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Abstract

Although textures have been studied for more than thirty years, research on tex-
ture analysis is still active. The main difficulty of the problem is due to the lack of
an adequate tool which characterizes different scales of textures effectively. Traditional
methods based on the second-order statistics or the Gaussian Markov Random Field
(GMRF) model share one common weakness. That is, they primarily focus on the cou-
pling of pixels in a single scale. Recent developments in multiresolution analysis such as
the Gabor and wavelet transforms help to overcome this difficulty. In this research, we
propose a multiresolution approach based on a tree-structured wavelet transform for tex-
ture classification. The development of tree-structured wavelet transform is motivated
by the observation that textures are quasi-periodic signals whose dominant frequen-
cies are located in the middle frequency channels. With the transform, we are able to
zoom into desired frequency channels and perform further decomposition. In contrast,
the conventional wavelet transform only decomposes subsignals in low frequency chan-
nels. We also develop a progressive texture classification algorithm which is not only
computationally attractive but also has excellent performance.

1 Introduction

Textures provide important characteristics for surface and object identification from aerial
or satellite photographs and biomedical images. Their analysis is fundamental to many
applications such as industrial monitoring of product quality, remote sensing of earth re-
sources, and medical diagnosis with computer tomography. Numerous research work has
been done on texture analysis, classification and segmentation for last three decades. De-
spite the effort, texture analysis is still considered an interesting but difficult problem in

image processing.
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Early research work [11], [23], [29], (30}, [41] such as SGLDM [24] and correlation [6], [19]
was based on the second-order statistics of textures. In the 80’s, researchers developed the
Gaussian Markov Random Field (GMRF) 5], (8], [12], [18], [31], [32], [47], [48] 2nd Gibbs
distribution [16), [17), [22], [34] texture models, where the gray levels between nearest
neighboring pixels are characterized by a certain stochastic relationship. All the above
methods share one common weakness. That is, they primarily focus on the coupling between
image pixels on a single scale. Laws [35] proposed a simple scheme which used local linear
transformations and energy computation to extract texture features. The simple scheme
often gives reasonably good performance, and has been studied and improved by many
researchers [10], [26], [27], [43], [44]. More recently, methods based on multichannel or
multiresolution analysis have received a lot of attention [1], [3], [45]). They often outperform
traditional methods based on the second-order statistics or the GMRF model. Laws method
turns out to be a multichannel method, which explains its good performance. This suggests
that the main difficulty of traditional texture analysis is due to the lack of an adequate
tool which characterizes different scales of textures effectively. Recent developments in
time/frequency analysis such as Gabor and wavelet transforms provide good multiresolution
analytical tools and should help to overcome this difficulty.

Textures can be modeled as a quasi-periodic pattern and detected by highly concentrated
spatial frequencies and orientations. Recent study on the human vision system indicates
that the spatial/frequency representation 7], [9], [39], [46] which preserves both global and
local information is adequate for quasi-periodic signals. This observation has motivated
researchers to develop multiresolution texture models. New algorithms such as methods
with the Gabor transform have been proposed, and successful results have been reported
[2], [3], [15), [20], [38]. However, the use of the Gabor transform as a texture discriminant
tool requires parameters such as spatial frequencies and orientations and the shape of the
Gaussian envelope function. These parameters are often determined by applying the Fourier
transform to textures and examining the peaks of computed power spectra. In this research,
we use the wavelet transform for texture analysis and classification. One clear advantage of
the wavelet transform over the Gabor transform is that spatial frequencies and orientations
can be determined automatically in the transform process so that no additional procedure
is required for parameter estimation.

The wavelet transform is a new spatial/frequency analytical tool which has been under
intensive study during the last five years [13], [14], [25], [36], [37], [40], [42]. We propose



a multiresolution texture model based on a modified wavelet transform called the tree-
structured wavelet transform. The traditional pyramid-type wavelet transform decomposes
subsignals in the low frequency channels. However, since the most significant informa-
tion of a texture often appears in the middle frequency channels, the conventional wavelet
transform does not apply properly. To modify the transform, we use a certain energy
function to characterize the strength of a subsignal whose components are concentrated
in a frequency channel, and perform a further decomposition for the channel containing a
significant amount of energy.

To achieve the texture classification task, we adopt a two-phase (i.e. learning and
classification) procedure. In the learning phase, the tree-structured wavelet transfofm is
performed on various samples of known textures. Although different samples of the same
texture may result in slightly different tree-structured wavelet decompositions, we associate
each decomposition with an energy function defined on the transform domain called the
energy map and find a unique texture representation by averaging the energy maps of all
samples. Then, two schemes are considered in the classification phase. One scheme is to
select J channels containing largest J energy values of unknown textures as features for the
basis of comparison. The other scheme uses the channel with the largest energy value as
a single feature to eliminates the unlikely choices. If there are still more than one possible
choices remaining, we add the second largest energy channel as the second feature. The
same procedure is repeated until there is no more ambiguity. The resulting method is called
the progressive classification algorithm, which is not only computationally attractive but
also has excellent performance. It provides a systematic way to classify textures without
clear dominant frequencies. Note that this kind of texture is very difficult to discriminate
for existing methods using the Gabor transform or multichannel filter-bank decomposition.

This paper is organized as follows. In Section 2, we briefly review the conventional
wavelet transform and introduce the new tree-structured wavelet transform. We use an
example to demonstrate the difference between conventional and tree-structured wavelet
transforms, and explain why the new transform is appropriate for texture representation.
Two texture classification algorithms are described in Section 3. The first algorithm uses a
fixed number of features whereas the second algorithm uses a minimum number of features
sufficient for classification. Experimental results of texture classification are presented in
Section 4. We compare our method and methods based on the Gabor transform in Section

5. Concluding remarks are given in Section 6.
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2 Tree-Structured Wavelet Transform for Textured Images
2.1 Review of Wavelet Transform

By the wavelet transform, we decompose a signal with a family of real orthonormal bases
obtained through translation and dilation of a kernel function ¥(z) known as the mother

wavelet. The basis function of a discrete wavelet transform can be expressed as
Pmalz) = 272927 ™z - n), (2.1)

where m and n are integers. Due to the orthonormal property, the wavelet coefficients of a

signal f(z) can be easily computed via

+00
Cmm = / F(2)mnl(z)dz,

and the synthesis formula

f(z) = Z Cmn¥m,n(2)

can be used to recover f(z) from its wavelet coefficients.
To construct the mother wavelet ¥(z), we may first determine a scaling function ¢(z),
which satisfies the two-scale difference equation [13], {42]

#(z) = V2 ij h(k)$(2z — k). (2:2)
Then, the wavelet kernel ¥(z) is related to the scaling function via
P(z)= V2 ijg(k)cb(?w - k), (2.3)
where
g(k) = (~1)*r(1 - k). (24)

The coefficients A(k) in (2.2) have to meet several conditions for the set of basis wavelet
functions in (2.1) to be uniqueness, orthonormal and with a certain degree of regularity
{42]. Several different sets of coefficients h(k) s;ttisfying the above conditions can be found
in the wavelet literature [13], [14], {36], [37] (see also Table 1).

The coefficients h(k) and g(k) play a very crucial role in a given discrete wavelet trans-

form. In fact, to perform the wavelet transform does not require the explicit forms of ¢(z)



and ¥(z) but only depends only on A(k) and g(k). To illustrate this, let us consider a
function

folz) =) coxdoi(z), (2.5)
P

where the coefficients ¢ x are given. We want to decompose f(z) into two components: a
lower resolution component fi(z) and the wavelet component at scale m = 1. This can
be achieved by projecting f(z) on ¢ a(z) and ¥, x(z) or, equivalently, by integrating (2.5)
with ¢1,.(z) and ¥, i(z). Let the results be denoted by ¢;, and dy ,, respectively. It is
straightforward to verify that

Jo(z) Y coxdoi(z),
k

Y ler kb i(z) + dr st i(2)],
%

where
Cin = E cokh(k - 2n), din= Zco,kg(k —- 2n).
k k

In fact, the same procedure can be applied to any scale m = 7 4 1 for § > 0. That is, we

have

Ji(z)

Y cikdin(z)
!
= Y leir1xdinil(®) + diprx¥ip i),
P

where the coefficients ¢ji1,n and dji1,n at scale j + 1 are related to the coefficients c;x at

scale j via
Civrn = T ciah(k=20),  disin= 3 cinglk—2n) for j20.  (26)
k k

Thus, (2.6) provides a recursive algorithm for wavelet decomposition through h(k) and g(k).
After J-level decomposition, the final outputs include a set of J-level wavelet coefficients
djn, 1 £ 7 £ J, and the coefficient ¢, for a loew resolution component ¢;x(z). By using
a similar approach, we can derive a recursive algorithm for function synthesis based on its

wavelet coefficients d;n, 1 < j < J, and ¢y

ik = 3 Cixrah(k—20) + 3 diy1a9(k — 2n). (2.7)
n n



It is convenient to view the decomposition (2.6) as passing a signal ¢;x through a pair
of filters H and G with impulse responses h(n) and §(n) and downsampling the filtered

signals by two (dropping every other sample), where A(n) and §(n) are defined as
h(n) = h(-n),  §(n) = g(-n).

The pair of filters H and G correspond to the halfband lowpass and highpass filters and are
called the quadrature mirror filters in the signal processing literature, respectively. The re-
construction procedure is implemented by upsampling the subsignals ¢;41 and dj4, (insert-
ing a zero between neighboring samples) and filtering with k(n) and g(n), respectively, and
adding these two filtered signals together. Usually the signal decomposition scheme is per-
formed recursively to the output of the lowpass filter A. It leads to the conventional wavelet
transform or the so-called pyramid wavelet decomposition. Thus, the wavelet transform
provides a multiresolution filter-bank decomposition of a signal with a set of orthonormal
bases.

The coefficients A(k), 0 < k < 15, of the Battle-Lemarié and the 16-tap Daubechies
wavelet transforms are listed in Table 1. The coefficients k() of the Battle-Lemarié wavelet
are symmetric, i.e. hy(k) = hy(—k). Although hy(k) is an infinite duration sequence, it
decays exponentially for large k. In contrast, the coefficients h4(k) of the 16-tap Daubechies
wavelet has a compact support of length 16, i.e. hg(k) =0if kK < 0 or k > 15.

The 2-D wavelet transform can be formed by the tensor product of two 1-D wavelet
transforms along the horizontal and vertical directions. The corresponding 2-D sequences

can be written as

hpi(k,l) = h(k)h(I) hra(k,t) = h(k)g(l)
hir(k, 1) = g(k)h(l) han(k,l) = g(k)g(l),

where the first and second subscripts denote the lowpass or highpass filtering characteristics
of the corresponding filters in the 2- and y-directions, respectively. The conventional pyra-
mid wavelet transform performs further wavelet decomposition recursively to the output of

the lowpass filter Hyz with impulse response hrr(k,1) = h(k)A(I).

2.2 Tree-structured Wavelet Transform

The pyramid-structured wavelet transform decomposes a signal into a set of frequency

channels which have narrower bandwidths in the lower frequency region. The transform is



Battle-Lemarié

[ 16-tap Daubechies |

h(0) | 0.7661300537597422 | 0.054415842243
h(1) | 0.4339226335303024 | 0.312371590914
h(2) | -0.0502017246714322 |  0.675630736297
R(3) | -0.1100370183880987 |  0.585354683654
h(4) | 0.0320808974701767 | -0.015829105256
h(5) | 0.0420683514407039 | -0.284015542962
R(6) | -0.0171763154919797 |  0.000472484574
h(7) | -0.0179823209809603 |  0.128747426620
h(8) | 0.0086852948130698 | -0.017369301002
R(9) | 0.0082014772059938 | -0.044088253931
h(10) | -0.0043538394577629 | _ 0.013981027917
h(11) | -0.0038824252655926 |  0.008746094047
h(12) | 0.0021867123701413 | -0.004870352993
R(13) | 0.0018821335238871 | -0.000391740373
h(14) | -0.0011037398203844 |  0.000675449409
R(15) | -0.0009271987314557 | -0.000117476784

Table 1: Wavelet Transform Filter Coefficients

suitable for signals consisting primarily of smooth components so that their information is
concentrated in the low frequency regions. However, it is not suitable for textured images,
since textures are quasi-periodic signals whose dominant frequency channels are located in
the middle frequency region. This concept can be illustrated in Figure 1 where the pyramid-
structured wavelet transform is applied to two different kinds of images. We use the Lena
image as a representative for an ordinary image. The image and its pyramid-structured
wavelet transform are shown in Figure 1 (a). The textured image French Canvas (D21)
and its pyramid-structured wavelet transform are shown in Figure 1 (b) for comparison.
By examining the wavelet transformed image in Figure 1 (a), we recognize the Lena image
clearly from its low frequency channel (the upper left corner). In contrast, we are not
able to recognize a similar texture pattern in the same low frequency channel for Figure 1
(b). Instead, we observe some horizontal and -vertical line patterns clearly in the middle
frequency region. The simple experiment implies that the low frequency region of textures
may not necessarily contain significant information. Thus, an appropriate way to perform
the wavelet transform for textures is to detect the significant frequency channels and then

to decompose them further.



The above idea leads naturally to a new type wavelet transform which is called the tree-
structured wavelet transform. The key difference between this algorithm and the traditional
pyramid algorithm is that the decomposition is no longer simply applied to the low frequency
subsignals recursively. Instead, it can be applied to the output of any filter Hrr, Hry,
Hpyp or Hyy. The block diagram of the tree-structured wavelet decomposition is shown in
Figure 2. Note that it is usually unnecessary and expensive to decompose all subsignals in
each scale to achieve a full decomposition. To avoid a full decomposition, we may consider
a criterion to decide whether a decomposition is needed for a particular output. We use the
averaged /;-norm :

1 1 ¥
e(x) = Flixll = szn |zl (2.8)
where x = (z1,--,2n), as the energy function to locate dominant frequency channels.
Although there exist other norms such as the {-norm for the energy function, we find that
the /; and /; norms make little difference in the final results. The energy function (2.8) is

chosen due to its simplicity. The tree-structured wavelet transform is given below.

Algorithm 1 : Tree-Structured Wavelet Transform

1. Decompose a given textured image with 2D two-scale wavelet transform into 4 subim-

ages, which can be viewed as the parent and children nodes in a tree.

2. Calculate the energy of each decomposed image (children node). That is, if the de-
composed image is z(m,n), with 1 < m < M and 1 £ n < N, the energy is

1 M N

€=y z Z |z(m, n)|.

=1 =1

3. If the energy of a subimage is significantly smaller than others, we stop the decom-
position in this region since it contains less information. This step can be achieved
by comparing the energy with the largest energy value in the same scale. That is, if

e < Cemax, stop decomposing this region where C is a constant less than 1.

4. If the energy of a subimage is significantly larger, we apply the above decomposition

procedure to the subimage.

Four textures and their tree-structured wavelet decompositions with C = 0.3 are shown

in Figure 3. With respect to each tree-structured wavelet transform, we calculate the



normalized energy at its leaves, and obtain a normalized energy function defined on the
spatial/frequency domain called the energy map, which will be used for texture classification.
Figure 4 shows the energy map of texture D53. Note that the energy map is in fact
representable by the well known quadtree structure [28].

To investigate the robustness of the tree-structured wavelet decomposition, we apply
the transform to 100 samples of French Canvas (D21) and Oriental Straw Cloth (D53)
with C = 0.15. It turns out that all samples of texture D53 have exactly the same 4-level
tree structure as given in Figure 3 (b). In contrast, there exist two 3-level tree structures
occurring 84 and 16 times, respectively, for texture D21. With a further decomposition,
we observe sixteen 4-level tree structures. Actually, the number of different tree structures
highly depends on the constant C. For example, by decreasing the value of C, the tree-
structure of texture D53 will not be the same for all samples. This observation suggests
that the structure of the tree may not serve as a good candidate for texture representation.

However, if we focus on dominant frequency channels having large energy value, the
representation becomes much more robust. Table 2 shows different kinds of energy maps
with the first 5 dominant channels for 100 samples of texture D53 with threshold C = 0.15.
The meaning of the frequency channel ABBB is described in Figure 5. We see from Table 2
that the first 3 dominant channels are the same for all samples. Although the 4th and 5th
dominant frequency channels may differ, only three channels (AABB, AACC and AABC)

appear.

tree | number of dominant frequency channels

type | occurrence | first second third fourth  fifth
1 49 ABBB ABAB BBBB AABB AACC
2 29 ABBB ABAB BBBB AABB AABC
3 14 ABBB ABAD BBBB AACC AABB
4 5 ABBB ABAB BBBB AABC AABB
5 3 ABBB ABAB BBBB AACC AABC

Table 2: The first 5 dominant channels for texture D53.

For texture D21 with C = 0.15, we can classify them into 8 different types according to
the first 5 dominant channels as shown in Table 3. Note that there are only six different
channels appearing in the table. The first two dominant channels are either ADDD or
ADAD, and the 3rd and 4th dominant channels are either BABA or BBBA.



tree | number of dominant frequency channels

type | occurrence | first second third fourth  fifth
1 38 ADAD ADDD BABA BBBA ABAB
20 ADAD ADDD BABA BBBA ABBB
7 ADDD ADAD BABA BBBA ABAB
ADDD ADAD BABA BBBA ABBB
ADAD ADDD BBBA BABA ABAB
ADDD ADAD BBBA BABA ABAB
ADAD ADDD BBBA BABA ABBB
ADDD ADAD BBBA BABA ABBB

—

PG R]WN
=] Ot ~| 00

Table 3: The first 5 dominant channels for texture D21.

The tree-structured wavelet transform generates a multiresolution/multichannel texture
representation with complete basis functions which have a good spatial/frequency localiza-
tion property. It is interesting to compare the tree-structured wavelet transform with the
local linear transform method from the multichannel decomposition viewpoint. The local
linear transform method uses a fixed numbers of filter masks with predetermined frequencies
and bandwidths. The set of filter masks are usually determined by extensive experiments
and may vary for different textures. In contrast, the tree-structured wavelet transform de-
termine important channels dynamically according to a certain energy calculation and can

be viewed as an adaptive multichannel method.

3 Texture Classification Algorithms
3.1 Classification with Fixed Number of Features

A simple texture classification algorithm follows directly from Algorithm 1. The process is

detailed as follows.

Algorithm 2 : Classification algorithm with J features.

¢ Learning phase.

1. Given m samples obtained from the same texture, decompose each sample with
the tree-structured wavelet transform and calculate the normalized energy at its
leaves which defines an energy function on the spatial/frequency domain known

as the energy map.
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.

2. Generate a representative energy map for each texture by averaging the energy

maps over all m samples.

3. Repeat the process for all textures.

¢ Classification phase

1. Decompose an unknown texture with the tree-structured wavelet transform and

construct its energy map.

2. Pick up the first J dominant channels which are the leaf nodes in the energy
map with the largest energy values as features. Denote this feature set by x =
(xl, ey a:J).

3. For texture i in the database, pick up the energy values in the same channels and
denote the energy value by m; = (m;,...,m; ). Note that if the associated
leaf node does not exist in the energy map, the normalized energy value of its
parent node can be used. This often means that the energy value of this channel
is small so that the texture is not similar to the unknown texture and we discard

texture ? from the candidate list and test the next texture in the database.

4. Calculate the discrimination function for textures in the candidate list by
D; = distance(x, m;). (3.1)
5. Assign the unknown texture to texture i if D; < D; for all j # 1.

The above algorithm uses the energy values at the J most dominant channels as features
for classification. Several distance functions can be used in (3.1). In particular, we consider
four such functions and list them in Table 4, where C; is the covariance matrix of the feature
set for texture 7.

The Mahalanobis distance is a useful measure of similarity if some statistical properties
of textures are known. In particular, if C; is a diagonal matrix or, equivalently, features are

independent of each other, the Mahalanobis distance reduces to the form

J e )2
Dy =Y Ei— i) (3.2)
i=1 c"J

where ¢; ; is the variance of feature § and class i. For the case that C; is not diagonal but

diagonally dominant, formula (3.2) is still a good choice for distance measure. One special

11



Euclidean Distance: Dy = Z}]=1 (zj — my;)?

Bayes Distance: Dy = (z — m))TC Yz — m;) + In|Ci
Mahalanobis Distance: Dj; = (2 — m;)7C? sa: - m;)
Simplified Mahalanobis Distance: Dg; = 'J-'=1 (—x-’%';'ﬂ-)—

Table 4: Four distance functions for classification.

feature of (3.2) is that it can be computed recursively. That is, the distance Dg?l) using

,(,J-) and the new feature z 41

J 4 1 features can be expressed in terms of the partial sum Dg;

as

p{iFy 3T i)

Jf (zj = mi;)?
J=l c"]

. _ R 2
D 4 (Zs41 = Mig41)” (3.3)
! Ci,J+1

Furthermore, if the joint density function of features is available, more sophisticated distance
measures such as the one based on the Bayes decision rule can be used. By the law of large
number, we may assume that the density function of features is Gaussian so that the Bayes

decision function assumes the form
Dy(z,m;,C;) = (z - m,~)TC,-"(rc - m;)+ In|Cyl.

Note that the Bayes distance is similar to the Mahalanobis distance for features with Gaus-

sian distribution except the addition of the second term known as the covariance difference.

3.2 Progressive Classification Algorithm

The above classification algorithm is effective for classifying textures with special dominant
frequency channels. The experiment shows that textures of this type can be classified using
only one or two features (see Section 4). However, for the situation where textures who have
no significant dominant frequency channels (random textures) or where multiple textures
who have similar dominant frequency channels, we need more features for classification. It
is difficult to determine the number of features required a priori. For example, if its first J
dominant channels are close to several textures in the database, more than J features may

be needed for its classification. This problem can be solved by a progressive classification

12



algorithm where we start with one feature which eliminates very unlikely candidates and
then another feature is added for further elimination. The procedure is repeated until only

there is only one texture left in the candidate list. The algorithm is detailed as follows.

Algorithm 3 : Progressive classification algorithm

1. Use the tree-structured wavelet transform to decompose an unknown texture and

construct its energy map.

2. Use the channels with large energy values z;, j = 1,2,---, as features and arrange

them in order,ie. ) > 29> +++ > Zju1 > T; > Tj41 > -+

3. Order textures in the database into a candidate list, and perform the following itera-

tion from the first feature (i.e. zx,k = 1).

(i) Remove textures from the candidate list if they do not have the same leaf node

as the kth dominant channel of the unknown texture.

(i1) For the remaining textures, denote the energy value and the variance in this
channel by m;; and ¢;; for texture ¢ and feature j, where j < k, and calculate
the simplified Mahalanobis distance

s (2= miy)?
Dy;= ,§ o
Let Dyin = min Dy ;. If Dy > K Dy, where K is a constant greater than one,

remove texture ¢ from the list.

(iii) If there is only one texture left, assign the unknown texture to this texture.

Otherwise, perform the next iteration by increasing the value of k& by one.

In step 3-(i), we discard the very unlikely textures because of poor similarity. The
algorithm usually removes most irrelevant textures from the list in only one or two iter-
ations, and all remaining textures are visually similar to the unknown texture. Although
the number of features used for classifying a particular texture may be large, the compu-
tational complexity is in fact much lower than the one using a fixed number of features.
The constant K in step 2-(ii) is a controllable parameter which serves as a threshold for
eliminating irrelevant textures. Empirically, K = 10 gives a very satisfactory result. We
can always increase the reliability of the algorithm by increasing the value of X’ with higher

computational cost.

13



4 Experimental Results

We use 30 textures obtained from the Brodatz’s texture album [4] and list them in Table 5.
Each texture is scanned with 150 dpi resolution, and each image is of size 512 x 512 pixels
with 256 gray levels. The mean of each image is removed before the processing. One
hundred sample images of size 256 x 256 are randomly chosen from the original image and
used in both training and classification phases. The mean and the covariance of the samples

are calculated with the leave-one-out algorithm [21], [33] in classification.

Texture ID Texture Description Texture ID Texture Description
D3 Reptile skin Ds7 Handmade paper
D4 Pressed cork D65 Handwoven oriental rattan
Dé Woven aluminum wire D68 Wood grain
D9 Grass lawn D74 Coffee beans
D1l Homoespun woolen cloth D77 Cotton canvas
D16 Herringbone D78 Oriental straw cloth 3
D19 Woolen cloth with soft tufts D79 Oriental grass fiber cloth
" D21 French canvas D82 Oriental straw cloth 4
D24 Pressed calf leather D83 Woven matting
D29 Beach sand D84 Raffia looped to a high pile
D34 Netting D92 Pigskin
D36 Lizard skin D95 Brick wall
D52 Oriental straw cloth 1 D102 Cane
D53 Oriental straw cloth 2 D103 Loose burlap
D55 Straw matting D105 Cheesecloth

Table 5: Textures used in the experiments.

4.1 Classification with Fixed Number of Features

We use the largest 5 dominant channels of the unknown texture as features, and classify
the texture with 4 distance functions summarized in Table 4. Experimental results with
Battle-Lemarié cubic spline wavelet basis functions are given in Table 6. The average of
classification rates of the 30 tested textures is called the overall correct classification rate
and listed in the last row of the table.

Figure 6 shows the overall correct classification rate as a function of the number of

features for different distance measures. It is clear from the figure that more than 3 fea-

14



Texture Correct Classification Rate
ID Dy D, D Dy
D3 88% | 100% | 100% | 100%
D4 58% | 96% | 97% | 95%
D6 98% | 100% | 100% | 100%
D9 9%6% | 97% | 96% | 91%
D11 100% | 100% | 100% | 100%
D16 100% | 100% | 100% | 100%
D19 100% | 100% | 100% | 100%
D21 100% | 100% | 100% | 100%
D24 100% | 100% | 100% | 99%
D29 92% | 100% | 100% | 99%
D34 76% | 100% | 100% | 100%
D36 100% | 100% | 100% | 100%
D52 96% | 100% | 100% | 100%
D53 100% | 100% | 100% | 100%
D55 99% | 100% | 100% | 100%
D57 98% | 100% | 100% | 100%
D65 100% | 100% | 100% | 97%
D68 97% | 99% | 99% | 98%
D74 100% | 100% | 89% | 96%
D77 100% | 100% | 100% | 100%
D78 82% | 98% | 100% | 93%
D79 100% | 100% | 100% | 100%
D82 100% | 100% | 100% | 100%
D83 86% | 99% | 100% | 98%
D84 100% | 100% | 100% | 100%
D92 100% | 100% | 100% | 100%
D95 98% | 100% | 100% | 100%

D102 96% | 100% | 100% | 100%
D103 | 100% | 100% | 100% | 100%
D105 [ 100% | 100% | 100% | 100%

[Overall | 95.3% | 99.6% | 99.4% | 98.9% |

Table 6: Classification results with 4 distance functions.
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tures are needed for the overall rate to be greater than 90 percent. Distance Dy has the
best performance whereas distance D, has the worst performance. Note also that D, is
particularly attractive for a small number of features and Dy should be avoided for a larger
number of features. Distances Dy, D3 and Dy give a similar performance, when the number
of features is more than 3. This result implies that the correct classification rate will be
higher by incorporating the statistical information of texture features.

We show the overall correct classification rate with different Daubechies wavelet bases
in Figure 7. The performance is better for filters with a larger size especially when four
or less features are used. Since the transform filter A is in fact a lowpass filter, it will
be more close to an ideal lowpass filter if more coefficients are used. Besides, we observe
a very similar performance for the 16-tap Daubechies wavelet and the truncated Battle-
Lemarié cubic spline wavelet with coefficients hy(k), —8 < k£ < 8. This indicates that the

classification algorithm is insensitive to different wavelet bases in use.

4.2 Progressive Classification Algorithm

Although the covariance matrix of features is only diagonally dominant, the simplified
Mahalanobis distance D, performs reasonably well according to Figure 6 and Figure 7.
Since it can be computed recursively from the partial sum in the previous iteration as
indicated in (3.3), the Mahalanobis distance D4 with independent feature assumption is
used in the progressive classification algorithm. We list the average number of features
in the progressive classification algorithm in Table 7 with the Battle-Lemarié cubic spline
wavelet basis. We see from the table that 100% correct classification rate can be achieved
with only 4 features on the average.

Textures which cannot be discriminated easily using 5 features in the previous exper-
iment require more features in the progressive algorithm as well, since they are similar to
other textures whose dominant frequencies are in the low frequency region. Despite more
features are needed, the computational complexity is not as high as in the non-progressive
algorithm. After two or three iterations, only a few textures which are similar to the un-
known texture in the dominant frequencies remain in the candidate list. Thus, the overall
computational complexity is still low. For textures significantly different from the others,
only one or two features are needed.

We expect that the average number of features in the progressive algorithm will increase

if we have more texture samples in the database, since the chance of several textures with
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Texture ID | Average numbers of Features
D3 2.78
D4 7.78
Dé 3.58
D9 8.96
Di1 2.27
D16 1.00
D19 5.82
D21 1.00
D24 6.37
D29 6.68
D34 4.08
D36 1.19
D52 2.65
D53 1.00
D55 2.87
D57 4.08
D65 5.98
D68 8.46
D74 9.68
D77 2.00
D78 5.20
D79 3.14
D82 3.99
D83 5.68
D34 1.88
D92 5.50
D95 4.16

D102 1.59
D103 1.05
D105 1.31

| Overall _r < 4.0577 |

Table 7: Average features used in progressive classification.
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similar dominant frequencies becomes higher. To discriminate textures with similar domi-
nant frequencies is in general a difficult task. The error probability of all other multichannel
or multiresolution methods will increase. The problem is however more manageable by sys-
tematically increasing the number of features with the progressive algorithm. This is an
important feature for the progressive algorithm, which makes the tree-structured wavelet

decomposition more attractive than other known multichannel or multiresolution methods.

5 Comparison of Methods Based on Wavelet and Gabor
Transforms

Both wavelet and Gabor Transforms provide good analytic tools for nonstationary signals
such as textures. For the Gabor transform, we project a signal on a set of basic functions
of the form

gma(z) = g(z — na)exp(j2rmpb(z - na)),

where m, n are integers and the Gaussian function is often used as the envelope function,
i.e.
g(z) = ot/ exp(—7z?).

Motivated by results from vision research, Porat [38] suggested to adopt a nonuniform
sampling in the frequency axis with the octave scale. The idea leads to an expansion known
as the Gaborian pyramid algorithm which is very close to the pyramid-structured wavelet
transform except that the basis functions are not orthogonal.

It is worthwhile to point out several distinct features of our method in comparison
with methods using the Gabor transform. First, the wavelet transform provides a complete
representation in the sense that the original signal can be exactly reconstructed from wavelet
coefficients. In contrast, oversampling is needed to completely represent a signal with the
Gabor transform, Second, the filters A(n) and g(n) used in the wavelet transform remain the
same between two consecutive scales whereas the Gabor transform requires different filters.
Third, textures with no strong peaks in their Fourier power spectra cannot be easily handled
by the Gabor transform, since a few dominant fr-equency channels have to be decided a priori
as features. The Fourier power spectra of textures D21 and D53 are shown in Figure 8. Since
they have strong peaks in their spectra, both Gabor and wavelet transforms are applicable.
However, some textures may not have strong periodicities and their energy spreads in the

low frequency region. One such example is illustrated in Figures 9 (a) and (b), where
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texture pressed cork (D4) and its Fourier power spectrum are given. It is very difficult to
locate the peaks since they are clustered in the low frequency region. Beside, their positions
vary from samples to samples. The tree-structured wavelet transform applied to the same
texture is shown in Figures 9 (c) and (d), where low and high energy thresholds (C = 0.3
and 0.6) are used for terminating further decomposition, respectively. We find that channel
AAAA contains the largest amount of energy, and the feature is quite robust with respect
to different samples of pressed cork in the tree-structured wavelet representation. Fourth,
the tree-structured wavelet transform determines the feature channels automatically in the
transform process whereas the Gabor transform needs an additional procedure to estimate
feature parameters such as spatial frequencies and orientations. Last, the wavelet transform
is computationally efficient. Since the image is downsampled throughout tree-structured
wavelet decomposition, the number of operations is proportional to O(/N/4) and the total

complexity for a M-scale decomposition can be roughly estimated by

=0 4 3
Note that the above estimate is independent of the number of features and the depth of the
tree but it does depend on the number of branches in the tree. For comparison, the Gabor

transform requires O(JN) operations where J is the number of features used.

6 Conclusion

It is shown in this research that the tree-structured wavelet transform provides a good
analytic tool for texture analysis. Although the conventional pyramid-structured wavelet
transform is suitable for images with energy concentrated in the low frequency region, the
tree-structured wavelet transform is more natural and effective for textures which have
dominant middle frequency channels. The use of Gabor transform as a texture discrimi-
nant requires several parameters such as spatial frequencies and orientations, and the shape
of the Gaussian envelope function, whereas the_ tree-structured wavelet transform provides
a systematic procedure to zoom into dominant frequency channels. The progressive texture
classification algorithm can be used to classify textures with similar dominant frequencies.
It is not only computationally attractive but also has excellent performance. Our current
work has so far focused on algorithmic development and experimental justification. More

thorough theoretical analysis is expected in the future. The application of tree-structured

19



wavelet transform to texture segmentation is under our current investigation. The tree-
structured wavelet transform may also be applicable to speech processing and other inter-

esting problems.
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Figure Captions

Pyramid-structured wavelet transforms of (a) Lena and (b) French Canvas.
Block diagram of tree-structured wavelet decomposition.

Tree-structured wavelet transforms of (a) French Canvas (D21), (b) Oriental Straw
Cloth (D53), (¢) Wool (D19) and (d) Raffia (D84).

Energy map for Oriental Straw Cloth (D53).

The meaning of Channel ABBB in (a) tree-structured wavelet transform domain and

(b) quadtree representation.
Correct classification rate for Battle-Lemarié cubic spline wavelet basis.
Correct classification rates for different Daubechies wavelet bases.

Fourier power spectra for (a) French Canvas (D21) and (b) Oriental Straw Cloth
(D53).

Pressed Cork (D4) and its Fourier power spectrum and tree-structured wavelet trans-

form maps.
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Figure 1: Pyramid-structured wavelet transforms of (a) Lena and (b) French Canvas.
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Figure 2: Block diagram of tree-structured wavelet decomposition.
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Figure 4: Energy map for Oriental Straw Cloth (D53).
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{a) French Canvas (D21)

(b) Oriental Straw Cloth (D53)

Figure 8: Fourier power spectra for (a) French Canvas (D21) and (b) Oriental Straw Cloth
(D53).
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(¢) Tree wavelet map with ' = 0.3 - (d) Tree wavelet map with C = 0.6

Figure 9: Pressed Cork (D4) and its Fourier power spectrum and tree-structured wavelet
transform maps.
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