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Abstract

Non-Gaussian signal processing is becoming increasingly important as more and more
phenomena in signal processing are found to deviate from the ideal Gaussian model. Stable
distributions are among the most important non-Gaussian models. They share important
characteristics with the Gaussian distribution, such as the stability property and central
limit theorems, and have found applications in such diverse fields as physics, economics
as well as electrical engineering. To help engineers better understand stable models and
develop methodologies for their applications in signal processing. this paper presents a
tutorial review of the basic characteristics of stable laws and stable signal processing.
The emphasis will be on the differences and similarities between stable signal processing
methods based on fractional lower order moments and Gaussian signal processing methods

based on second-order moments.



1 Introduction

One of the basic objectives of signal processing is to extract desired information from ob-
served data (signals). Since in most cases signals are either non-deterministic or contami-
nated by random noise, mathematical statistics plays an important role in signal processing
[69, 75, 52]. A general formulation of statistical theory as methods of signal processing as-
sumes the knowledge of a probability model which describes, either partially or completely,
the way in which the observed signals and noise are generated. The probability model for
the underlying signals and noise is usually a function of the desired information which is
often parameterized by a setl of parameters. This set of parameters are then determined
from the data by using the probability model and certain optimality criteria. Obviously,
the accuracy of the information obtained in this way depends heavily on the probability

model and optimality principles used in the inference.

1.1 Gaussian Signal Processing with Second-Order Moments

The signal processing literature has traditionally been dominated by a Gaussian assump-
tion and a linear least-squares criterion of optimality. Even when the Gaussian assumption
is not made explicitly, signal processing problems and their solutions are often stated in
terms of the second-order statistical properties of underlying signals and noise. Since Gaus-
sian processes are completely described by the second-order structures, this second-order
approach is, in most cases, equivalent to explicitly making the Gaussian assumption. The
second-order formulation together with the linear least-squares criterion form the foun-
dation of stochastic signal modeling and processing and have, over the last fifty years,
provided many important concepts and structures in signal processing, such as spectral
representation, adaptive filtering and prediction theory.

In many instances the Gaussian assumption is a reasonable one and can usually be jus-
tified by the Central Limit Theorem. The linear least-squares criterion, on the other hand,
15 intimately related with the Gaussian assumption. For example, under the Gaussian as-
sumption, it can easily be shown that the linear least-squares estimator is the same as the
maximum likelihood estimator and hence, is asymptotically efficient [52, 5]. Another main
reason for the dominance of the Gaussian assumption and linear least-squares criterion is
that they often lead to analytically tractable solutions for signal processing problems. For

example, the additive white Gaussian noise assumption in communication theory greatly



simplifies the design and analysis of receiver structures. Any non-Gaussian assumptions
will usually introduce nonlinearity to the design of receivers. This explains why the ideal
Gaussian model is often used even when it is found to be not very accurate. This was
especially true in the early days when numerical computations were expensive.

Unfortunately, many signals and noise sources encountered in practice are decidedly
non-Gaussian [85, 38, 84]. For example, underwater acoustic signals, low-frequency atmo-
spheric noise and most of the man-made noises are found to be non-Gaussian [8, 53, 41, 76,
45, 54]. Non-Gaussianity often results in significant performance degradation for systems
optimized under the Gaussian assumption. A well-known example is the matched filter for
coherent reception ol deterministic signals in Gaussian white noise. If the noise statistics
deviate from the Gaussian model. serious degradation in performance occurs, such as in-
creased false alarm rate or error probability [73, 72, 35, 34]. On the other hand, a modest
degree of nonlinear signal processing based on the approximately true noise statistics can
lead to a much better receiver than the matched filter [55, 41, 62, 50]. Thus, there is a
trade-off between model complexity and accuracy. Generally speaking, the more realis-
tic (and complicated) signal models are. the more complex signal processing algorithms
become.

The role of the least-squares criterion (i.e.. the L, norm) in signal processing has also
been under re-examination. Although it is adequate under the Gaussian assumption and
usually leads to analytically tractable results. the least-squares criterion is no longer ap-
propriate in a non-Gaussian environment, largely due to its non-robustness against a small
number of big errors (outliers) in the data set [7, 26]. When the least-squares criterion is
used, little attention is paid to relatively minor errors in order to make very large errors as
small as possible. In many situations in signal processing, however. it is more important
to make as many errors small as possible. even if it is necessary to tolerate occasional large
errors. When the ervor distribution is Gaussian. it does not matter which criterion is used
because the most probable error is small. However, it can easily be demonstrated that
the least-squares estimates change dramatically when only a small proportion of extreme
observations is present in the data [31]. In such cases more robust optimality criteria and
procedures are needed [17, 15. 82, 36, 68].
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1.2 Non-Gaussian Signal Processing with Higher Order Mo-

ments

For the past few years, non-Gaussian signal processing has received more and more atten-
tion in the literature for several reasons. One main reason is recent advances in computer
software and hardware. The tremendous growth in computational power, backed by cheap
VLSI hardware, makes it possible to implement very sophisticated signal processing al-
gorithms. Computational complexity is no longer a major concern in designing signal
processing systems. More realistic stochastic models can now be used to describe signals
and noise. Another reason for the recent active research in non-Gaussian signal processing
is the growing demand for products that serve real-world. The loss of resolution due to the
Gaussian assumption in a non-Gaussian environment is no longer tolerable. Nowadays,
when facing the trade-off between computational complexity of signal processing systems
and realistic modeling of signals and noisc. more often than not, researchers in signal pro-
cessing will choose the latter. These two main factors have led to a significant amount
of research activities in re-examining structures and inference methods in the context of
filtering, estimation, detection and signal extraction under non-Gaussian environments
(85, 84, 33].

For non-Gaussian signal processing second-order descriptions are no longer adequate.
They do not provide enough information for understanding the non-Gaussianity involved.
In this case. it has been suggested in the literature [58] that we should look beyond the
second-order statistics and extract information about deviations from Gaussianity from
higher order statistics. il they exist. A well-known example is that second-order descrip-
tions or power spectrum suppress phase information but polyspectra preserve both magni-
tude and phase information of non-Gaussian signals [43]. Thus, in the cases where accurate
non-minimum phase information is desired, one has to utilize higher-order statistics. This
is especially important in deconvolution problems that arise in geophysics, telecommunica-
tions, etc., in which the non-minimum phase of signals must be preserved. Other attractive
features of higher order spectra include their abilities to suppress Gaussian noise and detect
and characterize nonlinearities in a time series [38].

Although higher order spectral analysis is a powerful tool for non-Gaussian signal pro-
cessing, it has its own limitations. First of all, higher order spectral analysis is applicable

only if the higher order statistics exist. Although this may not seem to be a major prob-



lem, we will soon see that there are important applications where the underlying signals
do not even have second-order moments. Secondly, there is still lack of robust procedures
for estimating higher order statistics from noisy observations. Finally, there is still no
unifying theory for understanding higher order spectra as a whole in the context of filter-
ing, estimation, detection and signal extraction. In particular, unlike the Gaussian case,
signal processing using higher order statistics rarely has adequate optimality criteria. This
makes it difficult to analyze and compare analytically signal processing algorithms based

on higher order statistics.

1.3 Non-Gaussian Stable Signal Processing with Lower Order

Fractional Moments

A broad and increasingly important class of statistical models for non-Gaussian phenomena
is that of so-called heavy-tailed distributions, whose density functious decay in the tails
less rapidly than the Gaussian density functions. These heavy-tailed distributions tend
to produce large-amplitude excursions from the average value more frequently than the
Gaussian distribution. As a result, they usually have very large or infinite variances, in
which case the second-order moment theory and higher order spectral analysis methods
no longer apply. Optimal signal processing algorithms have to be deveioped based on the
complete signal statistics instead of a few moments.

Among all the heavy-tailed distributions, the family of stable distributions' has been
found to provide useful models for phenomena observed in many diverse fields, such as
economics, physics and electrical engineering [90]. It includes the Gaussian and Cauchy
distributions as special cases and is capable of modeling a wide variety of non-Gaussian
phenomena, from those similar to the Gaussian to those similar to the Cauchy. It also
enjoys similar properties that have made the Gaussian distribution popular. For example,
a basic feature of stable distributions is the so-called stability property: if X,Y are two
independent stable random variables with the same characteristic exponent, then aX + bY
is also stable. In addition, stable distributions form a natural class of limit distributions,
just like the Gaussian distributions. Recall that the Central Limit Theorem says that

a physical phenomenon is Gaussian if there are infinitely many indenendent identically

'For a detailed summary of stable distributions and the Generalized Central Limit Theorem, see the
Appendix.
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Figure 1: Density functions of Sa.S distributions

distributed (i.i.d) contributing factors with finite variances. There is, however, a more
powerful theorem. called the Generalized Central Limit Theorem. for the sum of infinitely
many i.d.d random variables. This theorem states that if the sum of any i.i.d random
variables with or without variances converges to a distribution by increasing the number
of variables, the limit distribution must be one of the stable laws [23. 9]. Thus, non-
Gaussian stable distributions arise as sums of random variables in the same way as the
Gaussian distributions. This suggests that we may justify the use of stable laws to describe
non-Gaussian phenomena as we justify the use of Gaussian laws.

Although skewed stable distributions are important in certain applications [46], we will
focus our attention on symmetric a-stable (SaS5) distributions in this paper. For simplicity,
all stable distributions are assumed to be non-Gaussian SaS, unless specified otherwise.

The standard SaS density functions for some values of the characteristic exponent o« are

(1]



shown in Figure 1. with a = 2 corresponding to the zero-mean Gaussian distribution
with variance equal to 2 and a = 1 corresponding to the Cauchy distribution. Observe
that SaS distributions have many features of the Gaussian. They are smooth, unimodal,
symmetric with respect to the median and bell-shaped. A detailed comparison between
the standard normal and Sas$ distributions shows that non-Gaussian stable distributions
depart from the corresponding Gaussian distributions in the following ways. For small |z},
the Sa.S distributions are more peaked (have higher densities) than the normal. For some
intermediate range ol |r|. the SaXS distributions have lower densities than the normal.
Most importantly. unlike the Gaussian distributions which have exponential tails, the
stable distributions have algebraic tails [25]. Thus SaS distributions have heavier (longer)
tails than the Gaussian (higher kurtosis) and have no second moments. The smaller « is,
the longer the tail. This is a desirable feature for many applications in signal processing
since a lot of non-Gaussian phenomena are similar to the Gaussian, only have longer tails
[53. 41, 45, 67].

Because of the importance of stable models for non-Gaussian phenomena appearing in
a variety of different ficlds. it is very desirable to develop a theory of linear estimations of
stable processes, including predictions, filtering and identifications, similar to that of Gaus-
stan processes (second-order processes. in general). Such a theory will be especially useful
for the optimal processing of signals that are nearly Gaussian and have large variances.

From the signal processing point of view, the adoption of a stable model for signals
or noise has important consequences. In this case, the traditional minimum mean square
error (MMSE) criterion is meaningless because of infinite variance. Instead, the minimum
dispersion (MD) criterion is used as a measure of optimality. The dispersion (i.e., the
scale parameter) of a stable random variable plays a analogous role ol the variance. For
example, the larger the dispersion, the more spread the stable random variable around the
median. Thus, by minimizing the error dispersion, we minimize the average magnitude of
estimation error. Furthermore, it has been shown that minimizing the dispersion is also
equivalent to minimizing the probability of large estimation errors [16]. The MD criterion
is thus well justified in the stable case. It is a direct generalization of the MMSE criterion
(MD and MMSE criteria are the same in the Gaussian case) and reasonably simple to
calculate.

It will be shown that the MD criterion is also equivalent to minimizing the fractional

lower order moments (FLOM’'s) of estimation errors. These FLOM's measure the L,



distance between an estimate and its true value, for p < a. This result is not surprising
since the L, norms for p < 2 are well known for being robust against outliers such as
those that may be described by stable laws. It will also be shown that all of the FLOM’s
are equivalent for stable random variables. A common choice is the L, moment, which is
sometimes very convenient.

Stable signal processing based on FLOM’s will inevitably introduce nonlinearity to
even linear problems. The basic reason for the nonlinearity is that we have to solve linear
estimation problems in Banach or metric spaces instead of Hilbert spaces. It is well-
known that, while the linear space generated by a Gaussian process is a Hilbert space,
the linear space of a stable process is a Banach space when | < a < 2 and only a metric
space when 0 < o < | [13]. Banach or metric spaces do not have as nice properties
and structures as Hilbert spaces for linear estimation problems. For example, while any
finite number of Gaussian randomn variables can be expressed as linear combinations of
independent Gaussian random variables. it is shown in [70] that representation of even two
stable variables of the same characteristic exponent as linear combinations of finitely many
independent stable variables is impossible.

Despite the difficulties. significant progresses have been made in developing the linear
estimation theory for stable processes over the past thirty years. In this paper, we will
give an overview of some of the results in which researchers in signal processing community

might be interested.

1.4 Applications of Non-Gaussian Stable Signal Processing

The concept of stable distributions was first introduced by Lévy in the study of generalized
central limit theorems [42]. They are direct generalizations of Gaussian distributions and
share a lot of useful properties of Gaussian laws. Yet, despite all the attractive properties,
the stable laws have attracted little attention from researchers in signal processing [80,
79, 13]. There are basically two reasons for this. First, stable laws do not have explicit
expressions for their densities or distributions except for the Gaussian (a = 2), Cauchy
(a = 1) and Pearson (o = %) distributions. But power series expansions do exist for the
probability densities functions. With today’s computational power, numerical integrations
are inexpensive Lo carry out. Moreover. much of the work that ordinarily uses probability
density [unctions can be carried out in the transformed domain of characteristic functions.

'l\l . . - . 0 N . .
e second main reason lor the obscurity ol stable laws among engineers is apparently due
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to the fact that the p** moments of a Sa.5 random variable exist only for p < a [23]. Thus
for all non-Gaussian stable distributions there are no finite second-order moments and for
a < 1 even finite first-order moments do not exist. Since the second-order moment or
the variance is often associated with the concept of power, it seems to he widely felt that
infinite variance is inappropriate in almost any signal processing context.

We believe that this kind of reasoning is superficial and inappropriate. This is like
saying that we should not use irrational numbers at all because we can never have irra-
tionals from any physical measurements. Besides, as it is pointed out in [79], the Gaussian
distribution would not be a physically appropriate assumption because it is unbounded.
The purpose of mathematical modeling is not to account for every single detail of how a
physical process is generated but to explain important and relevant features of the pro-
cess in order to optimally and efficiently extract desired information from the observed
data. For example. linear models in system theory are applicable only in a limited range.
Beyond this range, nonlincar models must be used. By the same token, Gaussian mod-
els may be adequate for modeling a limited range of observed data. For a larger range,
an infinite-variance stable model may have to be used [79]. This is especially true when
outliers or heavy tails appear in the observed data. There are of course certain situations
when neither Gaussian nor non-Gaussian stable distributions may be appropriate.

The most important features of non-Gaussian stable distributions are probabilistic sta-
bility and long inverse power tails, in addition to the basic fact that they arise naturally
as limit distributions. I a physical phenomenon has both the stability property and long
tails. stable distributions could provide useful models. Stability is a natural assumption.
A lot of physical processes such as natural noise sources have this property. On the other
hand, in recent vears more and more physical phenomena are found to have heavier tails
than the Gaussian [41. 24, T1. 67. 53. 57, 84]. Thus it can be expected that stable distri-
butions and stable processes will provide uselul models for many phenomena observed in
diverse fields. Indeed, stable laws have seen applications in physics. economics, hydrology,
biology as well as electrical engineering.

The earliest application of stable laws was discovered in physics by the Danish as-
tronomer Holtsmark [31]. He found that random fluctuations of gravitational fields of
stars in space under certain natural assumptions obey the stable law with characteristic
exponent a = 1.5. For other applications of stable laws in physics as well as other fields,
see (86, 90, 88].



The recent surge of interest in stable laws is largely due to the work of Mandelbrot
and his followers. Because of the failure of the Gaussian assumption and least-squares
criterion in economic time series, he proposed a revolutionary approach based on stable
distributions to the problem of price movement [46]. Many economical variables, such
as common stock price changes. changes in speculative prices and interest rate changes
have already been shown to have properties that conform closely to those of non-Gaussian
stable laws [20, 64, 83]. Mandelbrot and van Ness also used Gaussian and stable fractional
stochastic processes to describe long-range dependence arising in engineering, economics
and hydrology [47].

An important applications of stable laws signal processing is in modeling impulsive
noise. It is widely acknowledged that. in many communication problems, the conventional
additive Gaussian noise assumption is inadequate. This is often due to the occurrence of
noise with low probability but large amplitudes. This impulsive component of noise has
been found to be siguificant in many problems, including atmospheric noise, underwater
problems such as sonar and submarine communication, where the ambient acoustic noise
may include impulses due to ice cracking in antic regions [33. 84, 38. 33, 67, 78, 24, 8, 76].
These types of impulsive noise are often observed to be close to Gaussian distributions but
have heavier tails. For example. it has been reported in [43] that under-ice and shallow
water noise has a distribution which is similar to that of Gaussian noise (symmetric,
smooth, unimodal, etc.). but has heavier tails. The atmospheric noise may be considered as
the result of a large number of independent sources in space so that central limit theorems
apply. But they have been shown [11. 53. 67] to have algebraic tails 27, for 1 < a < 3,
a characteristic associated with stable laws. In [57], it is proposed to find a useful class of
noise distributions with algebraic rather than exponential decay of the density of impulsive
non-Gaussian noise that would approach the Gaussian distribution as some parameter
approaches some limit. All these evidences suggest the use of stable laws as appropriate
models.

In fact. the Cauchy distribution itself has been used in several papers such as [67] to
represent severe impulsive noise. Stuck and Kleiner [80] empirically found that noise over
certain telephone lines can be best described by stable laws with characteristic exponent
a close to 2. They suggested that the design of receivers should take into account this
noise characteristic. [3]. More recently, it has been shown theoretically that, under some

conventional assumptions, a broad class of impulsive noise is indeed stable [74]. The
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problem of signal detections under stable impulsive noise is also discussed in [74].

Stable laws are flexible in modeling impulsive noise in the sense that the characteristic
exponent « may be used to control the degree of impulsiveness. A small value of o makes
the noise highly impulsive, while a value of o close to 2 indicates a more Gaussian type of
behavior. We do not think that lack of finite variance is a disadvantage. It just reflects the

fact that the amount of outliers (noise with large amplitudes) is severe or simply unknown.

1.5 Objective

In this tutorial, we summarize some of the methodologies of processing non-Gaussian
stable signals using I'LOM’s. The emphasis will be on demonstrating the differences and
similarities between signal processing procedures based on stable distributions and FLOM’s
and those based on Gaussian distributions and second-order moments.

The objectives of this paper are:

1. To present the definitions. properties and applications of stable processes and FLOM’s
to the signal processing community and to aid engineers in utilizing stable laws to

model and analyze non-Gaussian phenomena.

(S

To demonstrate some of the gains in signal processing that can be obtained by

adequately modeling non-Gaussian environments with stable processes and FLOM's.

3. To motivate further research in this arca for developing efficient and more robust

signal processing algorithms.

It should be pointed out that although stable laws and fractional lower order moment
theory are in many ways similar to the Gaussian distributions and second-order moment
theory, they are also substantially different [rom each other. Caution must be used when
attempts are made to generalize the results for the Gaussian distributions to stable laws.

The organization ol the paper is as follows. Section 2 presents some of the most fre-
quently used properties of stable distributions and stable processes. Section 3 describes
parameter estimation methods for Sas distributions. Procedures for estimating covari-
ations are presented in Section 4. Section 5 discusses parameter estimation methods for
AR, M A and ARM A models with SaS processes as inputs, using FLOM’s. Some of the
results on filtering, predictions and identifications are presented in Section 6. Finally,

Section 7 is devoted to concluding remarks.
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2 Symmetric Stable Random Variables and Processes

In this paper, only Sa.S random variables will be considered. This is not a very restrictive
assumption since most of the physical phenomena we deal with in practice are symmetric
in nature. We also restrict our attentions to real random variables. For general discussions
on complex SaS random variables, see [11].

Let us first briefly recall that a real random variable (r.v.) X is Sa5, if its characteristic

function is of the form:
»(1) = exp{idt — y[¢]"} (1)

where a is the characteristic exponent. 5 the dispersion and é the location parameter.
When a = 2, X is Gaussian and when a = 1. X is Cauchy. The real r.v.’s X;,..., X,
are jointly SaS, or the real random vector X = (X),...,X,)7 is Sa$, if and only if all
the linear combinations a; X; + ¢.X; + - - + @, X, are SaS; or equivalently if their jointly

characteristic function is of the form
(1) = exp{it’a - / | tTs |* I'(ds)} (2)
S

where I is the spectral measure which is symmetric, i.e.. [(A) = I'(—A4) where A is any
measurable set of the unit sphere S. A class of random variables { X (¢).t € T'} where T is
an arbitrary index set is said to be a Sa.S stochastic process if for any n > 1, and distinct
indices ¢y,...,2, € T, the random variables X{(¢;),...,X(¢,) are jointly SaS with the
same characteristic exponent a.

Just like the second-order case where we assume all the random variables have zero
mean, it will be assumed that all SaS random variables have zero location parameters.

For convenience. we consider only discrete-time SaS random processes in this paper.

2.1 Basic Types of Stable Processes

One of the difficulties in dealing with stable processes is due to the richness of the family
of stable processes. There exist many types of stable processes with mutually exclusive
properties. In the following, we discuss three types of stable processes that are commonly

seen in practice.



2.1.1 Sub-Gaussian Processes

A stable process { X (!).1 € T} is said to be an a-sub Gaussian process, or briefly a-SG(R),
if for all n > 1 and all distinct indices {y,...,%,, (X(t1),...,X(¢,)) has characteristic

function given by

‘p(u) = exp(—[% Z umunR(tmatu)]a/Q) (3)

“ mm=1
where R(!, s) is a positive definite function and a is restricted to (1,2). When a = 2, X(¢)
is of course a Gaussian process with zero mean and covariance function R(t, s). Obviously,
the sub-Gaussian process is stationary if and only if R({,s) = R(t — s) = R(s — t).

It is well-known that sub-Gaussian distributions are variance mixtures of Gaussian
distributions [13]. Specifically. it X(t) is a-SG(R), then

X(t) = SY?y (1) (4)

where S is a positive 555 random variable with characteristic function exp(—|t|*/?), Y(t)
a Gaussian process with zero mean and covariance [unction R({.s). In addition, S, Y (t)
are independent. Because of this. sub-Gaussian processes are among the simplest stable
processes to deal with. They share many common features with the Gaussian processes.
Yet they are also quite distinct from the Gaussian processes. For example. one of the strik-
ing properties about sub-Gaussian random variables is that they can not be independent
(14].

2.1.2 Linear Stable Processes

Let {U(n),n =0.£1.£2.---} be a family of i.i.d SaS random variables. Then

N

X(n)= Z a;l/(n=1)

==

defines a stationary Sa$ random process if 302 __ |ai|®™® < oo for some 0 < 6 < a when
0<ac<l,orif Jt_ Ja < oc when a > 1 [32]. Those processes are called linear stable

processes or stable processes with moving-average representations.
Examples of linear stable processes include finite-order autoregressive (AR), moving-
average (M A) and autoregressive moving-average (ARM A) processes. Specifically, let

ay,...,a, be real numbers such that the polynomial 1 — Th_, arz~* has all zeros inside

12
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unit circle in the complex plane. Then. the following equation
X(n)=arxX(n—=1)+-+a,X(n—-p)+U(n) (5)

where U(n)’s are i.i.d SaS random variables with a > 1, has a unique stationary SaS

solution given by
X(n)=> hU(n—k) (6)
k=0
where h; is absolutely summable and

e

= Z hyz* (7)
k=0

on the unit circle. For a generalization of this result, see [89]. The process X(n) thus

th

defined is called a p*" order AR stable process. Similarly, an ARM A stable process of

order (p,q) is defined as the unique stationary solution of the following equation
Xm)y=a, X(n=1)+---+a,X(n—p)+bl(n)+ -+ bU(n—q) (8)

where {/(n)’s are i.i.d SaS random variables with a > 1| and «,,...,qa, are real numbers
such that the polynomial 1 = £%_, @,z~% has all zeros inside unit circle in the complex

th

plane. If a,,...,a, are all zero, this process is called a ¢ order M A stable process.

2.1.3 Harmonizable Stable Processes

It is well known that every wide sense stationary second-order random sequence X (n) has

a spectral representation of the form:

e

X(n) = /_: ¢""dZ(w) (9)

where Z(w) is a second-order random process with orthogonal increments, defined on
(—m.x] [59]. Although not every stationary stable random process has a spectral rep-
resentation, Equation (9) does define an important type of stable processes called the
harmonizable stable processes, under some appropriate interpretation of the integral and
some conditions on Z(w). For the details. see [13].

It is well known that the classes of linear and harmonizable Gaussian processes coincide.

13



But in the stable case they are mutually exclusive. Namely, harmonizable stable processes
have no moving-average representations and stable processes with moving-average repre-
sentations are not harmonizable. In addition, sub-Gaussian processes are neither linear

nor harmonizable [14].

2.2 Linear Space of Sa.S Random Processes

In the second-order moment theory, it is shown that the set of random variables with finite
variances forms a Hilbert space. The norm of a random variable is simply defined to be
its second-order moment. In this section we show that the linear space of a SaS process
is a Banach space if 1 < o < 2 and a metric space if 0 < a < |.

Let X be a Sas random variable with dispersion ¥ > 0 and zero location parameter.

Define the norm of X as

X

1
~n 1 <a<?2
(n:{ ‘ =a= (10)

Y 0<axl

Thus the norm || .X||, determines the distribution of X via the characteristic function

(1) = exp{—| X[I3[]*} 1 <a<2
7 exp{=|IX)tI*} O<a<!

The following Proposition is often found to be very useful [70]:

Proposition 1 [f (X.Y) are SaS and if X is independent of Y. then || X + Yo =
XM + 1Y lla /0 <o <Land | X + V|3 =X]5+ Y2 Sl Sa<2

If XY are jointly SaS. the distance between X and Y is defined as
d(X.Y) =X =Y. (11)

To see how this distance between two Sa.S random variables measures the dissimilarity
between them. we notice that all SaS8 random variables belong to L,() (the collection of

th

random variables with finite p'* order moments) for 0 < p < a. The following Proposition

provides the link between the norm of a SaS random variable and its FLOM’s [13, 90]:

Proposition 2 Let X be SaS with zero location parameter and 0 < p < a. Then

(E{| X PHV? = Clp,a)l| X]la (12)

14



where
C(p.a) = [2I(1 = p/a)T(p)sin Sp]?

depending only on a and p. A sequence of SaS random variables X, converges to a SaS

Y in || ||l if and only if X,, converges to Y in probability.

Thus, the distance between two Sa.S random variables measures the pth order moment of
the difference of these two random variables. In the case of a = 2 this distance measures
the variance of the difference of the two random variables, which is consistent with the
second-order moment theory. In addition, the lower order moments of a SaS random

* moments differ by a constant

variable are equivalent in the sense that the p** and ¢
factor independent of the SaS random variable for all p,¢ < a.

Let {X ().t € T} be a SaS process. Then all finite linear combinations of elements in
{X(t),t € T} form a linear space {(X(1).f € T). In this space all the random variables are
jointly SaS with the same characteristic exponent [13]. The following theorem provides a

metric on the space {(X({).1 € T) [70]:

Theorem 1 [or all 0 < o < 2. the distance defined in (11) is a true metric on (X (t),t €
2.0 |l 5 a norm on (X ().t € T).

T). In addition, for | < o <:
Let L(X(#),t € T) be the completion ol {{X(1).t € T) with respect Lo this metric. It
will be called the linear space of {X(1).1 € T}. It follows from the multivariate SaS

characteristic functions that L(X ().t € T) is a class of jointly SaS random variables.
In particular, the random variables in the linear space of an a-sub-Gaussian process are
a-sub-Gaussian [13].

As we will see later, the fundamental difficulty in stable signal processing with FLOM’s
is that the tools of Hilbert Space Theory are no longer applicable: although the linear space
of a Gaussian process is a Hilbert Space. the linear space of a stable process is a Banach
space for | < a < 2 and only a metric space for 0 < a < |. For both mathematical and
practical reasons we restrict « to (1,2] for the rest of the paper. Under this assumption,
all S5aS random variables considered in the following discussion have finite means which

are assumed, without loss of generality. to be zero.



2.3 Covariations

The concept of covariance between two random variables plays an essential role in the
second-order moment theory. The theory of signal prediction, filtering and smoothing, in
fact, the whole theory of statistical signal processing is built on covariances. Obviously,
covariances do not exist on the space of Sa$ random variables, due to the lack of finite
variances. Instead, a quantity called covariation [56, 13], which under certain circumstances
plays an analogous role for SaS random variables to covariance for random variables with
finite second-order moments, has been proposed and is defined as follows. Let (X,Y) be a

SaS vector with spectral measure I'. the covariation [X, Y], of X with ¥ is defined as
[(X.V] = / ry<°=">T(ds) (13)
Js

where S = {(a,y) € R* : 2 + y* = 1} is the unit circle and for any real number z and

a > 0 we use the convention
~<a> I,,Ia—l~

~

In polar coordinate system, the covariation can be written as

D

[X.Y]. = /u cos o(sin 0) <> T'(do) (14)
Some of the useful properties of covariations [56, 13, 36] are:
1. The covariation [X, Y], is linear in X: if X, X3, Y are jointly SaS then
(X1 46X Y)o = a[ X1, Yo + b[X2. Y], (15)

for any a and b.

2. When a = 2. i.e.. when X.Y are jointly Gaussian with zero mean, the covariation of

X with Y reduces to the covariance of X and Y:

[X.Y]. = E(XY)

3. [X.Y], is not. in general. linear with respect to the second variable Y. But it

does possess the following pseudo-linearity property with respect to Y: if Y},Y; are
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independent and X, ¥7.Y} are jointly SaS. then

[X,aY) + bY3]. = ¢ [X, Yo + 65072 [X, V3l (16)

4. If X, Y are independent and jointly SaS, then
[.\,. }"]0 : 0

while the converse is not true in general.

5. The dispersion of a SaS r.v X is equal to the covariation of X with itself, i.e.,

X115 = [X, X]a

6. For any jointly SaS$ random variables X, Y

(XYLl <X

e

la

2.4 Conditional Expectations and Linear Regressions

As an application of the concept of covariation, let us look at the problem of regressions
with SaS random variables. Let Xy.X,.....X, be jointly SaS random variables with
I < a £ 2 and spectral measure . The regression of Xy in terms of Xj,..., X, is
the conditional expectation E(Xy | Xy,..... X,). It is well known that in the case where
Xo. X1,.... X, are jointly Gaussian, E(Xy | X|....,X,) is a linear function of Xj,..., Xy,
thus a Gaussian random variable itself. and is the minimum variance estimate of Xy. In
the Sa¥S case, the regression estimate E(Xg | Xy,..... X, ) is not linear in general, thus not
even SaS.

The following theorem states a necessary and sufficient condition for the regression

estimate to be linear [56]:

Theorem 2 If Xy, Xy,.... X, arc joinlly SaS random variables with | < a < 2 and

spectral measure I' on the unit spheve S in R**, then

E{Xo| X...... =X+ +a, X,

17



if and only if for all r..... Fa.
/(:ru —a Xy — . — @)y F o a) TP (dX) = 0 (17
S

Remark: If the regression is linear, then the coefficients a,...,a, are uniquely de-
termined by T' if and only if X,,..., X, are linearly independent elements in the space
of integrable random variables. For each choice of ry,...,r, the condition of the theorem
provides a linear equation involving the «;'s, but it is not known in general what choices of
r1,..., 7 will provide n linearly independent equations which can be solved for a;’s. The

case n = 2, however, is easily solved by the following Corollary [56]:

Corollary 1 If Xy, X1, X, are jointly SaS and if
E(Xo | Xi. X)) =1 X) + a2 X

then a,.a, satisfy
(l][.Y] . .\"l](-, + (lg[.X.g. .\'.1]0 = [“\,0. .‘\"1](,

. S o 18)
a,[.\...\g]@+a~2[.\'2,.\'2]a= [.‘0..\'2]0 (

Moreover, the above equations uniquely determine ay, ay iff neither Xy nor X, is a multiple
of the other.

There are few known cases where the regressions are indeed linear. The next theorem

provides one example [56]:

Theorem 3 If Xy, X,..... X, are joinlly SaS random variables and if X,,..., X, are

independent and nondegenerale. then
E(Xy| X)...... )= X1+ ...+ e, X,
and the coefficients a; are given by
ar = [Xo. Xi]a/[ Xk, Xia

In particular:

Corollary 2 For any two jointly SaS random variables XY .
E(X|Y) = AxyY (19)
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where (X.Y]

is the covariation coefficient of X with Y.

Regressions of sub-Gaussian random variables are also linear. In fact, something
stronger is true. Let us define that a SaS random process {X(t),t € T} has the lin-
ear regression properly it E(Xo| X ...... X, ) i1s a linear function of Xy,..., X, whenever
the X;'s are elements of the linear span of {X(t),t € T'}. Then, the following remarkable
result holds [29]:

Theorem 4 A SaS process has the linear regression property if and only if it is sub-

Gaussian.

3 Parameter Estimates for Symmetric Stable Distri-

butions

Recall that a symmetric stable distribution is determined by three parameters: the charac-
teristic exponent a with 0 < o < 2, the dispersion 4 with ¥ > 0 and the location parameter
6 with —oo < 6 < 00. A practical problem is to estimate these three parameters from the
realizations of a symmetric stable random variable. For convenience. we shall replace v by
a new parameter c. defined by

c=4"" (21)

when we discuss paraineter estimations.

For a > 1, the sample mean will provide a consistent estimnate for the location parameter
6. But the problem of estimating the parameters of a stable distribution is, in general,
severely hampered by the lack of known closed-form density functions for all but a few
members of the stable family. Most of the conventional methods in mathematical statistics
can not be used in this case, since these methods are usually based on the availability of
an explicit form for the density. However, there are some numerical methods that offer

promises. Here we briefly survey a lew estimators that are popular in the literature.
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3.1 Method of Maximum Likelihood

Maximum likelihood estimates of a and v (assuming é = 0 ) were obtained by DuMouchel
[18]. A multinomial approximation to the likelihood function is used to find approximate
maximum likelihood estimators of the parameters. The estimates have the usual desirable
properties of maximum likelihood estimation. However. the computational effort involved
seems considerable.

A direct method can be formulated as follows. Following Zolotarev [90, 10], the stan-

dard symmetric stable density function is:

”/2 af(a—]
fulz) = u_ocq_w"’l’(o-” / o(0)e™="" 709 for a£1,2>0 (22)
- 0
where |
U(()) = WCOS[(G - 1)9](C030)l/(0_” (23)
Furthermore |
hir)y = (423
[o(0) = LP((a+ 1)/a) (24)

N 1 -x2/4
falx) = gpe7F /
Therefore, the parameters a. é, ¢ can be estimated from the observations z;, z2,...,zn by

maximizing the log likelihood function:

Y loglfa(zi)) = nloga—nlogla—1)x + &N (log z;)/(a — 1) 5)
+¥ L, log fd—'/? 0(0)6___:'/(0- )13(0)(10

where

5= |v; = 6l/c

To avoid the discontinuity and nondifferentiability at o = 1, « is restricted to be greater
than 1. Caution must be used when evaluating the integral in (22) and (25), since the
mntegrand is singular at ¢ = 0.

Based on (23). Brorsen and Yang in [10] performed Monte Carlo simulations with
fairly good results. An obvious disadvantage of this method is that it is a highly nonlinear

optimization problem and no initialization and convergence analysis are available.



3.2 Method of Sample Fractiles

The most frequently used method to estimate the parameters of symmetric stable laws
with 1| < a < 2 was suggested by Fama and Roll in [22], based on order statistics. They

suggested estimating ¢ by

[#o.72 = Zo.28) (26)

where &y (f = 0.72,0.28) is the estimated [ fractile of the Sa5 distribution. A consistent
estimate of the f fractile, &;, is usually the f(N + 1)st order statistic where N is the size
of observation?. It is shown that the estimate of ¢ given by (26) has an asymptotic bias of

less than 0.4% and is asymptotically normal with variance

0.09¢2

~ Np(a.0.72)] 1)

al(é

where p(a, f) is the density of the distribution of X at the f fractile of the standard stable
distribution of characteristic exponent a [22].

The characteristic exponent a. on the other hand, can be estimated from the tail

behavior of the distribution. Specifically. for some large f (f = 0.95, for example), first

calculate

Ny

s o B hs oo Brm By (28)
f 2¢ Zo.72 — To.28

from the sample. Given that X is SaS with characteristic exponent a and dispersion
7 = ¢4 3 is an estimator of the [ fractile of the standard SaS distribution. Thus an
estimate, Gy can be obtained by searching a table of standard SaS distribution functions,
such as those in [22. 30]. Monte Carlo simulations suggest that dges and g7 are fairly
robust. If the true value of a is close to 2 (a > 1.9) then the best estimator is &g.g9, in
terms of both low bias and standard deviation.

For 1 < a < 2, the SaS8 has finite mean. Thus the sample mean is a consistent
estimate of the location parameter . A more robust estimate is the truncated mean. A
p percent truncated sample mean is the arithmetic mean of the middle p percent of the
ranked observations. It has been shown by Monte Carlo simulations that the truncated

mean estimate is very efficient and asyvmptotically unbiased [21, 19]. It is also found that

2As pointed out in {51], to avoid spurious skewness in ry, a correction must be made. Specifically, if
the 2;'s are arranged in increasing order, the correction must be performed by identifying z; with &4
where ¢(i) = (2i — 1)/2N, and then interpolating linearly to f from the two adjacent ¢(i) values.
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the 50% truncated mean works best when the range of a is unknown.

Fama-Roll’s method is simple but suffers from a small asymptotic bias and is not
asymptotically efficient. Also, a is restricted to 1 < a € 2. McCulloch [51] generalized
Fama-Roll’s method to provide consistent estimates for a and ¢. He also eliminated the
asymptotic bias in the Fama-Roll estimators of a and ¢. Specifically, t is found that for
symmetric stable laws, . .

. £0.95 — 0.0
is independent of both ¢ and 6. Thus a consistent estimate & can be found by searching
tables, such as those in [51] with matched value of v,. For fixed a, the following quantity
v = £0.975 (— L0.25 (30)
as function of a, is independent of é. Since &, Zg.75, &g.25 are all consistent estimators, the

following is a consistent estimator of ¢:

. {¥ogrs — To2s
(= —
ve{a)

(31)

McCulloch’s method is actually more general than what is presented here. It provides
consistent estimators for all four parameters, with —1 < 3 < 1 and @ > 0.6 while retaining

the computational simplicity of Fama-Roll's method.

3.3 Method of Sample Characteristic Functions

The sample characteristic function is defined as

. 1 J\F i
S(t) = v Zexp(zt.zfj) (32)
N

where N is the sample size, and xy,...,ry are the observations. It is a consistent estimator
of the true characteristic function that uniquely determines the density function. Note
that the sample characteristic function. {3(f). —oo < { < oc}, is a stochastic process (non-
stationary) with the useful property that 0 < |3(1)] < L. So all of the moments of ((t) are
finite.

A few estimation methods have been proposed based on the sample characteristic func-

1
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tion. Among these methods are the method of moments of Press [63], the method of Paul-
son, Holcomb, and Leitch [61], and the regression-type method of Koutrouvelis [40, 39]. It
has been shown through simulations that Koutrouvelis’ regression-type method is better
than the other two in terms of consistency, bias as well as efficiency [1]. In the following
we will outline Koutrouvelis’ regression-type method for the Sa$ distributions. For the
estimation of J, see [40, 39].

The Koutrouvelis’ regression method is based on the following relations between the

characteristic function of a Sa.5 distribution and its parameters:

log(~ log |+ (0)]*) = log(2¢") + alog ] (33)
and Reoll)
€
= t
(D) tan é (34)

From (33), the parameters a and ¢ can be estimated from the linear regression
y=p+owy+p. k=1.2,...,K (35)

where

yi = log(—log |3(14)[*). jt = log(2¢”). wy. = log |tx].

¢r denotes an error term which is assumed to be i.i.d with mean zero. t,,...,{x is an
appropriate set of real numbers.
The location parameter é can be estimated in a similar way, through the following
linear regression:
=0ur+ck, 1=1,2,...,L (36)

where
zr = Arctan(Im(P(ur))/Re(S(ur)))

and uy,...,uy is an appropriate set of real numbers The error terms ¢4 are again assumed
to be i.i.d with mean zero.

The whole procedure may be performed iteratively until some prespecified convergence
criterion is satisfied. T'he initial estimates may be provided by Fama and Roll’s method or
McCulloch’s method. For the details about implementation of the regression estimators,
see [40. 39].



The regression estimators a,¢ and 6 described above are consistent, asymptotically
unbiased. According to the simulation results in [0}, the regression-type method is better
than the maximum likelihood method and Fama and Roll’s fractile method. This method

involves minimal computational effort and is easy to implement.

4 Estimation of Covariations

The covariation of two SaS random variables X and Y’ is, in general, difficult to calcu-
late analytically. An important exception is when X,Y are both linear combinations of

independent Sa.S random variables. Specifically, we have

Proposition 3 Let {7 's be indcpendent SaS random variables with dispersions v;, 1 =

1,...n. For any numbers a,... ., an by ... b,. form

X=ali + -+ aU,,
= blLI'I + 4 bnlln

e

Then
[X.X], = nilad” + - + nlanl®
[)"-. )".]ﬂ = |b,|f’ 44 A/nlbnlo-
[\' )"]“ = ')‘I("I[)f“-l> 44 A/"a"b:o—l>! (37)
.Hulbl<a—l> + o4+ "l‘n(lnb:o—l>
b |® s+ b

1\_,\' y =

As we will see in the next section, covariations (covariation coefflicients) among symmet-
ric stable random variables play the roles, in certain estimation problems, of correlations
(correlation coefficients) for second-order random variables. It is thus important to have
good (unbiased. efficient ) estimators for covariations.

In this section, we will discuss various methods for estimating the covariation coefficient
Axy of two Sas random variables X.Y. The reason we focus our attention on estimating
the covariation coefficient Ayy instead of the covariation [X, Y], is twofold. Firstly, since
[Y,Y], is the scale parameter in the characteristic function of Y, it can be estimated by
the methods in the previous section. So if we know the covariation coeflicient Ayy, we can
find [X, Y], by multiplying Axy and ||}||2. Secondly, as we will see soon, most of the time
we need only to know the covariation coefficients. The knowledge of covariation itself is

unnecessary.



4.1 Fracional Lower Order Moment Estimator

An important property of the covariation coeflicient is stated in the following theorem
(48, 12]:

Theorem 5 Supposc X.Y are jointly SaS random variables with 1 < a < 2. Then their

covariation coefficient is given by

E(XY<”‘1>)

E(TT) )

Axy =

forany0 < p<a.

This theorem immediately suggests a consistent method lor estimating the covariation
coefficient Ayy, which will be called fractional lower order moment (FLOM) estimator.
Specifically, for the independent observations (X, Y}),...,(Xg, Ya), we let
N
> XY tsign(Yy)
ArLoy = = (39)

N
SIvP
=1

for some 0 < p < a. A computationally efficient choice is p = 1. In this case

N
Z Xisign(Y;)
ArLon = El,\,—— (40)
21Vl
=1

4.2 Screened Ratio Estimator

Kanter and Steiger [37] proposed an unbiased and consistent estimator for covariation

coefficients, based upon the following theorem:

Theorem 6 Let X and Y be random variables that satisfy E(|X]) < oo and

E(X|Y)=AY as. (41)



Jor some A. For 0 < ¢ < ¢y L oo wrile B for the event {|Y] € (¢1,¢2)} and

IB:{ L if |¥]€(c1,c2)

0 otherwise

s the indicalor of the event B. Then
E(XY~'g)/P(B) =\

i€,

A= (XY'Ig)/P(B) (42)
15 an unbiased estimale of M.

As with any unbiased estimate, the strong law of large numbers implies that the above

estimate is strongly consistent. Specifically,
. N N
Asen =Y (XY )/ Y 1(B) (43)
=1 i=1

converges to A almost surely as n — oo, where X;,Y; are independent copies of X and Y,
respectively, and B; = {|}Yi| € (¢1.¢:)}. X in (43) is called the screen ratio estimate (SCR)

of A. Constants ¢, ¢, are arbitrary. A common choice is to let ¢, = oo.

4.3 Least-Squares Estimators

Another method, which works well for estimating correlation coefficients of Gaussian ran-
dom variables, is the least-squares (LS) method. Specifically. we may estimate A by mini-

mizing the error
N
Z(.\'; —AY;)?
=1 ’
The solution is of course the usual least-squares solution:

N

N
Ms = SNV SN (44)
=1 =1

As pointed out in [37], the least square estimate \.s is not consistent in the infinite



variance case.

4.4 Sampling Results and Some Comparisons

In this section we compares the performances of the three estimates by Monte-Carlo sim-

ulations. Two Sa¥ random variables. X and Y. are generated by

X = (MUl + (lz(,"'z._
Y = (’IUI + bQUQ

where Uy, U, are independent, symmetrically distributed stable random variables with

characteristic function exp(—|t|*). So the true covariation coefficient A of X with Y is

\ = (l]b?—’l + a'zbg_]
61]" + 162]"

5000 independent copies of U/}, {/; are generated and the three estimators are computed as
follows:
FLOM estimator: v
3 Xisign(Y;)

Mp(Ny=Eo — (45)
S|
i=1
Screened ratio estimator:
. N N
Ascr(N) = Z(.\',-Y}"IB,)/ZI(B,-) (46)
i=1 =1
where we chose ¢, = 0.1, ¢, = oc.
Least-squares estimator:
. N N
Ars(N) = Z.\’,},/ Z ),2 (47)
=1 =1

Finally this process is repeated independently 50 times. and the means and standard
deviations of the three estimators are computed. The results appear in Table 1 with

standard deviations in parentheses.

o
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Model a |LS Screened Ratios | FLOM | True A
(al,(l-z,()l,bg) (P:l)
1.110.3340 -0.4327 -0.4707 | -0.4252
(5.0539) | (0.3919) (3.1266)
1.3 03752 | -0.2591 -0.2599 | -0.2602
(5.1640) | (0.4991) (1.0352)
(-0.75, 0.25, | 1.5 | 0.4059 | -0.1112 -0.1222 | -0.1273
0.18, 0.738) (4.5142) | (0.3337) (0.9202) | (0.9202)
1.9 [ 0.1069 | 0.0654 0.06104 | 0.0599
(0.8870) | (0.3175) (0.4598)
2.0 ] 0.0976 | 0.08544 0.0954 0.0936
(0.0102) | (0.2790) (0.1252)

Table 1: Sampling properties of covariation estimates

Several features stand out in the simulation results in Table 1. The least-squares
estimate works only in the Gaussian case. It completely fails for o < 2. The screened ratio
estimate performs well for a < 2. The smaller a is. the better its performance. These
are consistent with the theoretic result that the screened ration estimates are unbiased
and consistent. On the other hand. the FLOM method with p = 1 is very robust against
changes of a, although it becomes more volatile when a approaches 1. Thus the FLOM
method seems (o be a very promising method for estimating covariations, especially when
a is close to 2. In addition it is very simple and inexpensive to compute.

In closing, let us point out the following special case of Theorem 5:

Corollary 3 If X.Y arc jointly Gaussian with zero means, then the correlation coefficient

of X.Y can be written as

o E(XY) _ E(Xsign(Y))
£X \/E(X'Z)\/E(Y'z) E(|Y))

The significance of the above result is that it provides a computationally efficient way

(48)

of estimating the correlation of any Gaussian random variables. This is very useful, for
example, in conventional power spectral estimation or the Yule-Walker method of AR

spectrum estimation.

[
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5 Parametric Models of Stable Random Processes

Unlike the Gaussian random processes which are completely determined by the autocorre-
lation sequences, stable processes are difficult to characterize. In this section, we consider
a class of linear Sa S processes which are generated by systems with rational transfer func-
tions driven by i.i.d SaS inputs. This class of models includes AR, M A, and ARMA
models. The output process can be completely described in terms of model parameters
and the dispersion of the input. It will be shown how to estimate the model parameters
and input dispersion from the covariation sequence of the output. The development here
is quite similar to that of second-order processes. The covariation sequence plays the role

of covariance sequence in the second-order case.

5.1 Parameter Estimation of AR Stable Processes

Let us consider processes generated by the following AR system
Xny=a X(n=-1)+ - +¢,X(n—-p)+U(n) (49)

where {{/(n)} is a sequence of i.i.d SaS random variables of characteristic exponent o
and dispersion %,, i.e., the random variables {/(n) have the same characteristic function
exp(—7«|t|*). As in the second-order case, we are only interested in stationary solutions
of (49) which is unique if the AR system in (49) is stable, i.e.. all the poles are inside the
unit circle. In addition. the stationary process X(n) is SaS and X(n) and U(n + j) are
independent for any j > 0.

We are interested in the problem of identifying the AR coefficients a;,...,a, from
the observation of output X(n). There are several of methods that have been proposed
in the literature. In the following we review some of these approaches and compare the

performances through Monte Clarlo simulations.

5.1.1 Generalized Yule-Walker Equation

Taking the conditional expectation of both sides of (49), one has that forn—p < m < n-1:

E(X(n)|X(m)) = E(X(n = D)|X(m)) +--- + ¢, E(X(n — p)| X (m)) (50)



where we used the fact that E(I/(n)[.X(m)) = 0 if U(n) and X(m) are independent. Since

{X(n)} is stable and stationary, we have
E(X(n+ D)]X(n)) = M) X(n)

where A([) is the covariation coefficient of X (n + {) with X(n) with A(0) = 1. Let us also
define

ML) ] «
)\(2) (%)
p= . y a= .
A(p) | |, |
and
A(0) A(=1) oo M1 =p)

A1) A0) c M2 = p) 1)

AMp=1) Xp=2) --- NO)

Then the coefficients of the AR system can be found by solving the following system of
linear equations:
Ca=p (52)

Equation (52) is a direct generalization ol the Yule-Walker equation for the case a = 2.
The covariation matrix C is Toeplitz. Thus. if it is nonsingular. we can solve (52) fairly
efficiently. On the other hand, unlike the Gaussian case where (" is symmetric and positive
definite, the covariation matrix (" is not symmetric. It may even be singular.

In practice. we can only estimate the covariation matrix C and vector p. Thus the
estimates of the coefficients a in (52) are based on those for A({). For example, we can use
the screened ratio estimates or the FLOM estimates defined in the previous section. Then
forming the covariation matrix ¢C= (('(i.j)) = (j\(i — 7)) and the vector p = (;\(z)), we

estimate a by the relation (assuming Cis invertible)
a=C'p (53)

Since the screened ratio and FLOM estimates are consistent, we kuow that a given by

(33) is also consistent.
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5.1.2 Least-Squares Method

Another approach to estimate the AR coefficients is treating the AR model as if it were
driven by a second-order process and use least-squares estimates. The least-squares esti-

mates of aj,...,a, are found by minimizing

N2

(X)) =y X(n=1)=---—a,X(n —p))?

n=N1

This is in fact equivalent to using the least-squares estimates of the covariation coefficient

A(l)

Ny Ny
Msth= S X(n=0)X(n)/ Y X%n) (54)
n=N, n=N),

Forming the covariation matrix Cis = ((5'(i.j)) = (5\1‘5(1' — J)) and the vector prs =

(;\Ls(i)), the least square estimates of the AR coefficients are given by:
aLs = CispLs

There is a considerable amount of literature dealing with the properties of the least
squares estimates for AR processes with infinite variances [37, 89, 28]. We summarize the

results in the following theorem.

Theorem 7 Lel N be the numbcr of observalions used in computing Aps(l) as shown in

(54). Then for any & > a. limy— NG, —a;) =0 as. for j=1,2,--- p.

Thus, least square estimate is consistent and convergence of the least-squares estimates
. . . _
to the true coefficients is very rapid. on the order of O(N~%) for any é < a. The smaller

«a is, the faster the convergence.

5.1.3 Least Absolute Deviation Estimates

It is well known that the least-squares method is closely related to the minimum mean
square error estimation method. It is surprising that the least-squares method has such
nice properties for estimating AR processes with infinite variance. After all, in this case,
the minimum mean square error estimation does not even apply.

For SaS random variables, a suitable measure of dispersion is the norm defined by

(10). Since for p < a, the L, norm (E(|X|?))'/? exists for any SaS random variable X
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and is equivalent to ||.X||., we may estimate the coefficients by minimizing
E|X(n)—a, X(n = 1) =---—aq,X(n - p)P

For finite observations, we find a;,- -, ¢, by minimizing the function

N2
Z [ X(n) —a, X(n =1)=--- = aq,X(n - p)|°
n=N1
Since L, error norm places less weight on extreme observations than does least squares,
it seems a natural estimator to apply in cases where extreme observations occur more
frequently than where the disturbances are normally distributed.
Several researchers have looked at a particular case where p = 1 [6, 27, 2]. The estimates

~

dy,...,a, obtained by minimizing

N2

Z IX(n) =1 X(n—1)—-+ = ap,X(n - p)| (55)

n=N1

are called the least absolute deviation (LAD) estimates. In general, the LAD estimates are
unique. The strong consistency of LAD estimates in the case of infinite variances is given

by the following theorem [2]:

Theorem 8 Let N be the number of observations used in computing (55). Then for any
6 > a, the LAD cstimales a; satisfy limy—x NY°(&; — a;) = 0 in probability for j =
1,2, p.

That is, the convergence rate of LAD estimates is comparable with that of LS estimates,
although simulations show that LAD estimates actually converge faster than the LS esti-

mates. But LAD estimates are several times costly than LS estimates.

5.1.4 Sampling Results and Performance Comparisons

To study the large sample properties of the proposed estimators. we generated 5000 samples

of the stationary SaS output of a second-order AR defined by

X(n)—a; X(n—=1)—aX(n-2)=U(n)
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Coefficients | @ | Least squares | LAD Yule-Walker
1.1 ]0.1953 0.1950 | 0.1942
(0.0277) (0.0021) | (0.1178)
1.3 | 0.1946 0.1949 | 0.1949
(0.0299) (0.0039) | (0.0895)
a;=0.195 1.5 | 0.1944 0.1945 | 0.1929
(0.0022) (0.0110) | (0.0918)
1.9 | 0.1951 0.1946 | 0.1949
(0.0031) (0.0362) | (0.0563)
2.0 | 0.1950 0.1953 | 0.1945
(0.0347) (0.0437) | (0.0392)
1.1 {-0.9486 -0.9500 | -0.9454
(0.0014) (0.0017) | (0.0049)
1.3 | -0.9500 -0.95 -0.9519
(0.0271) (0.0050) | (0.002)
a,=-0.95 1.5 [ -0.9493 -0.9498 | -0.9513
(0.0003) (0.0093) | (0.0913)
1.9 | -0.9500 -0.95 -0.9513
(0.0001) (0.0001) | (0.0014
2.0(-0.95 -0.9503 | -0.9498
(0.00001) (0.0003) | (0.0002)

Table 2: Estimation of coefficients of second-order AR process

where
a; =0.195. a; = —-0.95

The estimates @,.d, were computed based on the generalized Yule-Walk equation, the
LS method and the LAD method. Since simulations in [37) shows that the AR estimates
based on the screened ratio estimates of covariation coeflicients may be very inefficient de-
spite their consistency on theoretic ground. the FLOM method was used for the covariation
estimates in the generalized Yule-Walker equation.

This procedure was repeated independently. 50 times, and the means and standard
deviations of the three estimates were computed. These results are shown in Table 2,
standard deviations in parentheses.

It is obvious that the LS and LAD methods are very efficient and reliable. The general-
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ized Yule-Walker method based on FLOM estimates with p = 1 performs as we as the least
squares despite its simplicity. This is not surprising, knowing its superior performance in

estimating covariations.

5.2 Parameter Estimations of ARAM A Stable Processes

Consider processes generated by the following ARM A system
Xn)=a X(n=-1)4+ -+, X(n=p)+bUn)+--+bU(n—q) (56)

where {U(n)} is a sequence of i.i.d Sa.5 random variables of characteristic exponent « and
dispersion 5,. Under the assumption that the system is stable. the output process {X(n)}
is a stationary SaS random sequence of characteristic exponent a. In addition, X(n) and
U(n + j) are independent for all j > 0. The problem is to identify the AR coefficients
dy,....ap, and the M A coeflicients b,... .. b, [rom the observations ol output
Define
Are(M) = AX(m)X (n=m) (87)

as the covariation coeflicient of X (n) with X(n — m) and
'\u.x'(’") = ’\U(n).\'(n—m) (58)

as the covariation coefficient of {/(n) with X(n — m). Because of the stationarity of the
random processes, these covariations do not depend on time n.

By taking the covariations of both sides of (56) with X(n — m) one has:

P 9
Acr(m) = apdea(m — k) + > bidue(m — k) (59)

k=1 k=0
The covariation A,,.(m) of the input and the output can be expressed in terms of the

impulse response h(n) of the system by using the linearity ol covariations:

0 for m>0
Aur(m) = ¢ 4, for m=0 (60)
Yulh(=m)]<> 0 for m< 0



Combining (59) and (60), we obtain the relationship between the ARM A parameters

and the covariation of the process X(n):

bt @edpr (M = k) + 30 Cham Oc[h(h = m)]<e~!>  for 0<m<yg

Shoy @rApe(m =k (61)
=) @k Ape(m = k) for m > ¢

Aez(m) = {

Restricting the lag index m to ¢ +1 < m < ¢+ p, one obtains a set of linear equations

for the autoregressive parameters a;, . .., «, of an ARM A model in terms of the covariation

sequellice:
: o1 [ Aeelg4D)]
A.r:l:((l) '\Jt;v(([— l) tt A-‘l"-t(q —-p+ 1) @ A (([+))
’\.r.r(q + l) ’\rr(q) o ’\J'J‘(q - P + '2) @ _ -“ M (6‘))
' Arelq +
| Aeelg+p—=1) Alg+p-=-2) - Arr(q) |1 a 1+7)

Thus, the the autoregressive parameters may be found separately from the moving average
parameters as the solution to the simultaneous equation (62). This is analogous to the
ARM A Yule-Walker normal equations. Note that the coefficient matrix in (62) is again
Toeplitz. Fast algorithms exist for solving (62).

Unfortunately. the moving average parameters of an ARAM A model can not be found
simply as the solution of a set of linear equations. The M A parameters are convolved
with the impulse response coeflicients h(k), as indicated in (62), resulting a nonlinear
relationship with the covariation sequence. In the simplest case where p = 0 (i.e., for MA
models). it is easy to show that the relationship between the model parzmeters and output

covariation sequence is given by

a0 begmbE™2) for 0<m < g
/\“.(Hl) = "“(Z{;SI bkb<n-—l> l'OI' —yq S m S U (63)

k—m

0 for |m|> ¢

This is a set of highly nonlinear equations.



6 Linear Estimations of Stable Processes

6.1 The Minimum Dispersion Criterion

One of the central problems in statistical signal processing can be stated as follows: given a
set of observations { X(1),1 € T'}, find the “best” estimate of an unknown random variable
Y from the linear space spanned by {X(t),t € T}. This is the so-called linear theory of
stochastic processes. which includes linear estimation, prediction and filtering.

The linear theory of second-order processes ( Gaussian processes in particular) has been
fully developed. In this case. the linear space of observations X(¢), L(X(¢),t € T), is a
Hilbert space. Under the minimum mean square error (MMSE) criterion, the best linear
estimate of the unknown Y is the orthogonal projection of Y onto L(X(t),t € T). On the
other hand, the linear theory of non-Gaussian stable processes has only recently been the
subject of intensive research and relatively fewer results are available. A major difficulty
is that the linear span of a stable process is a Banach space when 1 < o < 2 and only a
metric space when 0 < a < |. These spaces do not have as nice properties and structures
as Hilbert spaces for the linear estimation problem.

Let us first look at what we mean by a “best” estimate. For second-order processes,
the most commonly used criterion for the best estimate is the MNSE criterion. Under this
criterion, the best estimate is the one that minimizes the variance of estimation error. If the
process is Gaussian it can be shown that this criterion also minimizes the probabilities of
large estimation errors. For stable processes. the MMSE criterion is no longer appropriate
due to the lack ol finite variance. But the concept of MMSE criterion can be easily
generalized to stable processes. Specifically. the minimum dispersion (MD) criterion is used
in discussing linear theory of stable processes. Under the MD criterion, the best estimate
of a SaS random variable in the linear space of observations is the one that minimizes
the dispersion of estimation error. Recall that the dispersion (i.e.. the scale parameter)
of a stable random variable plays an analogous role of the variance. For example, the
larger the dispersion. the more spread the stable random variable around the median.
Thus. by minimizing the dispersion. we minimize the average magnitude of estimation
error. Furthermore, it can be shown that minimizing the dispersion is also equivalent
to minimizing the probability of large estimation errors [16]. The MD criterion is thus
well justified in stable case. [t is a direct generalization of the MMSE criterion (MD and

MMSE criteria are the same in the Gaussian case) and reasonably simple to calculate. This
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criterion was introduced in [79] in an attempt to solve Kalman filtering problems associated
with stable processes. It has also been used in [6] in regression models with stable errors
as well as in [16] for linear prediction of ARM A processes with infinitc variances.

From Equation (12}, we see that the MD criterion is also equivalent to minimizing the
FLOM'’s of estimation errors. These FLOM’s measure the L, distance between Y and its
estimate ¥ on the linear space generated by the observation { X (¢),¢ € T}, for p < a. This
result is not surprising since the L, norms for p < 2 are well known for being robust against
outhiers such as those that may be described by stable laws. Notice that in stable cases
all of the FLOM’s are equivalent. A common choice is the L; moment which is sometimes
very convenient.

Under the MD criterion, the linear estimation problem of stable processes can be formu-

lated as follows: Find an element ¥ in the linear space L(X(2),t € T) of the observations

such that
Y =¥l = o e 1Y = 2 o
or equivalently
EY -Y["=__ infl _E|Y-Z] (63)
Z€L(X().teT)

for 0 < p < a. Since L(X(¢).L € T) is a Banach space, ¥’ always exists and is unique for
l < a < 2[77]. It is obtained by a metric projection of Y onto the convex Banach space
L(X(t),t € T). For 1 <a <2.Y is also uniquely determined by (13):

[X(t).Y =Y]. =0 forallteT (66)

This is analogous to the orthogonality principle used extensively in linear estimations of
second-order processes [59).

When a = 2, Equation (66) is linear and thus a closed-form solution exists for Y. For
a < 2, Equation (66) is nonlinear and is hard to solve for the estimate ¥. For example,
let X,Y be jointly SaS with spectral measure I'. Let ¢Y be the optimal approximation

of X in the MD sense.Then the coefficient « is the solution of the lollowing equation

/. ylo —ay)<"~'>I(ds) = 0 (67)

Even if we know I'. the above equation is still very hard to solve.
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A related estimation problem is the regression. The regression estimate of Y given
Xi,ennn. X, is the conditional expectation E(Y'|X,..., X,). When Y, X|,..., X,, are jointly
Gaussian, the regression estimate is linear and is equal to the linear estimate determined
by Equation (66). When Y. X,...... X, arc jointly stable with o < 2, this is no longer true,
as we have seen in Theorem 2. Even if the regression estimate is linear it needs not to be
the same as the linear estimate. A simple example to illustrate the point is to consider
the regression of two Sa.S random variables X and Y. In this case, the regression is given
by E(Y|X) = X, where « = [Y, X],/[Y,Y]a- On the other hand, the linear estimate
Y = aX is determined by (67), which has no closed-form solutions.

Although the development of linear theory for general stable processes is still in the
primitive stage, there are explicit results for special types of stable processes, such as
harmonizable. linear and sub-Gaussian processes. A large proportion of these results are
devoted to harmonizable stable processes [63, 87, 12, 33, 49]. They are usually presented
in the spectral domain. rather involved and can not be easily implemented from signal
processing point of view. We choose instead to present some results on r predictions of
linear processes. For a detailed analysis of continuous-time linear estimation problems, see

[13].

6.2 A Suboptimal State-Space Prediction

In [79]. Stuck made an attempt to extend the classic Kalman filtering theory to a more
general situation where the plant and observation noises are stable. He considered only
the scalar discrete-time case. Specifically. let the model of the signal process X(n) and

observation process Y'(n) be given by

{ Xn+1) = aX(n)+bU(n) (68)

Y (n) = cX(n)+ W(n)

where the plant noise {/(2) and observation noise W (n) are two i.i.d SaS sequences with
dispersions 4, and 7, respectively. In addition, we assume that U(n), W(m) are indepen-
dent lor all n and m. The initial value X(0) is also assumed to be stable with dispersion

Yo+ Lo predict X (n + 1) from the observations Y (n). Y (n =1)..... Y'(1), Stuck suggested



using the recursive lormulation of Kalman filters:

X+ 1) = aX(n)+Gue(n) (69)
(

e(n) = Y(n)-cX(n)

where the gain G, is chosen to minimize the dispersion 7., of prediction error e(n). Note
that e(0) = X(0). thus 7.(0) = ,,. It can be shown [79] that for 1 < a <2

G _ a “(’I"A (n ]l/(ﬁ"‘l)
" - C[ICIU»\ (,,)}1/(0 D+ v ll(a-l) (70)
Ye(n+1) = [b]°1 |_|a ulClye(n)

{[le|ove (n)]/e=1) 4 42/ =D}

Although (69) is easy to implement, it is only suboptimal. It does not truly use the
MD criterion in the prediction, as can be seen from the fixed recursive formulation. In
general, the MD prediction ol X(1) no longer has the recursive formulation of the Kalman

filters for the Gaussian case.

6.3 MD Predictions of Linear Stable Processes

Consider the ARM A stable process X (n) determined by the following equation
X(n)-a1 X(n=1)—---—q,X(n=p)=U0)+ U(n-1)+---+ bU(n—q) (71)

where {{/(n).n = 0. £1.£2....} are i.i.d Sa5 and the system is assumed to have minimum

phase. Let
1 -p

e - S bt ol = (72)

I+ b,z71 +- +b,,:

be the inverse of the system. Then the solution of k-step prediction based on the infinite

past is given by the following theorem [16]:

Theorem 9 For the ARM A(p. q) process there exists a unique minimum dispersion linear
predictors X (n + k) for X(n + k). k > 1. based on the infinite past X(n), X(n - 1),...,

given by the following recursive relationship:

[ v
X(n + k) Zh,\’ n+k—j)+ZhJ~X(n+k—j) (73)

i=k

39



In practice, one would like to predict X (n + k) based on finite observations X(n),..., X(1).
In this case, the truncation of the solution in (73) gives a nearly optimal solution for large
n.

The exact MD &-step predictor of ARM A(p,q) process based on X(n),...,X(1) is
analytically involved. except for the AR process. In this case, the receipt for the predictor

is exactly the same as the one for Gaussian processes. Specifically, one has [16]

Theorem 10 For the AR process given by the following stable system
X(n)=a X(n=1)+--+apX(n-p)

there exists a uniquc minimum dispersion k-step predictor X (n + k) for X(n + k) (k >

L2 p)interms of X(1)...... X(n). It satisfies the following recursive relationship
Xn+k)=a X(n=1)+--+ (1,,.’?(11 -p) (74)

with initial conditions .Q'(j) = X(y) for1 £j<n.

Thus, the MD predictor X’(n + k) is exactly the same as the MMSE predictor for an AR

Gaussian process. This is not the case for general ARM A stable processes [16].

6.4 Adaptive Wiener Filters for Stable Processes

Adaptive solutions of the linear estimation problems for stable processes are much easier
to implement because they do not require closed-form solutions. The dispersion of the
estimation error is usually a convex function ol the parameters. So numerical methods,
such as stochastic gradient methods. may be used to find the parameters by minimizing
the dispersion of the error function.

Let us consider designing an FIR filter with an input consisting of a stationary SaS
process u(0). u(1), u(2)..... The problem is to choose the tap weight wy, w;, ..., ws -1 such
that the output of the filter is as close to the desired response d(n) as possible. Here we
assume d(n) and wu(n)are jointly SaS. Specifically, we would like to find wo, wy, ..., wa—;
such that the dispersion of the error

M~1

e(n) = d(n) — Z wru(n — k) (75)

k=0
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is minimized. The cost function is thus given by

M-1
J = |ld(n) = Y wiu(n = k)]s (76)
k=0

This cost function turns out to be quite intractable in general. We will use an equivalent
form. Recall the norm of a Sa.5 is proportional to the usual L, norm of random variables
for any 0 < p < a. So an equivalent cost function is given by

M-1

J =E(|d(n) = > wiu(n — k)|") (77)

k=0
where 0 < p < a. A particularly simple case is when p = 1. In this case, the cost function
1s just

M-1

J = E(|d(n) - Z wru(n = k)|) (78)
k=0

Although there is no closed-form solution for the set of coefficients minimizing the
cost function J, J is convex. So we may use stochastic gradient method to solve for the
coefficients in the same way as the LMS does. Hence, we propose the following LMP (Least
Mean P-norm) algorithm.

LMP Algorithm: Fix | <p<a

1. Filter output:

y(n) = W' (n)u(n) (79)
2. Estimation error:
e(n) = d(n) — y(n) (80)
3. Tap weight adaptation:
W(n + 1) = w(n) + pu(n)|e(n)]"'sign(e(n)) (81)

For p = 1 the above algorithin will be called LMAD (Least Mean Absolute Deviation)
algorithm. The LMAD is actually the familiar signed LMS algorithm, although it is
derived in a different context.

To compare the performances of the LMS and LMAD algorithms, we set up the fol-
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lowing experiments involving a first-order AR process. Consider an AR process {u(n)} of

order |, described by the difference equation
u(n) = au(n — 1) + v(n) (82)

where a = 0.99 is the parameter of the process. and {v(n)} is a SaS white-noise process of
dispersion 1. We let the AR process in (82) reach steady-state before processing the data
to ensure the stationarity. To estimate the parameter ¢, we implement adaptive predictors
of order | using LMAD and LMS. The LMAD algorithm for the weight adaptation can be
written as

Wiarap(n + 1) = wiarap(n) + pu(n — 1)sign(e(n))

e(n) = u(n) — wrarap(n)u(n — 1)

wimap(0) =0.0

On the other hand, the LMS can be written as

wrpms(n + 1) = wems(n) + pu(n — 1)e(n)
e(n) = u(n) — wpms(n)u(n — 1)
wras(0) = 0.0

Figures 2-5 show the plots ol wyyap(n). wrars(n) versus the number of iterations where
WM ap(n), Wrars(n) were obtained by averaging 30 independent trials of the experiments.
For each trial, a different computer realization of the AR process {u(n)} is used. In
order to get a reasonable comparison between LMAD and LMS regarding the convergence
rates and misadjustment, in each experiment we first adjust the step size of LMS to the
maximum while ensuring the convergence of LMS and then choose a step size of LMAD
to get misadjustment comparable with that of LMS.

A couple of important observations could be made here. First, in all cases, LMAD is
simpler to implement than LMS. In each iteration. it still needs M multiplications and
M — 1 additions to compute the filter output and prediction error. but the tap weight
update equation is much simpler. This reduction in computation, however, comes at the
expense of performance when the driving noise is Gaussian. In this case, LMAD is slower
than LMS, as shown in Figure 2 This situation changes dramatically, iowever, when « is
less than 2. As a decreases, LMS becomes slower and slower to converge. In fact, when

a is close to 1, LMS hardly converges without its step size approximately equal to zero.
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LMAD. however, maintains fairly constant rate of convergence over the whole range of a.
LMAD converges faster and faster relative to LMS as o becomes smaller and smaller while
maintaining the same misadjustment as that of LMS.

This preliminary experiments show the distinct advantages of LMAD when the AR
process is driven by white stable noise. It is a simple, effective method for adaptive

filtering when we are dealing with stable processes.

6.5 Identification of LSI Systems

We consider a linear shift-invariant (LSI) system with a SaS process X (n) as the input.
Assume the impulse response of the system is A(n). The output Y(n) is then given by the
following convolution

Y(n) = i h(E)X(n - k) (83)
k=0
Observe that the output Y(n) is also a SaS process and Y'(n) and X(n) are jointly
stationary.
In the following we show that if we know the covariation sequence C,,(n) and the cross
covariation C'y,(n) sequence, we can identify the system (that is, find A(n)). In fact by

taking covariations of both sides with X(n — m). one has the [ollowing relation

Cype(m) = z\: h(k)Cpe(m — k) (84)

k=1
We now take the Fourier transform of both sides to get
Cyulw) = H(w)Cra(w) (85)
where C'yif(w'),H(w).(."l.l.(w) are the Lourier transforms of C'y.(m), h(n), C,z(n) respec-
tively.

So in theory one may recover the impulse response h(n) and/or its Fourier transform

H(w) from the covariation sequences through
H(w) = €'y1’(w)/él‘1‘(w) (86)

Note, however, that (',..(w) is just the Fourier transform of the covariation sequence of
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X(n) and has no power spectrum meaning.

For a similar development for continuous-time systems, see [13].

7 Conclusion

Stable laws are direct generalizations of the Gaussian laws. They share some of the most
important characteristics of the Gaussian, such as the stability property and central limit
theorems. Although they have found important applications in diverse fields such as
physics, economics as well as engineering. stable laws and processes are relatively unknown
among electrical engineers. ‘Lo increase the accessibility of stable models to engineers, this
paper presented a tutorial review of stable distributions and stable signal processing with
fractional lower order moments.

There are still a lot remaining to be done to better understand stable models and to
develop algorithms for their specific signal processing applications. For example, adaptive
signal processing algorithms can be developed and be applied in equalization, noise cancel-
lation. underwater acoustic signal processing and signal enhancement, under non-Gaussian
stable environments. These schemes can be expected to exhibit much faster convergence
and obtain more robust results than other existing methods which are generally tailored
specifically for the Gaussian signals. One could also investigate signal detection, parameter
estimation and classification with stable distributions and fractional lov.er order moments,
especially for signals and/or noise with infinite or very large variances. Filtering of impul-

sive noise and nonlinear stable signal analysis are yet two more areas worth investigating.

Appendix
In this appendix we summarize some of the basic facts about stable distributions. Most of

the following results can be found in [44. 9, 23, 25, 56, 60, 30. 90]

A Univariate Stable Distribution

A.1 Basic Definitions

Definition 1 A random variable X is said to have a stable distribution if for all X, X,

46



independent with the same distribution as X and for all ay > 0,a, > 0, there are constants
a > 0 and b such that
X+ X 2aX +0 (87)

where the notation X £ ¥ means that X and Y have the same distribution. Equation
(87) is called the stability or superposability property of stable distributions.

The stable laws arise naturally as limiting distributions by the following Generalized
Central Limit Theorem: [9):

Theorem 11 (Generalized Central Limit Theorem) X is the limit in distribution of

normalized sums of the form
Sn = ('\"l R o "\,n)/an - bn

where X;, Xy, ..., are i.i.d and a,, — >, if and only if X has a stable distribution.

In particular, if X;’s have mean g and variance o? and A, = 1/\/n, B, = /nyu, then the
limiting distribution is Gaussian. This is of course the result of the ordinary Central Limit
Theorem. Thus. normal distributions are all stable.

In the above theorem. in order for S, to converge in distribution, X, must have a

distribution belonging to the domain of a stable law. Specifically,

Definition 2 A distribution G/(x) is said to belong to the domain of a distribution F(z)

if there exist a, — o0 and b, such that the normalized sum
AS'-n = (.\.| + .\’2 + e + -X.n)/an - bn (88)

converges to F(x) in distribution, wherc X, are i.i.d and have distribution G(z).

For example, every distribution with finite variance belongs to the domain of a normal
distribution. By Theorem 1, one can see that a distribution function F(z) is stable iff it
possesses a non-empty domain of attraction. In fact, we have the following stronger result

[23]):

Proposition 4 [f F(x) is stable. then it belongs to ils own domain of attraction.



A.2 Characteristic and Probability Density Functions

The characteristic functions of stable laws can be written in the following parametric form
[9, 23]:

Theorem 12 A univariate distribution function F(x) is stable iff its characteristic func-

tion has the following form

olt) = exp{iat — v | L |° [1 +iBsign(t)w(l, a)]} (89)
where
tan % fa#l
w(t,a) = ’an 2 zfa # (90)
2log|t] fa=1
and
—xc<a<ax.7>00<a<2,-1<3<1 (91)
Here:

l. ais called the characteristic exponent. 1t is uniquely determined. The distributions
and corresponding random variables are called a-stable. o measures the “thickness”
of the tails of the distribution. Thus, if a stable random variable is observed, the
larger the value of a, the less likely it is to observe values of the random variable
which are far from its central location. A small value of @ will mean considerable
probability mass in the tails of the distribution. An a = 2 corresponds to a normal
distribution (for any ), while a = 1./ = 0 correspond to a Cauchy distribution.

Distributions corresponding to other values of a are unknown.

o

7 is a scale parameter, also called the dispersion [79]). For the normal distribution it
is equal to twice the variance. For non-Gaussian stable distributions, ¥ behaves like

the varance of a Gaussian distribution.

3. Jis a symmetry paramcter. 3 = 0 implies a distribution symmetric about a. In this
case, the distribution is called symmetric a stable, or simply SaS. Symmetric stable
distributions represent an important subclass of stable distributions. The Gaussian

and Cauchy distributions are all Sas.

4. a is a location parameter. For SasS distributions, it is the mean when 1 < o < 2

and the median when 0 < a < I. For the symmetric Cauchy distribution a is the

13



semi-interquartile range.

A stable distribution is called standardized if @ = 0,4 = 1. Il is easy to see that if X
is stable with parameters a, 3, and «. then (X - «) /'y?]»' is a standardized variable with
characteristic exponent a and symmetry parameter 3.

By taking the inverse Fourier transform of the characteristic function, it is easy to show

that the probability density function of the standardized stable variable is given by

Jeia, 3) = % /\ exp(—17) cos[at + ptew(l, a)]dt (92)
0

Note that f(2;a,4) = f(—=z;a,—3). It can also be shown that the probability density
functions of stable distributions are bounded and have derivatives of arbitrary orders [90).

Closed-form density and distribution functions are not available for general stable laws,
except for the Gaussian. Cauchy and Pearson distributions [30). But the power series
expansion of the density of a stable random variable is available. The probability density
function of the standardized stable variable can be expanded into absolutely convergent
series as follows [4. 44, 23, 90, 30): for + > 0

| = k-1
;Z%—F(nk-ﬁl)(—) 0"sm[—(a+()] O<axl
flxia.8) = ‘I. el (=11 k e (93)
rr_a',;_k! F(Z )(—) sm[ 5o (a + ()] l<a<?2
where
= Ftan(ra/2).r = (I + )= = —(2/7)arctan g (94)
In particular. the pdf of a SaSrandom variable is given by
| & k=1 . kamw
;—Z —T(ak +1)2™° sm[T] 0<axl
fa(2) = *S ) (95)
1 = (— l) 2k + 1
— <2
— AZ; Y% I*( )a? l<a<

For the SaS8 distributions with a > 1. asymptotic series are available for both the density
and distribution functions. Specifically. for .+ > 0.
(=1 Tak+1) . kra

.f.~(.r)=—; Dy e sin( 5

)+ R(a) (96)

49



where the remainder

R(x) = O(x~or¥)-1) (97)

Term by term integration of (97) yields the asymptotic series for the cumulative distribution

function for 2 > 0:

Con 1 & Llak) | kra _
F.z)=1+ - E:I(—l) I sin( 5 )+ H(x) (98)
where the remainder
| o m—a(u+l) 99
H(x) = (m) (99)

For the detailed tabulation of the stable distribution functions and graphs of stable

probability density [unctions. see [30. 90).

A.3 Important Properties of Univariate Stable Laws

1. Every stable distribution with characteristic exponent 0 < a < 2 has finite absolute
moments E(|z|”) of order p for 0 < p < a. All absolute moments of order p > « are
infinite [23].

Thus for 0 < a < 1 the stable laws have no first or higher order moments; for
| < a < 2. the stable laws have the first moment and all the fractional moments of
order p where p < a: lor a = 2. all moments exist. In particular, except for a = 2,

all stable laws have infinite variances.

2. The tails of Sa$ distributions with zero location parameter and dispersion « satisfy
[42. 86]
'lim PX| > t) = (Cla))™

where

Clo) = [_/U'x' Y ] (100)

u”
Thus stable laws have inverse power tails. [n contrast. normal distributions have
exponential tails. This proves that the tails of stable laws are a lot thicker than

those of normal distributions .



3. IF X, X, ... X, are independent and follow a stable law with the same (a, 3), then

%1 X follows the same law, except for a possible location and scale change.

4. Any Sa8 random variable X can be written as a product of two independent random
variables as follows:

X =YiQ (101)

where G is Gaussian, Y is S35 (thus positive) and independent of G.

B  Multivariate Stable Distributions

B.1 Characterizations of Multivariate Stable Laws

The multivariate stable distributions are again defined by the stability property:

Definition 3 A k-dimensional distribution function F(r). x € R* is called stable if, for
any wmdependent identically distributed random vectors Xy, Xy with distribution function
F(z), there cxist a > 0,6 € RB* and a random vector X with the same distribution function
F(z) such that

X1+ XL aX +0b (102)

One of the main differences between univariate and multivariate stable distributions
is that the family of one-dimensional stable distributions form a parametric set while the
family of multivariate stable distributions form a nonparametric set, as we can see from

the characteristic functions of multivariate stable distributions [42, 60]:

Theorem 13 A k-dimensional distribution function F(x),x € R* is stable iff its charac-

teristic function has the following form

exp{it’a — tT At ifa=2
oty = § P R-CAY . (103
exp{it’a— [(|t's|°T(ds) +i8,(1)} f0<a<?2
where ‘ -
Ju(t) = tan"j.{‘ fs |t"”s|"sign(tls)l‘((ls) z:fo' #1l.0<a<? (104)
JstTslog |tTs|[(ds) ifa=1

and where a,t € R*. S = {x € R* : |x|}.T = a finite Borel measure on S, A a positive

semidefinile symmetric matrir of ovder.



Remark:

1.

o

B.2
Most

(8]

a is the characteristic exponent of the stable distributions. It is uniquely determined.
The distribution is called a-stable. If @ = 2, then the stable distributions are the

family of normal distributions with mean a and covariance matrix 2A.

Except for the case a = 2, the multivariate stable distributions form a nonparametric
set. They are determined by a vector a € R¥, a scalar 0 < a < 2 and a certain finite

measure I'(ds) on the sphere S.

a is a location vector.

. I' is called spectral measure. For 1 < a < 2. T is uniquely determined.

3a(t) 1s called asymmetry function. If 3, = 0 then such stable distributions are

symmetric and called symmetric a stable (SasS).

Properties of Multivariate Stable Distributions

of the following results can be found in [60. 56, 66, 13]

. All non-degenerate (4 > 0) stable distributions are absolutely continuous and have

contmuously differentiable densities.

. The moment properties of the components of a stable random vectors follow the

univariate results for moments [56).

If 1 < a <2 then a random vector X follows a multivariate stable (or SaS) law
with characteristic component o ifl every linear combination of the components of

X follows a univariate stable (or SaS) law with characteristic exponent a [86).

‘T'he marginal distributions corresponding to a multivariate stable (or SaS) law are

all stable (or SaS) with the same characteristic exponent.

The characteristic functions of the form

o(t) = exp(—27°"2(t7 Rt)) (105)

o]
o



where the matrix R is positive definite, define an important subclass of multivariate
SasS random vectors. the so-called a-sub Gaussian random vectors [60, 13]. This
subclass is often denoted by a-SG(R). It is well known [13] that if x € o — SG(R)
then

X = ny (106)

where 7 is a positive §5S random variable. y is Gaussian with mean zero and

covariance matrix K. In addition.  and y are independent.

. The question of how to characterize the independence of jointly SaS random vari-

ables is answered by the following theorem due to Miller [56):

Theorem 14 Let Xy,..., X,,. Yi..... Y, be jointly SaS random variables with 0 <
a < 2 and spectral measure I’ on the Borel subsels of the unit sphere S in R™+",
Then (X).....X,,) and (Y)..... Y, ) are independent if and only if

M(z.y)e S:x e R",ye R, |z|ly| #0} =0

where |z|, |y| are the Euclidcan norms of x,y. In addition, for a family of SaS

random variables. independence is equivalent lo pairwise independence.

[n particular. the component Sas random vector are independent iff T is concen-
trated on the [inite set of points formed by the intersection of the coordinate axes

and S.

. It is shown in most engineering probability books that any Gaussian random vector

can be whitened. Specifically, if x is a Gaussian vector, then x can be written as
x = Ay

where A is a constant matrix and y is a Gaussian random vector with independent

component. But in the stable case. we have the lollowing lemma [70].

Proposition 5 [n general. representation of of even two stable variables of index
a, 0 < a < 2 as the linear combination of a finite number of independent stable

variebles of the same index is impossible.
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The above lemma shows why we have to be very careful when we generalize something

about Gaussian processes to stable processes.
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