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Abstract

‘The usefulness of polyspectra, and mixed moments of both integer and rational orders, in detecting
and quantifying various kinds of frequency and phase couplings is studied. Both the deterministic and
random cases are considered. Several interesting issues regarding frequency coupling in deterministic
signals, and detection of phase coupling in the absence of frequency coupling are addressed. In particular,
the problem of estimating rational phase-coupling in sonar signal processing is considered. One approach
first estimates the frequencies, amplitudes and phases, and then performs a rational phase-coupling
hypothesis test on whether the estimated phases bear the same ratios as their corresponding frequencies.
Although high-resolution estimates of the frequencies can be obtained using the fourth-order cumulants,
the estimated phases have to be “unwrapped” owing to the modulo-27 problem. It is not clear how
this can be done. Hence, this approach for unraveling rational phase-coupling seems to be infeasible.
Another approach using higher-order mixed moment functions and fractional moments is introduced
and studied. It is shown that this approach can detect unconventional types of frequency and phase
coupling.
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I INTRODUCTION

For several years there has been considerable interest in the automatic classification of undersea and
surface sources in sonar signal processing. It is known that the radiated signals from the power plant
of a vessel are composed of several spectral lines. These frequencies, which correspond to different gear
ratios, are coupled among each other in a rational sense. Consequently, the issue of rational phase-
coupling arises. By unraveling the phase-coupling, it is possible to determine the actual gear ratio that
generated these spectral lines.

It is well-known that higher-order statistics (HOS), due to their ability to preserve phase in-
formation, can be used to detect integer-related phase-coupling which arises only among harmonically
related components [4, 15]. In this report, the applicability of HOS techniques in identifying various
kinds of frequency and phase coupling, is studied. In particular, algorithms based on HOS techniques
are proposed to detect and quantify phase-coupling among harmonically-related lines that have ratio-
of-integer relationships, such as those associated with gear ratios.

Two approaches have been pursued; the first by Ph.D. student Chiu Yeung Ngo and his advisor,
P.I. Dr. Jerry M. Mendel; the second by consultant Dr. Ananthram Swami and P.I. Dr. Jerry M.
Mendel. Regarding the first approach, it first estimates the frequencies, amplitudes and phases, and
then performs a rational phase-coupling hypothesis test on whether the estimated phases bear the same
ratios as their corresponding frequencies. Regarding the second approach, it uses higher-order mixed
moment functions and fractional moments.



III APPROACH I: (Ngo and Mendel)

A Problem Statement

Although the ¢; are assumed to be uniformly distributed in [0,27), they are fixed once they have been
generated; therefore, we treat the ¢; as fixed parameters.

The problem considered here is to estimate the amplitude, a;, the phase, ¢;, and the frequency,
w;, from N samples of noisy measurement {y(1),%(2),...,%(IN)}. Once these estimates are available,
we can determine whether rational phase-coupling occurs by performing a hypothesis test

w; 7 o ey e e
—=— Vi£j, i,7=1,..., 3
o 5 #3i 4,] P (3)

B Algorithm

We propose a three-stage algorithm for identifying rational phase coupling.

B.1 Stage 1: Estimate frequencies w;

It is well-known that s(n) obeys

s(k) + i a(i)s(k-1:) = 0 4)

=1
The coefficients a(%) are such that the roots of the associated polynomial are exponentials contained in
the signal. More precisely, if A(z) is this corresponding polynomial, defined as

p -
A(z) = 14 Za(i)z", (5)
i=1
it can be expressed as
A(z) = I, (=71 -e), (6)

i.e., A(2) has all its zeros located on the unit circle at e=3«i,

By adding noise, n(k), to the signal s(k), we obtain y(k) = s(k) + n(k) which leads to an
ARMA(p,p) model:

B+ S aiuk—i) = a(k)+ 3 a(@)n(k—g) ()

i=1 q=1

The parameters, a(i), can be determined via cumulant-based techniques as described in [15]. A com-
prehensive assessment of this cumulant-based approach has recently been studied by Shin and Mendel
[9], which is discussed in the next section.



o the method works even for harmonics spaced as close as 0.04 Hz (i.e., f; = 0.1 and f; = 0.14).

¢ When colored noise is present, one should use a high-resolution method, such as MUSIC or Minimum
Norm. The Pisarenko method provides biased estimates of the frequencies f; and f,.

¢ Regarding amplitude restoration, because estimates of f; and f; are obtained with very high accuracy
using the MUSIC or Minimum Norm methods, least-squares amplitude estimates (which are then
maximum-likelihood estimates) give superior results to total least-squares or constrained total
least-squares estimates.

D Simulations

We demonstrate the effectiveness of using fourth-order cumulants in estimating the frequencies using
the following examples. For simplicity, we only consider a real-valued signal, y(k), from p coherent
sources, i.e.,

i=1

y(k) = Zp: a;cos(w;k + ¢;) + n(k) . (12)

where n(k) is the corrupting zero-mean stationary Gaussian (white or colored) noise which is indepen-
dent of the emitted sources, a; € R and ¢; € [0,27) are the amplitude and phase corresponding to the
frequency w;, respectively.

D.1 Frequency Estimation

The signal consisted of four unit-amplitude harmonics, two of which are rational phase-coupled and two
of which are uncoupled. For the coupled pair, f; = 0.1 and f; = 0.25 with ¢ = 2.5¢;. For the uncoupled
pair, f3 = 0.2 and f; = 0.3 with ¢3 and ¢; being independent and identically distributed. This signal
was contaminated with colored Gaussian noise of 0dB SNR by passing white Gaussian noise through
an ARMA filter with AR parameters [1, 1.4563, 0.81] and MA parameters [1, 2, 1]. The resulting noise
spectrum has a strong pole around f = 0.4. Thirty Monte Carlo runs were performed, each of which
consisted of 64 independent realizations of 64 samples. Parametric estimates were obtained using the
high-resolution MUSIC and Eigenvector algorithms. For comparison, the estimates using periodogram
were also included. Both fourth-order cumulant-based and correlation-based methods were used and
their results are depicted in Figures 2a and 2b, respectively.

In both methods, the correct number of harmonics (p = 8) is assumed. The solid lines correspond
to MUSIC; the dotted lines correspond to Eigenvector; the dashed lines correspond to periodogram.
Note that the frequencies can be estimated accurately whether or not they are rationally phase coupled.
Furthermore, compared with the correlation-based methods, the fourth-order cumulant-based methods
give high-resolution unbiased frequency estimates. Note, also, that although the periodogram correctly
locates the four frequencies, it adds a spurious peak around 0.4. The latter is due to the colored noise.



IV . APPROACH II: (Swami and Mendel)

A Introduction

The second-, third- and fourth-order cumulants of zero-mean, real-valued stationary random processes
are defined via,

Co(t) = E{z(t)z(t+ 1)} (15)
Cae(ri,m) = E{z(t)e(t+m)a(t+ 1)) (16)

Caz(1,72,73) = E{z(t)z(t + 1)zt + 2)z(t + 73)}
-C22(71)Cas(T2 — 73) — C2z(72)C2x(73 — 11) — Cox(73)Coz(n1 = 72)  (17)

The bispectrum, S3,(v;,v2), and the trispectrum, Sy4(vy, v2, v3), are the 2-D and 3-D Fourier transforms
(FT’s) of the third- and fourth-order cumulant sequences, respectively.

The k-th order cumulant of a complex random process can be defined in 2* different ways, not
necessarily distinct, by conjugating one or more of the k terms involved; the particular definition to be
used depends upon the nature of the processes involved [15].

If z(t) is non-stationary, then, the cumulant statistics may not be independent of time. In this
case, the notations, Ca-(¢; 1, 72) and S3.(t; 11, T2), etc., will be more appropriate.

B Bispectra of deterministic signals: frequency-coupling

There have been some incorrect claims in the literature regarding the bispectra and trispectra of harmon-
ics. As is well known, the bispectrum of three quadratic phase-coupled harmonics (i.e., with frequencies
w3 = wy +ws and ¢3 = ¢; + @2, where ¢, and @, are independent and uniformly distributed over [0, 27))
consists of impulses at [7, 15],

+ (wy,w2); E(wr,—w3); (w2, —ws); F(wr,w1); (—ws,w1); F(-ws,ws). (18)

When the phases are random, third-order cumulants cannot be estimated from a single realization
(the phases ¢;, are fixed for any single realization), but must be averaged across multiple realizations.

If only a single realization is available, the observed signal is!,

3
y(t) = Y ax cos(wit + Bx) + g(t) (19)
k=1
where g(t) is zero-mean additive colored Gaussian noise (ACGN). Note that there is no difference
between a single realization of a random phase signal, and a realization of the non-random phase signal.
The effect of the harmonic terms is to make the signal non-stationary (they act as a time-varying
additive mean for the noise process).

! For simplicity, we consider only three harmonics; the extension to cover a mixture of coupled and uncoupled harmonics

is easy.



(iii) E{y(t1)y(t2)y(t3)} = Cay(t1,t2,t3); |C3y| £ B, Vity,12,13;

1 ¥
Nh_xpoo 7 ; Cay(tyt + 1, t + 12) = C3y(11,72), V11,72

In (i) and (iii), the limits are assumed to exist; the quantities on the RHS are the limiting values.

Conditions (i) and (ii) are taken from Ljung [3]. Here, the expectation operator is w.r.t. the
stochastic components of y(t). A signal y(t) which satisfies (i) and (ii) is called (second-order) quasi-
stationary. If the stochastic component of such a signal can be represented as filtered i.i.d. noise, then,
the power spectrum of y(t), computed as if y(¢) were deterministic, coincides with probability 1, with
that defined by ensemble averages [3, Theorem 2.3]. Note that this extends the concepts of ergodicity
to the mixed signal case.

Condition (iii) is a natural extension of condition (ii); mimicking the proof in Ljung, it is easy

to show that, [2]
N

1
N ‘Z; y(t)y(t + 1)y(t + 72) — Cay(m1, 72)
where C3, is the limiting value on the RHS of condition (iii). A signal consisting of harmonics with
finite amplitudes and stationary noise with finite moments, meets the conditions above.

So, we must now evaluate C3,(7y,72) for the signal y(t) = d(t) + g(t). We will assume that g(t)
is zero-mean, symmetrically distributed, and stationary.

Cay(t1,t2,13) = E{y(t1)y(t2)y(ts)}
E{(g(t1) + d(t1))(g(22) + d(22))(g(23) + d(23))}
= d(t1)d(t2)d(t3) + [Ry(t1 — t2)d(t3)]s

since E{g(t)} = 0, and E{g(t1)g9(¢2)g(t3)} = 0; [.]s indicates an additional two terms involving d(¢;)
and d(t2)® Therefore,

N
\ 1
Cay(m1,m2) = Nim = Y Caylt,t+1,t+ 1)
t=1
N

= Jim % ; d()d(t + m1)d(t + 7)
+(Ry(11) + Ry(m2) + Ry(m1 — 72))11d

= Cad(11,72) + (Rg(71) + Ry(m2) + Ry(1 — 72))pta

3We stress that
(a) the Expectation operator is w.r.t. the random component, g(t).
(b) y(2) is non-stationary; it is implicitly assumed that multiple realizations are available to do the ensemble averaging.
(c) Signal alignment across ensembles is also implicitly assumed; i.e., if k denotes the realization number, yx(2) = d(t)+ga(t).
(d) If the additive noise is white, the signal can be recovered from Ciy(m,, 1o, t) = d(m,)d(no)d(t), mo # no # t, where
m, and n, should be chosen such that d(m,) # 0, d(n,) # 0.
(e) If the noise is Gaussian (not necessarily white), then, the ML estimate of the deterministic signal is simply the mean, i.e.,
dmr = + Z:‘;, yx(t). Under the preceding assumptions and conditions, it is sub-optimal, and expensive, to use cumulant-
based approaches. The latter are suggested when signal alignment problems occur, and it can further be assumed that the
signal is completely contained within each record.



For non-stationary signals, the obvious estimate is
. 1 &
Cayltym,m) 1= 2 Y w(Bhur(m)n(n) (28)
k=1

The corresponding bispectrum will be indexed by time £.
Let ¢ be uniformly distributed over [0,27); then, it follows that

) < jfwﬁ =1 if B is non-integer
E{exp(iB¢)} = { 1 if B=0 (29)
0 if Bg=4=+1,£2,..

From (29), (24) and (25), we note that the bispectrum will be non-zero if and only if both
frequency coupling of the form given in (23) and the corresponding phase coupling exist, i.e.,

$2=2¢1; ¢3=2¢1; $3=2¢2; or a=¢1+¢; (30)

What happens if we have phase coupling, but no frequency coupling? Assume that the observed
signal is,

3
y(t) = Z ay cos(wit + éx) + g9(2) (31)
k=1
fs # HAth (32)
$3 = S+ (33)
This is a non-stationary signal; the third-order cumulant is now given by,

Cay(tim,m2) = E{y(t)y(t+n)y(t +72)} (34)

aa03
—4——[cos(w,,t +din + da7))s (35)

where w, := w; + wy — w3 and [.)g are the six terms obtained by choosing d; and d; from (wy,ws, —w3).
In the absence of frequency coupling, w, # 0; hence, temporal averaging (over t, along the lines of eq
(20)) will cause the third-order cumulants to vanish (see, eq. (21)).

Since the statistic is periodic with period 27 /w,, periodic temporal averaging is okay (the phases
are coherent), but this assumes that w, is known. It is easy to estimate w,, for example, by fixing 1
and 72, and looking at the FT of C3,(¢; 11, 72), W.r.t. ¢, or fitting an AR model to it. Note also that it
suffices to estimate C3y(%; 71, 72), at only one t.

An alternative approach is to use the estimate

T
1
B(vly 1)2) = T z |}-(C3y(t; T1, T2))| (36)
t=1
where the Fourier transform is w.r.t. the lags 7, and 75. For example, the term cos(w,ot + d171 + da72),
leads to impulses at +(d;,d,), with amplitude factors, exp(Ljwot). Direct temporal averaging causes
the bispectrum to go to zero. By using only absolute values, the w,? term is suppressed. An alternative
approach is the use of Third-Order Wigner Distributions (TWD’s); see [13] and [12].

11



where a;’s are non-random, and ¢;’s are random. We will consider only the off-diagonal (2; # ¢) region;
hence, we can ignore the noise. We have,

R tt) = 30 3 (B)(B)aparal et Efexp(i(m - n)y + (o — g+ n — m)éa)}
" exp(i(musnts — nants) exp(F(p — mhets — (g = mYot) (42)
Note that the key term to be evaluated is
f(#1,¢2) := E{exp(j(m — n)¢1 + j(p— ¢ + n — m)¢2)} (43)

where the dependence upon m, n, p and ¢ is not explicitly shown. We will consider several cases.

D.1 Independent phases
If ¢, and ¢, are independent and uniformly distributed over [0,27), we have,
f(¢1,2) = §(m - n)é(p-q) .

Hence,

p . 3
R (ti,ts) = Z (ﬁ,) (,%)Ial'2m|a2|2p-2m81(mth1-mthz)eJ((p-m)wzt:-(p-m)wztz) (44)

m=0

Note that the statistic is a function only of (¢; — t2); hence, it is stationary;
Ry (7) = R (t1,t1-7)

P o\ /p
Y (m) (m) |laa [>™[exz|?P~*™ exp(jmunT + j(p — m)wsT)

m=0

A closed-form solution exists for the special case when a; = as = a, and the observations are
noise-free,

s 2p
R3(0) = () lal? .
The normalized statistic is,
2
T3,(0) = (z?) /2° .
D.2 Integer coupling to an unobserved harmonic
Assume that ¢; = k1o, and ¢ = kagg, where ¢g is U[0,27), and k; and k; are integers. We have,
f(¢1,62) = E{exp(j(m—n)¢1 +j(p— g+ n - m)b2)}

= E{exp(jki(m — n)go + jkao(p — ¢ + n — m)do)}
= §((m - n)(k1 — k2) + k2(p - q)) (45)

Note that the p = ¢ case leads to the same results as in the case of independent phases.

13



With this (standard) notation, we have (a standard result),

o0
(1+=z) = E (If:)a:" .

k=0
Note that for non-integer p, the series converges absolutely only if |z| < 1. Additionally, the interpreta-
tion of 2?, for z complex is no longer unique®. The same problem is encountered if we work directly in
the moment-spectrum or polyspectrum domain (recall that polyspectra can be interpreted as Fourier
transforms of cumulants, or as cumulants of Fourier transforms - a consequence of the multi-linearity
properties of cumulants).

D.5 Variance of sample estimates

An obvious estimate of R; ,(1),%;) is its sample mean. Under boundedness assumptions, it is easy to
show that the expressions for the variance of sample estimates of k-th order moments and cumulants
are dominated by the summation of corresponding moments of order 2k.

E Simulations

Several of the ideas discussed so far are illustrated by simulations. Since the accompanying figures give
full details of the simulations, we will only provide an overview here.

Figure 5 depicts the non-parametric bispectrum for the standard quadratic phase coupling prob-
lem, where both the phases and the frequencies are coupled, i.e., f3 = fi + f2, and @3 = ¢1 + ¢, with
fl = 0.1, fg = 0.2 and f3 = 0.3. .

Figures 6a-6¢ address the deterministic case, where there is frequency coupling. The data consists
of three harmonics with f; = 0.1, fo = 2f; = 0.2, and f3 = 0.35. The non-parametric bispectrum was
estimated using the indirect method. The major conclusion is that for the deterministic problem, record
segmentation must be done with care: unbiased estimates must be used (unless the segment lengths
are large enough), so as not to degrade the value of the estimated bicoherence. Additionally, record
segmentation may artificially cause the data to appear as if they were independent realizations of the
random process problem. However, phase coupling will be induced only if the starting phases, the
frequencies and the segment lengths are in the right relationships with one another.

Figures 7a-7c address the deterministic case, where there is no frequency coupling. The data
consists of three harmonics with f; = 0.1, fo = 0.15, and f3 = 0.35. The non-parametric bispectrum
was estimated using the indirect method. The major conclusion is that for the deterministic problem,
record segmentation must be done with care: unbiased estimates must be used (unless the segment
lengths are large enough), so as not to degrade the value of the estimated bicoherence. Additionally,
record segmentation may artificially cause the data to appear as if there were some structure in the
data, such as due to frequency or phase coupling. If record segmentation must be done, try different
segment sizes and see if the resulting estimates are consistent with one another.

5If p = n/d, where n and d are co-prime integers, we have d possible solutions; if p is irrational, the number of solutions
is infinite.

15



Table 1: Performance of the R3;35(0) statistic-based test for the (3, 5) case.

" SNR real-m | imag-m | real-s | imag-s | %error
oo | C|1.0023| 0.0080 | 0.1339 | 0.1276 0
U | 0.0275 | -0.0077 [ 0.1481 | 0.1630 0 "
20dB | C | 1.0631 | 0.1012]| 0.4833 [ 0.3919 12 "
U | 0.0594 | -0.0197 | 0.4648 | 0.4143 16 "
10dB | C ] 0.7761 ] -0.0551 | 1.8163 | 1.9536 48 "
U [0.0033] 0.0312| 1.8837 ] 1.7219 36 Il
0dB | C | 2.6917 | 7.5508 | 48.4320 | 52.0910 48
U | 4.5166 | 12.6212 | 52.8066 | 59.7258 57

64 independent records, each consisting of 64 samples were generated. The parameters were
fo=005 ky =3 k=5 m=3 n=35 ay = az = 1. The statistic R 4(0) was estimated for each
realization. In the absence of noise, we have R35(0) = 1, if coupling is present, and R35(0) = 0, if no
coupling is present. Hence, the test was to compare the absolute value of R35(0) with the threshold
value of 0.5. The above table summarizes the results of a 100 realization study. The columns show
the SNR, whether or not the harmonics were coupled (C for coupling), the mean value of the real and
imaginary parts of R3s5(0), and the corresponding variances. The last column shows the percentage
error in classification.

Table 2: Performance of the Ry 7(0) statistic-based test for the (3,5) case.

SNR real-m | imag-m real-s | imag-s
o | C|o0.0821| 0.1350 | 1.1200| 0.9872
U [ 0.0184 | 0.0782 | 1.1489 | 0.9161

20dB | C | 0.0522 | 0.5632 | 4.2573 | 3.9408
U |o0.7175 | 0.0012 | 4.5495 | 4.6820

10dB | C | 5.2126 [ 3.2088 | 28.9038 | 28.4556
U | 5.6866 | 3.8653 | 27.0223 | 28.2427

0dB | C| 1089 -486.5| 3751.9| 3470.1
Ul -365.4] 273.0| 4049.0 | 3740.4 |

The R4 7(0) statistic was tested on the same data that were used to generate Table 1. Note that
the expected value of this statistic is zero for both the coupled (3,5) and uncoupled (3,5) cases. This
test, which does not take into account noise, degrades rapidly below 20 dB SNR.

17
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Figure 1: Minimum local SNR (dB) of the amplitude of the second harmonic at f; when we can still
determine the correct number of harmonics. The fixed amplitude at f; = 0.1 has a local SNR of 0 dB.
The crossed points denote the values that were obtained from simulations. The solid line is for f; = 0.2,
and the dashed, dotted, and dash-dotted lines are for f> = 0.18, 0.16, and 0.14, respectively.
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Figure 3: Detection of quadratic phase-coupling using bispectrum: (a) Amplitude spectrum, (b) Contour

of bispectrum with peak value = 437.3 at (f; = 0.1, f> = 0.25).
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Figure 4: Detection of rational phase-coupling using bispectrum: (a) Amplitude spectrum, (b) Contour

of bispectrum with peak value = 1.43 at (f; = 0.20, f; = 0.20).
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Bispectrum estimated via the indirect method  Bicoherence estimated via the indirect method
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Figure 68a: The observed signal is z(n) = cos(.2wn) + cos(.47n) + cos(.7wn), n = 1,...,8192. Biased
estimates of third-order cumulants, C(m, n), were computed for |m/|, || < 21. The bispectrum was then
estimated using a 128-point 2-D FFT. No record segmentation was done. The bicoherence has a peak
value of 0.9222 at (0.11720,.1094).

The signal is deterministic, and we have frequency coupling, since f; = 0.1, fo =02 =2+ f,
f3 = 0.35. Since f, = 2f;, we obtain six peaks; see (24).
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Bispectrum estimated via the indirect method  Bicoherence estimated via the indirect method
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Figure 6c: The observed signal is 2(n) = cos(.2rn) + cos(.47wn) + cos(.7xn), n = 1,...,8192. Biased
estimates of third-order cumulants, C(m, n), were computed for |m|, |n| < 21. The bispectrum was then
estimated using a 128-point 2-D FFT. Data were segmented into records of length 120 for computing
cumulants. The bicoherence has a peak value of 0.8038 at (0.11720, .1094).

Record segmentation did not appreciably change the shape of the bispectrum or the bicoherence.
The decrease in the value of the bicoherence is due to the use of biased estimates. If record segmentation
must be done, it is better to use unbiased estimates.
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Figure 7b: The observed signal is z(n) = cos(.2wn) + cos(.37n) + cos(.77n), n = 1,...,8192. Biased
estimates of third-order cumulants, C(m,n), were computed for |[m|,|n| < 21. The bispectrum was
then estimated using a 128-point 2-D FFT. Data were segmented into records of 128 samples each for
computing cumulants. The bicoherence has a peak value of 0.1819 at (0.1797,.1797).

The signal is deterministic and does not satisfy any of the frequency coupling conditions in (23).
The estimated bispectrum shows apparent structure; this is a consequence of end effects due to record
segmentation (and relatively small record sizes).
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Figure 8a: The observed signal is z(n) = cos(.27n + ¢;) + cos(.47n + ¢2)‘.I+ cos(.57n + ¢y + ¢2), n =
1,...,128; the phases ¢; and ¢, were independent and uniformly distributed over [0, 27]. 64 independent
realizations were generated. Note that we have phase-coupling but not frequency-coupling. Biased
estimates of third-order cumulants, C(m, n), were computed for |m|, |n| < 21. The bispectrum was then
estimated using a 128-point 2-D FFT. The bicoherence has a peak value of 0.3196 at (0.1172,.1094).

Compare with Figure 6a. In particular, note that the third harmonic at f3 = 0.25, is not evident
in the plots. See discussion following (34).
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Figure 8c: The observed signal is 2(n) = cos(.27n + ¢1) + cos(.47n + ¢2) + cos(.57n + ¢ + ¢2),
n = 1,...,128; the phases ¢, and ¢, were independent and uniformly distributed over [0,27]. 64
independent realizations were generated. Note that we have phase-coupling but not frequency-coupling.
Biased estimates of third-order cumulants, C(0; m, n), were computed for |m/|, || < 21. The bispectrum
was then estimated using a 128-point 2-D FFT. The bicoherence peaks at (0.1562,.1406).

The estimates are rather poor because only the ¢ = 0 slice was used.
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Figure 9a: This is the R3 5 statistic for the (3,5) coupled case. Notice the peak at 0.25. With &, = 3,
k2 = 5, f, = 0.05, the expected peak is at —k1kof, = —0.75"; because of aliasing, the peak appears
at 0.25. Since the signal variance is 2, the normalized peak value of the spectrum is approximately
40/v2°® = 2.5,

"See eq (46) and discussions related to it.
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R_c(2,4) amplitude spectrum
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Figure 10: This is the R, 4 statistic for the (3,5) coupled case. Moments of order (2,4) should be blind
to coupling of order (3,5). The normalized peak value of the spectrum is 0.6/\/_6 = 0.075 is close to
zero, as expected.
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amplitude spectrum
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Figure 12: This is the Rz, statistic for the (3,5) coupled case. Recall that the Ry statistic is the
autocorrelation of the square of the observed signal. Theory predicts peaks at frequencies —2f;, -2/,
and - f; — f, with amplitudes in the ratio 1 : 1 : 4!%, Since f; = .15 and f, = 0.25, the three peaks
should be at —0.3, —0.5 and —0.4.

19See eqns. (42), (43) and (45).
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Figure 14: This is the Rj 5 statistic for the (3,5) uncoupled case. Note that the normalized peak
value of the spectrum is 5/16 ~ 0.3. Compare with Figure 9a, which shows the corresponding coupled
case. These figures verify that the Ry, x, statistic may be used to distinguish between the coupled and
uncoupled cases, with fi = k1 f, and fo = k2 f,.
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amplitude spectrum
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Figure 16: This is the Ryg¢ statistic for the (3,5) uncoupled case. Note that the peak value of the
spectrum is 30/2% =~ 0.94. Compare with Figure 11, which shows the corresponding coupled case.

43



amplitude spectrum
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Figure 18: This is the R, ; statistic (conventional auto-correlation) for the (3,5) uncoupled case. This
figure is virtually identical with Figure 13, which shows the same statistic for the coupled case.
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R_c(3,9) amplitude spectrum
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Figure 19b: This is the R3 s statistic for the (3,5) coupled case, with f2/f = d2/d1 = ka/ky = 5/3.
Additive white noise with a variance of 0.2 was added to obtain a SNR of 10 dB. Notice the strong
peak at the zero lag of the statistic. Compare the statistic and its FT with those in Figure 19a. As in
Figure 19a, a strong peak is seen at the correct frequency of 0.25 Hz. Notice the peak at 0.25. With
f1 = .15, the expected peak is at —k; f; = —0.751%; because of aliasing, the peak appears at 0.25. Since
the signal variance is 2, the normalized peak value of the spectrum is approximately 40/ \/§3+5 = 2.5.
Also compare with Figure 9.

12Gee eq (46) and discussions related to it.
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Figure 21: This is the Ryg statistic for the (3,5) coupled case, with fa/f; = ¢2/d1 = ka/k1 = 5/3.
Theory predicts two peaks at 6f; and 4f,, corresponding to m = 0,n = 5, and m = 1,n = 63, Since
fi = 0.15, we see the aliased versions at 0 and 0.1. The normalized peak value of the spectrum is
approximately 250/2% =~ 8. Compare with Figure 11.

13See eqns. (42), (43) and (45).
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APPENDIX

Comparison between Correlation-Based and Cumulant-Based
Approaches to the Harmonic Retrieval and Related Problems

Dae C. Shin and Jerry M. Mendel

Signal and Image Processing Institute
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-0781

Abstract

In signal processing, we frequently encounter the problem of estimating the number of har-
monics, frequencies, and amplitudes in a sum of sinusoids. The observed signals are usually
corrupted by spatially and/or temporally colored noise with unknown power spectral density. It
has been shown by Swami and Mendel that a cumulant-based approach to this problem is very
effective. In this report, we compare the use of biased and unbiased, segmented and unsegmented
estimators for both correlation and 1-D diagonal slice of the fourth-order cumulant function. We
suggest using accumulated singular values to determine the number of harmonics. We compare
correlation-based and cumulant-based methods for determining the number of harmonics when
the amplitude of one harmonic decreases and when the frequency of one harmonic approaches
the other for the case of two sinusoids measured in colored Gaussian noise. We also compare the
performance of the Pisarenko, MUSIC, and minimum-norm algorithms for frequency estimation,
and the perfomance of least square (LS), total least square (TLS), and constrained total least
square (CTLS) for amplitude estimation using either correlations or cumulants. Our studies: (1)
provide further support for using cumulants over correlations when measurement noise is colored
and Gaussian; (2) demonstrate that one should use unbiased unsegmented correlation or cumu-
lant estimators; (3) indicate that high-resolution results are best obtained using cumulant-based
MUSIC or minimum-norm algorithms; and (4) show that LS estimates of amplitudes suffice.
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1 Introduction

The estimation of the number of harmonics and the frequencies and amplitudes of harmonics from
noisy measurements is frequently encountered in several signal processing applications, such as
in estimating the direction of arrival of narrow-band source signals with linear arrays, and in the
retrieval of harmonics in noise problem. In this report, we are concerned with real-valued signals
represented as
P
y(n) = Z ar. cos(nwy + 1) + w(n) = z(n) + w(n) (1)
k=1

where the ¢;’s denote random phases which are i.i.d. and uniformly distributed over [0, 27}, the
wy's are unknown deterministic frequencies and the a’s are unknown deterministic amplitudess.
The additive noise w(n) is assumed to be white or colored Gaussian noise with unknown spectral
density. We will estimate the number of signals p, the angular frequencies wy’s, and the ampli-
tudes ar’s.

The autocorrelation, rz(7), and fourth-order cumulant, cyz(m1, 72, 73), of 2(n) are represented
as [4,5]
1 &,
= - ar, cos(w,T 2
ralr) = 5 3 af cosfun) (2)

1
caz(T1, T2, T3) = -3 > ap {coswr(my — 72 — 3) + coswi(ry — T3 — 1)
k=1

+ coswy (13 — 1 — T2)} (3)
The one-dimensional diagonal slice of the fourth order cumulant is given by

3 p
cux(7) = cyz(r, 7y 7) = -3 > af cos(wir) (4)
k=1

For frequency estimation, linear prediction approaches are well explained in [4]. We describe
important results from [4], here. A harmonic signal can be expressed as the output of a self-driving
AR (AutoRegressive) model, i.e., let

p
z(n) = ) a) exp(jwin)
k=1
Then, z(n) satisfies the AR(p) model
P

z arz(n—-£k)=0

k=0
where ap = 1 and the polynomial 4(z) = Yh_qax =% has roots at = = s k=1,...,p. For

p real sinusoids, an AR(2p) model, whose transfer function has roots at z = e*iwr is required

1



where z;(n) denotes the n-th sample in the i-th segment. Note that we can either assume that
the data were obtained from A independent realizations, each with N samples, or, from M N

samples from one realization.

Although the estimators for correlation functions are well known [3], the estimators usually
use all the data from one realization without segmentation. In several recent papers [5,8,14],
the concept of data segmentation for estimators was introduced. Data from one realization
was divided into several segments, correlation functions were estimated for each segment, and
then they were averagd to reduce the variance of estimators. In this section, we analyze biased
and unbiased correlation estimators with or without segmentation. Derivations for mean and

covariance functions of each estimator are given in the Appendix.

2.1 Biased Correlation Estimators
2.1.1 Estimator with Segmentation
Let r8(k) be the biased segmented correlation estimator,
, 1 M
rh() = 57 270
where 72(k) denotes the estimated correlation function in the i-th segment, i.e.,

k) = Y. zin)z(n+ k)  i=12,...,M

n=1

We can rewrite the estimator, r5(k), as

, 1 M N-|&|
A0 = g L X sk b

then(all derivations are given in the Appendix),

|4

B{r(k)) = T 1)

and
i (N=k=v—1)

Cov (rf(B), ik +0)) = 2= 3 (W =av()=k=0){r()r(I+v)

l==(N-k)+1

+r(l+k+v)r(l=F)+ciz(l, kI + k + )}

M M (N=k)(N-k-v)

+ (.MtV )2 i.jZ=1 g ngl El E{zi(n)zi(n + k)zj(m)zj(m + k + v)}

(M -1)}(N-Fk)YN-k-
B MN?

®) ok )r(k + )

()



where £ > 0, k 4+ v 2 0, and the function 7arn(!) is defined by

i, >0
man(l) =4 0, -v<I<L0 (13)
—l—v, ~(MN—-k)+1<1< -0

Note that r3(k) is asymptotically unbiased.

Since, in general, N << M N, the biased unsegmented estimates have much smaller bias than
those using segmentation, especially, for correlations at large lags.

2.2 Unbiased Correlation Estimators
2.2.1 Estimator with Segmentation

Let r{(k) be the unbiased segmented correlation estimator, i.e.,

1 = 2 30
i=1
where 7#¥(k) denotes the estimated correlation function in the i-th segment, i.e.,
;M-
)= 3 zin)zin+ k)  i=1,2,...,M
n=1

We can represent the estimator, 7{(k), as

M N=-|k
k) = 5 ,(N MV ) & & S+ )
then,
E{ ry(k) } = r(k) (14)
and
1 (N=k—=yu—1)
Cov (ri (k). F{(k +9) = 3y % =) ,=-<§k,+l (N = () - k= v)-

{r(Orl+v)+r(l+k+v)r(I-Fk)+ caz(l, by 1+ k + v)}
M M (N=k)(N-k-v)

¥ M?*(N - ")t’V k—v) ”Z_:l g nz_:l Z E{zi(n)zi(n + k)zj(m)zj(m + k + v)}

(M

A=) (i + v)



3 Estimators of the 1-D Diagonal-Slice of Fourth-Order Cumu-
lants

The estimators for correlation functions have been analyzed in Section 2. Analyses for an unbiased
estimator of the third-order cumulant are given in [6,7]. In this section we study the biased and
unbiased, segmented or unsegmented estimators of the 1-D diagonal-slice of the fourth-order
cumulants. Let cyz(k) be the 1-D diagonal slice of the fourth-order cumulant of {z(n)} i.e.,

ciz(k) = cum(z(n),z(n+ k), z(n+ k), z2(n + k))
= E{z(n)z(n + k)z(n + k)z(n + k)} — 3 rz(0)rz(k)

When we estimate cyz(k), it is assumed that we estimate E{z(n)z3(n + k)},rz(0), and rz(k),
independently, i.e., we estimate each term of cyz(k).

3.1 Biased Estimators of the 1-D Diagonal-Slice of the Fourth-Order Cumu-
lant

3.1.1 Estimator with Segmentation

Let d®(k) be the biased segmented estimator for the 1-D diagonal-slice of the fourth-order cumu-

lant, i.e.,
M

1
8= 37 32

where d?(k) denotes the biased cumulant estimate in the i-th segment, i.e.,

Nk}
(k) = % S zin)edn+k) - 3rO)0b(K)  i=1.2,....M

n=1

where r8(0) and r8(k) denote the biased segmented correlation estimates (as described in Section
2). Then,

b N — K 3

E{&}(k)} = =5 (E{=(m)a*(n + &)} = 37:(0) - r<(k)) (19)
Note that the estimator for the 1-D diagonal-slice of the fourth-order cumulant is not asymptot-
ically unbiased because N is a constant, and the mean value is independent of the number of
segments, M. Covariance formulas for d§(k), as well as the other fourth-order cumulant estima-
tors, are so complicated that we do not present them here. They depend on 8th-order cumulants.

3.1.2 Estimator without Segmentation

Let d5(k) be the biased unsegmented estimator for the 1-D diagonal-slice of the fourth-order

cumulant, i.e.,
1 MN-|K
Bk)= g X aw)S(n+k) - 3r0)(R)

n=1

b |



estimates for the 1-D diagonal-slice of the fourth-order cumulants.

For our simulation, we chose two cosines both of whose amplitudes are unity; their frequencies
are at f; = 0.1 and f; = 0.2, Colored additive Gaussian noise was generated by an ARMA(2,2)
system excited by a zero-mean white Gaussian noise input. The AR coefficients of this ARMA
model were 1, 1.4563, 0.81], and its MA coefficients were [1, 2, 1]. The colored noise spectrum
has a strong pole at 0.4, with a damping factor of 0.9. We performed 30 independent trials.
Figure 1 shows the mean values of unbiased and biased estimates for 0 dB and -3 dB local SNR's.
Local SNR is defined as the ratio of local signal power to noise variance, i.e., when we have the
signal in (1), local SNR corresponding to the i—th sinusoid, SNR;, is

2 /s

SNR; = 10 logfl;—éz- i=1,2,...,p
where a; denotes the amplitude of the i—th sinusoid and 2 denotes the estimated noise variance
obtained from output data of the ARMA model for the measurement noise. In Fig. 1, a “star”
denotes the zero-noise theoretical values of the 1-D diagonal-slice of the fourth-order cumulants of
the harmonics. The “dash” and “dash-dot” curves are the estimated values using one realization
(4096 samples) with segmentation and without segmentation, respectively. The “solid” curve
shows the estimated values when we used 64 samples of 64 independent realizations (total number
of data is 4096). The figures show that the biased unsegmented estimator is much better than
other biased ones, even at large lags, and, there is no difference among unbiased estimators.
Although we have not shown the variance values of estimators, note that the variances of each
estimate were very similar.

3.4 Conclusions

We conclude that for correlation or fourth-order cumulant estimates:

o In the case of a single realization, the biased unsegmented estimator gives better results
than the biased segmented estimator.

¢ In the case of a single realization, the unbiased unsegmented and segmented estimators give
comparable results.

e When we only have a single realization, we should not use a biased segmented estimator.



4. Evaluate the roots, z,..., z2;, of the polynomial

A(z)s g+ arz+-+ap:?=0
Estimate the frequencies of the sinusoids as
zx = exp(Jws) -rfwr ST k=1,...,2p;

y 2 =Y,

or, determine the angular frequencies as the peaks of |ﬁ

MUSIC Algorithm

. After computing the eigenvalues and eigenvectors of the estimated correlation (cumulant)

matrix, classify the eigenvalues into two groups: one consisting of the 2p largest eigenvalues
and the other consisting of the (M — 2p) smallest eigenvalues.

. Use the eigenvectors associated with the second group to construct the M x (M — 2p)

eigenvector matrix Xy whose elements span the sample noise subspace.

. Determine the angular frequencies of the sinusoids as the peaks of the sample spectrum

1

Sw)= sH (W)X yXFs(w)

where s(w) is the M X 1 frequency-searching vector, defined by

sT(w) = [1, e—j“” e e-jw(;\l-2p+1)]

Minimum Norm Algorithm

1. Compute the eigenvalues and eigenvectors of the estimated correlation (cumulant) matrix.

. Classify the eigenvalues into two groups: the 2p largest eigenvalues and the (M - 2p)

smallest eigenvalues. Use the eigenvectors associated with the first group to construct the
M x 2p matrix X whose elements span the sample signal subspace.

. Partition the matrix Xg as

gf
Xs=| ---
Gs
where g contains the first elements of the signal subspace eigenvectors, and the (M —1)x2p
matrix Gg contains the rest of the elements of Xs.

Compute the minimum-norm value of the M x 1 vector, a:

—(1-gfdgs)"'Gsgs

11



in which we try to keep the correction term Ab as small as possible while simultaneously com-
pensating for the noise present in b, by forcing Ax = b + Ab. When the noise in A is zero
and the noise in b is zero-mean Gaussian, the LS solution, xrg, is identical to the maximum
likelihood solution, i.e.,

XL§ = (AHA)-1 AHp

6.2 Total Least Squares Method

When A is also noisy, xrs is no longer optimal from a statistical point of view; it suffers from
bias and increased covariance due to the accumulation of noise errors in A¥A. To alleviate this
problem, a generalization of the LS solution was formally introduced by Golub and Van Loan
[11], called total least squares (TLS). TLS attempts to remove the noise in A and b using a
perturbation on A and b of smallest 2-norm which makes the system of overdetermined linear
equations consistent. The TLS solution for x is obtained as

Min [[[AA  Ab]||

subject to (A+AA)x=b+ Ab
The TLS solution can be expressed algebraically as

XTLS = (AHA - 0.21)_1 Afp

where 02 is the minimum eigenvalue(s) of [A i b]7[A : b]. It is also true that the TLS solution
can be obtained explicitly from the right singular vector that corresponds to the smallest singular

value of the singular value decomposition (SVD) of C = [A : b]. From a statistical point of view,
TLS operates under the assumption that the noise components of A and b are zero mean and
identically independently distributed.

6.3 Constrained Total Least Squares Method

If there is a linear dependence among the noise components in A and b, then the TLS prob-
lem must be reformulated to take into account the reduced dimensionality of the noise entries.
Abatzoglou and Mendel {12,13] discuss a reformulation of the TLS method, which they call con-
strained total least squares (CTLS), that accounts for the linear algebraic relations among the
noise entries of A and b.

The CTLS solution for x is defined by

Minyx || AC || where (C + AC) [ _’;] =0
and
aC = [/_\A : Ab]
= [Flv Doeee FP-HV]
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7 Simulations

In this section, we compare the correlation-based and cumulant-based harmonic retrieval ap-
proaches through simulations. Our goal is to learn where each approach breaks down as certain
experimental conditions are changed.

Throughout the following simulations, colored additive Gaussian noise was generated through
an ARMA(2,2) system excited by a zero-mean white Gaussian noise input. The AR coefficients
of this ARMA model equal {1, 1.4563, 0.81], and its MA coefficients equal (1, 2, 1], as in [4]. The
resulting colored Gaussian noise spectrum has a strong pole around 0.4. For each simulation, we
performed 30 Monte Carlo trials.

The signal consisted of two harmonics whose frequencies are f; = 0.1 and f2 = 0.2, and whose
amplitudes are both unity.

We used either one realization having G4 x 64 (4096) samples, or 64 independent realizations,
each with 64 samples. In the case of a single realization, the data were divided into 64 segments,
each segment with 64 samples. For estimated correlations, #;(k), and estimated fourth-order
cumulant, é;.(k), k= 0,1,...,15, we used the unbiased segmented estimator, i.e.,

) 1 M 1 Nolk
Polb) = gp 2 (m 2 z,-(n)x,-(n+k)) (27)
and ;N
éyz(k) = MZ (N ] Y zi(n)zi(n+ k) - 3r,(0)r,(k)) (28)
n=1

where M and N denote the number of segments and the number of samples in one segment,
respectively. Although cyz(k) = cq4z(—k) for a stationary process, the estimates in Eq. (28) lose
the symmetry property; hence, we used the averaged value 5‘—‘-@—*'23-‘1'—‘)- for the fourth-order
cumulants at lags k£ and -k&.

7.1 Variable: Amplitude

After fixing all other parameters and one of the sinusoidal amplitudes (at unity), we varied the
amplitude of the second sinusoid (f; = 0.2) in order to determine where the correlation-based
and cumulant-based methods break down. Figures 2 and 3 show the mean values of accumulative

singular values of cumulants and correlations, respectively, using one realization with segmenta-
tion, when the local SNR (which is defined in Section 3.3), of the fixed sinusoid is 5 dB. Observe
that better results are obtained for cumulants.

Figures 4 and 5 show the mean values of accumulative singular values of cumulants using
either one realization with segmentation or independent realizations, respectively, when the local
SNR of the fixed sinusoid is 0 dB. Note that no appreciable differences are visible.
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7.3 Amplitude Estimation

To study the performance of the amplitude estimation algorithms, three examples are given in
this section. Figures 14-17 show the mean values of accumulative singular values and the esti-
mated frequencies using the Pisarenko, MUSIC, and minimum-norm methods for the problem of
two harmonics in colored Gaussian noise. The “solid” curves denote the results obtained using
cumulants, and the “dash” and “dash-dot” curves denote the results obtained using correlations.
In the following examples, note that only the estimated frequencies using MUSIC were used to
estimate amplitudes and that the estimated amplitudes using LS were used as initial values for
the Newton iteration using CTLS. The estimated frequencies using MUSIC and minimum-norm
methods were very similar [4]. In the CTLS method, the value to stop the Newton iterations was
chosen as 10~3.

We assumed frequency estimation errors are independent and white, i.e.,
@i = wy + 0w i=1,...,p

where w;’s denote the true frequencies, dw;’s denote the independent estimation errors, and p
is the estimated number of sinusoids (see Figs. 14-17). Since each element of matrix A is
a nonlinear function of &;'s (see Eq. (24)), we can linearize the elements as follows : when
dw;»m, m=0,1,...,15, are very small, cos(dw; - m) = 1 and sin(éw; - m) = m - éw;; hence,

cos( m (w; + 8w;)) = cos(mw;) - cos(m dw;) — sin(m w;) - sin(m dw;) (29)
& cos(mw;) — m dw; sin(m w;) (30)
and
sin( m (w; + éw;)) = sin(mw;) - cos(m w;) + cos(m w;) - sin(m bw;) (31)
~ sin(mw;) + m dw; cos(m w;) (32)

Consequently, we can approximate cos(m(w; + 6w;)) as follows;
cos(m(w; + 6w;)) = cos(m w;) — m sin(m(w; + 8w;)) - bw; + m? cos(m w;) - (duw;)?
Since the third term on the right-hand side of this equation is negligible,
cos(m &;) = cos(m w;) — m sin(m &) - bw; (33)

wherei=1,...,pand m =0,1,...,15. Note that this equation provides a computable variation
of cos(m w;) due to errors in &;, whereas the Eq. (30) does not. Although the estimation errors of
correlations (cumulants) are correlated, we assumed for simplicity they are independent of each
other and are white, i.e.,

Fe(k) = r2(k) + 6rz(k) and é;2(k) = cyz(k) + deyz(k)

k=0,1,2,...,15
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7.3.4 Conclusions from Examples

From these three examples, we conclude that;

o the resulting estimated frequencies using MUSIC and minimum-norm methods are very
similar and very good.

o the Pisarenko method using correlation gives poor results when noise is colored. It also can
give biased results for low SNR’s when cumulants are used.

o the resulting estimated amplitudes using cumulants are better than those obtained using
correlations.

o the results using LS are usually better than those obtained using TLS or CTLS because of
good estimated frequencies.

o although we expected the superiority of CTLS, there is no great advantage to using CTLS
because of very good estimation of frequencies by all the methods.

o the assumption of independency of the correlation (cumulant) errors may have caused the
poor performance of CTLS results.

¢ using several independent realizations gives similar results to using one realization in the
case of high SNR for large amounts of data.

7.4 Variable: Amplitude, Frequency, and Data Length

Throughout the above several simulations and examples, we showed the superiority of using cu-
mulants to using correlations in the harmonic retrieval problem. In this subsection we find the
points where the cumulant-based methods for harmonic retrieval break down as a function of
amplitude, frequency of one harmonic, and length of data.

Our signal consists of two real sinusoids measured in colored Gaussian noise. The first sinu-
soid has a fixed local SNR of 0 dB (corresponding magnitude is unity) at f; = 0.1. The second
sinusoid has varying amplitude at f, = 0.2, 0.18, 0.16, or 0.14. The additive noise was the colored
Gaussian noise generated by the ARMA system described in Section 7.

In order to determine where the cumulant-based methods break down, we varied the ampli-
tude of the second sinusoid at a fixed f2, and also varied the data length. We used one realization
divided into segments of 64 samples. We used 8 different data lengths: 64 x 64 (4096), 50 X 64
(3200), 40 x 64 (2560), 32 x 64 (2043), 25 x 64 (1600), 16 x 64 (1024), 8 x 64 (512), and 4 X 64
(256). For each simulation, we performed 30 Monte Carlo trials.

Figures 18-25 showed the accumulated singular values of cumulants when the second frequen-
cy is fo = 0.2. The values labeled with * were judged (albeit, subjectively) to be the smallest
amplitudes of the second sinusoid when we can visually still estimate the correct number of har-
monics. Figures 26-33, 34-41, and 42-49 are for f; = 0.18, 0.16, and 0.14, respectively. Note that
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normal, the LS solution is identical to the maximum likelihood solution [13].

Finally, we obtained a plot of minimum local SNR vs. different lengths of data and several
f2 where we can still determine the correct number of harmonics by looking at breaks in plots
of accumulated singular values. For each f; the minimum local SNR decreases approximately
exponentially as the length of data increases. Using Fig. 50 we can estimate the minimum value
of the third variable when any two of the three variables are fixed.
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A Appendix
In this appendix, the following results will be used : when E{z(n)} = 0, for all n,
E{z(r)z(n + k)z(m)z(m + &k + v)} = r(k)r(k + v) + r(m — n)r(m — n +v)

+rim—nt+k+v)r(im-—n+k)+tec(b,m—nm-n+k+v) (A-1)
where cum(z(n), z(n+k), z(m), 2(m+k+v) = c4z(k, m—n, m—n+k+v). Note that c4z(r, 8—-t, s—t4+r+v) =
ciz(s —t,r, s =t 4+ r+ v). Now consider

(N=k)(N=k=v)
Z Z {r(m=n)yr(m—=n+v)+r(im+k+v—=nr(m-n—-k)+csyz(m—-n,kym-n+k+v)}

n=1 m=1

where £ > 0 and k£ + v > 0. We make a change of variables from m and n to ! = (m — n) and n. The
summand depends only on [, and a careful examination of the limits of n gives (3],

(N=E)(N=k-v)
Z Z {rm=n)yr(m—n+v)+r(m+hk+v—n)r(m-—n-k)+ciz(m—n,k,m—-n+k+v)}

n=1 m=1

(N-k-v-1)
= T (Vo) =k o) {r)r(l+ o) + (L + ko)l = )+ cax(L kI k+0)) (A2
==(N-k)+1

where nx (1), which is a function of N as well as [, is defined as

L >0
wlh)={ 0,  —w<I<O (a-3)
—l-v, —-(N=Fk)+1£IL~v

A.1 Biased Estimators of Correlation

In this section, we derive the mean and covariance functions of the biased segmented estimator, rg(k), and
the biased unsegmented estimator, r3 (k).

A.1l.1 Estimator with Segmentation

M N-=|k]

1
(k) = m‘é Z;; zi(n)zi(n + k)
Then,
, 1 M N-|k
B{rt) )} = 375 1 2 Blaitmatn+)}

Using stationarity, we obtain N — 1]
B(r)) = 5B
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(VN=k=-v-1)

Cov (r}(k), r}(k +v)) = . (N =an(l) = k= v) {r()r(l +v)

MN® | o om
+ r(l+k+v)r(l = k) + caz(l b, U+ B+ v))} (A-4)

When each segment is a part of a single realization, i.e.,
E{z:(n) zi(n + k) zj(m) z;(m + & + v)}
= B{z(N(i-1)+n)z(NGE-1)+nr+ k) 2(NGF-1)+m)z(NG- 1)+ m+k+v)}
= r(k)r(k+0)+r(NG-)+m=n)p(N(Gi-i)+m-n+v)+r(NG-i)+m-n+k+v)
rNG=d)+m-n=k)+ca (b, NG=)+m-nNi-i)+m—-—n+k+v)
where we have used Eq. (A-1) to obtain the last line; thus,

(N=k=v-1)
Cov (R(k), rb(k +v)) = ﬁ ,__(;km (N = () = k= ) {r(Dr(l + v) + #(1+ k + 0)r(l — )+

M M (N=k)(N=k-v)

sk +k 40+ —— 35 5 3 {r(NG=i)+m=n)r(N(—i)+m=n+v)

—

(A'IN) f,j=1igj n=1 m=1
+r(NU=D+m-=—nt+b+v)r(NG-D+m—n—-k)+cs({,NG-i)+m=n, N(Gj-i)+m-n+k+v)}
As in Eq. (A-2), letting p = m — n and q = j — i in the last term of the preceding equation gives

(N=k=v=1)
Cov (rb(k), rb(k + v)) = Fln'f‘ '--(;km (N = an(l) = k = o) {+()r(l + v) + r(I + E+ 0)r(l = k)

(M-1) (N=k=v=1)

1
teas(l b I+ k+0v)} + TG > Y. (N ~nw(p)=k—=v)(M~|q]){r(Nq +Pp)
g==M+1,9#0 p==(N=k)+1
r(Nqg+p+v)+r(Nq+p+k+o)r(Ng+p—k)+caz (k, Ng+p, Ng+p+k+v)} (A-5)

A.1l.2 Estimator without Segmentation

1 MN-=|k|
(k) = ——
k) = g (n)e(n + k)

Then AN
SR B —MN -k .
E{rk)}= N 'gl E{z(n)zx(n+k)} = TN r(k)

Without loss of generality, let k> 0,k + v > 0 ; then
Cov (r3(k), rb(k + v)) = E {r4(k)r3(k + v)} — E {r3(k)} E {r3(k +v)}

(AMN=k)(MN=k=v)
1 MN~k MN=k—-v
SOy X X Bleenaimitmeka) - S Ty
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Using the fourth-order cumulant Eq. (A-1), we get

M (N=k)(N=k=-v)

Cov (r¥(k), r¥(k +v)) = AN = L)(N L_v)zz Y. {r(m-n)r(m-n+v)+

i=l n=1 m=1

r(m+k+v—n)r(m-—n—k)+c4,(m—n,k,m—n+k+v)}+%r(k)r(k+v)

M M (N=k)(N=k-v)

Z Z Z Z E{z;(r)zi(n + k)zj(m)z;(m + k + v)} = r(k)r(k + v)

ij=ligj n=l m=l

1
FMIN-BN -F-v).

Using Eq. (A-2) gives

(N=k-v-1)
Cov (ri (k). ri(k +9) = g L)(IN = > (N=an(l)-k-1)
==(N=k)+1

{r(r(l+ o)+ r(l + b+ v)r(I = k) + caz (1, b, I+ k +v)}
MM (N=E)(N=k=v)

I’W"(N L)(N k= Z Z Z Z E{zi(n)zi(n + k)zj(m)zj(m + k + v)}

l.] =1i#gj n=l m=1

(MJ 1)1'(1.)r(k +v)
where gy (l) is defined in Eq. (A-3).
When each segment of data is independent,
E{zi(n)zi(n + k)zj(m)z;(m + k + v)} = r(k)r(k + v), for i#j

Using this fact, the second term of Cov(r{(k), r}(k + v)) becomes (M= n1‘(1.:)1*(1: + v); thus,

(Nek=v=1)
LY ER ru . -— l -_— -—F -
Cov (ri (k). ik +9) = rr i —F =) ,=-(AZ,.:L.,+1 (N —an() = k=)
{r(hr(l +v) +r(l + k+ v)r(l = k) + ca=(I, k, 1 + k + v)} (A-7)

When each segment is a part of a single realization, i.e.,
E{zi(n) zi(n + k) 2j(m) z;(m + k + v)}
= B{z(Ni-1)+n)z(NG-1)+n+k)2(N(Gj—-1)+m) 2(N(j - 1)+ m+k+v)}
= r(k)r(k+v)+r(N(j—i)+m—n)r(N(j—i)+m-—n+v)+r(N(j—i)+m-n+k+v)
(NG-D+m—-—n=k)+ci (kNG — )+m-n,N(ji-i)+m-n+k+v)

where we have used Eq. (A-1) to obtain the last line; thus, the covariance function can be rewritten as
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1 MN<-k—-v=l

(MN = k)MN -k —v)

{MN = narn(l) = k—v}
I=~(MN=E)+1

{r()r(i+v)+rl+k+v)r(i= k) +caz (I, k, I+ k-+v)} (A-9)

Cov(ry(k), r3(k +v)) =

where 9arn (1) is defined in Eq. (A-3).

A.3 Biased Estimators of the 1-D Diagonal-Slice of the Fourth-Order Cumu-
lant

In this section, we derive the mean functions of the biased segmented cumulant estimator, d}(k), and the
biased unsegmented estimator, dj (k).

A.3.1 Estimator with Segmentation

di(k) = Zd”(k)

|..l

where d¥(k) denotes the estimated cumulant in the i-th segment, i.e.,

N-k|
(k) = % S m(n)ed(n+k) - O i=12,...,M

n=1

where r3(0) and ri(k) denote the biased segmented correlation estimates as in Section A.1.1. Then,

N-|k| _
B () = WZ > Blatmeltn+ b} =3r00) (T

= Yo (B amen +£)) = 37(0)-r(8)
A.3.2 Estimator without Segmentation

b 1 A’Nilkl 3 bg\pd
do(k) = —— z(n)2%(n + k) — 3r3(0)ra(k)
MN n=1 ?

where r3(0) and r3(k) denote the biased unsegmented correlation estimates as in Section A.1.2. Then

MN=|k]
BAM) = gy 2 B+ k) - 3r0) (M)

= "MIJ:[;/M‘I (E{z(n)e®(n + )} — 3r(0)-r(k))
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where r§(0) and r¥(k) denote the unbiased unsegmented correlation estimates. Then

1 MN-|k|
E{d: (1)} = 7y =7 > E{z(n)c(n+k)} -3 r(0)-r(k)
n=1
=E{ z(n)z3(n + k) } = 3 r(0) - r(k) = c4(k)
Assume that k> 0,k+ v > 0, then

Cov (d2(k), d3(k + v)) = E {d3(k)d3(k + v)} — E {d3(k)} E {d}(k + v)}

(MN=k)(MN<=k=v)

= MmN - k)(;{N yy——) > E{z(n)z*(n + k)z(m)z*(m + k + v)}
n=l m=1

(MN=EY(MNY(MN=k=v)
Y. Efa(n)z®(n+ k)2’ (i)z(m)z®(m + k + v)}

n=1 i=1 ms=1
3 (MN=k=v)(MN)(MN<-k)
“(MN k- o)(MN)(MN < k) Y. Y 2 E{e(m)(n+k+v)z?(i)z(m)e®(m + k)}

n=1 izl m=1

3
“(MN =E)(MN)MN =k -v)

9 (MNY(MN)(MN=k) (MN=k=v)
NN RO =] & L & X EE@amz(n+B()z(m)

i=l j=1 n=t m=l

23 (m + k + v)} — c4(k)ed(k + v)
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Table 3: Means and standard deviations (std) of accumulative singular values for correlations
using one realization (Fig. 6)

Amplitudes Number of singular value

1 2 3 4 5 6 7 8
[1(0) 1(0)] mean | 0.2214 | 0.4292 | 0.5827 | 0.7238 | 0.7898 | 0.8485 | 0.8754 | 0.9018
std | 0.0027 | 0.0043 | 0.0061 | 0.0072 | 0.0051 | 0.0042 | 0.0033 | 0.0027
[1(0) 0.7(-3)] | mean [ 0.2385 | 0.4480 | 0.5657 | 0.6685 | 0.7471 | 0.8168 | 0.8496 | 0.8818
std | 0.0049 | 0.0092 | 0.0092 | 0.0093 | 0.0072 | 0.0062 | 0.0050 | 0.0040
[1(0) 0.65(-3.7)] | mean | 0.2429 | 0.4563 | 0.5636 | 0.6552 | 0.7399 | 0.8118 [ 0.8450 | 0.8777 |
std | 0.0045 | 0.0036 | 0.0082 | 0.0079 | 0.0051 | 0.0045 | 0.0037 | 0.0032
[1(0) 0.625(-4)] | mean | 0.2444 | 0.4593 | 0.5623 | 0.6538 | 0.7370 | 0.8096 | 0.8433 | 0.8763
std | 0.0043 | 0.0082 | 0.0086 | 0.0036 | 0.0060 | 0.0052 | 0.0043 | 0.0036
(1(0) 0.6(-4.4)] | mean | 0.2481 | 0.4664 | 0.5640 | 0.6517 | 0.7345 | 0.8066 | 0.8408 | 0.8745 |
std | 0.0050 | 0.0096 | 0.0091 | 0.0084 | 0.0059 | 0.0054 | 0.0044 | 0.0037 |
[1(0) 0.575(-4.8)] | mean | 0.2501 | 0.4705 | 0.5634 | 0.6486 | 0.7321 | 0.8044 | 0.8388 | 0.8726
std | 0.0063 | 0.0118 | 0.0103 | 0.0080 | 0.0055 | 0.0043 | 0.0036 | 0.0030
[1(0) 0.55(-5.2)] | mean | 0.2531 | 0.4761 | 0.5667 | 0.6503 | 0.7324 | 0.8034 | 0.3382 | 0.8723
std | 0.0060 | 0.0113 | 0.0095 | 0.0080 | 0.0070 | 0.0063 | 0.0054 | 0.0047 |
[1(0) 0.525(-5.6)] | mean | 0.2552 | 0.4803 | 0.5691 | 0.6513 | 0.7316 | 0.8008 | 0.8362 | 0.8709 |
std | 0.0048 | 0.0092 | 0.0073 | 0.0066 | 0.0060 | 0.0058 | 0.0045 | 0.0033

Table 4: Means and standard deviations (std) of accumulative singular values for correlations
using independent realizations (Fig. 7)

Amplitudes Number of singular value

1 2 3 q 5 8 7 8
[1(0) 1(0)] mean | 0.2235 | 0.4340 | 0.5890 | 0.7317 | 0.7946 | 0.8506 | 0.8772 | 0.9027
std | 0.0026 | 0.0058 | 0.0073 | 0.0090 | 0.0066 | 0.0052 | 0.0041 | 0.0032
[1(0) 0.7(-3)] | mean | 0.2409 | 0.4524 | 0.57127 | 0.6776 | 0.7528 | 0.8196 | 0.8517 | 0.8826
std_| 0.0040 [ 0.005 | 0.0090 | 0.0107 | 0.0066 | 0.0044 | 0.0035 | 0.0029 |
[1(0) 0.65(-3.7)] | mean | 0.2461 | 0.4623 | 0.5721 | 0.6687 | 0.7462 | 0.3148 | 0.8478 | 0.8796
std__| 0.0049 [ 0.0093 | 0.0096 | 0.0104 | 0.0070 | 0.0053 | 0.0041 | 0.0032 |
[1(0) 0.625(-4)] | mean | 0.2483 | 0.4667 | 0.5714 | 0.6641 | 0.7426 | 0.8117 | 0.8453 | 0.8775
std | 0.0040 | 0.0076 | 0.0087 | 0.0101 | 0.6065 | 0.0049 | 0.0039 | 0.0032
[1(0) 0.6(-4.4)] | mean | 0.2509 | 0.4718 | 0.5712 | 0.6599 | 0.7398 | 0.8096 | 0.8435 | 0.8760 |
std_| 0.0040 | 0.0077 | 0.0082 | 0.0089 | 0.0064 | 0.0058 | 0.0045 | 0.0035
[1(0) 0.575(-4-8)] | mean | 0.2536 | 0.4770 | 0.5719 | 0.6576 | 0.7375 | 0.8071 [ 0.8414 | 0.8744
std | 0.0044 | 0.0084 | 0.0093 | 0.0092 | 0.0057 | 0.0045 | 0.6036 | 0.0030
[1(0) 0.55(-5.2)] | mean | 0.2564 | 0.4823 | 0.5727 | 0.6556 | 0.7357 | 0.8050 | 0.8398 | 0.8732
std_| 0.0052 | 0.0100 | 0.0091 | 0.0078 | 0.0059 | 0.0055 | 0.0042 | 0.0032 |
[1{0) 0.525(-5.6)] | mean | 0.2586 | 0.4866 | 0.5742 | 0.6551 | 0.7340 | 0.8021 [ 0.8373 | 0.8712
std | 0.0043 | 0.0081 | 0.0067 | 0.0057 | 0.0048 | 0.0049 | 0.0039 | 0.0033
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Table 7: Means and standard deviations (std) of accumulative singular values for correlations
using one realization (Fig. 12)

Frequencies Number of singular value

1 2 3 4 5 6 7 3
[0.10.2] | mean | 0.2214 | 0.4292 | 0.5827 | 0.7238 | 0.7898 | 0.8485 | 0.8754 | 0.9018
std | 0.0027 | 0.0043 | 0.0081 | 0.0072 | 0.0051 | 0.0042 | 0.0033 | 0.0027 |
T0-10.14] | mean | 0.2616 | 0.5122 | 0.6249 | 0.7233 | 0.7891 | 0.8463 | 0.8735 | 0.9001
std | 0.0041 | 0.0084 | 0.0101 | 0.0109 | 0.0078 | 0.0061 | 0.0051 | 0.0043
[0.10.13] | mean | 0.3052 | 0.5808 | 0.6623 | 0.7290 | 0.7940 | 0.8462 | 0.8732 | 0.8999
std | 0.0040 | 0.0075 | 0.0088 | 0.0072 | 0.0057 | 0.0054 | 0.0046 | 0.0040
[0.10.1275] | mean | 0.3153 | 0.5956 | 0.6695 | 0.7351 | 0.7985 | 0.8467 | 0.8735 | 0.8997
std | 0.0048 | 0.0089 | 0.0091 | 0.0070 | 0.0055 | 0.0055 | 0.0047 | 0.0039
[0.10.125] | mean | 0.3260 | 0.6117 | 0.6801 | 0.7430 | 0.8039 | 0.8469 | 0.8737 | 0.9001
std | 0.0054 | 0.0097 | 0.0085 | 0.0074 | 0.0064 | 0.0061 | 0.0053 | 0.0045
[0.10.1225] | mean | 0.3356 | 0.6257 | 0.6923 | 0.7529 | 0.3034 | 0.8461 | 0.8731 | 0.8996
std | 0.0046 | 0.0087 | 0.0064 | 0.0054 | 0.0055 | 0.0055 | 0.0047 | 0.0041
[0.10.12] | mean | 0.3449 | 0.6397 | 0.1061 | 0.7663 | 0.3143 | 0.8472 | 0.8738 | 0.9000
std | 0.0049 | 0.0090 | 0.0063 | 0.0056 | 0.0056 | 0.0055 | 0.0047 | 0.0040
[0-10.1175] | mean | 0.3515 | 0.6496 | 0.716- | 0.1768 | 0.8183 | 0.8473 | 0.8737 | 0.8999
std | 0.0048 | 0.0080 | 0.0066 | 0.0052 | 0.0054 | 0.0054 | 0.0047 | 0.0041

Table 8: Means and standard deviations (std) of accumulative singular values for correlations
using independent realizations (Fig. 13)

Frequencies Number of singular value
1 2 3 1 5 6 7 8

[0.10.2] | mean | 0.2235 | 0.4340 | 0.5890 | 0.7317 | 0.7946 | 0.8506 | 0.8772 | 0.9027
std | 0.0026 | 0.0053 | 0.0073 | 0.0090 | 0.0066 | 0.0052 | 0.0041 | 0.0032
~ [0.10.14] | mean | 0.2650 | 0.5193 | 0.6333 | 0.7327 | 0.7954 | 0.8501 | 0.8767 | 0.9021
std | 0.0036 | 0.00%3 | 0.0085 | 0.0091 | 0.0063 | 0.0058 | 0.0047 | 0.0037 |
[0.10.13] | mean | 0.3100 | 0.5902 | 0.6720 | 0.7374 | 0.7996 | 0.8503 | 0.8768 | 0.9023
std_ | 0.0047 | 0.0086 | 0.0088 | 0.0074 | 0.0050 | 0.0043 | 0.0036 | 0.0031
[0-10.1275] | mean | 0.3209 | 0.6063 | 0.6799 | 0.7422 | 0.8030 | 0.8502 | 0.8767 | 0.9022
std | 0.0044 | 0.0081 | 0.0083 | 0.0067 | 0.0058 | 0.0055 | 0.0044 | 0.0037 |
[0.10.125] | mean | 0.3312 | 0.6213 | 0.6581 | 0.7489 | 0.3078 | 0.8505 | 0.8768 | 0.9022
std_| 0.0045 | 0.0084 | 0.0081 | 0.0068 | 0.0061 | 0.0059 | 0.0048 | 0.0039
[0.10.1225] | mean | 0.3404 | 0.6347 | 0.6983 | 0.7566 | 0.8119 [ 0.8498 | 0.8762 | 0.9017
std | 0.0050 | 0.0093 | 0.0071 | 0.0058 | 0.0054 | 0.0054 | 0.0046 | 0.0039
[0.10.12] | mean | 0.3493 | 0.6479 | 0.7109 | 0.7684 | 0.8170 [ 0.8500 | 0.8763 | 0.9018
std_| 0.0053 | 0.0099 | 0.0071 | 0.0056 | 0.0058 | 0.0058 | 0.0047 | 0.0038
[0-10.1175] | mean | 0.3573 | 0.6601 | 0.7230 | 0.1802 | 0.3214 | 0.8501 | 0.8762 | 0.9018
std | 0.0039 | 0.0072 | 0.0056 | 0.0056 | 0.0055 | 0.0055 | 0.0046 | 0.0039




Table 11: Means and standard deviations of estimated amplitudes using independent realizations

for Example 2

True Amplitude

Correlation (2 harmonics)

1.0

1.0

LS 1.0435 (0.0093) | 1.0506 (0.0132)
TLS 1.0662 (0.0095) | 1.0734 (0.0126)
CTLS 1.0434 (0.0093) | 1.0504 (0.0133)

Correlations (3 harmonics)

LS 1.0331 (0.0096) | 1.0452 (0.0134) | 0.5548 (0.0174) |
TLS 1.0415 (0.0099) | 1.0537 (0.0132) | 0.5578 (0.0176)
CTLS 1.0351 (0.0092) | 1.0438 (0.0133) | 0.5533 (0.0173)
Cumulants

LS 0.9865 (0.0319) | 0.9899 (0.0283)

TLS 0.9879 (0.0315) | 0.9914 (0.0281)

CTLS 0.9885 (0.0314) | 0.9895 (0.0282)

Table 12: Means and standard deviations of estimated amplitudes for Example 3

True Amplitude 1.0 1.0
Correlation (2 harmonics)
LS 1.0899 (0.0189) | 1.0991 (0.0215)

TLS

1.1800 (0.0197)

1.1896 (0.0217)

CTLS

1.0909 (0.0190)

1.0997 (0.0215)

Correlations (3 harmonics)

LS 1.0664 (0.0191) | 1.0851 (0.0217) | 0.7996 (0.0234)
TLS 1.0975 (0.0183) | 1.1175 (0.0216) | 0.8201 (0.0240)
CTLS 1.0739 (0.0190) | 1.0859 (0.0216) | 0.7969 (0.0234)
Cumulants

LS 0.9928 (0.0534) | 0.9935 (0.0696)

TLS 1.0024 (0.0475) | 0.9979 (0.0631)

CTLS 0.9887 (0.0542) | 0.9837 (0.0697)
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Figure 2: Accumulative singular values of cumulants using one realization when the fixed ampli-
tude sinusoid at 0.1 has a local SNR of 5 dB and the amplitude of the sinusoid at 0.2 has a local
SNR (dB) of : (a) 5 (b) 1.7 (c) 1 (d) 0.7 (e) 0.3 (f) 0 (g) -0.4 (h) -0.8
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Figure 4: Accumulative singular values of cumulants using one realization when the fixed ampli-
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Figure 6: Accumulative singular values of correlations using one realization when the fixed am-
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Figure 12: Accumulative singular values of correlations using one realization when both ampli-
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Figure 14: Results of estimated frequencies for Example 1: (a) mean of accumulative singular
values (solid curve is for cumulants, dashed curve is for correlations); mean estimated spectra

using (b) Pisarenko method, (¢) MUSIC method, and (d) minimum norm method. In panels
(b)-(d), the solid lines correspond to cumulant-based estimates, with p=2, and the dashed and
dash-dotted lines correspond to correlation-based estimates with p=2 and p=3, respectively.
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Figure 16: Results of estimated frequencies using independent realizations for Example 2: (2)
mean of accumulative singular values (solid curve is for cumulants, dashed curve is for correlation-
s); mean estimated spectra using (b) Pisarenko method, (c) MUSIC method, and (d) minimum
norm method. In panels (b)-(d), the solid lines correspond to cumulant-based estimates, with
p=2, and the dashed and dash-dotted lines correspond to correlation-based estimates with p=2
and p=3, respectively.
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Figure 18: Accumulative singular values of cumulants using 64 X 64 (4096) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.2 is : (a) 0.55"
(b) 0.545 (c) 0.54 (d) 0.535
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Figure 19: Accumulative singular values of cumulants using 50 X 64 (3200) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.2 is : (a) 0.585
(b) 0.58* (c) 0.575 (d) 0.57
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Figure 22: Accumulative singular values of cumulants using 25 x 64 (1600) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.2 is : (a) 0.61*

(b) 0.605 (c) 0.6 (d) 0.595
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Figure 23: Accumulative singular values of cumulants using 16 x 64 (1024) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.2 is : (a) 0.675

(b) 0.67* (c) 0.665 (d) 0.66
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Figure 26: Accumulative singular values of cumulants using 64 x 64 (4096) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.18 is : (a) 0.58
(b) 0.575 (c) 0.57" (d) 0.565
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Figure 27: Accumulative singular values of cumulants using 50 X 64 (3200) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.18 is : (a)
0.595 (b) 0.59 (c) 0.585 (d) 0.58
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Figure 30: Accumulative singular values of cumulants using 25 x 64 (1600) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.18 is : (a) 0.64
(b) 0.635" (c) 0.63 (d) 0.625
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Figure 31: Accumulative singular values of cumulants using 16 x 64 (1024) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.18 is : (a)
0.685 (b) 0.68" (c) 0.675 (d) 0.67
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Figure 34: Accumulative singular values of cumulants using 64 X 64 (4096) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.16 is : (a)
0.585" (b) 0.58 (c) 0.575 (d) 0.57
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Figure 35: Accumulative singular values of cumulants using 50 x 64 (3200) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.16 is : (a)
0.595 (b) 0.59" (c) 0.585 (d) 0.58
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Figure 38: Accumulative singular values of cumulants using 25 x 64 (1600) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.16 is : (a) 0.65

(b) 0.645 (c) 0.64* (d) 0.635
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Figure 39: Accumulative singular values of cumulants using 16 x 64 (1024) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.16 is : (a) 0.7

(b) 0.695* (c) 0.69 (d) 0.685
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Figure 42: Accumulative singular values of camulants using 64 x 64 (4096) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.14 is : (a)
0.655 (b) 0.65 (c) 0.645* (d) 0.64
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Figure 43: Accumulative singular values of cumulants using 50 X 64 (3200) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.14 is : (a) 0.68
(b) 0.675* (c) 0.67 (d) 0.665
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Figure 46: Accumulative singular values of cumulants using 25 x 64 (1600) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.14 is : (a) 0.71
(b) 0.705" (c) 0.7 (d) 0.695
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Figure 47: Accumulative singular values of cumulants using 16 X 64 (1024) one realization when
the fixed amplitude sinusoid at 0.1 is unity and the amplitude of the sinusoid at 0.14 is : (a)
0.74* (b) 0.735 (c) 0.73 (d) 0.725
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Figure 50: Minimum local SNR (dB) of the amplitude of the second sinusoid at f; when we can
still determine the correct number of harmonics. The fixed amplitude at f; = 0.1 has local SNR
of 0 dB. The crossed points denote the values that we got through simulations. The solid line
is for f2 = 0.2, and the dashed, dotted, and dash-dotted lines are for f; = 0.18, 0.16, and 0.14,

respectively.
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