications
Information about dynamic changes in size, shape, and position of working
organs is of great interest, not only for detection of abnormalities, but also
for detailed understanding of their normal functions. A sequence of X-ray or
computer aided tomography images may be used.

3. Autonomous Navigation
An autonomous land vehicle has important applications to military, space

exploration, and metropolitan transportation. Even with sophisticated inertial

navigation systems, the accumulation of position errors requires periodic
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corrections. Visual information from the environment becomes an indispens-

able clue.
Industrial Automation and Robotics

Motion analysis is necessary for hand-eye coordination of the robots working
on the conveyer belts of assembly line. Moving robots depend on motion
analysis to determine their trajectory, construct a model of their environment,
and avoid obstacles.

Target Tracking

It is of immense interest to the department of defense of every country. This
technique can be also applied to traffic monitoring, movie coloring, and so

on.
Meteorology

Satellite images provide the opportunity for interpretation and prediction of
atmospheric process through estimation of shape and motion parameters of

atmospheric disturbances.
Human Movements Understanding

The computation, characterization and understanding of human motion in the

context of dancing and athletics is another field of endeavor.

The key to understand multiple images or image sequences lies in the

analysis of differences and similarities between consecutive time frames. Many

features from the images such as points, lines, curves, planar or curved surfaces,

and optical flow, can be used to extract motion parameters. Optical flow is the

apparent motion of the brightness patterns in an image. Generally, the optical
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flow corresponds to the motion field [4], and provides important information
about the spatial arrangement of the objects, the rate of change of this arrange-
ment in a given scene and also the perceiver’s own movements. Optical flow can
thus be used for deriving relative depth of points [5,6], segmenting images into

regions [7], and estimating the object motion in the scene [8].

According to the nature of the measured primitives, existing approaches to
optical flow computing can be divided into two types: the image intensity based
approach and the token based approach. The intensity based approach relies on
the assumption that changes in intensity are strictly due to the motion of the
object and uses the image intensity values and their spatial and temporal deriva-
tives to compute the optical flow. By expanding the intensity function into a
first-order Taylor series, Horn and Schunck [9] derived an optical flow equation
using the brightness constancy assumption and spatial smoothness constraints.
An iterative method for solving the resulting equation was also developed. The
token based approach is to consider the motion of tokens such as edges, corners
and linear features in an image. The key advantage of the token based approach
is that tokens are less sensitive to variations of the image intensity. The token
based approach provides the information of the object motion and shape at
edges, corners, and linear features. An interpolation procedure has to be

included when dense data are required.

Recently, several researchers used neural networks to conduct optical flow
computing [10,11]. To prevent the smoothness constraint from taking effect
across strong velocity gradients, a line process has been incorporated into the

optical flow equation [11]. The resulting equation is nonconvex and includes the
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cubic and some higher terms. Instead of using an annealing algorithm which is
very time consuming, a deterministic algorithm was used to obtain a near-
optimal solution. Convergence of such a network was obtained within a few
iteration cycles. Basically, the mixed analog/digital neural network approach is
to first use Horn’s optical flow equation to find a smoothest solution and then to
update the line process by lowering the energy function of the network repeat-
edly.

In order to obtain a dense flow field, the intensity based approach is prefer-
able. However, the intensity value may be corrupted by noise appeared in
natural images and partial deviatives of the intensity value are sensitive to rota-
tion. It is difficult to detect the rotational objects in natural images based on
such measurement primitives. Under the assumption that changes in intensity are
strictly due to the motion of the object, Zhou et al [12] use the principal curva-
tures of the intensity function to compute the optical flow because they are
rotation-invariant. The intensity values and their principal curvatures are
estimated by using a polynomial fitting technique. Under the assumption of
local rigid motion and the smoothness constraint, a neural network with max-
imum evolution function was developed to compute the optical flow. A deter-

ministic decision rule was used for the updating of neurons states.
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3.1 A Neural Network for Optical Flow Computation
3.1.1 The Optical Flow Algorithm

Let the velocity field consist of two components & and /. A set of
(2D, + 1)(2D; + 1) modules of neurons are used to represent the optical flow
field, where D; and D; are the maximum values of velocity components in k
and [ directions, respectively. For the implementation purposes, the velocity
component range is sampled using bins of size Q. As shown in Fig. 3.1, each
module corresponds to a velocity value and contains N,x N, neurons if the
images are of size N.x N,. All neurons in the same module are self-connected
and locally interconnected with other neurons in a neighborhood of size I' x I'.
Every pixel is represented by (2D, + 1)(2D; + 1) mutually exclusive neurons
which form a hypercolumn for velocity selection. When the neuron at the point
(i, j) in the (k, I)-th module is 1, the actual velocities in the ¥ and / directions
at the point (i, j) are kQ and /Q, respectively.

Let V.={vjss 1Si SN, ,1<j<SN,, =Dy Sk SDy,-D; <1 <Dy}
be a binary set of the neural network with v; ;. denoting the state of the
(i,j.k,l)th neuron which is located at point (i, j) in the (k, /)-th module,
T; jktmnky be the synaptic interconnection strength from neuron (i,j.k,!) to
neuron (m,n.k,!), and Lk be the bias input.

At each step, the neuron (i,j,k,!) synchronously receives signals from itself

and neighboring neurons and a bias input,
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Fig. 3.1 A competitive neural network used for computation of optical flow.

41-



Wijki = p Tijktdmnid Vmakd * 1ijr 3.1
(m=in—j) € So

where Sg is an index set for all neighbors in a I' x I' window centered at point

(i, j). The u; ., is then processed by the maximum evolution circuitry to

determine the velocity of the pixel,

Vijkd =8 Wi jxt) (3.2)

where g(x; ;) is the maximum evolution function (it is also called the

winner-take-all function)

Voif X g =max(x;;,q3 Dy Sp SDy, =Dy S q < Dy).
8Rijka) =10 otherwise. (3.3)
The network operation will be terminated if the network converges; i.e., the
energy function of the network defined by
N, N. D,

1
== 2 Z ( p TijkdimnkdVijkdVmm kil
i=1 j=1 k=-D, I=-D; (m~i,n—j)e §,

+ 1 jxavijaad (34)

reaches a minimum.

Two important features of the network should be noted:
(i) The synaptic interconnection strength between neurons on different modules

are zeros since only the neurons in the same module are connected, i.e.

Ti.j.k.l;m.n.p.q = 0, for (k,l) #* (p,Q), if (i,j) # (m ,n). (3.5)

(ii) A maximum evolution function is used to ensure that only one neuron which
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has the maximum excitation is fired and the other (2D, + 1)(2D; + 1) — 1 neu-

rons are turned off.

As reported in [12], a smoothness constraint is used for obtaining a smooth
optical flow field and a line process is employed for detecting motion discon-
tinuities. The line process consists of vertical and horizontal lines, L” and L*.
Each line can be in either one of the two states: 1 for being active and 0 for
being idle. The error function for computing the optical flow from a pair of
image frames can be expressed as

N, N. D, D

E=3 3 3 3 (Alu@s) - kn@rk P

i=l j=1 k=-D, 1=-D,
+ Akl J) = koaG+koj+D1 + [g10.J) — goli+k j+)IYV; j iy

B

+{2

2
2 Wijkd = V@jwskd)
sesS

C
+ s = Vierj k(1 = Ll )

+ (Vijeg — Vi,j+l,k.t)2(1 - L;‘fj,k,g)]l} (3.6)

where kq,(i,j) and k,(i+k,j+!l) are the principal curvatures of the first image,
kp1(i,j) and koo(i+k.j+!) are the principal curvatures of the second image,
81(i,j) and g (i+k,j+!) are the intensity values of the first and second images,
respectively. Here, § = S, — (0,0) is an index set excluding (0,0), A, B, and C

are empirical constants.

43-



The principal curvatures are defined as [13]

1
ki@j)=M + M? - G)? (3.7

and

1
kyi j)=M - M? - G)? (3.8)

where k,(i,j) and k,(i,j) are the principal curvatures, G and M are the Gaus-

sian and mean curvatures given by

_ elyj) 3%G.) el
G = 7 Yo [ 2i9s “ . (3.9
and
M= L2860 | PG, (3.10)
2" ai? 9j2

A polynomial fitting technique is used to estimate the derivatives.

In (3.6), the first term is to seek velocity values such that all points of two
images are matched as closely as possible in a least-squares sense. The second
term, which is weighted by B, is the smoothness constraint on the solution and
the third term, which is weighted by C, is a line process to weaken the smooth-
ness constraint and to detect motion discontinuities. The constant A in the first
term determines the relative importance of the intensity values and their principal
curvatures to achieve the best results. The line process weakens the smoothness

constraints by changing the smoothing weights, resulting in space-variant smooth-

ing weights. For example, if all lines are on, the weights will be —g— If all lines



are off, the weights at the four nearest neighbors of the center point are

increased by %

and

By choosing the interconnection strengths and bias inputs as

Tijkdmnki =
—[48B + C(4 - Lt 4s = Ltjscyras = Lijui = Liv1)j o)1 mSjn
+C[a - l]kl)sl.m j+l,n +(1 - l.]-i-(—l).k l)at.m j+(-1),n

+ (1 = LY 2 D801 m O + (1 = L1y j 4,085 4¢-1),m Oj )
+ 2B E O j)(m s (3.11)

sES

Lijga = Ak G o) = kagl+k j+DI? + kgl f) — kogli+k j+1))%)

~g1(i.j) — gali+k.j+)}? (3.12)

where Sa'b is the Dirac delta function, the error function in (3.6) is mapped into

the energy function of the neural network in (3.4). Notice that the interconnec-

tion strengths consist of constants and line process only. The bias inputs contain

all the information from images. When the network reaches a stable condition,

the optical flow field is determined by the neuron states. The size of a typical

smoothing window is 5 X 5.
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3.1.2 Updating Scheme

Since the first and second terms in (3.6) do not contain the line process, the
updating of the line process is prior to the updating of neuron states. Let L%
and L}i%%, denote the new and old states of the vertical line L};,, respec-

tively. Let ; ; . ; be the potential of vertical line Ly, ; given by

C
Vijkd = j(vi.j.k.z = vi+l,j,k.l)2- (3.13)

Then, the new state is determined by

oy AL T Vijeg >0
Lijx1 =00  otherwise. (3.14)

Whenever the states of neurons v; ;. and v;, ;. are different, the vertical
line L; ; ., will be active provided that the parameter C is greater than zero. If
C = 0, then all lines are inactive, which means that no line process exists in the
network operation. The choice of C is closely related to selecting the smooth-
ness parameter B in (3.6). A similar updating scheme is also used for the hor-
izontal lines. In the prototype neural chip design, computation for the terms

which are weighted by the parameter C is not included.

The state of each neuron is synchronously evaluated and updated according

to (3.1) and (3.2). The initial states of the neurons are set as

1 l:fli,j.k.l = max( Il',j,p,q;_Dk <p SDk.—Dl <q SDI)
Vijkt =0  otherwise (3.15)

where /; ;,; is the bias input. The initial conditions are completely determined

by the bias inputs. If there are two maximal bias inputs at point (i, j), then
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only the neuron corresponding to the smaller velocity is initially set at 1 and the
other one is set at 0. This is consistent with the minimal mapping theory [14].
In the updating scheme, the minimal mapping theory is also used to handle the

case of two neurons having the same largest inputs.

3.2 The Neural-Based Neuroprocessor Design

3.2.1 VLSI Architecture

To implement the electronics neural network, a VLSI architecture has been
developed which maps the 3-dimensional neural network configuration onto a 2-
dimensional plane. As shown in Fig. 3.2, each small frame represents one
velocity-selective hypercolumn which contains (2D, + 1)(2D; + 1) velocity-
sensitive components. Each hypercolumn is locally interconnected with the
I' x I' = 1 neighboring hypercolumns. The hypercolumn is designed as a neu-
roprocessor within which the velocity selectivity of an image pixel can be con-
ducted. Mixed analog-digital design technologies are utilized for the neuropro-
cessor design to achieve compact and programmable synapses and neurons for

massively parallel neural computation [15].

To simplify the two-dimensional interconnection problem for computation of
optical flow, the analog point-to-point interconnection for local communication
and the digital common bus for global communication are used. Since velocity
information of one pixel is affected by its neighbors, each neuroprocessor
receives information from the neighboring neuroprocessors during the network

operation. Data communication between these locally
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Fig. 3.2 A two-dimensional array of velocity-selective hypercolumn.
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neuroprocessors is one key factor on the overall system performance. There are
three different methods to accomplish the local data communication with trade-

offs on the operation speed and silicon area.

The first method is to use the digital bit-parallel point-to-point interconnec-
tion. The (2D, + 1)2D; + 1)-bit  v; ;,,.’s, where -D;, <p <Dy,
-D; < g < D, are transmitted using the word-wide point-to-point interconnec-
tions. The data transfer speed is very fast. However, the total number of inter-
connection lines for each  neuroprocessor is as large as
(2D + 1)(2D; + 1)I" x I'). The silicon area for the interconnection routing is
large. The required large pin count becomes a major constraint for hardware

implementation.

The second method is to use the digital bit-serial point-to-point interconnec-

tion. The v; s are sent in a bit-serial order by using a time-multiplexing

jpa
technique. The total number of interconnection lines is reduced by a factor of
(2D, + 1)(2D; + 1). However, the time required for data transfer increases with
the same factor. In addition, the required hardware overhead for time-
multiplexing includes a one-bit latch for each synapse cell, the multiplexing con-

trol signals, and the associated decoding circuitry.

The third method is to use the analog bit-parallel point-to-point interconnec-

tion. The v;

i.jp.q S are converted to an analog value, and then sent to the neigh-

boring neuroprocessors. The v; ;, ,’s are converted back into digital values at
the receiving sites. This method is quite effective since it allows the network to

operate at a very high speed and also achieve a compact layout. The required
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I/O port and silicon area for interconnection routing are moderate for mult-

neuroprocessor hardware implementation.

A functional diagram of the velocity-selective neuroprocessor is shown in
Fig. 3.3. It includes a velocity-sensitive component array, and a data conversion
block. The array has (2D, + 1)(2D; + 1) velocity-sensitive components which
are laterally connected through the winner-take-all circuit. The velocity of the
neuroprocessor is determined by competition which is performed by the winner-
take-all circuit. Only one velocity component which has the maximum excitation
will be the winner to represent the velocity of that pixel. The data conversion

block is used for analog point-to-point inter-processor interconnection.

As shown in Fig. 3.4, the velocity-sensitive component is constructed with
one synapse array, one summing neuron, and one winner-take-all cell. The
synapse array contains I' x I' + 1 programmable synapses. The synapse weights
T; jkismnxy are stored as charge packets on capacitors and must be refreshed
periodically. The binary outputs v, ,,, from the neighboring neuroprocessors
are routed to the corresponding mask ports of the synapse cells to conduct the
network operation. A summing neuron functions as a parallel current adder. Each
summing neuron with its associated programmable synapse array perform a com-
plete inner-product computation. The winner-take-all cell contributes to a max-

imum evolution function on the analog outputs of summing neurons. The binary

outputs of the winner-take-all circuit represent the velocity status.

The synapse weights and bias inputs are calculated by the host computer or
a digital co-processor and stored in a digital static-RAM. The 8-bit D/A con-

verter transforms the digital representation of the synapse weights into analog
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Fig. 3.3 Functional diagram of one velocity-selective neuroprocessor.

-51-



values for charging the weight-storage capacitances of the synapse matrix. A
two-port static-RAM and differential amplifier-based synapse design allows net-

work retrieving and learning processes to occur concurrently.
3.2.2 Detailed Circuit Design

In Fig. 3.4, a transconductance amplifier consisting of transistors M -Ms
produces synapse output current I ; according to mask voltage V., and weight
voltage V{;. The bias voltage Vj;,; controls the dynamic range of synapse cells
by adjusting the bias current in the transconductance amplifiers. When the V.,
is at logic 1, the V;;,, is connected to V,, to provide the amplifier with a
specific bias current /™, When the V,,y is at logic 0, the V,;,, is connected
to the negative power supply so that no synapse output current is produced.
Therefore, the V,,4 performs a masking operation on the synapse weight vol-
tage V;§ j- The mask voltage of each synapse cell is directly related to the value
of the v, ,;; which represents the velocity information of the neighboring pix-
els. The maximum synapse conductance is decided by device sizes of the
differential pair and the bias current /™®, while the minimum synapse conduc-
tance is determined by the resolution of the weight value on the MOS capaci-
tance. The synapse output currents are summed up and converted to the voltage
format at the summing neuron. This compact synapse circuit performs a two-
quadrant multiplication. The polarity of the synapse output depends on the value
of weight voltage V;;. An 8-bit resolution can be supported in the DRAM-style
synapse cell [16]. In the EEPROM-style synapse cell [17,18], at least a 6-bit

resolution can be obtained.
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The summing neuron functions as a current-to-voltage converter and is real-
ized by using a two-stage operational amplifier and a feedback resistor. Circuit
schematic diagram of the two-stage operational amplifier is shown in Fig. 3.5.
Transistors M3 and M4 form an improved cascode stage to increase the voltage
gain and M,, operates as a resistor for proper frequency compensation. The

amplifier voltage gain can be 100 dB.

The outputs of the winner-take-all circuit are binary values. Only one
winner cell with the maximum input voltage will have the logic-1 output value.
The other cells will have the logic-0 output value. The winner-take-all circuitry
functions as a multiple-input comparator. Figure 3.6 shows the circuit schematic
diagram of two winner-take-all cells. The high-resolution and expandability of
this winner-take-all circuit make it suitable for many competitive learning neural

networks [19-22].

After the winner-take-all circuit, the (2D, +1)(2D; + 1) binary outputs
represent the velocity information of one image pixel. Combinational logic gates
are used to encode these (2D, +1)(2D; + 1) binary signals and to store the
result into a data latch. Figure 3.7 shows digital circuits of the data latch with
the associated read/write control logic. The final velocity result is read by the

host computer from the data latches through the digital common bus.

Figure 3.8 shows a voltage-scaling digital-to-analog converter which is used
to convert the encoded binary code to the analog value and send it to the neigh-
boring neuroprocessors. The voltage-scaling converter uses a series of resistors
connected between V. and -V, to provide intermediate voltage values. For

an N -bit converter, the resistor string would have 2V + 1 resistor segments. In
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Fig. 3.5 Circuit schematic of the operational amplifier used for summing neuron.
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Fig. 3.6 Two winner-take-all cells are connected as a differential operational
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Fig. 3.7 Digital circuits of the data latch and its associated read/write control logic.
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Fig. 3.8 A voltage-scaling digital-to-analog converter.
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Fig. 3.8, a total of 26 resistor segments are used. The resistor is implemented
in the P-well diffusion layer. The sheet resistance of the P-well layer is 2 KS¥/[
from the MOSIS 1.2-um CMOS P-well process. Unity-gain followers are used
to buffer the resistor string from conductive loading. Each tap is connected to a
switching tree whose switches are controlled by the bits of the digital word.

Each switch is implemented by a CMOS transmission gate.

When the analog velocity information from the neighboring neuroprocessors
is received, a total of I' x I' — 1 analog-to-digital converters are used to convert
these analog values back to the binary values with (2D, + 1)(2D; + 1) bits.
Only one of these bits is logic-1 and the others are logic-0. To achieve high-
speed performance and compact silicon area, a parallel and distributed analog-
to-digital converter has been designed. One voltage scaling resistor-chain is used.
As shown in Fig. 3.9, the comparators and the associated digital decoding circui-
tries are distributed into the synapse cells. The comparators included in the
same velocity-sensitive component use the same reference voltage provided by
the resistor-chain. The distributed decoding circuitries make sure that only one of
(2D, + 1)2D; + 1) binary outputs is logic 1 and the others are inhibited to
logic 0.

3.3 Experimental Results

3.3.1 Prototype Neural Chips

In the prototype neural chip design, D, =D; =2 and a size of 5 x 5

smoothing window are used. The layout of the velocity selection neuroprocessor
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for one image pixel is shown in Fig. 3.10. It occupies an area of 2,482 x 5,636
A2 and contains 25 neurons, 25 X 27 synapse cells and is able to detect the
moving object with 25 different velocities. In the hardware implementation, two
rows of synapses are used to increase the resolution of synapse weights coming
from the bias inputs and also to enhance the fault tolerance of the network.
With an advanced 1.2-pm CMOS technology, 64 neuroprocessors can be accom-
modated into one VLSI neural chip of 1.5 x 2.8 ¢cm? in size. The chip layout
is shown in Fig. 3.11. It requires a 178-pin PGA package. The analog inter-
processor data communication requires 128 pins. The detailed layout of inter-
connects among four neuroprocessors is shown in Fig. 3.12. The interconnection
routing area occupies 23% of the chip area. A performance comparison against
the digital bit-parallel point-to-point interconnection method is listed in Table 1.
In the digital bit-parallel method, each data link requires 25 lines. Only 12 neu-
roprocessors can be accommodated in the same chip area and 85% of chip area

will be used for the interconnection routing purpose.

With 128 VLSI neural chips and many supporting standard IC parts such as
SRAMs and 8-bit DACs for storing the weight information and dynamically
refreshing of the synapse cells, computation of optical flow from an image with
64 x 128 pixels and 256 gray levels can be performed at a rate of 30 frames
per second. The system design for the fast motion detection using multiple

VLSI neural chips is shown in Fig. 3.13.

To obtain the electrical properties of the basic circuit blocks, a test chip
containing key circuit blocks has been fabricated with a 2-uym CMOS process
from Orbit Semiconductor Inc. [23] through the MOSIS Service [24] and tested.
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Fig. 3.10 The layout of one velocity-selective neuroprocessor. It contains 25
neurons, 25 x 27 synapse matrix and is able to detect the moving object
with 25 different velocities.The synapse cell is shown in the insert.
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One Neuroprocessor

Fig. 3.11 The layout of VLSI neural chip. It consists of 64 neuroprocessors and
occupies 1.5 x 2.8 cm” silicon area.
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Fig. 3.12 The detailed layout of interconnects among four neuroprocessors.
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Table 3.1 Performance Comparison of Two Interconnect Methods

esign Approachl Using Bit-Parallel Analog | Using Bit-Parallel Digital
Performance Interconnect Method Interconnect Method
Chip Size (cm?) 1.5x2.8 1.5x2.8
Number of Neuro-
Processors 64 12
Interconnection
Routing Area (%) 23 85
Pin Count 178 3,250
Network Iteration
Time (nsec) 522 250
Speed Performance 10 10
(connection/second) 8.03x 10 2.08x 10
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Fig. 3.13 System diagram for high-speed motion estimation using multiple

VLSI neural chips.
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The die photo of the test chip is shown in Fig. 3.14(a). An enlarged die photo
of two winner-take-all cells is shown in Fig. 3.14(b). The area of one winner-
take-all cell is 67 x 74 A2 Measured transfer curves of the synapse cell with
different bias voltages are shown in Fig. 3.15. The dynamic range of the

synapse cell is controlled by the bias voltage.

Experimental data on the winner-take-all circuit are shown in Figs. 3.16-
3.18. Three experiments were conducted. In Fig. 3.16(a), a single-stage, nine-
cell winner-take-all circuit is tested. Among of nine input analog signals, one
input sweeps linearly from 1.47 V to 1.52 V, the second input is connected to
1.5 V, and the other seven inputs are kept at 1.475 V. By using a two-stage,
nine-cell winner-take-all circuit, the corresponding output can be shown in Fig.
3.16(b). In Fig. 3.17(a), a single-stage, nine-cell winner-take-all circuit is tested.
Among of nine input analog signals, one input sweeps linearly from -0.015 V to
0.035 V, the second input is connected to 0.015 V, and the other seven inputs
are kept at -0.010 V. By using a two-stage, nine-cell winner-take-all circuit, the
corresponding output can be shown in Fig. 3.17(b). In Fig. 3.18(a), a single-
stage, nine-cell winner-take-all circuit is tested. Among of nine input analog sig-
nals, one input sweeps linearly from -1.53 V to -1.48 V, the second input is
connected to -1.5 V, and the other seven inputs are kept at -1.525 V. By using
a two-stage, nine-cell winner-take-all circuit, the corresponding output can be
shown in Fig. 3.18(b). The winner-take-all function is successfully implemented

with a resolution of 10 mV.

The processing time for one network iteration is around 522 nsec. Each

iteration cycle includes synapse multiplication, neuron summing, winner-take-all
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Fig. 3.15 Measured transfer curves of the synapse cell with different bias voltages.
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Fig. 3.16 Measured results of winner-take-all circuit with one input sweeps from
1.47V to 1.52V, the second input is connected to 1.5V,
and the other seven inputs are kept at 1.475V.
(a) Output of one-stage winner-take-all circuit.

(b) Output of two-stage winner-take-all circuit.
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Fig.3.17 Measured results of winner-take-all circuit with one input sweeps from
-0.015V to 0.035V, the second input is connected to 0.015V,
and the other seven inputs are kept at -0.010V.
(a) Output of one-stage winner-take-all circuit.
(b) Output of two-stage winner-take-all circuit.
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Fig. 3.18 Measured results of winner-take-all circuit with one input sweeps from
-1.53V to -1.48V, the second input is connected to -1.5V,
and the other seven inputs are kept at -1.525V.
(a) Output of one-stage winner-take-all circuit.

(b) Output of two-stage winner-take-all circuit.
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operation, data storage on latches, D/A and A/D conversion, and inter-processor
data transfer. SPICE simulation results on various circuit blocks are listed in
Table 3.2. The large response time of the synapse multiplication is due to the
significant capacitance loading on the current-summation line. For the D/A
conversion simulations, 5 pF and 50 pF effective capacitance loadings are
estimated for inter-chip data communication and off-chip data communication,
respectively. The major delay will come from the off-chip inter-processor data
communication. The total of 8.32 x 10® connections per second can be
achieved by using one VLSI neural chip containing 1600 neurons, 41,600
synapses cells, and operated at a master clock rate of 2 MHz. Based on the
results of Table 3.2, the speed comparison of a system using 128 VLSI neural
chips with a Sun-4/75 SPARC workstation is listed in Table 3.3. The speedup
factor is 24,242.

3.3.2 System-Level Analysis

System-level analysis on different images have been conducted to illustrate
the performance of the motion estimation chip. The mismatch effect of analog
synapse components has been included. Figure 3.19 shows the statistical distribu-
tion of measured synapse output conductances. A total of 300 synapses was
measured. In Fig. 3.19(a), the synapse conductances can be described by a
Gaussian distribution with a mean value of 14.07 pA/V and a standard deviation
of 0.042 HA/V at weight voltage V{; =2 V. In Fig. 3.19(b), the synapse con-
ductances can be described by a Gaussian distribution with a mean value of

-13.69 pA/V and a standard deviation of 0.036 pA/V at weight voltage
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Table 3.2 Circuit Response Time

Measured Results
Analog—to—l?lgltal 73 ns
Conversion
dynapse
Multiplication 120 ns
Neuron
Threshoding 20 ns
Winner-Take-All 38 ns
Operation
Encoder & Data 8
Latch ns
Digital-to-Analog 84 ns +
Conversion 263 ns *
343 ns +
Total
° 522 ns *

Note: Ty x=202 7\ in MOSIS 1.2-um CMOS technology.

+ with an output loading of 5 pF
* with an output loading of 50 pF

Table 3.3 Performance of VLSI Motion Estimation System

Synapse Weight Loading 2,080 us
Time (into SRAM) (50ns per write)
Network Execution Time
( for 36 iterations) 18.792 us
Neuron State Read 409.6 us
Out Time (50 ns per read)
Total Processing Time 2.508 ms
Speed-Up Factor * 24,242

Note: + The comparison reference is Sun-4/75 SPARC-2

workstation.
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Vi;j =2 V. During computer analysis, the effects of process variation on

synapse weights are included through the Gaussian function.

Two sets of successive image frames directly produced by a Sony XC-77
CCD camera were used. To estimate the principal curvatures and the intensity
values, a 5 X 5 window ie., ' =5 was chosen and a third order polynomial
was used for all frames. Figure 3.20(a)-(d) shows four successive image frames
with a sedan moving from left to right against a stationary background. The
size of each image frame is 100 X 135 pixels. The maximum displacement of
the sedan between the time-varying image frame is 5 pixels. By setting
A=4,B =250,C =0,D, =5, and D; = 1, the velocity field was obtained
after 36 iterations. Figure 3.20(¢) shows the final result with using synapse
weights obtained by including the effects of process variation. Comparing with
the result in Fig. 3.20(f), which the effects of process variation are not included,

the motion information of the moving object still can be successful detected.

Figure 3.21(a)-(d) shows another four successive image frames with a
mobile missile launcher moving from left to right have also been used for
system-level analysis. The size of each image frame is 130 x 160 pixels. The
maximum displacement of the mobile missile launcher between the time-varying
image frame is 7 pixels. By setting A =4, B =850,C =0, D, =7, and
D; =1, the velocity field was obtained after 36 iterations. The final velocity
fields of mobile missile launcher with and without including the device mismatch
effects are shown in Fig. 3.21(e) and Fig. 3.21(f), respectively. The parameter
A 1is set to be 4, because four successive image frames are used. The parameter

B is chosen by using trial-and-error method. The parameter C is set to be 0 in
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the prototype hardware implementation to simplify the neuron-state updating

scheme of the network.



(a) (b)

() (d)

(e)

Fig.3.20 System-level analysis on a sequence of four sedan images.
(a) The first frame. (b) The second frame.
(c) The third frame. (d) The fourth frame.
(e) By setting A =4, B =250, C =0, Dy =5, D; =1, and using synapse
weights with device mismatch effect, the final result is obtained  -78-
after 36 iterations.



4y

Fig.3.20 System-level analysis on a sequence of four sedan images.

(f) Using same conditions as (e) except the device mismatch effect
has not been included.
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(©) (d

©

Fig.3.21 System-level analysis on a sequence of four missile launcher images.
(a) The first frame. (b) The second frame.
(c) The third frame. (d) The fourth frame.
(¢) By setting A =4, B =850, C=0, Dy =7, D, = 1, and using synapse
weights with device mismatch effect, the final result is obtained ~ -80-
after 36 iterations.



®

Fig. 321 System-level analysis on a sequence of four missile launcher images.

(f) Using same c_onditions as (e) except the device mismatch effect
has not been included.
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Chapter 4

Digital Image Restoration on Neural-Based

VLSI Multiprocessors

Restoration of a high-quality image from a degraded recording is an impor-
tant problem in early vision processing. Image degradation due to optical aberra-
tion, atmospheric turbulence, motion, diffraction, and noise can be corrected.
Various methods such as the inverse filter [1], Wiener filter [1], Kalman filter
{2}, and many other model-based approaches have been proposed for image res-
torations. One of the major drawbacks of most of the conventional image res-
toration algorithms is the computational complexity. Many simplifying assump-
tions such as wide-sense stationary property, availability of second-order image
statistics are required to obtain computationally feasible algorithms. The inverse
filter method works well for extremely high signal-to-noise images. The Wiener
filter is usually implemented after the wide sense stationary assumption has been
made for images. Furthermore, knowledge of the power spectrum or correlation
matrix of the undegraded image is required. The Kalman filter approach can be
applied to nonstationary image, but is computationally very expensive and the
system dynamics of the undegraded image is also required. Therefore, it is desir-
able to develop a practical restoration algorithm that does not need much
knowledge of the undegraded image. An artificial neural network that can per-

form extremely rapid computations is very attractive for image restoration [3).
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In this chapter, an analog systolic architecture which employs multiple neu-
roprocessors for high-speed image restoration is designed to fully exploit the
massively parallel computational power of the neural network. For a two-
dimensional image, parallel processing is performed in the row direction and
pipelined processing is performed in the column direction. In the VLSI architec-
ture, each neuron is used to represent multiple bit information. The key is to use
the neuron result as an increment/decrement information to control the pixel
register. The pixel register content is combined in the synapse array with a dis-
tributed digital-to-analog conversion operation. By using this architecture, the
number of neurons can be reduced by a factor of 2 in the M-bit gray-level

image processing [4,5].

4.1. Image Restoration Algorithm

Let Y and X denote the vectors of length L? obtained by lexicographically
ordering the L x L degraded and original image arrays, respectively. A standard
degradation model applicable to many space invariant imaging systems is given

by the following expression [1,6]
Y=0(H]X)+N 4.1)

where H is an L2 x L2 blur matrix constructed from the point spread function
h(k, 1) of the imaging process, N is an independent noise field and O is a
pointwise transformation on [H] X. The problem of recovering X from Y is
extremely ill-conditioned, having no unique solution. Most approaches to image

restoration consequently attempt to find approximate solution to (4.1) by
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optimizing some appropriately formulated criteria, with or without imposed con-
straints [7,8].

Conventional image restoration procedures assume the image degradation to
be not only space-invariant but also linear. This assumption leads to a convolu-
tion model [9,10]. A further assumption of periodicity for the input functions
results in a great simplification to this model by allowing the matrix H to be

approximated by a matrix of block-circulant form.

By restricting © in (4.1) to be the identity transformation, the linear image

formation model can be obtained,
Y =[H]X + N. 4.2)

If viewed from a deterministic standpoint, the restoration problem is one that
solves a system of linear equations in the presence of noise. With no specific
knowledge about the noise N, the criterion that an estimate X of the restored
object should be sought is consistent with the norm of N being as small as pos-

sible. In the unconstrained optimization problem, the error function
E=(@ - [HRX\{Y - [HIX) 43)

is to be minimized with respect to X, where the superscript ¢ denotes the matrix
transpose operation. For the nonlinear image system where the 0 is not an iden-
tity matrix, similar procedures can be applied but more complicated numerical

methods are needed [10,11].

Because the cost function is very complex and involves a large number of
parameters, multiple local minima exist. Computationally intensive minimization

techniques, such as simulated annealing [12,13] might be required. The collective
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computational capability of analog neural networks provides a powerful new

technique for solving such complex minimization problems rapidly [14,15].

Zhou et al [16] proposed a modified Hopfield network which uses redundant
neurons to restore gray level images degraded by a known space-invariant blur
function and noise. Based on the method by Takeda [17], the image gray levels
are represented by the simple sum of neuron state variables which take binary
values of logic-1 or logic-0. The restoration procedure consists of two stages:
estimation of the parameters of the neural network model, and reconstruction of
images. During the first stage, the parameters are estimated by comparing the
energy function of the network with the constrained error function. The nonlinear
restoration algorithm is then implemented using an iterative algorithm to minim-

ize the energy function of the network.

In order to use the spontaneous energy-minimization process of the neural
network, the image restoration problem can be solved by minimizing the error

function,
E = %ny —_HRIR + %xnoﬁm 4.4)

where |1Z 1 is the L2 norm of Z and A is a constant. Such a constrained error
function is widely used in image restoration problems [1]. The first term in (4.4)
is to find an X such that HX approximates Y in a least-squares sense. The
second term is a smoothness constrain on the solution X. The value of A sets
the amount of suppression on noise and ringing effects. For an image with low
signal-to-noise ratio, a large A is used to suppress effects due to noise. A com-

mon choice of D is a second-order Laplacian operator [16] which can be
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approximated as a local window operator in the two dimensional discrete case.
Typical value of A lies in [0, 1].

In a Hopfield neural network which uses redundant neurons for representing
the image gray level, L2 x 2Y mutually interconnected neurons are needed for
an L xL image with M -bit gray level. Let
V = {v;x,where 1 <i < L% 1<k <2¥} be a binary state set of the neural
network with v; ; denoting the state of the (i k)-th neuron, T;;.;; be the synap-
tic interconnection strength from neuron (i,k) to neuron (j,/) and [;, be the
bias input. The neuron (i,k) synchronously receives inputs from all neurons
including itself and a bias input,

L? 2%
u,.k—EZT,'kJ, TR 4.5)

The u; ; is then fed back to corresponding neurons after thresholding

Vie = 8 W) (4.6)

where g(z) is a nonlinear function
1 if 220
8= i z<o. @.n

The energy function of the network can be expressed as

1 L LZ 2M 2M L2 2M
==o X X X X Tiviaviu - X X liavik - (4.8)
i=1 j=1 k=1 I=l i=1 k=1
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In this model, the image is described by a set of gray level functions
{x(i,j) where 1 £i,j <L} with x(i,j) denoting the gray level of the pixel
(i,j). The image gray level function can be represented by a simple sum of the
neuron state variables as

oM

)= 3 Vmp 49)
k =

where m = (i — 1) XL + j.

By comparing (4.4) and (4.8), the synapse weights {T;,.;,} and the input

bias currents {/; ,} of a Hopfield network are given as

LZ
Tikija = Z pily ;i — A 2‘,1 d, ;d, (4.10)
p:
and
Lz
Lig =% phyi. (4.11)
p=l

Here, h; ; and d; ; are the elements of the matrices H and D, respectively. y, is

the element of the column vector Y.

Since self-feedback terms of the synapse matrix T are not zero, solutions of
the modified Hopfield network operation are not guaranteed to move in the
direction of lowering the energy function. From (4.10) and (4.11), the synapse
weights and the input bias currents can be determined if the blur function is
known and the signal-to-noise ratio of the image is high. For the image with

low signal-to-noise ratio, a large A is used to suppress effects due to noise.

-80.-



The space-invariant blur function can be written as a convolution over a

small window. For example, a uniform and space-invariant blur function with a

3 x 3 window size can be expressed as

h(kD) = —;- if el < 1. 4.12)

The corresponding H matrix is a block-circulant matrix and can be written as

H H 0 O -+ 0 0 H, |
Hl Hl H1 0 ¢ 0 O 0
= (4.13)
Hl 0 0 0 ¢ 0 Hl Hl
where
1 1 1
5 5 00 00 3
1 1 1
59 5 ° 00 0
Ho=| @4.14)
1 11
= 0 = =
0 0 035 3 |

and O is null matrix whose elements are all zeros.

For the image with a high signal-to-noise ratio, the A value can be set to

zero and the synapse weights for each pixel can be described as a 5 x 5 local
window,



T = _—_e,—— — e— - — - — = — . (4-15)

Notice that each pixel has the self-feedback connection and is connected to the
neighboring 24 pixels.

For most practical cases of image processing, a Gaussian blur function
would be more appropriate. It takes the form

% Fk=0l=0

h(k, D) = 1 4.16)

e if kLIl <1, k,0) # (0,0).

The corresponding H matrix is also a block-circulant matrix and can be written

as
Hy HL 0 O - 0 O H; |
Hl Ho H10 v 0 O 0
H=| @.17)
Hl 0 0 0 D OHI Ho
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where

and

E
"

The corresponding synapse matrix T can be described as

11 i
2 16 ° 0 0 16
1 1 1
16 2 16 0 0 0
1 1 1
5 ° ° 0 % 2
1 1 1
% 16 ° 0 0 35
1 1 1
16 16 16 0 0 0
1 11
6 0 0 0 76 T6
12 3 21
256 256 256 256 256
2 18 20 18 2
256 256 256 256 256
320 72 20 3
256 256 256 256 256
2 18 20 18 2
256 256 256 256 256
12 3 21
256 256 256 256 256

(4.18)

(4.19)

(4.20)
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To make effective use of a neuron, a modified algorithm is presented in
[16,18]. Only one neuron is assigned to one pixel. A pixel register is added to
store the gray level information. Each pixel register takes discrete values from 0
to 2M and its value is increased by 1, decreased by 1, or remains unchanged
according to the input of the neuron. Let u; represent the input of the ith neu-
ron, v; represent the content of the ith pixel register. Then the transfer function

of the neuron is given by

y® -1, i u® < %c,-
y D) = 4y, if - -;-c,- < u® < -%—c,- 4.21)
v 11, i u® s %c,-
where
Lz
u,-(") = Ii + Z Ti.jVj(k), and c; = 'T",' l. 4.22)
i

The superscript & denotes the iteration number. For the case of a uniform,

3 x 3 blur function, the value of ¢; is % The data representation requires an

eight-bit register for each pixel.



4.2. The Neural-Based Multiprocessor Design
4.2.1 Neuroprocessor Architecture

Figure 4.1 shows the functional block diagrams of the Hopfield neural net-
work for digital image restoration. In the first configuration, which uses the
simple sum number representation scheme, each pixel with M -bit gray level is
represented by 2M neurons. The output of neuron takes binary values of logic 1
or logic 0. The circuits in this configuration are not efficiently used. For a
256 x 256 image with 256 gray levels, 256 x 256 x 256 neurons and
(256 x 256 x 256)% synapses are needed. To overcome implementation difficulty
on this architecture, a multiple-bit pixel register is used to incorporate the gray
level information into the neural network. The binary neuron outputs are used to
increment or decrement the gray level for each pixel via digital circuitry. The
multiple-bit pixel register controls a multiplying digital-to-analog conversion cir-
cuitry to send the pixel information into the synapse matrix. Each information
bit in the pixel register is connected to the synapse cell with the weight value
scaled by the bit order. By using the second configuration, the number of neu-
rons is reduced by a factor of 2¥ and that of synapses is reduced by a factor of

22M-3 | for an M-bit gray level image.

For a blur function of w X w window size, each neuron in the image res-
toration chip is connected to the (2w—1) x (2w-1) neighboring neurons. In our
study, a blur function with the window size of 3 x 3 is used for illustration pur-
poses. As shown in Fig. 4.2, an image neuroprocessor which can process a

5 x 5-pixel subimage is constructed with one synapse matrix, one neuron array,
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Fig. 4.1 Functional block diagrams of the Hopfield neural network for digital
image restoration.
(a) The simple sum number representation scheme is used.
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and associated digital pixel registers. Each pixel-register set contains two shift-
register chains. One is to store the degraded image data and the other is to
store the updated image data. The original degraded image data are used as
reference information during the neural network operation. They are used to pro-
vide the constant input bias /; ; according to (4.11). For a 3 x 3 uniform blur
function, the input-bias of each neuron is the weighted sum of the gray levels
from pixels in a neighborhood of size 3 x 3. Each pixel-register set is used to
store the gray-level information for 5 pixels. During the network operation, only
the middle pixel register in the updated shift-register chain will be increased or
decreased according to the output state of its corresponding neuron. The other

pixel registers function as shift registers.

Each neuroprocessor requires one image input port and one output port. The
input port consists of 40 data lines to accept S rows of 8-bit image data. In each
clock period, 40 bit data are piped into the shift registers. In total, 200 bit lines
will be needed for the 5 data input ports and another 200 bit lines for the 5 out-
put ports in a 5-neuroprocessor VLSI chip. In the initialization stage, it takes 5
clock cycles to fill up the 8-bit shift-register pipe. The synapse array is arranged
for the center neuron in the neuroprocessor to obtain complete information from
the surrounding pixels. Two types of synapse cells are shown in Fig. 4.2. The
weight values of the synapse cells, which are marked as solid circles, are deter-
mined from the synapse matrix T in (4.15) or (4.20), depending on the type of
the blur function. The synapse cells that are marked as cross signs provide the

input bias information determined from the degraded image. For a 3 x 3 uniform

blur function, the weight values for these input-bias synapse cells are all -;—
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In the prototype neural chip, there are (34 x 8) synapses per neuron. Among of
these synapse cells, (9 x 8) synapses are used for constant input-bias informa-
tion.

The interaction of the pixels between two adjacent neuroprocessors can be
accomplished through the data links in synapse array as shown in Fig. 4.3. By
using this systolic architecture, image restoration process can be accomplished in
parallel in the row direction. In the column direction, the image data are pipe-
lined into the pixel registers and processed serially. The weight values of the

synapse matrix for each subimage restoration neuroprocessor are the same.

Dynamic refreshing of the charge-storage capacitances in the synapse array
for each neuroprocessor can be done without interrupting the normal network
retrieving process. One two-port SRAM with 8000 words, one 8-bit digital-to-
analog converter, and associated logic gates to generate the control timing and
addresses for weight refreshing are used. The overall system configuration for
high-speed image restoration using multiple VLSI boards is shown in Fig. 4.4.
The synapse weight information is computed by the host computer and
transferred to the SRAM. The 8-bit D/A converter converts the digital represen-
tation of the synapse weights into analog values in order to charge the dynamic
capacitances of the synapse matrix. The two-port static-RAM and differential
amplifier-based synapse design allow retrieving and learning processes to occur

concurrently.
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4.2.2 Detailed Circuit Design

Figure 4.5 shows the analog circuit realization of a neural model using the
amplifier as neuron and resistors as synapses. The synapse weight T; ; is real-
ized with a conventional resistor R; ;. The dot products of input and weight are
summed by taking advantage of Kirchoff’s Current Law. After a current-to-
voltage converter and voltage comparator, the neuron output can be described by

n
Vi = A( El T; ;V; = Vg, (4.23)
where Vg is the neuron threshold voltage, and A is the voltage gain of the
amplifier. Many programmable synapse cells and neurons have been reported
[19-26].

In the prototype neural chip design, the synapse circuit in Fig. 4.6 is used.
A transconductance amplifier consisting of transistors M;-Ms produces synapse
output current If; according to neuron input voltage V; and weight voltage V; ;.
The input voltage V; steers the dynamic-range control current /™ in the input
buffer cell. The transformed bias voltage is fanned out to multiple synapse
cells. The maximum synapse conductance is decided by device sizes of the
differential pair and the control current /™, while the minimum synapse con-
ductance is determined by the resolution of the weight value on the MOS capa-

citance.

The output neuron contains a current-to-voltage converter and a voltage
comparator. It is realized by using two operational amplifier and a feedback

resistor. Circuit schematic diagram of the operational amplifier is shown in Fig.
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Fig.4.5 Analog circuit implementation with amplifiers as neurons and
synthesized resistors as synapses.
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Transistor Mll M12 M]3 M14 MIS M16 M17 M18

Sizeinum | 1622 | 162 | 622 | 622 | 20/4 | 20/4 | 40/4 | 46/4

Transistor | Mjg| Myo | Ma;| My Mp3| Myy | Cc

Sizeinum | 9072 | 262 | 52/4 | 60072 | 400/4 | 5072 | 1.5pF

Fig.4.7 Circuit schematic diagram of the operational amplifier.
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4.7. Transistors M3 and M, form an improved cascode stage to increase the

voltage gain and M, operates as a resistor for proper frequency compensation.

For the image restoration, a half multiplier covering the first and the third
quadrant is sufficient. The synapse weights can be stored either in the dynamic
capacitors [21,23] or the EEPROM devices [24-26]. A typical 8-bit resolution
can be achieved in the DRAM-style synapse cell. In the EEPROM-style synapse
cell, a 6-bit resolution can be obtained. To implement the image restoration
algorithm described in section 4.1, the required resolution of the synapse cell can
be calculated in the following way. In (4.15), for a uniform, 3 x 3 blur function,
the ratio of the maximum weight to the minimum weight is 9. In addition, there
are 7 bits required for the scaling factor from the pixel register. Therefore, to
restore an image with 8-bit gray-level, it requires at least 11-bit resolution for
the synapse cell. By use of the DRAM-type synapse cell in Fig. 4.6, the image

with 4-bit gray level will be processed in the prototype hardware implementation.

Figure 4.8 shows the digital circuitry for the pixel register, and
increment/decrement logic gates. Eight cells are needed to construct the pixel
register of the upgraded shift-register chain in each pixel register set. The
increment/decrement function is implemented with a modified Manchester carry
chain design [27]). The digital circuitry is synchronized by an extemal clock.
Each network iteration cycle requires 185 nsec. When the CALC signal arrives,
the neuroprocessors enter the retrieving process and the pixel-register contents
start to change according to the neuron output values. When the CALC signal

is turned off, the pixel registers function as shift registers to transmit the data.
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A programmable counter to control the iteration number of the network is also

included in the chip.

4.3. Experimental Results
4.3.1 Prototype Neural Chip

By using the MOSIS [28] 1.2-pm CMOS technology, 5 neuroprocessor
modules which include 25 neurons, 4,000 synapse cells, and 200 four-bit pixel
registers can be realized in a 8.0 x 6.0-mm? chip. The layout of the image res-
toration chip is shown in Fig. 4.9. This chip requires a 236-pin PGA package
which enables serial loading and unloading, of 25 rows of four-bit image data.
A total number of 436 pins is required for the eight-bit pixel operation. The
high-pin count could be avoided by using wafer scale integration approach [29].
To enhance the fault tolerance of the chip, a tri-level redundancy structure can
be used. The first redundancy level disconnected one of five neuroprocessors.
The interconnection between the neuroprocessor modules can be reconfigurated
through programmable switching circuitry. The extra neuron columns and
synapse rows can provide the second redundancy level and the third redundancy
level, respectively. In prototype neural chip design, each neuroprocessor contains
5 neurons and 800 synapses. 24 rows of synapses are used to increase the reso-
lution of synapse weights coming from the bias inputs and also to enhance the

fault tolerance of the network.

To obtain the electrical properties of basic circuit blocks, a test chip con-

taining 18 neurons and 30 x 18 synapse matrix has been fabricated and tested.
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The layout of the test chip is shown in Fig. 4.10. The detailed layout for the
synapse cell, the input buffer, the output neuron, and the digital circuit are
shown in Fig. 4.11. The transfer curves of the synapse cell with different bias
voltages are shown in Fig. 4.12. The dynamic range varies with the bias vol-
tage. The desired bias voltage is selected according to the resolution require-
ment of the weights. In charge retention experiment, the RC time constant at
room temperature is about 50 sec as shown in Fig. 4.13. A refreshing cycle of

0.2 sec is adequate for 8-bit accuracy in synapse weights.

The processing speed for one network iteration is around 185 nsec. Each
iteration cycle includes synapse multiplication, neuron thresholding, digital
increment/decrement, pixel register updating and input buffer driving. Measure-
ment results are listed in Table 4.1. The major delay comes from the synapse
multiplication due to the significant capacitance loading from the current-
summation line. The total 2.16 x 10'® connections per second can be achieved
by using one VLSI neural chip containing 5 neuroprocessors, 4,000 synapses
cells, and operated at 5.4 MHz. Using the results in Table 4.1, the speed com-
parisons of the 5-neuroprocessor chip with a Sun-4/75 SPARC workstation is
listed in Table 4.2 for image restoration case. The speedup factor is 475 for the

chip to be operated at 5.4 MHz master clock.
4.3.2 System-Level Analysis

System-level analysis at 8-bit resolution has been conducted to demonstrate
the performance of the image restoration chip. The mismatch effect of analog

synapse components has been included. The statistical distribution of synapse
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Table 4.1 Circuit Response Time

Measured Results
Circuit Functio
Synapse
Multiplication 130 ns
Neuron
Threshoding 25 ns
Digital Inc/Dec 10 ns
Pixel Register
Update 8 ns
Input Buffer 8 ns

Note: Tye=202 A in MOSIS 1.2-um CMOS technology.

Table 4.2 Performance of VLSI Image Restoration System *

Synapse weight loading
time (into SRAM) 1.448 ms
Pixel register
read/write time 0.556 ms
Network execution
time for 30 iterations 16.68 ms
Total processing time
for 256x256-pixel image 18.684 ms
Speed-up factor + 475

Note: * One VLSI neural chip with 5 neuroprocessors
is used.

+ The reference is software computation on
Sun-4/75 SPARC-2 workstation.

-114-



[\:gﬂ)t [[Fssses GRAPHICS PLOT sess ”
bias=
200+ 1 2.35V
! 215V
1 1.95V
1 1.75V
0._
.200;0 i o
- (0] 40 (v)

Fig. 4.12 Measured results of programmable synapse characteristics.

Fig. 4.13 Measured result of charge retention characteristic for the DRAM-type
synapse cell.
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Fig. 4.14 The statistical distribution of measured synapse output conductances.
-116-



output conductances due to process variation can be described by a Gaussian
function. A total of 300 synapses in test chip was measured. In Fig. 4.14(a),
the synapse conductances can be described by a Gaussian distribution with a
mean value of 14.07 pA/V and a standard deviation of 0.042 pA/V when the
weight voltage V7; =2 V. In Fig. 4.14(b), the synapse conductances can be
described by a Gaussian distribution with a mean value of -13.69 pHA/V and a
standard deviation of 0.036 HA/V when the weight voltage V|, = -2 V.

A house image degraded by a 3 x 3 uniform space-invariant blur function
was used as input image data during the computer analysis. The image size is
of 256 x 256 pixels. The original undegraded image and blurred image are
shown in Figs. 4.15(a) and 4.15(b), respectively. Two sets of weight values
have been used to restore the image. In Fig. 4.15(c), the restored image using
ideal weight values is obtained after 35 iterations. In Fig. 4.15(d), the restored
image using weight values with the effect of device mismatch is obtained after
35 iterations. The ringing effects due to boundary problems of the whole image
can be easily eliminated by replacing the first and last four columns and rows
from the blurred image and updating the interior region only. The energy func-
tion defined as the mean square error (MSE) between the restored image and
original undegraded image decreases after each network iteration. The energy
curves for image restoration with and without considering the process variations
are shown in Fig. 4.15(e). Generally speaking, the degraded image can be suc-
cessfully restored by the neural chip with including the nonidealities of analog

components.
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An application of this image restoration network to enhance the quality of
image edge detection operation is shown in Figs. 4.16 and 4.17. Figures 4.16(a)
and 4.16(b) show the raw image directly produced by a Sony XC-77 CCD cam-
era and the corresponding edge-detection result using Sobel operator. Figures
4.17(a) and 4.17(b) show the restored image and the cormresponding edge-
detection result after 30 iterations. A significant improvement in the edge image
can be observed. Restoration was done using a 3 x 3, Gaussian, space invariant
blur function. In general, a Gaussian blur function is suitable for this specific

degradation in Fig. 4.16(a).
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(a)

(b)

Fig. 4.15 System-level analysis on the house image.
(a) Original undegraded image.
(b) Image blurred by a 3x3 uniform space-invariant function.
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(@)

(b)

Fig. 4.17 Restoration result of Fig. 4.16 for a 3x3 Gaussian blur function.
(a) Restored image. (b) Corresponding edge detection result.
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(a)

(b)

Fig. 4.16 Image obtained from a Sony XC-77 CCD camera
(a) Original image. (b) Edge detection result.
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Chapter 5

Conclusion

The processing of video signals often requires a tremendous computational
capability which can only be achieved by using special parallel processing archi-
tectures. The inherent massive parallelism of artificial neural network architec-
ture provides a new paradigm of video signal processing. In addition, rapid
advances on VLSI technologies have resulted in orders of magnitude reduction in
the hardware size, power consumption, and cost of many video systems and have
made real-time video applications practical. A large number of VLSI neural
chips are beginning to appear on the market. These neural chips can perform
specific tasks in the areas of vision processing, speech recognition, and robotics
control. In this dissertation, two specific VLSI neural chips for early vision pro-

cessing have been developed.

In Chapter 3, a mixed-signal two-dimensional mesh-connected architecture
for high-speed video motion estimation has been presented. A compact and
efficient analog neuroprocessor which includes 25 neurons and 25 x 27 synapse
cells is able to estimate the motion of each pixel with 25 different velocities.
Multiple neuroprocessors can be connected as a two-dimensional array to fully
exploit the massively parallel computational power of neural networks. In this
architecture, the local computation is processed in analog neuroprocessor and the
local data communication between the neuroprocessors is performed in parallel.
A VLSI neural chip which occupies 1.5 X 2.8-cm? silicon area from a 1.2-pm

CMOS technology can accommodate 64 neuroprocessors and operate at a
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sustained rate of 83.2 Giga connections per second. The speed-up factor for a
system of such 128 VLSI neural chips over the Sun-4/75 SPARC-2 workstation
is 24,242,

In Chapter 4, an analog systolic architecture for efficient VLSI neurocom-
puting has been presented. In this architecture, the image data are processed in
parallel in the row direction and in the pipelined fashion in the column direction.
A compact and efficient VLSI neural chip which includes five neuroprocessors
for high-speed digital image restoration has been constructed. The mixed-signal
design technique uses analog circuits for local neurocomputation and digital cir-
cuits for decision-making functions and inter-processor communication. The
multiprocessor chip allows the exploitation of massively parallel processing, pro-
grammability, and scalability of VLSI neurocomputing. This chip operates at a
sustained rate of 21.6 Giga connections per second. The speed factor for a chip

with S-neuroprocessor over the Sun-4/75 SPARC-2 workstation is 475.

These VLSI neural chips, usually optimized for specific tasks, can be com-
bined in a complete system architecture to exploit the collective attributes of
these chips. Therefore the objective of this research is to develop neurocom-
puter architectures, incorporating advances in neural network research and chip
technology, and to achieve supercomputer performance at a fraction of the size,
power and cost of conventional supercomputers. One good application example
has been shown in Fig. 1.1. In order to perform such research on the design
and construction of a high performance integrated information system, the
research will be interdisciplinary, with issues involving brain cortical structures,

neural network architectures, VLSI design and fabrication, parallel systems
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design, signal processing and system integration.

More studies on the data communication scheme to enhance the perfor-
mance of a multiprocessor-based system are necessary. Wafer scale integration
can be employed to accommodate multiple modules of VLSI neuroprocessors to
avoid data communication bottleneck. With integration of different technologies,
the sensing devices and processing elements can be directly coupled to alleviate
the data communication problem and achieve full advantage of parallel architec-

tures.
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Appendix A
Program for Neural-Based Motion Estimation
To compile, please type "f77 -0 of1_mis of1_mis.f libsipi.a libsplot.a ". To run the
program, please type "of1_mis < of1_mis.dat > log_mis".

c
¢ for mis image (i.e. mobile missile launcher images).

c line process is included.

c a set of 4 successive image frames are used.

¢ device mismatch effect is included and modeled as a Gaussian function,
c

program of1_mis4

dimension ix (160), xh3 (80, 113), xh4 (80, 113)
dimmension bias (240, 904), iboun (80, 113)

dimension xh1 (80, 113), xh2 (80, 113), itp3 (15, 15)
dimenston gsub (80, 113), gk1 (80, 113), gk2 (80, 113)
dimension gsub3 (80, 113), gk3 (80, 113), gk4 (80, 113)
dimension gsub4 (80, 113), gk5 (80, 113), gké (80, 113)
dimension xk1 (80, 113), xk2 (80, 113), ivold (80, 113)
dimension ihnun (80, 113), ivoun (80, 113), ihold (80, 113)
dimension 1vk1 (80, 113), Ivl1 (80, 113)

dimension 1vk2 (80, 113), Ivi2 (80, 113)

dimension lhk1 (80, 113), 1hl1 (80, 113)

dimension 1hk2 (80, 113), 1h12 (80, 113)
common/neuron/ihold, ivold

common/vline/lvkl, Ivll, lvk2, Ivl2
common/hline/lhk], 1hl1, 1hk2, 1hi2

common/sig/xhl, xh2, xh3, xh4

common/subdv/gsub, gkl, gk2

common/subdv3/gsub3, gk3, gk4
common/subdvé/gsubd, gk5, gké

common/xdv/xkl, xk2

equivalence (xh3 (1, 1), ihnun (1, 1))

equivalence (xh4 (1, 1), ivnun (1, 1))

character*12 hinput, vinput, hfile, vfile

character*12 firtimg, secdimg, thidimg, fourimg, outfile, boundfile

n=113
nll=160
nend=35
len=80
ixd=15
snn=n*len
idisp=7
print 10
10 format (1x, ’input the standard deviation’) -130-



11

12

13

14

15

16

17

18

19

21

22

23

25

26

read*, wee
print 11

format (1x,’input the first image file name’)
read*, firtimg
print 12

format (1x,’input the second image file name’)
read*, secdimg
print 13

format (1x,’input the third image file name”)
read*, thidimg
print 14

format (1x,’input the fourth image file name’)
read*, fourimg
print 15

format (1x,’use initial velocity files or not (1:yes; 0:no)’)
read*, inornot
print 16

format (1x,’input initial vertical velocity file name")
read*, vinput
print 17

format (1x,’input initial horizontal velocity file name’)
read*, hinput
print 18

format (1x,’output file name’)
read*, outfile
print 19

format (1x,’need boundary file (1:yes; 0:no)’)
read*, iynbnd
print 20

format (1x,’boundary file name’)
read*, boundfile
print 21

format (1x, ‘output file name for horizontal velocity data’)
read*, hfile
print 22

format (1x, ‘output file name for vertical velocity data’)
read*, vfile
print 23

format (1x,’window size? (5)")
read *, iwd
print 24

format (1x, *order of polynomials? (3,5)’)
read *, iord
print 25

format (1x, *number of sample points? (1)")
read *, idv
print 26

format (1x, *parameter A?")
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27

29

30

31

32

33

read*, acoef
print 27
format (1x, *parameter B for k1 ?°)
read*, beoef
print 28
format (1x, "parameter C fork2 7°)
read*, ccoef
print 29
format (1x, "parameter D for intensity?’)
read*, dcoef
print 30
format (1x, "parameter E for line process (first) ?”)
read*, ecoef
print 31
format (1x, 'parameter F for line process (second) ?°)
read*, fcoef
print 32
format (1x, "plot lines or not (1:yes: 0:n0)")
read*, lyn
print 33
format (1x, 'Iterations?’)
read*, itera

sp=1.0
isearch=idisp
isey=1
ischl=isearch+1
ivshd=isch1-isey
ivsed=ischl+ise
ihshd=ischl
ihsed=isch1+ischl-1
ka48=48*ifix(acoef)
ka2=2*ifix(acoef)
ke=ifix(ecoef)
ked=4*ke
ke2=2*ke
nline=ke*fcoef
ncf=ischl
nvf=isey*2+1
nv=nvf*len
nc=ncf*n

(2]

input image files

read=0

call dopen (firtimg, iread, 1, 4, nunit)
if (nend.eq.0) go to 50

do 51 i=1, nend
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51

50

!

70

73

72

75

74

81
80

83

call dread (nunit, ix, nll)
continue

do60i=1,len
call dread (nunit, ix, nll)
do6lj=1,n
xh1 (i,j) = float (ix (j + ixd))
continue
continue
call dclose (nunit)

call dopen (secdimg, iread, 1, 4, nunit)
if (nend.eq.0) go to 70
do71i=1,nend

call dread (nunit, ix, nll)
continue

do72i=1,len
call dread (nunit, ix, nil)
do73j=1,n
xh2 (4, j) = float (ix (j + ixd) )
continue
continue
call dclose (nunit)

call dopen (thidimg, iread, 1, 4, nunit)
if (nend.eq.0) go to 74
do75i=1,nend

call dread (nunit, ix, nll)
continue

do80i=1,len
call dread (nunit, ix, nll)
do8lj=1,n
xh3 (i) = float (ix (j + ixd) )
continue
continue
call dclose (nunit)

call dopen (fourimg, iread, 1, 4, nunit)
if (nend.cq.0) go to 83
do84i=1,nend

call dread (nunit, ix, nil)
continue

do90i=1,len
call dread (nunit, ix, nil)
do91 j=1n
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xh4(i,j)=float(ix(j+ixd))

91 continue
90 continue
call dclose (nunit)

92 if (iwd.1t.2) go to 100
call wnd (iwd, n, idv, sp, iord, len)

100 dol0li=1,n
do101j=1,len
ihnun (j, i) = ischl
ivaun (j, i) = ischl
101 continue

if (inornot.eq.0) go to
open (34, file = hinput)
dollli=1,len
read (34, 500) (ihnun (i, j), j=1, n)
111 continue
close (34)

open (35, file = vinput)
do120i=1,len
read (35, 500) (ivoun (i, j), j=1,n)
120 continue
close (35)

110 do130i=1,n
do130j=1,len
ihold (j, i) = ihnun @, i)
ivold (j, i) = ivnun (j, i)
130 continue
do140i=1,nc
do140j=1,nv
bias (j, i) = 0.0
140 continue
do150i=1,len
do150j=1,n
Ivk1 (i, j) = isearch
Ivli (i, j) = isearch
Ivk2 (i, j) = isearch
Ivi2 (i, j) = isearch
lhk1 (i, j) = isearch
Ihl1 (i, j) = isearch
1hk2 (i, j) = isearch
1hI2 (i, j) = isearch
150 continue
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c updat neuron states

ibw=iwd

if iwd.t5) ibw=5
ihf =3 * idisp + ibw/2
ihsl =1+ ibw/2

ihy = ibw/2

ihyl =ihy + 1

ih1 =ihf+ 1

idvfl =idv/2+1

do 160 i = ihyl + 1, len - ihyl
ig=(-1)*nvf+2
do 161 j=ihsl + 1, n - ihf
jg=@G-1)*ncf+1
do 162 k = -isey, isey, 1
ik=ig+k
igll=i+k
ig22=igll +k
ig33=ig22 +k
do 163 1=0, isearch, 1
il=jg+1
gll=j+1
1g22=1gl1 +1
1g33=1g22 + 1
bias(ik,il)=dcoef*((xh1(i,j)-gsub(igl 1,1g11))**2+
$ (gsub(ig11,lg11)-gsub3(ig22,1g22))**2+(gsub3(ig22,1g22)
$ -gsubd(ig33,1g33))**2)+
$ booef*((xk1(ij)-gk1(igl1,1g11))**2+
$ (gk1(igl1,1g11)-gk3(ig22,1g22))**2+(gk3(ig22,1g22)-
$ gk5(ig33,1g33))**2)
$ +ccoef*((xk2(i,j)-gk2(igl1,lg11))**2
$ +(gk2(igll,lgl1)-gkd(ig22,1g22))**2
$ +(gk4(ig22,1g22)-gk6(ig33,1g33))**2)
163 continue
162 continue
161 continue

do 164 j = n-ihf+1, n-ihf+idisp
jg=G-1) *ncf+1
" do 165 k = -isey, isey, 1
ik=ig+k
igll = (i-1) * idv + idvfl + k
igll=i+k
ig22 =igll +k
do 166 1=0, isearch, 1
il=jg+1
Igll=j+1
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1g22=1gl1 +1

bias (ik, il) = 1.5 * (dcoef * ((xh1 (i) -
$ gsub (igll, Igll)) ** 2 +
$ (gsub (igll, 1g11) - gsub3 (ig22, 1g22)) ** 2) +
$ beoef * ((xk1 @, j) - gkt (igll, Igl1)) ** 2 +
$ (gk1 (igl1, Ig11) - gk3 (ig22, 1g22)) ** 2)
$ + ccoef * ((xk2 (i, j) - gk2 (ig11, Ig11)) ** 2
$ + (gk2 (igl}, 1g11) - gkd (ig22, 1g22)) ** 2))

166 continue
165 continue
164 continue

do 167 j = n-ihf+idisp+1, n-ihf+idisp+idisp
JB=G-D*ncf+1
do 168 k = -isey, isey, 1
ik=ig+k
igll=i+k
do 169 1 =0, isearch, 1
il=jg+1
Igll=j+1
bias (ik, il) = 3.0 * (dcoef * (xh1 (i, j) - gsub (igl1, Igl1)) ** 2
$ + beoef * (xk1 (1, j) - gkl (igll, 1gl1)) ** 2 +
$ + ccoef * (xk2 (i, j) - gk2 (igll,1gl1)) ** 2)

169 continue
168 continue
167 continue

160 continue

iend = n - ihf + 2 * idisp
ibg=ihsl +1
if (inornot.eq.1) go to 170
do 171 i = ihy1+1, len-ihy1
ig=(@{-1)*nvf+2
do 172 1 = ibg, iend
Ig=(1-1)*ncf+1
amax = bias (ig, 1g)
ip=0
ig=0
irr=0
do 173 j = -isey, isey, 1
do 174 k = 0, isearch, 1
sumh = bias (ig + j, 1g + k)
if (amax.lt.sumh) go to 174
if (amax.gt.sumh) go to 175
irw=j*j+k*k
if (irw.ge.irr) go to 174
175 amax = sumh
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