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Abstract

Two new iterative algorithms for shape reconstruction based on multiple
images taken under different lighting conditions known as photometric stereo
are proposed. In our previous work, an iterative SFS (Shape From Shading)
algorithm using a single image was developed by combining a triangular element
surface model with a linearized reflectance map. It is shown in this research that
all single-image SFS algorithms share an inherent problem, i.e. the accuracy
of the reconstructed surface height is related to the slope of the reflectance
map function defined on the gradient space. This observation motivates us
to generalize the single-image SFS algorithm to two photometric stereo SFS
algorithms aiming at more accurate surface reconstruction. The two algorithms
directly determine the surface height by minimizing a quadratic cost functional,
which is defined to be the squares of the brightness error obtained from each
individual image in a parallel or cascade manner. The optimal illumination
condition which leads to best shape reconstruction is also derived. Simulation
results for several test images are given to demonstrate the performance of our
new algorithms.

1 Introduction

Extracting the surface information of an object from its shaded image, known as the shape
from shading (SFS) problem, is one of the fundamental problems in computer vision. The
image formation process consists of three factors: the object shape, the property of object
surface and the illumination condition (light source information). If the surface property
and the lighting condition are known a priori, the shading information provides important
cues for 3-D surface reconstruction since the variation in brightness arises primarily due

to the change in surface orientation. Research on the SFS problem has been performed
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extensively in the last two decades. Many SFS algorithms using a single image have been
developed such as the characteristic strip method [2], [3], the variational method [1], [4], [5],
[7], (10}, [17], [18], [19], (26] and Fourier method [13]. It is well known that this problem is
ill-posed so that the solution may not be reliable. Thus, researchers have also considered the
use of multiple images to provide additional information for robust surface reconstruction,
which includes the photometric stereo method [9], [6], [14], [16], [20], [23], [24], [25] and the
geometric stereo method (12].

The photometric stereo method was first proposed by Woodham [23], [24], [25] and
has been studied and extended for practical implementation by several researchers [9), [6],
(14], [16], [20]. With this method, one uses images taken from the same viewing direction
under different lighting conditions. The surface orientation of a local point is determined
by its irradiances in these images by using the fact the orientation corresponds to the
intersection of constant brightness contours of different reflectance maps on the gradient
space. One special feature of Woodham’s method is that it is a local method where the
surface oriehta.tion is determined point by point. Thus, it is applicable without the smooth
surface and the constant albedo constraints. In contrast, the single-image SFS problem
cannot be solved locally since there is no sufficient constraint at a local point. Some global
properties such as the smooth surface assumption have to be incorporated to regularize the
problem.

In this research, we provide a unifying approach to solve both single-image and photo-
metric stereo SFS problems. Our new approach is based on the single-image SFS algorithm
proposed in [11]. We show that the single-image SFS algorithm may not yield an accurate
result by examining the characteristics of the reflectance map, and explain how to use the
photometric stereo information to improve the accuracy of the reconstructed surface. We
propose two SFS algorithms using photometric stereo images and call them the parallel and
cascade schemes. The parallel scheme combines the information of all images simultaneously
while the cascade scheme uses the information of each image in sequence. Both schemes
are formulated as a quadratic functional minimization problem parameterized by surface
heights, where the cost functional is defined to be the squares of the brightness error. The
surface heights can be obtained by solving the equivalent large sparse linear system of equa-
tions with efficient linear system solvers such as the multi-grid (MG) or the preconditioned

conjugate gradient (PCG) method. The optimal illumination condition which leads to best



shape reconstruction is also discussed in the current setting and verified experimentally.
Compared to the conventional photometric stereo method, our new method have two
major advantages. First, the new method determines surface heights directly while the
conventional photometric stereo method determines only the surface orientations. Thus,
the integrability problem arises in the conventional method but not in ours. Second, the
new method is a global method which minimizes the squared intensity errors over all points
so that it is insensitive to the noise. In contrast, the conventional one is a local method
and is more sensitive to the noise. However, it is worthwhile to point out that our method

requires the smooth surface constraint while the conventional method does not.

2 Conventional Photometric Stereo

Under the assumption of orthographic projection, Lambertian surface and a distant single
point light source, the reflectance map is basically a function characterizing the relationship
between the image irradiance and the orientation of the object surface. It can be derived
that

Tn, 1Tn>o0,
R(p, q) = { g’ 1Tn z 0, (2'1)

where 7 is the albedo of the surface,
_ (_p7 -4, I)T

n=
VitP+@

is the surface normal, and

1 = (cos Tsino,sinTsin o, cos a)T

is the unit vector of the illumination direction pointing toward the light source, and where
T and o are the tilt and slant angles that the illumination direction makes with z and z

axis, respectively. This can be also represented as

1= (_p87 —3s; l)T
- )
vVi+pi+g}
where p, and ¢, denote the slope of a surface element perpendicular to the illumination

direction.

Substituting the vectors n and 1 into (2.1), we obtain

K -
s L K 20,
R(p,q)={ Ve . (2.22)
0, K <0,



where

K = —pcostsinog — gsintTsino + cos o,
or equivalently,
1+p:p+qs9 1 >0
R(p,q) = { T e T PPt ae20, (2.2b)
0, 1+psp+q,9<0.

The reflectance map R(p,q) is a nonlinear function which can be depicted as nested
contours in the gradient space (p,q). The basic equation for the image formation process

can therefore be expressed as
E(z,y) = R(p,q), (2.3)

which is known as the image irradiance eguation.

Conventional photometric stereo is an algebraic method to solve the image irradiance
equation. With given albedo 5, illumination direction 1 and image irradiance E, there
are two unknown variables p and ¢ in (2.3) so that at least two equations are needed to
determine the values of p and ¢. However, since (2.3) is nonlinear, it may have more than
one solution and a third image is often needed to form an overdetermined system.

Based on the reflection map (2.1), we can provide a simple viewpoint to understand
the solution procedure. Suppose that we have three images obtained with illumination
directions 13, 15, and 13. At a given point (z,y), the observed image irradiances in these three

images are E;, E; and Ej, respectively. Thus, we have three image irradiance equations
E; = ﬂliTn, 1=1,2,3,

where n is the surface normal at the point (z,y). These equations can be written in matrix

form as
E = nLn, (2.4)
where
E, i
E=| E; |, and L=| 1
E; g

If 13,12, and 13 are linearly independent, L~! exists and (2.4) can be solved for n. However,

note that the surface normal n is a unit vector with two free variables. Thus, (2.4) is an

overdetermined system and we may obtain its least squares solution.

4



One feature of the above formulation is that it applies nicely if the albedo 7 is not known

a priori and varying at different image points. That is, we know from (2.4) that
nm=L"1E. (2.5)

The magnitude of the right hand side of (2.5) gives the value of albedo at (z,y),
n=|IL7'E(,

and the corresponding unit surface normal n is

n= lL_l E.
n

3 Single-Image SFS Using a Triangular Element Surface
Model

Recently, we [11] developed a new iterative algorithm that recovers surface heights directly
by combining a triangular element surface model with a successively linearized reflectance
map. The key idea is to approximate a smooth surface by the union of triangular surface
patches called triangular elements, and express the approximating surface as a linear com-
bination of a set of nodal basis functions. Since the surface normal of a triangular element is
uniquely determined by the heights of its three vertices (or nodes), the image brightness can
be directly related to the nodal heights via the nonlinear reflectance map function. To sim-
plify the solution procedure, the reflectance map is linearized at each iteration so that the
surface height can be determined by minimizing a quadratic cost functional corresponding
to the squares of the brightness error. The minimization problem is then solved effectively
with the multigrid computational technique.

By taking the Taylor series expansion of R(p, q) about a certain reference point (pg, go)
through the first-order term, we have the linear approximation of the reflectance map as

follows

(p, q)

R(p,q) = R(po, ) + (p — Po) (pougo) *+ (7 qo) (p’q)|po.qo- (3.1)

The reference point (po, go) can be either fixed or varying for different values of (p, q).
Consider the approximation of a smooth surface with a union of triangular surface

patches over a uniform grid domain as illustrated in Fig. 1 (8], [15]. The approximating
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surface can be expressed as a linear combination of basis functions ¢; with local compact

support known as the finite triangular elements (see Fig. 2) such that

Mn
2(1‘, y) = Zzi¢i(z7 y)’

i=1
where z; is the value of z(z,y) at the ith node and M, is the number of nodal basis
functions. Based on the triangular element surface model, the orientation (i.e. the surface
normal vector) of a triangular patch can be determined by the heights of its three vertices

(or nodes) in a linear functional form as

ikd (9-‘ y) Z’i 3¢.(z y)

=1

p(z,y) = , (3.2)

and

9z Mn 9¢y(z,
q(z,y) = g—a;y) = Zze%. (3.3)

i=1
Combining this surface model with the linearized reflectance map image formation model

given by (3.1), we can express the image irradiance directly in terms of nodal heights of

triangular elements. By substituting (3.2) and (3.3) into (3.1), we have

Mn
E=R(pg)~ap+Bg+v=) ®izi +7, (3.4)
i=1
where
3¢i(z, d¢i(z,
di(z,y) =« ¢i§:: ) + 0 ¢<‘(?y y), ¥ = R(po, g0) — apo — Bqo, (3.4a)
and )
9R(p.q R p,q
= p.q) |(Po-qo) » B= ( ) | Po.go) * (3.4b)

To estimate the nodal heights z; based on the shading information, we consider the cost

functional
£ =& + NE,, (3.5)

where & and &, denote the cost term due to the brightness error and smoothness constraint,
respectively, and A is the smoothing factor.

The first term can be formulated as the sum of the squared brightness error,
&= [[ (E.- EYdudy, (3.6)
Q
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where E, is the observed image irradiance and E is the irradiance generated by the re-

flectance map model. By substituting (3.4) into (3.6), we obtain

M,
& = //f;[E"— (Z <I>,-z.-+7)}2d:c dy

i=1
-;-ZTAZ -bTz e, (3.7)

where the elements a;; and b; of the stiffness matrix A and the load vector b can be

computed as

a;; = 2//:: ®:8;drdy, b = 2//9(50-7)4>,-dxdy 1<i,j< M,. (3.8)

Note that two different triangulation schemes can be made by choosing two different di-
rections of the oblique lines, i.e. 45° and 135°. Let us denote the resulting stiffness matrices
and load vectors with 45°- and 135°-triangulation by A,, b, and A, by, respectively. When
the image domain is triangulated with the 45° oblique lines as shown in Fig. 1, there exists
a directional preference along the 45° direction, since only six nodal points among the eight
nearest neighbors are associated with the central nodal point. The triangulation scheme
may sometimes affect the results of the algorithm under various illumination directions. For
example, consider a spherically symmetric object illuminate by light sources with tilt an-
gles 45° and 135°, respectively. The reconstructed surfaces will be slightly different due to
different triangulations. To avoid the directional preference, we may use two triangulation
schemes simultaneously so that the combined stiffness matrix A¢ and load vector by can
be computed via

A= %(A, +A), b= %(b,+ by), (3.9)

which is equivalent to the averaging of their individual cost functionals. However, we want
to point out that the combination of two triangulation schemes requires extra computational
cost. This is especially true for the multi-grid method in which the stiffness matrices have
to be computed at every coarse grid level. Although the single triangulation scheme is
simpler, numerical experiments show that it often gives satisfactory results.

The smoothness constraint on the reconstructed surface can be imposed by adding an

additional term to the cost functional £, such as thin plate energy model
1
fee=3 / (2, + 222, + 22,) dz dy. (3.10)
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By discretizing (3.10), we obtain

1
& = 2h2 Z Z[(znzﬂ.ny = 2zn;my + zn:-l,ny)z + 2(Zn 41,0y +1 = Znzyng+1

ny ny

2 2
= Znz+1l,my + Zn,.ny) + (zﬂ:.ﬂy+l - 2zn,,ny + zn;,ny—l) ]s
where h is the grid spacing. The above equation can be expressed in matrix form as

1
Es = EzTBz, (3.11)

where z is the vector of nodal variables and B is a sparse symmetric matrix. It is convenient
to view the matrix-vector product Bz as a local nodal operator operating on a 2-D array.

The local nodal operator is of the following stencil form

1
1 2 -8 2
B: —|1 -8 20 -8 1
h2
2 -8 2
1

The operator stencils for points near the boundary region have to be treated specially. They
are given in [11}, [21], [22].
Substituting (3.7) and (3.11) into (3.5), we have the overall cost functional in matrix

form as
€= -;-zTCz—sz+c, C=A+AB,

where b is b,, by or by, and A is A,, A; or A as long as it is consistent with the form of b.
It can be shown [11] that although matrices A and B are symmetric positive semi-definite,
C is usually symmetric positive definite. Then the minimization problem is equivalent to

the solution of the linear system of equations
Cz=b.

Efficient iterative linear system solvers such as multi-grid method, PCG (Preconditioned
Conjugate Gradient) method can be applied fot its solution.

To obtain more accurate reconstructed surface, a successive linearization scheme is ap-
plied to the reflectance map. That is, we linearize the reflectance map with respect to
the local gradient point of the triangular patch obtained from the previous iteration, and

perform the above solution procedure repeatedly.
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4 Characteristics of the Reflectance Map

The single-image SF'S algorithm discussed above has its limitation even if the exact lighting
condition and surface reflectivity are known. One extreme case is that the 3-D surface
information is totally lost under a certain lighting condition so that there is no way to
recover the surface orientation due to the lack of information. This phenomenon can be
illustrated by a simple example. Fig. 3(a)shows a 3-D height plot of a roof surface consisting
of two planes which have slopes of the same magnitude but different signs. Figs. 3(b) and
(c) are the synthesized images of Fig. 3(a) based on (2.1) and (2.3) with illuminating
directions (tilt, slant) = (0°,45°) and (90°,45°), respectively. Since there is no intensity
change in Fig. 3(b), it is natural to conclude that the surface is a plane from this image.
In contrast, Fig. 3(c) contains enough information with which we are able to perform the
exact 3-D shape reconstruction.

Since the SFS algorithm is an inverse process which recovers the surface orientations
from the image irradiance through the reflectance map, the characteristics of the reflectance
map play an important role in this problem. For simplicity, let us fix the value of ¢ = go
and view the reflectance map R(p, qo) as a function of one variable p. The corresponding

irradiance equation becomes
E= R(I’a qO)' (4'1)

The sensitivity of p with respect to the change in E can be estimated via

5|2

which is inversely proportional to the slope of the reflectance map at point p. Thus, for a

) (4.2a2)

fixed value of AE, the estimate p is more accurate (i.e. smaller value of Ap) for the region

where R(p, go) is steeper. Similar arguments can be made along the g-direction, i.e.

1|5

9q
The contour plots of two typical reflectance maps are given in Figs. 4(a) and (b). They

(4.2b)

are skewed along the line passing through (0,0) and (p,, ;). If the spacings between the
adjacent contour lines are narrower (or wider), the slopes of the reflectance map R(p, ¢) are

steeper (or smoother), or equivalently, the partial derivatives Ry(p,q) and Ry(p,q) of the



reflectance map have larger (or smaller) absolute values. For a given point (po, ) in the

gradient space, the sensitivity defined in (4.2) is highest along the gradient direction, i.e.

V R(po, q0) = (Rp(Po, 90), Be(po, %)),

and lowest along the tangential direction, i.e. (—Rq(po, 90), Rp(Po, 0))-

In practice, real images contain noises such as the sensor or quantization noises. Besides,
the irradiance values are averaged to obtain a uniform brightness value for each triangular
patch for the algorithm in Section 3. The averaging corresponds to a linear interpolation
for the nonlinear reflectance map, which results in a modeling error. Since the image is
corrupted by these noises, it is relatively difficult to obtain accurate surface orientations
or heights in the region where the slope of the reflectance map is smooth. Furthermore,
the components of the stiffness matrix are determined primarily by the partial derivatives
of the reflectance map with respect to p and ¢ as given by (3.4) and (3.8). Small values
of a or B cause some elements of the stiffness matrix to be nearly zero and make the
problem ill-conditioned so that the height or orientation related to those elements can not
be easily determined. We observe that smaller values of the partial derivatives R,(p, ¢) and
Ry(p, q) often slow down the convergence rate of the iteration with successive linearization.
The slow convergence behavior is clearly attributed to the large condition number of the
original nonlinear minimization problem (3.6).

The following example is used to illustrate the above discussion. We plot in Figs. 5(a),
(b) and (c) the original heights of a portion of a sphere, its corresponding distribution of the
gradients (p, q) of the triangular surface patches and the synthesized image from the illu-
mination direction (tilt, slant) = (45°,45°) with albedo = 250. We show the reconstructed
surfaces, its corresponding (p, ) plot after 1 iteration in Figs. 6(a)-(b) and after 20 succes-
sive iterations in Figs. 6 (c)-(d). The (p,q) value of all points is set to zero initially. By
comparing the (p, q) distributions in Fig 6(b) and (d) to the original one in Fig. 5(b), we
can easily see that the gradient points spread quickly along the steepest descent direction
of the reflectance map, and reach quite accurate values in one iteration. In contrast, the
gradient points move slowly along the tangential direction of the contour lines and have not

yet reached satisfying values even in 20 iterations.
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5 Two Photometric Stereo SFS Algorithms

To overcome the difficulties resulted from a single reflectance map, it is natural to use several
images taken under the different illumination directions while holding the same viewing
direction. The photometric stereo images provide several reflectance map functions, which
can be used to enhance the sensitivity of Ap and Ag with respect to AE over the gradient
domain of our interest.

Given J different photometric stereo images E,; with their corresponding reflectance
maps Rj(p,q), j = 1,...,J, we consider two different schemes to combine them, namely,
the parallel and cascade schemes. The parallel scheme is to use all images at the same time,

and formulate all R;(p,q),1 < j < J, in one cost functional,

J
A
E= //n Z‘(on - E;)dzdy+ 3 //(z:, + 2zzy + zzy)da: dy, (5.1)
J=

where E,; and E; are the jth observed and parameterized images, respectively. By using
the triangular element surface model and the linearized reflectance model, we can express

(5.1) in the discrete form,
£ = %zTéz _BTz4+c, E=A4+)B, (5.2)

where the overall stiffness matrix A and the load vector b are the sum of each individual

stiffness matrix A; and the load vector by, i.e.

A= EAJ', b= ij. (5.3)

More generally, we may choose different weighting coefficients for different images in (5.3)
if appropriate. The nodal height vector z is the vector which minimizes the quadratic

functional (5.2) and can be obtained by solving the linear system of equations,
Cz = b. (5.4)

In contrast, the cascade scheme uses the photometric stereo images one after another in
a cascade manner. The single-image SFS algorithm is used for each image and the previous

result is used as the initial condition.
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6 The Optimal lighting Conditions

To improve the performance of the single-image SFS algorithm, we incorporate reflectance

maps that compensate each other’s weakness. We know from Section 2 that

cosTsino
Ps = coso
and
sinTsino
g = ———.
cos o

Thus, the angle 8 which the line passing through (0,0) and (ps, ¢;) makes with the p-axis
and the distance d between (0,0) and (ps,¢s) can be written as
@ = arctan (Z——’) = arctan(tant) =7,
s

and

d=/p?+q2 =tano,

respectively. Note that the angle @ is exactly the same as the tilt angle 7, and the distance
d depends only on the slant angle . Therefore, the tilt angle determines the orientation
of the reflectance map around the origin whereas the slant angle determines the distance
between the origin and (ps, ¢;) in the gradient space as well as the shape of the reflectance
map. The angle between the two gradient directions of the reflectance maps with tilt angles
71 and 7 is simply | 7, — 72 |

If the slant angle is in the range between 30° and 60°, the reflectance map covers the
central region of the gradient space which is our main concern and has appropriate values in
steepness. Thus, the optimal lighting condition is primarily dependent on the tilt angles of
different light sources and not sensitive to the slant angles as long as they are between 30°
and 60°. We know from the discussion in Section 4 that the reflectance map provides good
sensitivity along the gradient direction but poor sensitively along the tangential direction.
Consider two photometric stereo images illuminated from the same slant angle but different
tilt angles. It is ideal that the gradient directions of one reflectance map correspond to the
tangential directions of the other reflectance map over the region of our interest. This can
be achieved by choosing the difference of their tilt angles to be 90°. One such example is
given by Fig. 4(c), where the contour plots of two reflectance maps are shown together.

The tilt angles are 45° and 135°, respectively while the slant angle (= 45°) and albedo
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(= 250) are fixed. Note that the gradients of a smooth surface are usually concentrated on
the central region of the gradient space, say, —0.5 < p,¢ < 0.5. It is clear from these two
figures that the gradient direction of one reflectance map is the tangential direction of the
other and vice versa in this region. To summarize, the optimal lighting condition can be
written as

| 7 — 12 |=90°. (6.1)

The condition (4.1b) can be verified by the experimental results shown in Table 1.
The test object is the sombrero surface shown in Fig. 7(a). The rms error of the re-
constructed surface height by the parallel and cascade schemes with varying tilt angles
(= 0°,15°,...,345°) while keeping slant angle (= 45°) and albedo (= 250). We see from
these data that the parallel scheme produces more accurate reconstructed surface and the
best result is obtained when the tilt angles of the two photometric stereo images are or-
thogonal to each other. That is, when the tilt angle of the second image is around 135° or
315° in this example. The error becomes larger when the two images are illuminated from

similar tilt angles.

7 Experimental Results

Our algorithms have been applied to four sets of photometric stereo images. The first two
sets (sombrero and Mozart) are synthetic images while the last two sets (faces of two statues)
are real images. For each test problem, both parallel and cascade schemes are performed.
The results are compared to those obtained from the single-image SFS algorithm described
in [17). We have also tested different illuminating directions with varying tilt angles for the
sombrero image.

Test Problem 1: Sombrero

The tested photometric stereo images are generated from the sombrero surface as shown
in Fig. 7(a). The corresponding (p, q) distribution is given in 7(b). The two photometric
stereo images are generated by illuminating from (tilt, slant) = (45°,45°) and (135°,45°),
respectively, with albedo = 250. They are shown in Figs. 7(c) and (d). Note that these
two images are shaded by light sources with orthogonal tilt angles.

Results of the single-image SFS algorithm applied to Figs. 7(c) and (d) are given in

Fig. 8. The results are not good in some regions. It is easier to see the discrepancies in the

13



Table 1: The rms error of the reconstructed surface height according to the variation of tilt
angle of the second image for the parallel and the cascade schemes, (tilt, slant) = (45°,45°)
are fixed for the first image and slant = 45° are fixed for the second image.

tilt(°) | parallel | cascade

0 0.125186 | 0.187297
15 0.128692 | 0.231566
30 0.192990 | 0.360646
45 0.447816 | 0.431678
60 | 0.181018 | 0.336983
75 0.109999 | 0.218857
90 | 0.093384 | 0.208685
105 | 0.087438 | 0.226707
120 | 0.085450 | 0.221273
135 | 0.076186 | 0.237868
150 | 0.079959 | 0.225893
165 | 0.084040 | 0.210219
180 | 0.132937 | 0.186983
195 | 0.170376 | 0.201333
210 | 0.170710 | 0.261275
225 | 0.168250 | 0.347342
240 | 0.149476 | 0.299825
255 | 0.121514 | 0.217509
270 | 0.090110 | 0.192800
285 | 0.085979 | 0.204031
300 | 0.096235 | 0.210975
315 | 0.078121 | 0.214341
330 | 0.080660 | 0.212522
345 | 0.099063 | 0.214217
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(p,q) domain. By comparing the distributions of these (p,gq) values with the original one,
we see clearly that points move slowly along the tangential directions of the contours. The
results of the parallel and cascade schemes are shown in Fig. 9. For the cascade scheme,
we first reconstruct the surface from the image given in Fig. 7(c) and then use it as the
initial guess for another surface reconstruction algorithm based on the image in Fig. 7(d).
By comparing the (p, ¢) distributions of the parallel scheme and the single-image method
with that of the original one, we see that a significant improvement has been achieved by
using the parallel scheme. This is due to that the two reflectance maps help each other
and provide good sensitivity over the interested region of the gradient space as discussed in
Sections 4 and 6. The cascade scheme provides a better result over the single-image SFS
algorithm, but performs slightly worse than the parallel scheme as shown in Table 1. We
conclude from this table that the parallel scheme produces more accurate surfaces, and the
best result is achieved when the tilt angles are orthogonal to each other.

Test Problem 2: Mozart

The test images are synthesized from the Mozart statue, and the surface height is ob-
tained from the range data. The original 3-D surface height is plotted in Fig. 10(a), and
two images generated with illuminating directions (tilt, slant) = (135°,45°) and (45°,45°)
and albedo = 250 are shown in Figs. 10(b) and (c). Note that there exist some defects
in the original data such as points along the object boundaries and under the nose. The
reconstructed surface heights are presented in Fig. 11. Figs. 11(a) and (b) show the 3-D
plots of the reconstructed surfaces by the single-image SFS algorithm applied to images in
Figs. 10(b) and (c), respectively. The results of the parallel and cascade schemes are shown
in Figs. 11(c) and (4d).

The reconstructed surfaces from the single-image SF'S algorithm contain errors in regions
over the face and background depending on the illumination direction, or equivalently, the
reflectance map. In contrast, the reconstructed surface with the parallel scheme in Fig 11(c)
is almost the same as the original one except at the discontinuities along the boundary and
some defect points of the original surface. The reconstructed surface of the cascade scheme
is not quite satisfactory. However, it is better than those obtained with the single-image
SFS algorithm, which is consistent with the results in Test Problem 1.

Test Problem 3: Face of the David statue

The tested images are 128 x 128 real images of the statue of David’s head illuminated
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from directions (tilt, slant) = (135°,45°) and (45°,45°) as shown in Figs. 12(a) and (b),
respectively. Even though the plaster statue has a Lambertian surface, we would like to
comment several problems concerning these images. First, it is difficult to get an ideal
lighting condition satisfying the reflectance map model and, therefore, the observed bright-
ness at a point may have undesirable distortions or variations due to the finite distance of
the light source as well as the quantization noises. Second, the self-shadow problem often
appears in real images. Since no shading information is available in self-shadowed regions, it
is difficult to extract the correct shape information in those regions. Additional information
such as shading from different illumination directions or other high level visual cues is often
needed to recover the shape in the self-shadowed region. Note that although there exist
self-shadow regions under the nose in both test images, they do not overlap with each other
and hence provide sufficient information for surface reconstruction.

The results of the single-image SF'S algorithm based on Figs. 12(a) and (b), and those of
the parallel and cascade schemes are shown in Figs. 13 (a)-(d), respectively. By comparing
the two reconstructed surfaces of the single-image SFS algorithm in Fig. 13(a) and (b), one
can observe that they are not consistent with each other in several regions. Besides, the
surface in Fig. 13(a) seems to be erroneous due to the ambiguity occurring in the cheek
region as given in Fig. 12 (a). The reconstructed surface orientations are quite different
from their true values, even though the brightness error is small. This phenomenon can be
understood by examining the roof surface example in Fig. 3. A great deal of improvement
has been achieved by the parallel scheme, and the result in Fig. 13 (c) looks very nice. Both
brightness distortion effect and self-shadow problems are clearly minimized by combining
photometric stereo images. The reconstructed surface in Fig. 13(d) is obtained by the
cascade scheme, where the result of Fig. 13(b) is used as the initial height for surface
reconstruction based on the image of Fig. 12(a). We see that the ambiguity in Fig. 12(a)
is eliminated due to a proper initial guess.

Test Problem 4: Face of the Agrippa statue

The test images are 128 x 128 real images of the Agrippa statue as shown in Figs.
14(a) and (b) where the estimated illumination directions are (tilt, slant) = (135°,50°)
and (45°,45°), respectively. These images have relatively large regions of self-shadow. The
results of the single-image SFS algorithm and the parallel and cascade schemes are shown

in Figs. 15 (a)-(d). We observe from Figs. 15(a) and (b) that ambiguities, which are similar
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to that discussed in the previous test problem, occur for both surfaces in several regions
including cheeks. Moreover, the self-shadow problem is quite serious. It is evident from
Figs. 15(c) and (d) that both ambiguity and self-shadow problems are resolved by using
photometric stereo SFS schemes and, in particular, by using the parallel scheme. Note also
that the two images in Figs. 14(a) and (b) have common self-shadowed regions near the
eyes. The reconstructed shape of the regions may not be accurate since no sufficient shading
information is provided. This situation often happens in practice and may be handled by
incorporating additional photometric stereo image which gives shading information in these

regions.

8 Conclusion and Extension

We have shown that the accuracy of the reconstructed surface and the performance of
the single-image SFS algorithm are highly related to the slop of the reflectance map func-
tion in the gradient space. Based on this observation, we proposed two new iterative SFS
algorithms, i.e. parallel and cascade schemes, using multiple photometric stereo images
taken under different lighting conditions. More accurate surfaces can be reconstructed
by combining several reflectance maps and the corresponding image information together.
Based on the linear approximation of the reflectance map and a triangular element surface
model, these two schemes are formulated as a quadratic functional minimization problem
parametrized by surface heights, where the cost functional is given by the squares of the
brightness error obtained from each individual image in a parallel or cascade manner. Sur-
face heights are obtained directly by solving the equivalent large linear system of equations
with efficient linear system solvers such as the MG (Multi-Grid) or the PCG (Preconditioned
Conjugate Gradient) method. These methods do not require any additional integrability
constraint or artificial boundary assumption.

Our algorithms are tested on several images. Experimental results show that both
schemes produce more accurate reconstructed surface compared to the single-image SF'S
algorithm. Especially, it is shown that the parallel scheme is robust and reliable, and
gives accurate results for all test problems. The effect of different illumination directions
of two light sources is also tested. We conclude that the best result can be obtained when

the two illumination directions are orthogonal to each other, since their reflectance maps
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complement each other in the optimal way in the central region of the (p,¢) domain. Our
proposed schemes work very well for synthetic images as well as real ones. Even in the
presence of intensity distortions, noises and self-shadows in real images, the new photometric
SFS schemes produce robust reconstructed surfaces, while the single-image SFS algorithm
does not.

Compared to the conventional photometric stereo method, our new iterative SF'S method
has two major advantages: no integrability problem and being insensitive to the noise. How-
ever, our method requires the smooth surface assumption whereas the conventional method
does not. It is interesting to see the combination of the conventional with the new method.
For example, the application of the conventional method in regions with discontinuities and

changing albedo while the application of the new method to the remaining region.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure Captions

A uniform triangulation of a square domain .
A nodal basis function ¢;.

The example of a roof surface: (a) 3-D height plot; (b) and (c) are synthesized images
with (albedo, tilt, slant) = (230, 0°,45°) and (230, 90°,45°), respectively.

Contour plots of two reflectance maps with (a) (albedo, tilt, slant) = (250, 45°,45°) or
(Pss gs) = (—0.707,-0.707) and (b) (albedo, tilt, slant) = (250, 135°,45°) or (ps,¢s) =
(0.707,—0.707); (c) combined reflectance map of (a) and (b). .

The example of a sphere surface: (a) the ground truth; (b) (p, ¢) distribution in the
gradient space; (c) synthesized image with (albedo, tilt, slant) = (250,45°,45°).

Results of the single-image SFS algorithm applied to the sphere image in Fig. 5(c):
(a) and (b) are the reconstructed height and the corresponding (p,q) plot after 1
iteration; (c) and (d) are the reconstructed height and the corresponding (p,q) plot
after 20 successive iterations.

The sombrero test problem: (a) the ground truth of the sombrero surface; (b) (p, q)
distribution in the gradient space, (c) synthesized image with (albedo, tilt, slant) =
(250, 45°,45°); (d) synthesized image with (albedo, tilt, slant) = (250, 135°,45°).

Results of the single-image SFS algorithm applied to the sombrero images: (a) and
(b) are the reconstructed height and the corresponding (p, ¢) plot based on the image
of Figure 7(c); (c) and (d) are the reconstructed height and the corresponding (p, q)
plot based on the image of Figure 7(d).

Results of the photometric stereo SFS algorithm applied to the sombrero images: (a)
and (b) are the reconstructed height and the corresponding (p, g) plot by the parallel
scheme; (c) and (d) are the reconstructed height and the corresponding (p, ¢) plot by

the cascade scheme.
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Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

The Mozart test problem: (a) the ground truth of the Mozart statue; and two synthetic
images illuminated with (b) (albedo, tilt, slant) = (250, 135°,45°) and (c) (albedo, tilt,
slant) = (250, 45°,45°).

Results of the SFS algorithms applied to the Mozart images: (a) and (b) are the
reconstructed heights from Fig. 10(a) and (b) by the single-image SFS algorithm; (c)
and (d) are the reconstructed heights by the photometric stereo SFS algorithms with
the parallel and cascade schemes, respectively.

The David test problem: two real images of the David statue illuminated with (a)
(tilt, slant) = (135°,45°); (b) (tilt, slant) = (45°,45°).

Results of SFS algorithms applied to the David images: (a) and (b) are the recon-
structed heights from Fig. 15(a) and (b) by the single-image SFS algorithm; (c) and
(d) are the reconstructed heights by the photometric stereo SFS algorithms with the

parallel and cascade schemes, respectively.

The Agrippa test problem: two real images of the Agrippa statue illuminated with
(a) (tilt, slant) = (135°,50°); (b) (tilt, slant) = (45°,45°).

Results of SFS algorithms applied to the Agrippa images: (a) and (b) are the recon-
structed heights from Fig. 17(a) and (b) by the single-image SFS algorithm; (c) and
(d) are the reconstructed heights by the photometric stereo SFS algorithms with the

parallel and cascade schemes, respectively.
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Fig. 2. A nodal basis function ¢;,
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(b) (c)

Figure 3:  The example of a roof surface: (a) 3-D height plot; (b) and (c) are synthesized images with
(albedo, tilt, slant) = (230, 0°,45°) and (230,90°,45°), respectively.
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Figure 4: Contour plots of two reflectance maps with (a) (albedo, tilt, slant) = (250,45°,45°) or
(s, 9s) = (—0.707,—-0.707); (b) (albedo, tilt, slant) = (250,45°,645°) or (p,,q,) = (0.707,—-0.707); (c)
combined reflectance map of (a) and (b).
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Figure 5: The example of a sphere surface: (a) the ground truth; (b) (p, ¢) distribution in the gradient
space; (c¢) synthesized image with (albedo, tilt, slant) = (250, 45°,45°)
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Figure 6:  Results of the single-image SFS algorithm applied to the sphere image in Fig. 5(c): (a) and
(b) are the reconstructed height and the corresponding (p,q) plot after 1 iteration; (c) and (d) are the
reconstructed height and the corresponding (p, q) plot after 20 successive iterations.
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Figure 7: The sombrero test problem: (a) the ground truth of the sombrero surface; (b) (p, ) distribution
in the gradient space, (c) synthesized image with (albedo, tilt, slant) = (250, 45° 45°); (d) synthesized
image with (albedo, tilt, slant) = (250, 135°,45°).
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Figure 8:  Results of the single-image SFS algorithm applied to the sombrero images: (a) and (b) are
the reconstructed height and the corresponding (p, q) plot based on the image of Figure 7(c); (¢) and (d)
are the reconstructed height and the corresponding (p, ¢) plot based on the image of Figure 7(d).
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Figure 9: Results of the photometric stereo SFS algorithm applied to the sombrero images: (a) and (b)
are the reconstructed height and the corresponding (p, q) plot by the parallel scheme; (c) and (d) are the
reconstructed height and the corresponding (p, ¢) plot by the cascade scheme.
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Figure 10:  The Mozart test problem: (a) the ground truth of the Mozart statue; and two synthetic images
illuminated with (b) (albedo, tilt, slant) = (250, 135°,45°) and (c) (albedo, tilt, slant) = (250, 45°,45°).
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(c) (d)

Figure 11:  Results of the SFS algorithms applied to the Mozart images: (a) and (b) are the reconstructed
heights from Fig. 10(a) and (b) by the single-image SFS algorithm; (c) and (d) are the reconstructed
heights by the photometric stereo SFS algorithms with the parallel and cascade schemes, respectively.
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(b)

Figure 12:  The David test problem: two real images of the David statue illuminated with (a) (tilt,
slant) = (135°,45°); (b) (tilt, slant) = (45°,45°).
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(a)

Figure 13:  Results of SFS algorithms applied to the David images: (a) and (b) are the reconstructed
heights from Fig. 15(a) and (b) by the single-image SFS algorithm; (c) and (d) are the reconstructed
heights by the photometric stereo SFS algorithms with the parallel and cascade schemes, respectively.
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Figure 14: The Agrippa test problem: two real images of the Agrippa statue illuminated with (a) (tilt,
slant) = (135°,50°); (b) (tilt, slant) = (45°,45°).



Figure 15:  Results of SFS algorithms applied to the Agrippa images: (a) and (b) are the reconstructed
heights from Fig. 17(a) and (b) by the single-image SFS algorithm; (c) and (d) are the reconstructed
heights by the photometric stereo SFS algorithms with the parallel and cascade schemes, respectively.
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