USC-SIPI REPORT #206

Analysis and Design of Fuzzy Systems
by

Li-Xin Wang

June 1992

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

Acknowledgements

I would like to express my first acknowledgement to my advisor, Dr. Jerry M.
Mendel, for his constant support and encouragement throughout my Ph.D. study.
It was an enjoyable experience to work with Dr. Mendel. His remarkable quick
response to all my work made my research more quickly. Most of all, I would like
to thank Dr. Mendel for giving me the chance to study in the U.S.A..

I would like to express my special appreciation to my future postdoctoral
advisor, Dr. Lotfi A. Zadeh. His invaluable encouragement and appreciation for
my work on fuzzy systems is the main reason for my decision to concentrate on
the research of fuzzy systems.

I am indebted to my dissertation committee members Dr. Alvin M. Despain
and Dr. Robert J. Sacker for their contributions in numerous ways to this disser-
tation.

My extended appreciation goes to my classmates and good friends Dr. Weizheng
Wang and Mr. Chiu Yeung Ngo. Their selfless help made my life easier in this
new country, which in turn greatly helped my research.

Finally, I wish to express my deepest appreciation to my wife Yingbi. Her
constant encouragement and support made my research so enjoyable. I would like

to dedicate this dissertation to her.

ii

Contents

Acknowledgements ii
Abstract ix
1 INTRODUCTION 1

1.1 Combining Numerical and Linguistic Information into Engineering
Systems — A Fuzzy System Approach 1
1.2 Description of Fuzzy Systems 4
121 FuzzyRuleBase 6
1.2.2 Fuzzy InferenceEngine 7
123 Fuzzifier e 7
124 Defuzzifier 8
1.2.5 Some Useful Subclasses of Fuzzy Systems 9

1.3 A Comparison of Fuzzy Systems with Probabilistic General Regres-
310 o 12
1.3.1 Probabilistic General Regression 12

1.3.2 Comparison of Fuzzy Systems with Probabilistic General
Regression 13
1.3.3 ConcludingRemarks 15
1.4 OutlineoftheThesis 16

2 FUZZY SYSTEMS AS UNIVERSAL APPROXIMATORS TO

STATIC AND DYNAMIC SYSTEMS 17
21 Introduction, 17

2.2 Fuzzy Systems as Universal Approximators of Static Systems . . . 18
2.3 Fuzzy Systems as Universal Approximators of Dynamic Systems . 21

3 DESIGN OF FUZZY SYSTEMS USING BACK-PROPAGATION

TRAINING 25
31 Introduction, 25
3.2 Back-Propagation Training for Fuzzy Systems 26
3.3 Identification of Nonlinear Dynamic Systems Using the Back-Propagation

Fuzzy Systems i e e 30

iii

3.4 Simulations e e e e e e e e 34

35 Conclusions it e e, 44
DESIGN OF FUZZY SYSTEMS USING ORTHOGONAL LEAST
SQUARES LEARNING 50
4.1 Introduction e e e 50
4.2 Fuzzy Systems as Fuzzy Basis Function Expansions 51
4.3 Orthogonal Least Squares Learning 54
4.4 Control of the Nonlinear Ball and Beam System Using FBF Ex-
PaDSIONS . & v ¢ 4 v v v vt e o et e e e e e e e e e e e 57
4.5 Modeling the Mackey-Glass Chaotic Time Series by FBF Expansion 63
46 Conclusions i i i ittt e ., 68
DESIGN OF FUZZY SYSTEMS USING A SIMPLE ONE-PASS
METHOD 69
51 Introduction 69
5.2 Generating Fuzzy Rules from Numerical Data 69
5.3 Application to Truck Backer-Upper Control 76
5.4 Application to Time-Series Prediction 85
55 Conclusions vt vttt e e e e e e e e e e 97
FUZZY ADAPTIVE FILTERS, WITH APPLICATION TO NON-
LINEAR CHANNEL EQUALIZATION 98
6.1 Introduction @i, 98
6.2 RLS Fuzzy AdaptiveFilter. 99
6.3 LMS Fuzzy Adaptive Filter 104
6.4 Application to Nonlinear Channel Equalization 106
6.5 Conclusions i i ittt ittt 120
CONCLUSIONS AND FUTURE WORK 122
REFERENCES 124

iv

List of Figures

1.1
1.2

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Basic configuration of fuzzy systems. 3
Some subclasses of fuzzy systems. 10
Network representation of the fuzzy systems. 28
An example of series-parallel identification model, where g is an
unknown nonlinear function and fisaBPFS............ 32
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at £ =100. 36
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at £ =200. 36
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at £ =400. 37
Outputs of the plant (solid-line) and the neural network identifica-

tion model of [49] (dashed-line) for Example 3.1 when the training
stops at k = 500. (Narendra et al., 1990. (© 1990 IEEE.) 38
Outputs of the identification model (dashed-line) and the plant
(solid-line) for Example 3.1 for the input u(k) = sin(27k/250) for
1 < k <250 and 501 < k < 700 and u(k) = 0.5sin(2rk/250) +
0.5sin(27k/25) for 251 < k < 500 after the identification model

was trained for 5000 timesteps. 39
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.2 without using the linguisticrule. 41

Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.2 after the linguistic rule was incorporated. . . 41
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.3 when the parameters of the identifier were
determined based only on the initial parameter choosing method

and therewasno BP training. 43
Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.3 after 5000 step training. 44
Outputs of the plant (solid-line) and the neural network identifi-

cation model of [49] (dashed-line) for Example 3.3 after 10° step
training. (Narendra et al., 1990. © 1990 IEEE.) 45

3.13

3.14

3.15

3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

4.12

5.1
5.2
5.3
5.4

5.5

Outputs of the plant (y,(k), solid-line) and the identification model
(#1(k), dashed-line) for Example 3.4 after 5000 steps of training. .
Outputs of the plant (y2(k), solid-line) and the identification model
(92(k), dashed-line) for Example 3.4 after 5000 steps of training. .
Outputs of the plant (y1(k), solid-line) and the neural network
identification model of [49] (#1(k), dashed-line) for Example 3.4
after 10° steps of training. (Narendra et al., 1990. © 1990 IEEE.)
Outputs of the plant (y2(k), solid-line) and the neural network
identification model of [49] (§2(k), dashed-line) for Example 3.4
after 10° steps of training. (Narendra et al., 1990. © 1990 IEEE.)

An example of the fuzzy basis functions.
The ball and beam system.
Outputs of the closed-loop ball and beam system for Case 1 and
four initial conditions.,
Outputs of the closed-loop ball and beam system for Case 2 and
four initial conditions.,
Outputs of the closed-loop ball and beam system for Case 3 and
four initial conditions.
Outputs of the closed-loop ball and beam system using the input-
output linearization algorithm of [18] and four initial conditions. .
Outputs of the closed-loop ball and beam system using the pure
fuzzy logic controller based on the four linguistic rules (4.22)-(4.25)
and four initial conditions.
A section of the Mackey-Glass chaotic time series.
Residual sequence using the FBF expansion predictor for the chaotic
timeseriesof Fig. 4.8.
Autocorrelations of the residuals of Fig. 4.9. -*- represents 95%
confidenceband.
Chi-squared statistics ((n) for w(t) = €*(t — 1). -*- represents 95%
confidenceband. e,
Chi-squared statistics {(n) for w(t) = €*(t — 1)y?(t — 1). -*- repre-
sents 95% confidenceband. L oL

Divisions of the input and output spaces into fuzzy regions and the
corresponding membership functions.,
Illustration of a fuzzy rulebase.
Diagram of simulated truck and loading zone.
Truck trajectories using the neural controller and the numerical-
fuzzy controller. e e e
Fuzzy membership functions for the truck backer-upper control
problem. e e e e e e

46

46

47

48

53
58

61

61

62

63

64

64

65

66

67

67

71
74
78

82

vi

5.6
5.7
5.8
5.9
5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

6.1
6.2

6.3

6.4

The final fuzzy rule base generated from the numerical data for the
truck backer-upper control problem..
Truck trajectories using the fuzzy rules from the truncated data
pairsonly. L ..
Truck trajectories using the selected linguistic rules only.
A section of the Mackey-Glass chaotic time series.
The first choice of membership functions for the chaotic time series
predictionproblem.
Prediction of the chaotic time series from x(701) to x(1000) using
the numerical-fuzzy predictor when 200 training data (from x(501)
tox(700)) areused. L
Prediction of the chaotic time series from x(701) to x(1000) using
the neural predictor when 200 training data (from x(501) to x(700))
) R -
Prediction of the chaotic time series from x(701) to x(1000) using
the numerical-fuzzy predictor when 700 training data (from x(1) to
x(700)) areused.
Prediction of the chaotic time series from x(701) to x(1000) using
the neural predictor when 700 training data (from x(1) to x(700))
areused. i it e e e e e e e e e e e e e e e e
Prediction of the chaotic time series from x(701) to x(1000) using
the updating fuzzy rule base procedure.
The second choice of membership functions for the chaotic time
series prediction problem.
The third choice of membership functions for the chaotic time series
predictionproblem.
Prediction of the chaotic time series from x(701) to x(1000) using
the updating fuzzy rule base procedure with the second choice of
membershipfunction.,
Prediction of the chaotic time series from x(701) to x(1000) using
the updating fuzzy rule base procedure with the third choice of
membership function. oo L.

Schematic of data transmission system.
Optimal decision region for the channel (6.28), Gaussian white
noise with variance 02 = 0.2, and equalizer order n = 2 and lag
d=0. . . e e e e e e e
Decision region of the RLS fuzzy adaptive filter without using any

linguistic information and when the adaptation stopped at k = 30.

Decision region of the RLS fuzzy adaptive filter without using any

linguistic information and when the adaptation stopped at £ = 50.

94

95

95

96

96
108

vii

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Decision region of the RLS fuzzy adaptive filter without using any
linguistic information and when the adaptation stopped at k = 100. 112
INllustration of some fuzzy rules about the decision region. 114
Decision region of the RLS fuzzy adaptive filter after incorporating
the fuzzy rules illustrated in Fig. 6.6 and when the adapta.tion
stoppedat £=30. 115
Decision region of the LMS fuzzy adaptive filter without using any
linguistic information and when the adaptation stopped at k = 100. 116
Decision region of the LMS fuzzy adaptive filter without using any
linguistic information and when the adaptation stopped at k = 200. 116
Decision region of the LMS fuzzy adaptive filter without using any
linguistic information and when the adaptation stopped at k = 500. 117
Decision region of the LMS fuzzy adaptive filter after incorporat-
ing some of the fuzzy rules illustrated in Fig. 6.6 and when the
adaptation stopped at k=100. 118
Optimal decision region for the channel (6.28), Gaussian white
noise with variance ¢? = 0.2, and equalizer order n = 2 and lag

=1, . e e e e e e e e 119
Decision region of the RLS fuzzy adaptive filter for the case of
Example 6.5 when the adaptation stopped at k=20. 119
Decision region of the RLS fuzzy adaptive filter for the case of
Example 6.5 when the adaptation stopped at k=50. 120

Comparison of bit error rates achieved by the optimal and fuzzy
equalizers (Example 6.6). 121

vili

Abstract

The goal of this thesis is to develop methods which can combine both numerical
information and linguistic information into a common framework, and to apply
them to a variety of control, signal processing, and communication problems. This
goal is important because so much human knowledge is represented in natural
language and to incorporate it into engineering systems is clearly needed. We
show that fuzzy systems are powerful tools for achieving this goal. We first present
a systematic description of fuzzy systems and show that the fuzzy systems are
very general and include probabilistic general regression as a special case. To
justify the use of fuzzy systems as basic building blocks for engineering systems
(controllers, identifiers, predictors, filters, etc.), we rigorously prove, using the
Stone-Weierstrass Theorem in mathematical analysis, that the fuzzy systems are
capable of approximating any nonlinear function over a compact set to arbitrary
accuracy. Then, three design methods for fuzzy systems are developed which
determine fuzzy systems based on desired input-output pairs and fuzzy IF-THEN
rules from human experts. In the first method, we show that fuzzy systems can be
represented as three-layer feedforward networks, and develop a back-propagation
algorithm to train the fuzzy systems to match desired input-output pairs. We use
this back-propagation fuzzy system as identifiers of nonlinear dynamic systems
and show, through simulations, that the performance of the fuzzy identifiers is
much better than the neural network identifiers. The second method is based
on the classical orthogonal least squares algorithm; the basic idea is to represent
the fuzzy systems as expansions of fuzzy basis functions and use the orthogonal
least squares algorithm to select the significant fuzzy basis functions. We apply
this method to the control of the nonlinear ball and beam system. The third
method is a simple one-pass procedure which is based on a five-step procedure

of generating fuzzy rules from numerical data. We apply this method to the

ix

truck backer-upper control and time-series prediction problems and show that the
performance of this new method is better than that of the conventional fuzzy and
neural approaches. Finally, we develop two nonlinear adaptive filters based on
fuzzy system models, namely RLS and LMS fuzzy adaptive filters, and use them
as equalizers for nonlinear communication channels. We show that the fuzzy
adaptive filters are well-defined nonlinear adaptive filters, and have the unique
advantage (as compared with polynomial, neural nets, and radial basis function,
etc., adaptive filters) of directly incorporating linguistic information from human
experts into the filters.

Chapter 1

INTRODUCTION

1.1 Combining Numerical and Linguistic Infor-
mation into Engineering Systems — A Fuzzy

System Approach

For most real-world engineering problems, the information concerning system
design, evaluation, implementation, etc., can be classified into two categories:
numerical information obtained from sensor measurements, and linguistic infor-
mation obtained from human experts. Conventional engineering approaches can
only process numerical information, whereas conventional expert systems can only
make use of linguistic information. Therefore, their successful applications are
limited to problems where either linguistic information or numerical information
does not play a critical role. However, there are a large number of practical en-
gineering problems where both numerical information and linguistic information
are critical. In order to combine these two kinds of information into engineer-
ing systems, the so called intelligent approaches (intelligent control, intelligent
signal processing, intelligent networks, etc.) have been developed. Most exist-
ing intelligent approaches are heuristic in nature, i.e., they combine conventional
methods, perhaps after some modification, with expert systems in an ad hoc way
for a specific problem; simulations are then performed to show that the proposed

approaches work well for the specific problem. This kind of approach has at least

three weakpoints: 1) it is inefficient and time-consuming to use because there
is no systematic way to guide the design and evaluation; 2) it is quite problem
dependent, i.e., a method may work well for one problem but may not be suitable
for another problem; and 3) there is no common framework to represent numerical
and linguistic information, which makes theoretical analyses for these approaches
very difficult.

The goal of this thesis is to develop a series of methods which combine nu-
merical information and linguistic information into a common framework and to
apply them to a variety of control, signal processing, and communication prob-
lems. Fuzzy systems are powerful tools for achieving this goal, because: on one
hand, fuzzy systems are constructed from fuzzy IF-THEN rules so that linguistic
information can be naturally incorporated into the systems; on the other hand, a
variety of learning algorithms can be developed (as shown in this thesis) to train
the systems to match numerical input-output pairs.

The idea of fuzzy systems was introduced by Zadeh [106] very early in the
literature of fuzzy sets. Research on fuzzy systems has developed in two main
directions. The first studies fuzzy systems in the same conceptual framework as
classical systems, and has given birth to a body of abstract results concerning
the stability [26], reachability [13,51], observability [13,51], etc., of fuzzy systems.
This approach has not found successful applications to the study of real processes,
perhaps because stability, reachability, observability, etc., are crisp concepts (e.g.,
a system is stable or unstable), and it is very difficult to justify their fuzzy counter-
parts. The second direction is the linguistic approach to fuzzy systems [41,108], in
which a fuzzy system is constructed from a collection of fuzzy IF-THEN rules and a
fuzzy inference engine which uses techniques in approximate reasoning [1,109,110].
This approach was used to synthesize fuzzy logic controllers [41,42] which have
been successfully applied to a wide variety of practical problems during the past
decade [40]). We adopt this second approach to fuzzy systems in this thesis.

The basic configuration of a fuzzy system is shown in Fig. 1.1. There are four
principal components in a fuzzy system: 1) fuzzy rule base which comprises fuzzy
rules describing how the fuzzy system performs; it is the heart of the whole system

in the sense that other three components are used to interpret and combine these

rules to form the final system; 2) fuzzy inference engine which uses techniques in
approximate reasoning to determine a mapping from the fuzzy sets in the input
space U C R to the fuzzy sets in the output space V C R™; 3) fuzzifier which
maps crisp points in the input space into fuzzy sets in the input space; and, 4)
defuzzifier which maps fuzzy sets in the output space into crisp points in the
output space. Depending upon whether there are fuzzifier and defuzzifier, we
have two classes of fuzzy systems. The first class of fuzzy systems is comprised
of only the fuzzy rule base and fuzzy inference engine, and therefore operates
in a pure fuzzy environment, i.e., inputs and outputs to these fuzzy systems are
fuzzy variables. If there is a feedback as shown in Fig. 1 by the dashed arrow
line, we have the so called fuzzy dynamic systems [13,72,73]. The second class of
fuzzy systems is comprised of all the four components, and performs mappings
from crisp U C R™ to crisp V C R™. In the literature, this second class fuzzy
systems are called “fuzzy logic controllers” [33,34], because their most successful
applications have been to control problems. In this thesis, we use this second class

of fuzzy systems.

Fuzzy
Rule
Base
crisp crisp
Fuzzifier Defuzzifier -
UeR® ‘ VeRD
. Fuzzy
fuzzy sets in U Inference fuzzy sets in V
| Engine

Figure 1.1: Basic configuration of fuzzy systems.

1.2 Description of Fuzzy Systems

Figure 1.1 shows the basic configuration of the fuzzy systems considered in this
thesis. The fuzzy system performs a mapping from crisp U C R to crisp V C R™.
We assume that U = Uy x -+ x U, and V =V} x -+ X V,, where U;,V; C R,
t=1,2,..,n,and j = 1,2,...,m. Before we present a detailed description for each
component of the fuzzy system, we briefly review some basic concepts in fuzzy
sets and systems theory which are useful for describing the fuzzy systems.

A fuzzy set [107] F of a universe of discourse U is characterized by a mem-
bership function ur : U — [0,1] which associates with each element u of U a
number pr(u) in the interval [0,1] which represents the grade of membership of
u in F. The label F of a fuzzy set is often some linguistic term like “small”,
“large”, etc.. The support of a fuzzy set F' is the crisp set of all points u € U such
that pp(u) > 0. A fuzzy singleton F is a fuzzy set whose support is a single point
up € U with up(up) = 1.

A linguistic variable [108] is a variable whose values are words in a natural or
artificial language, and these words are labels of fuzzy sets. For example, if “slow”,
“medium”, and “fast” are values of “speed”, then “speed” is a linguistic variable.
A variable can be viewed either as a linguistic variable or a numerical variable.
For example, the variable “speed” can be viewed either as a linguistic variable,
if it takes values of “slow”, “medium”, or “fast”, or as a numerical variable, if it
takes values in the interval [0, V,n.z] where V.o is the maximum speed of the car.

A fuzzy IF-THEN rule [108] is an expression of the form “IF A THEN B,”
where A and B are statements about what values the linguistic variables take on.
For example, A and B could be “the speed is slow” (i.e., “speed = slow™), or
“the speed is fast,” etc.. We often use the following fuzzy IF-THEN rules to drive
a car: “IF the speed is slow, THEN apply ‘more’ force to the accelerator”, “IF
the speed is medium, THEN apply ‘less’ force to the accelerator,” etc., where the
‘more’, ‘less’, etc., are characterized by fuzzy membership functions.

A triangular norm ‘¥’ is defined as a mapping from [0, 1] x [0,1] to [0,1], and

the most commonly used triangular norms are [33]

min[z,y] intersection
Ty = Y algebraic product (1.1)
maz[0,z +y — 1] bounded product

where z,y € [0,1]. A triangular co-norm ‘}’ is a mapping from [0,1] x [0,1] to
[0,1], and the most commonly used triangular co-norms are [33]

maz(z,y] union
Ty = z+y—zy algebraic sum (1.2)
min(l,z + y] bounded sum.

Let F,..., F, be fuzzy sets in Xi,..., X,, respectively; the cartesian product
of Fi,..., Fy,, denoted by Fy x .-+ X Fy,, is a fuzzy set in the product space X =
X1 % +-« x X, with membership function

BFy X xFa(Z11 000y Tn) = BF (1) * -+ % 5, (2n)- (1.3)

Let R and S be fuzzy sets in X x W and W x Y, respectively; the sup-star
composition of R and S, denoted by RoS, is a fuzzy set in X xY with membership

function

BRos(Z,Y) = supwew[1r(z, w) * us(w,y)). (1.4)

Let A and B be fuzzy sets in X and Y, respectively; the fuzzy implication A — B,
or ‘IF A THEN B’, is defined as a fuzzy set in X x Y with membership function

pa-8(z,y) = pa(z) * pa(y). (1.5)

Operations other than * may be used in (5) to define the fuzzy implication (see

[33]).

1.2.1 Fuzzy Rule Base
A fuzzy rule base R is a collection of fuzzy IF-THEN rules

R =[R',R,...,RM), (1.6)
with

R: IF (z, is F| and --- and =z, is Fl;
THEN (2 is Gi, -, z is G.), (1.7)

where z = (z1,...,2,)T and z = (21,...,2»)7 are the input and output vectors to
the fuzzy system, respectively, F{ and G are labels of fuzzy sets in U; and V},
respectively, 1 <p<n,1<¢g<m,andl=1,2,.., M. It is clear that R! of (1.7)

can be decomposed into a collection of ¢ rules

R'=(R},---, R}, (1.8)
where
Ri: IF (zy is F} and --- and z, is Fl)
THEN (z is Gi), (1.9)
1=12,..,4q.

Although the IF part of R} is connected by ‘and’ operation, R;- is general
enough to include rules whose IF part contains ‘or’ or ‘not’ operations. Specifically,
if there is an ‘or’ operation, we can break the rule into two rules whose IF parts
contain only ‘and’ operation. For example, we can decompose the rule: “IF z; is
F; and z, is F, or z3 is F3, THEN z is G” into two rules: “IF z, is F} and z, is F3,
THEN z is G”; and, “IF z3 is F3, THEN 2 is G”. This decomposition is clearly
consistent with our intuition of the ‘or’ operation. If there is a ‘not’ operation,
e.g., “r; is not Fy”, we can define a new fuzzy set F; with membership function
pr, =1 — pr, so that “z; is not F1” is equivalent to “z; is Fy». Therefore, the

fuzzy rule base R is quite general and includes many linguistic descriptions in

fuzzy terms about the relationships between the input z and the output z.

1.2.2 Fuzzy Inference Engine

A fuzzy inference engine uses the rules in the fuzzy rule base to determine a
mapping from fuzzy sets in U to fuzzy sets in V' based on fuzzy logic operations.
In the fuzzy inference engine, the IF part of R} defines a cartesian product of
F{,...,F}, and the R} itself is viewed as a fuzzy implication F{ x --- x F! — G..
Let A be an arbitrary fuzzy set in U, then each R} of (1.9) determines a fuzzy set

Ao R; in V; based on the sup-star composition

#AoR;(Zj) = supgev(pa(z)* #F{x---xr;~cg(£, z;)]

= supgev[ua(z) * by (-'01)*“'*#F,!,(%)*I‘G;(zj)]v (1.10)
where y; € V;. The final fuzzy set Ao R; (R; = [R},..., R¥]) in V; determined

by the fuzzy inference engine is obtained by combining (1.10) for I = 1,2,...,. M

using the triangular co-norm +
HAoR; (zj) = PAOR} (Zj)'i- e ';'/-‘AoR’M (zj)' (1'11)

In summary, the fuzzy inference engine determines a mapping from fuzzy set A
in U to fuzzy set Ao Rin V by

Paor(2) = (BaoR, (21)s+** s HaoRm(2m))T (1.12)

1.2.3 Fuzzifier

A fuzzifier maps a crisp point £ = (21,...,2,)7 € U into a fuzzy set A, =
[Az,;y Az,) in U = Uy X --- x Up, where A, is a fuzzy set in U;. There are
(at least) two possible choices of this mapping:

(i) Az; is a fuzzy singleton with support z;, i.e., pq, () = 1 for z} = z; and
Ha., (z}) = 0 for all other z} € U;; we call this a singleton fuzzifier; and,

1We assume that each z; for 1 < j < m appears at least once in the R' of (1.7), therefore
Baor(z) is an m-dimensional vector.

(ii) pa,, (z:) = 1 and pga, (z!) decreases from one as z} moves away from z;,
e.g., pa, (zl) = e:cp[—(—"’:;f—‘)z], where o2 is a parameter characterizing the shape
of pa, (2{); we call this @ nonsingleton fuzzifer.

The fuzzifier is needed because the inputs to the fuzzy system are crisp,
whereas the inputs to the fuzzy inference engine must be fuzzy sets. In the
literature, it seems that only the singleton fuzzifier has been used. We think that
the nonsingleton fuzzifier may be useful if the inputs are corrupted by noise; this

issue needs further studying.

1.2.4 Defuzzifier

A defuzzifier maps a fuzzy set in V to a crisp point in V. The defuzzifier is needed
because for most practical applications, a fuzzy system is required to give a crisp
output, no matter if it is used as a controller, a decision maker, etc.. We see
from subsection 2.2 that the output of the fuzzy inference engine is a fuzzy set
Ao R in V; therefore, the defuzzifier maps A o R into a crisp point z € V. In the
literature, there are essentially two kinds of defuzzifiers [34] ((i) and (ii) below).
We propose a new defuzzifier ((iii) below) whose justification will be given after
the description of the defuzzifier. The three defuzzifiers are:

(i) mazimum defuzzifier, defined as

z = argsupzev(paor(2)), (1.13)

where p40r(2') is given by (1.12);
(i) centroid defuzzifier (which is the most commonly used defuzzifier in the

literature), defined as
e T Zi(1aort (2}))
I T ()

where 2} is the point in Vj at which Hat (z;) achieves its maximum value, u AoR} (z5)

(1.14)

is given by (1.10), and j = 1,2, ...,m; and,

(iii) modified centroid defuzzifier, defined as

B i, Z(1aors(2))/0)

I e (baore (BN

(1.15)

where o!? is a parameter characterizing the shape of HGt (2;) such that the narrower

the shape of pgi(z;), the smaller is o}%; for example, if pei(z) = ea:p[—(%f-‘f-)z],
then o%? is such a parameter.

The modified centroid defuzzifier is justified as follows. Common sense indi-
cates that the sharper the shape of e (z;), the stronger is our belief that the
output z; should be nearer to 2} = argsup;: ey, (uG; (2})) (according to the rule R}
of (1.9)). The standard centroid defuzzifier, (1.14), is a weighted sum of the z}'s,
and the weight p 4R, (2}) determined by (1.10) does not take the shape of e (%)
into consideration. This is clearly not satisfactory based on our common sense.
An obvious improvement is the modified centroid defuzzifier (1.15).

Note that if we use the centroid or modified centroid defuzzifiers, we do not
need to calculate the pa0r;(2;) of (1.11); we only need to calculate the g AoR!, (25)

of (1.10) in the fuzzy inference engine.

1.2.5 Some Useful Subclasses of Fuzzy Systems

From subsections 1.2.1-1.2.4 we see that the fuzzy systems of Fig. 1.1 comprise
a very rich class of static systems mapping from U C R® to V C R™, because
within each block there are many different choices, and many combinations of
these choices can result in useful subclasses of fuzzy systems. Specifically, in the
defuzzifier there are three choices: maximum, centroid, and modified centroid
defuzzifiers; in the fuzzifier there are two choices: singleton and nonsingleton
fuzzifiers; in the fuzzy inference engine the triangular norm in (1.10) and the
triangular co-norm + in (1.11) can take any operations in (1.1) and (1.2), respec-
tively; and, in the fuzzy rule base we can choose different membership functions
for the fuzzy sets F{’s and G'’s. If we view all the fuzzy systems as a set of
functions, then each combination of these choices corresponds to a subset of the
fuzzy systems, as shown for some examples in Fig. 1.2. We now show the specific

functional forms of four subclasses of fuzzy systems.

the set of all fuzzy systems

fuzzy systems with
centroid defuzzifier

fuzzy systems with
singleton fuzzifier

fuzzy systems with fuzzy systems with
product inference Gaussian membership
function

Figure 1.2: Some subclasses of fuzzy systems.

Definition 1.1: The set of fuzzy systems with singleton fuzzifier, centroid de-
fuzzifier, and minimum inference is all functions f = (fy,..., fm)* from U C R*
to V. C R™ of the following form

Tty Zymin(pgy(n1), -+, e (), bay (2)]
Zigy minfugy(@1), -+ kry(T0): ey (25)]

filz) =

(1.16)

where z = (z1,...,2,)F € U, 1 < p < n, and 2;- is the point at which uG:,(z,-)
achieves its maximum value. Usually, Kat (Zj) = 1. Equation (1.16) is obtained by
substituting (1.10) into (1.14), replacing * with the intersection in (1.1), and using
the fact that if A is a fuzzy singleton with support z (i.e., pa(z) =1 and ps(2’) =
0 for all 2' #), then p4opt(25) = supzevlpa(a) *ppi(21)*- - - *ps(zy) * By (25)]
= pp(31) % -+ % ppy(2p) * B (¥5)-

10

Definition 1.2: The set of fuzzy systems with singleton fuzzifier, centroid de-

Juzzifier, and product inference is all functions f = (fi, ..., fm)T from U to V of
the following form

ity (Il spy(:))ea (2)
Sie1 (Tl pri(z:))p ()

fi(z) = (1.17)
where the variables have the same meaning as those in (1.16). Clearly, (1.17) is
obtained in the same way as (1.16), with min replaced by algebraic product.

Definition 1.3: The set of fuzzy systems with singleton fuzzifier, modified cen-
trotd defuzzifier, product inference, and Gaussian membership function is all func-
tions f = (f1,..., fm)T from U to V of the following form

S, 2T, alezp(~3(Z5E)))/(8))

S, (TT2uy abeap(—3(Z2)2)/(61)?

filz) = (1.18)

which is obtained by taking pF‘a(x,-) = afemp(—%(i;gf‘i)z),] (z;) = ezp(—%(f%:li)z), ’

using the modifier centroid defuzzifier (1.15) with g AoR, (2}) given by (1.10) and
* = algebraic product, and noticing that u4(z) =1 and pa(z’) =0 for all 2’ # z.
In (1.18),0 < a{ < 1,0} >0, 6 > 0, Z| € U;, and 2} € V; are parameters.

Definition 1.4: The set of fuzzy systems with singleton fuzzifier, centroid de-
fuzzifier, product inference, and Gaussian membership function is all functions
F=(f1y-es fin)T from U to V of the following form

T, 2T, alezp(—3(252)%)]

S, (T2, aleap(~3(Z52)2)]

filz) = (1.19)

where the variables have the same meaning as those in (1.18).

Clearly, the set of the fuzzy systems in Definitionl.4is a subset of the fuzzy
systems in Definition1.3(taking all §; = 1) and is also a subset of the fuzzy
systems in Definition1.2(taking pp(z:) = a{-exp(—%("';;‘gﬁy) and pgi () =1),
i.e., Yy C Y3, and Yy C Y2, where Y; is the set of the fuzzy systems in Definition
1li,:=2,3,4.

11

1.3 A Comparison of Fuzzy Systems with Prob-

abilistic General Regression

Fuzziness versus probability is a well-known controversial issue. Probabilists claim
that probability is the only satisfactory description of uncerta,inf.y, and all other
descriptions, especially the possibility statements in fuzzy logic, are unnecessary
[36,67). Despite this criticism, fuzzy system researchers, led by Lotfi A. Zadeh,
extended their studies to a formal representation of words in natural language
using fuzzy sets [108], and a formal study of common sense reasoning, under the
title of “fuzzy logic” [109, 110]. Because so much human knowledge is expressed
in natural language, a formal study of it from an engineering point of view is
clearly needed. The efforts of fuzzy system researchers were rewarded by the
impressive successes of fuzzy logic controllers in a variety of industrial systems
and commercial products. Indeed, fuzzy systems provide a friendly means to
incorporate human knowledge into engineering systems, one that is simple to
understand, easy to use, and fast to implement.

In this section, we first present a formal description of probabilistic general
regression. Then, we show that probabilistic general regression is a special case

of fuzzy systems, and extend this main observation by making a few remarks.

1.3.1 Probabilistic General Regression

Let f(z, z) be the joint probability density function of a vector random variable,
z € R*, and a scalar random variable, z € R. The conditional mean of z given z

(also called the regression of z on z) is given by

Soo0 2f(Z, 2)dz
%0 f(z,2)dz

Elzlz) = (1.20)

Let (2',%"),1=1,2,..., N, be sample values of the random variables z and z; then,
a consistent estimator of f(z, z) based upon the (', z')’s, which was proposed by

Parzen [55] and was shown in [66] to be a good choice for estimating f(z, z), is

12

given by

N 2
Ty L eorl-ETELE D)y (=)

f (E, 3) = (zﬂ.)(nq—l)/za(nﬂ) N =t %202
(1.21)
Substituting (1.21) into (1.20) and performing the integration yields the following:

!:c-i:' !T| z—z! !]

N g1
o(z) = B(z]z) = Zm1 2Pl =0

=/ = YLy o Y]
i, exp|— &) {a=2])]

which is the probabilistic general regression. Analysis of this probabilistic general

(1.22)

regression can be found in [65]; it has nice probabilistic properties, like consistency,

etc..

1.3.2 Comparison of Fuzzy Systems with Probabilistic

General Regression

Comparing (1.22) with (1.19), we see that they are almost the same. More specif-
ically, we have the following:

Main Observation: The probabilistic general regression (1.22) is a special case
of fuzzy systems. Specifically, within the subset of fuzzy systems in Definition
1.4, if we choose the parameters (in (1.19)): M = N,a! = 1, ¢! = o for all
i=12,..,nand | = 1,2,...,N, z! = the i’th element of the sample vector Z,
' = the sample #', then the fuzzy system (1. 19) becomes the proba.bilistic general
regression (1.22) (note that [T, ezp[—3 (z'_z)?] = exp[—3ts Ty (zi — 31)7) =
eap|- 2L L=2]),

We now extend this Main Observation by making a few remarks.

Remark 1.1: Fuzzy systems are constructed and justified based on fuzzy logic;
very little is known about their statistical properties when they are used in a
random environment. From this Main Observation we see that although there is
no statistical consideration when constructing such a fuzzy system, the resulting
fuzzy system turns out to be “optimal” from a statistical point of view.

Remark 1.2: From Section 1.2 we see that the fuzzy systems in Definition 1.4

are only a very small subset of fuzzy systems; and, from the Main Observation we

13

see that the probabilistic general regression is a special case in this small subset.
Therefore, there remains a huge number of fuzzy systems for which a statistical
study is needed. Up to now, it seems that the most successful application of fuzzy
systems is to the control of industrial processes where random noise always exists.
Therefore, knowing the statistical properties of various kinds of fuzzy systems is
very important. There are many fuzzy systems that are quite different from the
probabilistic general regression, e.g., the fuzzy systems with min inference and
triangular membership function, and that have found successful practical appli-
cations. We hope that these fuzzy systems also have nice statistical properties.

Remark 1.3: Although the Main Observation shows the similarity between
fuzzy systems and the probabilistic general regression, it should be emphasized
that they are quite different from many fundamental points of view. For ex-
ample, fuzzy systems are constructed from fuzzy IF-THEN rules, whereas the
probabilistic general regression is constructed from sample data pairs (Z,7'). It
is not difficult to generate reasonable fuzzy IF-THEN rules based on the sample
pairs, e.g., the method in the Main Observation, and some other methods in [82-
86]; however, it is very difficult to generate reasonable data pairs based on fuzzy
IF-THEN rules, because fuzzy IF-THEN rules characterize fuzzy relationships be-
tween z and y so that if we want to generate data pairs based on them, we have
to use some fuzzification, defuzzification, and inference strategies which will have
the same influence on the generated data pairs as the original fuzzy IF-THEN
rules.

Remark 1.4: Perhaps the most fundamental difference between fuzzy systems
and the probabilistic general regression is that: fuzzy systems provide a very good
framework to combine linguistic information in natural language (in the form of
fuzzy IF-THEN rules) and measured numerical information (in the form of sample
data pairs) in a uniform fashion, whereas the probabilistic general regression can
only make use of the numerical information. More specifically, fuzzy IF-THEN
rules can be generated based on the sample pairs as in the Main Observation, or
using the methods in [82-86], and these rules can be combined with the linguistic
rules to form the final fuzzy system, which is therefore constructed based upon

both linguistic information and numerical information in a uniform fashion.

14

1.3.3 Concluding Remarks

In this section, we showed that probabilistic general regression is a special case
of fuzzy systems, i.e., given the same set of information (sample pairs), we can
construct a fuzzy system (using fuzzy logic principles) which is exactly the same
as the probabilistic general regression. We showed that fuzzy systems are more
general than the probabilistic general regression not only in the functional form,
but also from a more fundamental capability point of view — fuzzy systems can
effectively combine both linguistic information in natural language and measured
numerical information in a uniform fashion, whereas probabilistic general regres-
sion can only make use of measured numerical information.

Bayesian statisticians believe that probability is sufficient to represent any
kind of uncertainty; therefore, human experts should express their knowledge
about uncertainty events in terms of (conditional) probabilities [36]. However,
there is so much human knowledge about uncertain events that is expressed in
natural language, which is far from easy to “translate” into probabilistic terms.
Fuzzy system researchers have found fuzzy systems a very friendly tool to repre-
sent linguistic information in natural language, and have proven the usefulness of
fuzzy systems by successfully applying them to a variety of practical problems.
From this section we see that the superior performance of fuzzy systems is not
a surprise, because fuzzy systems include the “optimal” probabilistic general re-
gression as a special case; therefore, by carefully searching the whole space of
fuzzy systems, the performance of the resulting fuzzy system should be no worse
than the probabilistic general regression. A very interesting research topic is to
rigorously study various kinds of fuzzy systems from a probabilistic point of view,
so that fuzzy system researchers can make use of the wonderful treasure created
by probabilists during the last four hundred years.

We conclude this section by quoting what L. Ljung wrote in [39]:

“... An issue in system identification is to have an open mind about nonlinear
black-box structures; to try out the above [Volterra series, neural nets, general
regressions, etc.] along with many other ideas, like - - -”

15

1.4 Outline of the Thesis

In Chapter 2, we prove, using the Stone-Weierstrass Theorem, that the fuzzy
systems described in Section 1.2 are universal approximators, i.e, they are capable
of approximating any nonlinear function over a compact set to arbitrary accuracy.
We then extend this result to a dynamic system, i.e., we prove that dynamic
systems based on fuzzy systems can follow the output of a very general nonlinear
dynamic system to arbitrary accuracy within any finite time interval.

In Chapter 3, we show that fuzzy systems can be represented as three-layer
feedforward networks, and develop a back-propagation algorithm to train the fuzzy
systems to match desired input-output pairs. We then use this back-propagation
fuzzy system as identifiers for nonlinear dynamic systems.

A weakpoint of the back-propagation algorithm developed in Chapter 2 is that
it performs a nonlinear search procedure and therefore may converge slowly or be
trapped at a local minimum. To overcome this weakpoint, we develop another
method for fuzzy system design, in Chapter 4, that uses the classical orthogonal
least squares algorithm. We apply this method to the control of the nonlinear
ball and beam system, and to predict a chaotic time series.

The methods in Chapters 3 and 4 are not simple, in the sense that they
require iterative computations. We therefore develop a third method, in Chapter
5, that performs a one-pass operation on the data pairs and does not require
iterative computation. We apply this method to the truck backer-upper control
and chaotic time-series prediction problems, and compare the results with those
using conventional fuzzy and neural approaches.

In Chapter 6, we develop two nonlinear adaptive filters based on fuzzy systems:
RLS and LMS fuzzy adaptive filters, and use them as nonlinear channel equalizers.

Chapter 7 concludes the thesis and points out some future work.

16

Chapter 2

FUZZY SYSTEMS AS
UNIVERSAL
APPROXIMATORS TO
STATIC AND DYNAMIC
SYSTEMS

2.1 Introduction

Fuzzy systems have been successfully applied to a wide variety of practical prob-
lems. Notable applications of fuzzy systems include the control of: warm water
[24], robot [21,71], heat exchanger [53], traffic junction [54], cement kiln [32], acti-
vated sludge [22], automobile speed [46], automatic train operation systems [103],
model-car parking and turning (69], turning [61], aircraft [9], water purification
[100], automatic container crane operation systems [105], elevator [15], automobile
transmission [23], and power systems and nuclear reactor [2]. Recent advances
of fuzzy memory devices and fuzzy chips [75,97] make fuzzy systems especially
suitable for industrial applications.

A very fundamental theoretical question about fuzzy systems remains unan-

swered, namely: “Why does a fuzzy system have such excellent performance for

17

such a wide variety of applications ?” Existing explanations are qualitative, e.g.,
“fuzzy systems can utilize linguistic information from human experts,” “fuzzy
systems can simulate human thinking procedure,” “fuzzy systems capture the ap-
proximate and inexact nature of the real world,” etc.. In this chapter, we try to
answer this fundamental question by proving that fuzzy systems are universal ap-
proximators, i.e., they are capable of approximating any real continuous function
on a compact set to arbitrary accuracy. We use the famous Stone-Weierstrass
Theorem [59] to prove this fundamental result. This result can be viewed as an

existence theorem of an optimal fuzzy system for a wide variety of problems.

2.2 Fuzzy Systems as Universal Approximators

of Static Systems

We have the following main result:

THEOREM 2.1: For any given real continuous function g on the compact set
U C R* and arbitrary ¢ > 0, there exists f € Y} (Y; is defined in Definition 1.4)
such that

supzevlg(z) — f(z)| < e (2.1)

We use the following Stone-Weierstrass Theorem to prove Theorem 2.1.

Stone-Weierstrass Theorem [59]: Let Z be a set of real continuous functions
on a compact set U. If: 1) Z is an algebra, i.e., the set Z is closed under addition,
multiplication, and scalar multiplication; 2) Z separates points on U, i.e., for every
z,y € U,z # y, there exists f € Z such that f(z) # f(y); and, 3) Z vanishes at
no point of U, i.e., for each z € U there exists f € Z such that f(z) # 0; then, the
uniform closure of Z consists of all real continuous functions on U, i.e., (Z,d) is
dense in (C[U], do)-

In order to use the Stone-Weierstrass Theorem to prove Theorem 2.1, we need
to show that Yj is an algebra, Y separates points on U, and, Y; vanishes at no
point of U. The following Lemmas 2.1-2.3 prove that Y, has these properties.

LEMMA 2.1: (Y;,ds) is an algebra.

18

Proof: Let fi, f2 € Y4, so that we can write them as

J—l (Z IJH-—1 Fari (i)

filz) = T (et (29) (2.2)
.1—1 (ZZJHt—l”Az’ (z:)) .
fa(z) = T Ty (7)) (2.3)
hence,
1=1 2 I§2_1 2" + 27 M, 11 T3)1 4012 T
fi(e) + folz) = EJ (+ X P g1 (Zi) 1 g0i2 (23)) (2.4)

2 j1=1 ,2_1 (Hs_d‘ A1 (-"’t)l‘ A2? (3’:))

Since u At and p 4,2 are Gaussian in form , their product g, jip .2 is also
Gaussian in form (this can be verified by straightforward algebraic operations);
hence, (2.4) is the same form as (1.19), so that f; + f; € ¥;. Similarly,

2_11—1 12—1 (2111 z2’2)(H._1pA1,11 (:B,)/.tA2,z (a:,))

fl('a':')f2(g) Z;l 12]2—(:—lﬂAl"?l(xi),‘tAﬂz(x'))

o (28)

which is also in the same form of (1.19); hence, fif; € Y. Finally, for arbitrary
c€R,

J"l(cz 11)(11:_1”.411 (2:))
3-1 (H;—lﬂ A1} (-”7:))
which is again in the form of (1.19); hence, c¢f; €Y. Q.E.D..

LEMMA 2.2: (Y4, d) separates points on U.

Proof: We prove this by constructing a required f, i.e, we specify the number

cfi(z) = , (2.6)

of fuzzy sets defined in U and R, the parameters of the Gaussian membership
functions, the number of fuzzy rules, and the statements of fuzzy rules, such that
the resulting f (in the form of (1.19)) has the property that f(z°) # f(y°) for
arbitrarily given z°3° € U with z° # y°. Let 2° = (2%,23,...,29) and 3° =

(9,99, ..., 40). If 20 # y?, we define two fuzzy sets, (A}, par) and (A}, pg2), in the

19

'th subspace of U, with

#Al(ﬂ?.) = exp[- (=i = ‘) —], (2.7)

If 29 = y?, then A} = A? and ¢ Al = paz, i.e., only one fuzzy set is defined in

(2.8)

the ¢th subspace of U. We define two fuzzy sets, (B!, up:) and (B2, ug2), in the
output universe of discourse R, with

(2=

#pi(2) = ezp|———], (2.9)

where j = 1,2, and 7’ will be specified later. We choose two fuzzy rules for the
fuzzy rule base (i.e., M=2). Now we have specified all the design parameters
except z (j = 1,2), i.e., we have already obtained a function f which is in the
form of (1.19) with M = 2. With this f, we have

7 + 221 exp[— (29 — ¥9)%/2)

&) = T M seapt-Gr gy~ TO = (1)
0 z +31H:-133’P[(5'3 —Y;)2/] =2 -1
ey v e o R A
where
o= - (2.12)

14 Ik exp—(2f — 9f)?/2]
Since z° # y°, there must be some 7 such that z? # yf; hence, we have II%_ ezp[—(z9—
¥$)?/2] #1, or, a # 1 — . If we choose 2! =0 and 72 = 1, then f(z°) =1 —a

a=f°). QED.

LEMMA 2.3: (Y4,do) vanishes at no point of U.

Proof: By observing (3) and (2), we simply choose all 7 > 0 (j = 1,2,..., M),
i.e., any f € Y; with 2/ > 0 serves as the required f. Q.E.D..

Proof of Theorem 2.1: ° From (1.19) , it is obvious that Y} is a set of real
continuous functions on U. Theorem 2.1 is therefore a direct consequence of the
Stone-Weierstrass Theorem and Lemmas 2.1-2.3. Q.E.D..

20

Theorem 2.1 shows that the fuzzy systems in Y; can approximate continuous
functions. The following corollary generalizes the result of Theorem 2.1 to discrete
functions.

COROLLARY 2.1: For any g € L2(U) and arbitrary € > 0, there exists f € Y,
such that

([1@ - g(@)Pdz)? < o (2.13)

where U C R™ is compact, Ly(U) = [g : U — R| f;|g(z)|*dz < 0], and the
integrals are in the Lebesgue sense.

Proof: Since U is compact, fydz = V < oco. Since continuous functions on
U form a dense subset of Ly(U) [59], for any g € Lo(U) there exists a continuous
function g on U such that (fi; [¢(z) — §(z)|?dz)/? < ¢/2. By Theorem 1, there
exists f € Y, such that sup.ev|f(z) — §(z)] < ¢/(2V?/?); hence, we have

(/U 1f(z) — g(2)*de)** < (/U f(2) — §(2)*dz)"/* + (/U 13(z) - 9(2)|*dz)*"?
< / (supzevlf(z) - 3(2)Ida)'/* + ¢/2

< (==V)?+¢/2=c (2.14)

(22V
Q.E.D..

2.3 Fuzzy Systems as Universal Approximators

of Dynamic Systems

In this section we study the capability of using the fuzzy systems in Definition 1.4
to approximate dynamic systems over a finite time interval. Consider the dynamic

system

Az +g(z,u) (2.15)
y = hizu), (2.16)

18-
I

where u € U is the input, y € V is the output, z € W C R’ is the state, A is

a known Hurwitz matrix, and g, 2 are unknown continuous functions. We make

21

the following assumption.
Assumption 2.1: For any u in compact U and any finite initial condition z(0) =

z°, the solution z(t) of (2.15) satisfies |z(t) — 2% < b for some positive constant

b and all ¢ € [0, T}, where T is an arbitrary positive constant.
Define K to be the set

K=[zu)eR*":|z-2°|<b+euel], (2.17)

where € > 0 is an arbitrary constant, and z° is any finite initial condition. Be-
cause U is compact and |z| < [2°| + b+ € < o0, K is compact. Assumption
2.1 assures us that for u € U and finite z°, (2.15) generates (z(t),u(t)) € K
for t € [0,T]. Let §(z,ul®,) = (di(z,ul®y), ..., 3 (z,ulO,))T and h(z,ul®) =
(h1(z, 4|Oh), -.., hm(z, 2|O4))T be the fuzzy systems in Definition 1.4, where O,

©4 are collections of the parameters a!, z, o! and z;. Define ©; and Oj such that

supzuekli(z, u07) — g(z,u)| < ¢ (2.18)
supguek|h(z, ulO}) — Az, u)| < e (2.19)

for some arbitrary ¢, > 0 and €4, > 0. Theorem 2.1 assures the existence of the

©; and ©;. We now show that by replacing ¢ and & in (2.15) and (2.16) with §

and k, we obtain a dynamic system whose output can approximate the output of

(2.15) and (2.16) to arbitrary accuracy over any finite interval of time.
THEOREM 2.2: Consider the dynamic system

I8

= AZ+§(2,ul0]) (2.20)

i = h(z,ul6;) (2.21)
where £(0) = z(0) = z°% v € U, § and k are the fuzzy systems in Definition 1.4,
and the parameters © and ©; are defined in (2.18) and (2.19). Then, for any

€ > 0, finite T > 0, and properly chosen ¢, and €, we have that

supeeo|¥(t) — y(t)] < e. (2.22)

22

Proof: From (1.19) we see that § and % are continuous functions and therefore
satisfy the Lipschitz condition in the compact set K of (2.17), i.e., there exist
constants by and by such that for all (), u), (z?,u) € K

1§z, 4|0,) — §(zP,u|0,)] < b,)zM — 22|, (2.23)
Az, u|04) - A(z®,ulOn)] < bilz® — 2. (2.24)

Define ¢, = Z — z; then, from (2.15) and (2.20) we have

o

&, = Ae, + §(2,4|9]) — g(z,u), (2.25)

whose solution can be expressed as

ex(t) = [AN3(a(r), w(IO)) ~ ola(r) u(r)ldr. (226)

Since A is a Hurwitz matrix, there exist positive constants ¢ and a such that
lle]| < ce=*tforallt > 0. Let ¢, = Ef:—’,’,':e'%', then from (2.26), (2.23) and (2.18)

we have that

e < [NeANllg(E(r), u(r)I6]) — i(a(r), u(r) e} ldr
+ [1A N3 a(r), w(r)I05) = o(a(r),ulr))ldr
S G

< ¢h / -a(t=7)|g_ (r)ld'r+—e -2 (2.27)

Using the Bellman-Gronwall Lemma [17], we obtain

¢ - -
|£‘L‘(t)| S ¢ —e a ecbgj;e a(t=7)dr

2by,

€ —9-[l+f e“'("")da(t—-r)] €
< — — 2.2
- 26};6 ’ = 2b,° ()

Therefore, |£ — z°| < |2 — z| + |z — 2°] < 35 + b from Assumption 2.1. Without
loss of generality, we assume that b, > 1; therefore (Z,u) € K: Hence, letting
ex = €/2, using (2.19), (2.24) and (2.28), and considering the fact that (z,u) € K

23

and (£,2) € K, we obtain

2(t) —3(®)] < |A(2,2107) — h(z,ulO})]| + |h(z, u|O}) — h(z,)|
< bule(®)|+e/2<e (2.29)

for all ¢ € [0, 7. Q.E.D..

24

Chapter 3

DESIGN OF FUZZY SYSTEMS
USING BACK-PROPAGATION
TRAINING

3.1 Introduction

Feedforward neural networks were successfully used in [49] as identifiers for non-
linear components in dynamic systems. Theoretical justification of this approach
is that feedforward neural networks can approximate any real continuous function
on a compact set to arbitrary accuracy [12,20]. The back-propagation training
algorithm [60,95] makes it possible to train the neural network identifiers on-line
to match unknown nonlinear mappings.

In Chapter 2 we proved that fuzzy systems are also universal approximators.
If we can develop a back-propagation algorithm for fuzzy systems, similar to
the back-propagation algorithm for neural networks, then we can use the back-
propagation fuzzy systems as identifiers for nonlinear dynamic systems. In this
chapter, we develop such a back-propagation algorithm for fuzzy systems. The key
ideas in developing this training algorithm are to view a fuzzy system as a three-
layer feedforward network, and to use the chain rule to determine gradients of the
output errors of the fuzzy system with respect to its design parameters. We show

that this training algorithm performs an error back-propagation procedure; hence,

25

we call the fuzzy system equipped with the back-propagation training algorithm
a “Back-Propagation Fuzzy System (BP FS).”

How does the BP F'S compare with a back-propagation feedforward neural net-
work (BP FNN) when they are used as identifiers for nonlinear dynamic systems?
They are similar in that both: (1) are universal approximators, and therefore
qualify as identifiers for nonlinear systems; and, (2) use back-propagation train-
ing algorithms to adjust their parameters for the purpose of matching desired
input-output pairs.

There are two important advantages of a BP FS over a BP FNN. First, the
parameters of a BP FS have clear physical meanings; hence (as we show), it is
possible to develop a very good method for choosing its initial parameters. On
the other hand, the parameters of a BP FNN have no clear relationships with
input-output data, and therefore their initial values are usually chosen randomly.
Because both BP training algorithms are gradient algorithms, good initial pa-
rameters dramatically speeds convergence. The second advantage of a BP FS
over a BP FNN, which may be more essential than the first one, is that a BP
FS provides a natural framework in which to incorporate human linguistic de-
scriptions (in the form of IF-THEN rules) about the unknown nonlinear system.
Frequently, linguistic (subjective) information is difficult to quantify, and is ig-
nored at the front-end of identifier designs [16,38]. It is used to help evaluate
such designs. Using the results of this paper, the identifier designer will be able
to include subjective information at the front-end of the design, where we believe

it will do the most good.

3.2 Back-Propagation Training for Fuzzy Sys-
tems
Consider the fuzzy systems in Definition 1.4, i.e.,

TM, H (T ,exp(—l("'*” ZioE y2))
> (ML, o exp(—l("'f’ =g)

f(z) = (3.1)

26

By analysing (3.1), we observe a very important fact: the mapping f : U — R
determined by (3.1) can be represented as a three-layer feedforward network, as
shown in Fig. 3.1. Now we consider the following problem: Given an input-output
pair (z?,dP), z? € U C R" and d° € R, design a fuzzy system f in the form of
(3.1) such that

= 5lf() - Pt (32)

is minimized, where by “designing a f” we mean to specify the parameters of f,
i.e., to specify M, ,al, l and o for i = 1,2,...,n and j = 1,2,..., M. In this
chapter, we consider the case where M and a! are fixed. In fact, choosing M can
be viewed as an order determination problem [16], and, choosing #/,a!, Z/ and o7
can be viewed as a parameter estimation problem. We only consider the parameter
estimation problem. Additionally, we fix a = 1 because for practical problems
it is reasonable to assume that every fuzzy membership function achieves unity
membership value at some point. We now develop an error back-propagation
training algorithm to determine the remaining parameters z/, z} and o?. We will
use e, f and d to denote e?, f(z?) and dP, respectively.

To train 7, we use
Pk +1) = 5(8) - s, . (3.3)

where j = 1,2,..,.M, k = 0,1,2,..., and «a is a constant stepsize. From Fig.
3.1 we see that f (and hence e) depends on z’ only through a, where f = a/b,
a= Z (Fy), b = E,_; v, and ¥ = [1M, exp(— 1(”'_P)z), hence, using the

chain rule, we have

T (3.4

Substituting (3.4) into (3.3), we obtain the training algorithm for z:

#(k +1) = 5(k) - oL 2, (3.5)

where j =1,2,...,M,and £k =0,1,2,....

27

f=a/b b Layer 3

7 b K3 Layer 2
y! y*

X X

exp(#X1)) waw (eXP(#X,") e exp(# XM == (EXPH#XM

Layer 1

x-"iij

p= giexp (- (b]

:

O'i"

Figure 3.1: Network representation of the fuzzy systems.

To train z, we use

Jde

Z(k + 1) = Zi(k) —ops

i (3.6)
where : = 1,2,..,n,j = 1,2,...,M, and k = 0,1,2,.... We see from Fig. 3.1 that
f (and hence e) depends on Z only through y; hence, using the chain rule, we
have

de
6_5:§=(f_ d)7=

af oy’
dyI 3"

Substituting (3.7) into (3.6), we obtain the training algorithm for Zi:

=(-oiplpisE @

1}

i, _ f — zi(K)
FHk+1)=zi(k)—aT——(F - ’—‘— 3.8
i +1) = 2 - o T2 - B, (38
where: =1,2,..,n,7=1,2,...,M,and £ =0,1,2,....
Using the same method as above, we obtain the following training algorithm

for o?:

ik +1) = oi(l) —azSl
= cl-ol 3o - B g

where i =1,2,..,n,7=1,2,...,M,and £k =0,1,2,....

The training algorithm (3.5), (3.8) and (3.9) performs an error back-propagation
procedure: to train 7, the “normalized” error (f — d)/b is back-propagated to
the layer of 27, then 27 is updated using (3.5) in which y? is the input to z7 (see
Fig. 3.1); to train #/ and ¢, the “normalized” error (f — d)/b times (3 — f) and
v’ is back-propagated to the processing unit of Layer 1 whose output is y7; then,
zJ and o are updated using (3.8) and (3.9) respectively in which the remaining
variables z,z? and o} (i.e., the variables on the right-hand sides of (3.8) and
(3.9), except the back-propagated error -f—;Z(ij — f)¥?) can be obtained locally.

The training procedure for the fuzzy system of Fig. 3.1 is a two-pass proce-
dure: first, for a given input z?, compute forward along the network (i.e., the

fuzzy system) to obtain y’ (j = 1,2,..., M), a,b and f; then, train the network

29

parameters 37,2} and o (i = 1,2,...,n,j = 1,2, ..., M) backwards using (3.5),
(3.8) and (3.9), respectively.

3.3 Identification of Nonlinear Dynamic Sys-
tems Using the Back-Propagation Fuzzy Sys-

tems

Theorem 2.1 assures us that the fuzzy systems with centroid defuzzification can
approximate any nonlinear real continuous function on the compact set U C R*
to arbitrary accuracy; and, the back-propagation training algorithm developed in
the last section gives us a practical way to train the fuzzy system to match desired
input-output pairs. These provide the justification to use back-propagation fuzzy
systems as identifiers for nonlinear dynamic systems. Additionally, the fuzzy
systems have two important features which make them even more attactive as
identifiers for nonlinear systems.

First, the parameters of the fuzzy systems, ,a‘:f: and af , have clear physical
meanings. Specifically, Z and 2z’ are points at which the membership functions
of the fuzzy sets defined in the input and output spaces achieve their maximum
values, respectively, and, o characterize the shape of the input membership func-
tions. Based on these physical meanings, we can develop a very good method for
choosing their initial values, as described later in this section. Because the back-
propagation algorithm is a gradient algorithm, a good choice of initial parameters
speeds up convergence dramatically.

The second attractive feature of fuzzy systems, which may be more important
and essential than the first one, is that the fuzzy systems provide a natural frame-
work to incorporate linguistic descriptions about the unknown nonlinear systems
into the identifiers. Specifically, we construct the initial identifier based on lin-
guistic rules, and then update the identifier based on numerical data pairs; in this
way, we combine linguistic and numerical information into the fuzzy identifier in
a uniform fashion. This feature has practical importance because many real world

nonlinear systems are controlled by human experts (e.g., aircraft, power systems,

30

economic systems, etc.), and, these experts can provide linguistic descriptions
about the nonlinear systems. These linguistic descriptions are vague and fuzzy, so
that traditional identifiers [16, 38] and neural identifiers [49] cannot make use of
them at the front-end of their designs. They are used only to help evaluate such
designs. The BP FS provides an identifier which can make use of both numerical
information (in the form of input-output pairs) and linguistic information (in the
form of IF-THEN rules) at the front-end of its design in an uniform manner.

Based on the discussion in [49], we use the series-parallel identification model
in which the output of the nonlinear plant (rather than the identification model)
is fed back into the identification model, as shown in Fig. 3.2 for example. We
can directly use the back-propagation algorithm to train the BP FS in Fig. 3.2,
because the error term between the outputs of ¢ and f, which is needed in the
BP training algorithm, equals the system output error e(k + 1), which is avail-
able. Because we only use the series-parallel identification model, the static BP
algorithm developed in the last section is sufficient to train the identifiers. In
fact, using ideas in [49], we can develop a dynamic back-propagation algorithm
for fuzzy systems; we leave the development and applications of this to the future
work.

We now propose the method for on-line initial parameter choosing, and provide
a theoretical justification (Theorem 3.1) for why this is a good method.

An On-Line Initial Parameter Choosing Method for BP F'S: Suppose the non-
linear plant to be identified starts operation from k = 0. Do not start the BP
training algorithm (3.5), (3.8) and (3.9) for the first M time points. Set the pa-
rameters Z (M) = u;(j) and (M) = g(u(j)), where u(j) = (w1(j), ---, tn(j)) is
the input to both the plant and the identification model, and g(u(j)) is the desired
output of the BP FS for input u(j); and, set ol (M) equal to some small numbers
(see Theorem 3.1), or set a{(M) = [maz(ui(j) : § =1,2,...,. M) —min(ui(y) : j =
1,2,...,M)]/2M (this choice makes the input membership functions “uniformly”
cover the range of u;(j) from j = 1 to j = M in all the simulations in Section 3.4,

we use this choice), where j = 1,2,...,M, ¢ =1,2,...,n. Start the on-line training
for the BP FS identifier from time point M + 1.
We now show that by choosing the a‘,’ sufficiently small, the fuzzy system with

31

y(k+1)

u_(k)» e(k+1)
+
Y0 1)

identification model

Figure 3.2: An example of series-parallel identification model, where g is an un-
known nonlinear function and f is a BP FS.

32

the above initial parameters can match all the M input-output pairs (u(5), g(x(4))),
j=1,2,...,M, to arbitrary accuracy.

THEOREM 3.1: For arbitrary ¢ > 0, there exists o* > 0 such that the fuzzy
system f of (3.1) with the above initial z/ and 7 and o} = ¢* has the property
that

|f(u(5)) — 9(x(i))| <, (3.10)

forall j =1,2,...,M. .
Proof: From the initial parameter choosing procedure and (3.1) (with a! = 1),
we have that the fuzzy system with the initial parameters Z/(M) and (M) and

o] =o"is

M) = Shm M eapl—(ui(f) — wilk))*/20™))

- ity (Mg ezp[—(ui(f) — ui(k))?/202))
9(u(7)) + T¥erer 9(u(k)) (T exp[—(ui7) — ui(k))?/20°%)
L+ e (Mg ezp[—(wi(s) — wi(k))?/2077))

3.11)

where j = 1,2,...,M. First, assume that u(j) # u(k) for j # k; thus, there
exist some ¢ such that u;(j) # u;(k); hence, for arbitrary €; > 0 and any j,k =
1,2,...,M, j # k, we can make II", exp[—(u;(5) — u;(k))?/20"?%] < ¢; by properly
choosing o*, because exp[—(ui(j) — ui(k))?/20*%] — 0 as o — 0 if u;(§) #
u;(k). From this result and (3.11) we conclude that there exists o* > 0 such that
|M(u(5)) - 9@(i)] < € for all j = 1,2,..., M..

If u(7) = u(ko) for some ko # j, and there are r — 1 such ko; then (3.11) can
be written as

oo rg(u()) + Th g(u(R)I eapl—(u(i) — ui(k))?/20°2)
P) = = T, (M seap= (i) — w(O) 20y » 12

where the 3, is over all k’s in [1,2, ..., M] except j and the kq’s. Using the same
arguments as above, we can prove the truth of (3.10). Q.E.D..

Based on Theorem 3.1 we can say that the initial parameter choosing method
is a good one because the fuzzy system with these initial parameters can at least
match the first M input-output pairs arbitrarily well. If these first M input-output

pairs contain some important features of the unknown nonlinear mapping, we may

33

hope that after the back-propagation training starts from time point M + 1, the
BP FS identifier will converge to the unknown nonlinear mapping very quickly. In
fact, based on our simulation results in Section 3.4, this is indeed true. However,
we cannot choose o7 to be too small, because although a fuzzy system with small
cr;? matches the first M pairs quite well, it will have large approximation errors for
other input-output pairs. Therefore, in our simulations, we use the second choice

of o} described in the on-line initial parameter choosing method.

3.4 Simulations

We used the same examples as in [49] to simulate our BP FS identifiers, because
we want to compare the BP FS identifiers with neural network identifiers. We
simulated the BP FS identifier for four examples, with each example emphasizing
a specific point. Example 3.1 emphasizes the detailed procedure of how the BP FS
learns to match the unknown nonlinear mapping as training progresses. Example
3.2 shows how performance is improved by incorporating linguistic rules. Example
3.3 shows how the identifier works when only the initial parameters are used.
Finally, Example 3.4 shows how the BP FS identifier work for a multi-input-
multi-output system. We chose M = 40 for all four examples. The BP FS of (3.1)
with M = 40 has 40 x 3 = 120 free parameters (corresponding to each rule there
are three free parameters: 7,2/ and o7). In [49] the neural network identifiers
had two hidden-layers with 10 and 20 neurons in each layer respectively; hence,
these neural identifiers had 10 x 20 = 200 free parameters. Consequently, from
a system complexity point of view (in the sense of number of free parameters),
the BP FS identifiers used for the next four examples are simpler than the neural
network identifiers used in [49] for the same examples.

Example 3.1: The plant to be identified is governed by the difference equation
y(k + 1) = 0.3y(k) + 0.6y(k — 1) + g[u(k)), (3.13)

where the unknown function has the form g(u) = 0.6sin(wu) + 0.3sin(37u) +

0.1sin(57u). In order to identify the plant, a series-parallel model governed by

34

the difference equation
§(k + 1) = 0.3y(k) + 0.6y(k — 1) + flu(k)] (3.14)

was used, where f(*) is of the form (3.1) with M = 40 and a! = 1. We chose
a = 0.5 in the BP training algorithm (3.5), (3.8) and (3.9), and, we used the
on-line initial parameter choosing method in Section 3.3. We started the training
from time point k = 40, and trained the parameters ', z} and o} for one cycle at
each time point, i.e., we used (3.5), (3.8) and (3.9) once at each time point (in this
case the “k” in (3.5), (3.8) and (3.9) agrees with the “k” in (3.13) and (3.14)).
Figures 3.3-3.5 show the outputs of the plant (solid-line) and the identification
model (dashed-line) when the training was stopped at & = 100,200 and 400,
respectively, where the input u(k) = sin(27k/250). We see from Figs. 3.3-
3.5 that: 1) the output of the identification model follows the output of the
plant almost immediately, and still does so when the training was stopped at
k = 100,200,300 and 400; and, 2) the identification model approximates the
plant more and more accurately as more and more training is performed. In [49]
the same plant was identified using a neural network identifier which failed to
follow the plant when the training was stopped at k£ = 500; Fig. 3.6 shows this
result. We see from Fig. 3.3 that our BP FS identifier follows the plant without
large errors even when the training was stopped as early as £ = 100. We think
that the main reason for the superior performance of the BP FS identifier is that
we have a very good initial parameter choosing method. We further test the initial
parameter choosing method in Example 3.3.

If we accept the initial parameter choosing method as a good one, how about
the BP training algorithm itself ? Can the latter make the identification model
converge to the plant when the initial parameters are chosen randomly ? Figure
3.7 shows the outputs of the identification model and the plant for the input u(k) =
sin(2wk/250) for 1 < k < 250 and 501 < k < 700 and u(k) = 0.5sin(27k/250) +
0.5sin(27k/25) for 251 < k < 500 after the identification model was trained for
5000 time steps using a random input whose amplitude was uniformly distributed
over the interval [-1, 1], where the initial 2/(0),Z(0) and o7(0) for the training

phase were random and uniformly distributed over [-5,5], [-1,1] and [0,0.3],

35

0
=
-"-.
<
d“‘—
”..
zz

L)

o 1(.)0 200 300 400 500 600 700

Figure 3.3: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at k£ = 100.

[+] 100 200 300 400 500 600 700

Figure 3.4: Qutputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at & = 200.

36

-6

0 l(l)O 200 300 400 500 600 700

Figure 3.5: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.1 when the training stops at & = 400.

respectively. We performed 50 Monte Carlo simulations for the training phase,
and all the trained fuzzy identifiers show indistinguishable responses from those
shown in Fig. 3.7. We see from Fig. 3.7 that the trained identification model
approximates the plant quite well.

Example 3.2: The plant to be identified is described by the second-order dif-
ference equation

y(k +1) = gly(k), y(k — 1)] + u(k), (3.15)

where

gly(k),y(k-1)] = y(lkiy;f(;)ll[zgl(‘,)c t 21')5] , (3.16)

and u(k) = sin(2xk/25). A series-parallel identifier described by the equation

§(k +1) = fly(k), y(k — 1)] + u(k) (3.17)

was used, where f[y(k),y(k —1)] is in the form of (3.1) with M = 40 and a} = 1.
We chose a = 0.5 in the BP training algorithm. Figure 3.8 shows the outputs of

37

yp and §,

)
-
L

b

_‘ .] 13 | S "
a0 400 500 €20 700

Figure 3.6: Outputs of the plant (solid-line) and the neural network identification
model of [49] (dashed-line) for Example 3.1 when the training stops at k& = 500.
(Narendra et al., 1990. (© 1990 IEEE.)

38

2k

(v} 160 260 300 400 500 600 700

Figure 3.7: Outputs of the identification model (dashed-line) and the plant (solid-
line) for Example 3.1 for the input u(k) = sin(27k/250) for 1 < k < 250 and
501 < k < 700 and u(k) = 0.5sin(27k/250) + 0.5sin(2rk/25) for 251 < k < 500
after the identification model was trained for 5000 time steps.

39

the plant and the identification model for arbitrary 27(0), #(0) and ¢7(0) which
were chosen from the intervals [-2,2], [-1,1] and [0, 0.3], respectively, where the
BP FS identifier was trained for one cycle at each time point starting from k = 0.

Now suppose that we have the following linguistic rule describing the unknown
nonlinear function g[y(k),y(k — 1)] of (3.16): .

R: IF y(k) is near zero or y(k—1) is near zero or y(k)
is near —2.5, THEN gly(k),y(k—1)] is near zero, (3.18)

where “y is near zero” (y can be y(k), y(k-1) or g[y(k), y(k-1)]) is characterized by
the Gaussian membership function ezp[—2(g5)?%, and “y is near 0.5” is character-
ized by the Gaussian membership function exp[—1(¥522)?]. Figure 3.9 shows the
outputs of the plant and the identification model after the linguistic rule (3.18)
is incorporated, where the initial 27(0),Z{(0) and ¢7(0) were the same as those
used in the simulation of Fig. 3.8, and the identifier was trained for one cycle
at each time point starting from & = 0. Comparing Figs. 3.9 and 3.8 we see an
improvement in adaptation speed after the linguistic rule was incorporated.

Example 3.3: The plant to be identified is of the form

y(k +1) = gly(k), y(k — 1), y(k — 2), u(k), u(k — 1)], (3.19)
where the unknown function g has the form

3,'1222&'33:5(23 - 1) + x4
1+ 23+ 23 ’

9(21, T2, T3, T4, T5) = (3.20)

and u(k) = sin(2xk/250) for k < 500 and u(k) = 0.8sin(27k/250)+0.2sin(27k/25)
for k > 500. The identification model is

§(k +1) = fly(k), y(k — 1), y(k = 2), u(k), u(k - 1)], (3.21)

where f is of the form (3.1) with M = 40 and a} = 1. One purpose for this
example is to test the initial parameter choosing method described in Section

3.3. For this purpose, we used the on-line initial parameter choosing method, but

40

eLeTTeTrT

okl

25 20 40 60 80 100 120 140 160 180 200

Figure 3.8: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.2 without using the linguistic rule.

-
o
TS e e
-
Py
ssseTETTI T

Teooes

.2 N : . . 4
0 20 40 60 80 100 120 140 160 180 200

Figure 3.9: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.2 after the linguistic rule was incorporated.

41

after £ = M no back-propagation was performed. Figure 3.10 shows the outputs
of the plant and the identification model whose parameters were determined only
based on the on-line initial parameter choosing method. We see from Fig. 3.10
that the identification model could track the plant but with large error. Next,
we trained the BP FS identifier for 5000 time steps using a random input u(k)
whose magnitude was uniformly distributed over [-1,1], where the parameters were
trained for one cycle at each time point, and we used the on-line initial parameter
choosing method. We chose a = 0.5 in the training phase. The outputs of the
plant and the trained BP FS identifier are shown in Fig. 3.11. In [49], a neural
network identifier was used for this plant; Fig. 3.12 shows the outputs of the
plant and the neural identifier after the neural identifier was trained for 10° steps
using a random input uniformly distributed in the interval [—1,1]. Comparing
Figs. 3.11 and 3.12, we see that although the neural identifier was trained for
100,000 steps, its performance is worse than that of our BP FS identifier, which
was trained for only 5000 steps. This suggests that, even without using the on-line
initial parameter choosing method proposed in Section 3.3, the BP FS identifier
still shows superior performance over the BP neural network identifier.

Example 3.4: In this example, we show how the BP FS identifier works for a

multi-input-multi-output plant which is described by the equations

_| = |, [w(k)]
S o us(k)

The series-parallel identification model consists of two BP FS’s f! and f2 and is

[n(k+1) } (3.22)

y2(k +1)

described by the equations

[fa(k+1)] _ [F1(61(k), 9a(k))] s [w (k)] .
Bk +1) | [L0®n®) || wa®)

Both f! and f2 are in the form of (3.1) with M = 40 and a! = 1. The identification
procedure was carried out for 5000 time steps using random inputs u;(k) and

(3.23)

uz(k) whose magnitudes were uniformly distributed over [-1,1], where we chose

a = 0.5, used the on-line initial parameter choosing method proposed in Section

42

o
= T T T T T W
o<
il - S
IR =
eooznn 28
L Sl i
P 1]
L it
Is
ﬁtnut 0
[y w
TR n
“‘
............ ¢
e J
Q\\\
H
Is
"" 3
lllll lllll..
l\\ 2
.......... o
iy 10
\\ Lo
4
i
1
L)
tll
"'l
2 LT3y 1) 1 1 o
2 v ¥ N O o ¥ v ® o
8 6 o o T ¢ § 9

Figure 3.10: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.3 when the parameters of the identifier were determined based

only on the initial parameter choosing method and there was no BP training.

43

0.6 —

041

0.2 o .

0.2F . “ -

0.8 : 4

-1 . . . L . 1 .
0 100 200 300 400 500 600 700 800

Figure 3.11: Outputs of the plant (solid-line) and the identification model (dashed-
line) for Example 3.3 after 5000 step training.

3.3, and trained the parameters for one cycle at each time point. The responses of
the plant and the trained identification model for a vector input [u;(k), u2(k)] =
[sin(27mk/25), cos(2wk/25)] are shown in Figs. 3.12 and 3.13 for y(k) and §;(k)
and y,(k) and §(k), respectively. In [49], a neural network identifier was used
for this plant; Figs. 3.15 and 3.16 show the outputs of the plant and the neural
identifier after the neural identifier was trained for 10° steps with inputs u; and
u2 uniformly distributed in [—1,1]. Comparing Figs. 3.13 and 3.14 with Figs.
3.15 and 3.16, we see that the performance of the fuzzy and neural identifiers is
similar, although the BP FS identifier was trained for only 5000 steps, whereas

the neural identifier was trained for 10° steps.

3.5 Conclusions

In this chapter, a trainable fuzzy system which we call a “Back-Propagation Fuzzy
System (BP FS),” was used as an identifier for nonlinear dynamic systems. The

BP FS was proven to be capable of approximating any nonlinear real continuous

44

1.0 v) -

_1 0 " 1 - 1 .] P
o 200 400 600 800

Figure 3.12: Outputs of the plant (solid-line) and the neural network identification
model of [49] (dashed-line) for Example 3.3 after 10° step training. (Narendra et
al., 1990. © 1990 IEEE.)

45

) 10 20 30 40 50 60 70 80 90 100

Figure 3.13: Outputs of the plant (y1(k), solid-line) and the identification model
(#1(k), dashed-line) for Example 3.4 after 5000 steps of training.

-3

0 10 20 30 40 50 60 70 80 S0 100

Figure 3.14: Outputs of the plant (y2(k), solid-line) and the identification model
(§2(k), dashed-line) for Example 3.4 after 5000 steps of training.

46

L o 1] v .]

u,=sin(2mk/28], ue=cos{2nk/25]

--.---.v-~---
"-.~.--~.--.
) BTt Sta——

40 8o 8a 100

Figure 3.15: Outputs of the plant (y:(k), solid-line) and the neural network iden-
tification model of [49] (§1(k), dashed-line) for Example 3.4 after 10° steps of

training. (Narendra et al., 1990. © 1990 IEEE.)

47

4 v il - i } T Al
u,=ein(2nk/25], u;cos(2nk/25]
2| |
(5]
¢:%' 1
~ A
.8 [
8 0
S
N
2L -
3 1 A [2 '8 a 1 .
0 20 40 a0 80 100

Figure 3.16: Outputs of the plant (y2(k), solid-line) and the neural network iden-
tification model of [49] (§2(k), dashed-line) for Example 3.4 after 10° steps of
training. (Narendra et al., 1990. © 1990 IEEE.)

48

function on a compact set to arbitrary accuracy. By using the fact that fuzzy sys-
tems can be represented as a three-layer feedforward network, a back-propagation
algorithm was developed to train the fuzzy system to match desired input-output
pairs. We proposed an on-line initial parameter choosing method for the BP FS,
and, we showed that it is straightforward to incorporate linguistic IF-THEN rules
into the BP FS.

We simulated the BP F'S identifier for the same examples as in [49] (for testing
neural network identifiers) and observed that: (1) convergence of the BP training
algorithm for the fuzzy system was much faster than that of the BP training
algorithm for the neural network; (2) the BP FS identifiers achieved similar or
better performance than the neural network identifiers, using simpler systems (in
the sense of fewer free parameters which need to be trained by the BP algorithms);
and, (3) the BP FS identifier can effectively incorporate linguistic IF-THEN rules

into the identifers, whereas the neural network identifiers cannot.

49

Chapter 4

DESIGN OF FUZZY SYSTEMS
USING ORTHOGONAL LEAST
SQUARES LEARNING

4.1 Introduction

In Chapter 3 we represented fuzzy systems as three-layer feedforward networks,
and based on this representation, the back-propagation algorithm was developed
to train the fuzzy system to match desired input-output pairs. Because the fuzzy
system is nonlinear in the parameters, the back-propagation algorithm imple-
ments a nonlinear gradient optimization procedure, and can be trapped at a local
minimum and converges slowly [although much faster than a comparable back-
propagation neural network (see Chapter 3)]. In this chapter, we fix some param-
eters of the fuzzy system such that the resulting fuzzy system is equivalent to a
series expansion of some basis functions which are named “fuzzy basis functions.”
This fuzzy basis function expansion is linear in the parameters; therefore, we can
use the classical Gram-Schmidt orthogonal least squares (OLS) algorithm to de-
termine the significant fuzzy basis functions and the remaining parameters. The
OLS algorithm is a one-pass regression procedure, and is therefore much faster
than the back-propagation algorithm. Also, the OLS algorithm generates a robust

fuzzy system which is not sensitive to noise in its inputs.

50

The most important advantage of using fuzzy basis functions, rather than
polynomials [6,57), radial basis functions [5,58], neural networks [60)], etc., is that
a linguistic fuzzy IF-THEN rule is naturally related to a fuzzy basis function.
Linguistic fuzzy IF-THEN rules can often be obtained from human experts who
are familiar with the system under consideration. For example, pilots can describe
properties of an aircraft by linguistic fuzzy IF-THEN rules [9,31], and, experienced
operators of power plants can provide operational instructions in the form of
linguistic fuzzy IF-THEN rules [25), etc.. These linguistic rules are very important,
and often contain information which is not contained in the input-output pairs
obtained. by measuring the outputs of a system for some test inputs, because the
test inputs may not be rich enough to excite all the modes of the system. Using
fuzzy basis function expansions, we can easily combine two sets of fuzzy basis
functions — one generated from input-output pairs using the OLS algorithm,
and the other obtained from linguistic fuzzy IF-THEN rules — into a single fuzzy
basis function expansion, which is therefore constructed using both numerical and

linguistic information in a uniform fashion.

Fuzzy Systems as Fuzzy Basis Function Ex-

pansions

Definition 4.1: Consider the fuzzy systems in Definition 1.4. Define fuzzy basis
functions (FBF) as

H?-I”Fj (z:)
E,_l z-1l~‘;v (37;)

pilz) = i=12,..,M, (4.1)

where uF,(z,) = dlezp(— ()2 are Gaussian membership functions. Then,
the fuzzy system (1.19) is eqmvalent to an FBF ezpansion

M
f(z) =Y pi()d;, (4.2)

=1

where 8; = 77 € R are constants.

51

From (4.1) and (1.9) we see that an FBF corresponds to a fuzzy IF-THEN
rule. Specifically, an FBF for a rule can be determined as follows: first, calculate
the product of all membership functions for the linguistic terms in the IF part of
the rule, and call it a pseudo-FBF for the rule; then, after calculating the pseudo-
FBEF’s for all the M rules, the FBF for the j’th rule is determined by dividing the
pseudo-FBF for the j’th rule by the sum of all the M pseudo-FBF’s. An FBF can
either be determined based on a given linguistic rule as above, or generated based
on a numerical input-output pair (as shown later in the Initial FBF Determination
method described in Section 4.3).

What does the FBF of (4.1) look like when plotted as a function of z 7 We
now consider a simple one-dimensional example (i.e., n = 1). Suppose that we
have four fuzzy rules in the form of (1.9) with pri(z) = ezp[—}(z — 27)?], where
7 = -3,1,1,3 for j = 1,2, 3,4, respectively (note that the FBF’s are determined
only based on the IF parts of the rules, so we do not need the ug;(z)). Therefore,
pi(z) = exp[—3(z—7))/ T, exp[—3(z—Z')?], which are plotted in Fig. 4.1 from
left to right for j = 1,2, 3,4, respectively. From Fig. 4.1 we see a very interesting
property of the FBF’s: the p;(z)’s whose centers %/ are inside the interval [—3, 3]
(which contains all the centers) look like Gaussian functions, whereas the p;(z)’s
whose centers Z/ are on the boundaries of the interval [—3, 3] look like sigmoidal
functions [12]. It is known in the neural network literature that Gaussian radial
basis functions are good at characterizing local properties, whereas neural net-
works with sigmoidal nonlinearities are good at characterizing global properties
[37]. Our FBF’s seem to combine the advantages of both the Gaussian radial basis
functions and the sigmoidal neural networks. Specifically, for regions in the input
space U which have sampling points (we often use the sampling points as centers
of the FBF’s; see Section 3), the FBF’s cover them with Gaussian-like functions so
that higher resolution can be obtained for the FBF expansion over these regions.
On the other hand, for regions in U which have no sampling points, the FBF’s
cover them with sigmoidal-like functions which have shown to have good global
properties [12,37]. Of course, all the above are empirical observations; it seems to
be a very interesting research topic to study the properties of the FBF’s from a

rigorous mathematical point of view.

52

Figure 4.1: An example of the fuzzy basis functions.

Equation (4.1) defines only one kind of FBF, i.e., it defines the FBF for fuzzy
systems with singleton fuzzifier, product inference, centroid defuzzifier, and Gaus-
sian membership function. Other fuzzy systems can have other forms of FBF’s,
e.g., the fuzzy systems with minimum inference have an FBF in the form of (3.1)
with product operation replaced by minimum operation; however, the basic idea
remains the same, i.e., to view a fuzzy system as a linear combination of some
functions which are defined as FBF’s. Different FBF’s have different properties.

We can analyse (4.2) from two points of view. First, if we view all the param-

eters a?,Z and o7 in p;(z) as free design parameters, then the FBF expansion
(4.2) is nonlinear in the parameters. In order to specify such an FBF expansion,
we must use nonlinear optimization techniques, e.g., use the back-propagation
algorithm of Chapter 3. On the other hand, we can fix all the parameters in p;(z)
at the very begining of the FBF expansion design procedure, so that the only free
design parameters are 8;; in this case, f(z) of (4.2) is linear in the parameters.

We adopt this second point of view in this chapter. The advantage of this point

53

of view is that we are now able to use some very efficient linear parameter estima-
tion methods, e.g., the Gram-Schmidt orthogonal least squares algorithm [5,6], to
design the FBF expansions.

4.3 Orthogonal Least Squares Learniﬁg

In order to describe how the orthogonal least squares (OLS) learning algorithm
works, it is essential to view the fuzzy basis function expansion (4.2) as a special

case of the linear regression model

M
d(t) =)_pi(t)0; + e(t), (4.3)
i=1
where d(t) is system output, 8; are real parameters, p;(t) are known as regressors

which are some fixed functions of system inputs z(t), i.e.,

pi(t) = p;(z(?)), (4.4)

and, e(t) is an error signal which is assumed to be uncorrelated with the regressors.
Suppose that we are given N input-output pairs: (z°(t),d°(¢)),¢t =1,2,...,N. Our
task is to design an FBF expansion f(z) such that some error function between
f(z°(t)) and d°(t) is minimized.

In order to present the OLS algorithm, we arrange (4.3) from¢ =1 to N in

the following matrix form:

d=Pf+e, (4.5)

where d = [d(1),...,d(N)]T, P = [p,,-.,pp,] With p, = [pi(1),..,p(N)]T, 8 =
[6y,...,0M]7, and & = [e(1),...,e(N)]T. The OLS algorithm transforms the set
of p, into a set of orthogonal basis vectors, and uses only the significant basis
vectors to form the final FBF expansion. In order to perform the OLS procedure,
we first need to fix the parameters a?, ! and o} in the FBF p;(z) based on the
input-output pairs. We propose the following scheme:

Initial FBF Determination: Choose N initial p;(z)’s in the form of (4.1) (for

this case, M in (4.1) equals N), with the parameters determined as follows:

54

af = 1’5'{ = z{(j), and a-'j = [maz(2}(j),j = 1,2,...,N) — min(2}(j),j =

2,....N)]/M,, where i = 1,2,...,n, j = 1,2,...,N, and M, is the number of
FBF’s in the final FBF expansion. We assume that M, is given based on practi-
cal constraints; in general, M, << N.

We choose a = 1 because g 4 (z;) are fuzzy membership functions which can
be assumed to achieve unity membership value at some center :'i";' . We choose
the centers Z to be the input points in the given input-output pairs. Finally,
the above choice of o7 should make the final FBF’s “uniformly” cover the input
region spanned by the input points in the given input-output pairs.

Next, we use the OLS algorithm, similar to that in [5,6] (it is based on the clas-
sical Gram-Schmidt orthogonalization procedure), to select the significant FBF’s
from the N FBF’s determined by the Initial FBF Determination method:

O At the first step, for 1 < < N, compute

wi =p, g = (@77 /()T w), (4.6)

ferrlt? = (o17)* (i) ul? /(&7), (4.7)
where p. = [pi(z°(1)), ..., pi(2°(N))]”, and p;(2°(2)) are given by the Initial FBF
Determination method. Find

[err){ = maz([err]{?,1 <i < N), (4.8)
and select

w=wfV=p, g=g" (4.9)

O At the k’th step where 2 < k < M,, for 1 £ ¢ < N, t # 41,.0,,8 F# g1,

compute

of) = wlp/(wlw), 1<j<k (4.10)
- kf ow;, g = (@) P/((wf)wl"), (4.11)

=

[err]) = (1) () wld /(&7). (4.12)

55

Find

[err]{® = maz([err]{),1 <i < Nyi iy, ey i da), (4.13)
and select
w=ul, g =gM. . (4.14)

O Solve the triangular system

AM)g(Ms) Q(M’): (4.15)
where
L el o) L o)
0 1 o . ol
AMD | L : (4.16)
0 1 ol
| 0 0 0o .. 1]
g™ = (g1, .o g, B9 = (60, 00T, (4.17)
The final FBF expansion is
M, (M)
flz) = 3 mi(2)65, (4.18)
Jj=1

where p;;(z) are the subset of the FBF’s determined by the Initial FBF Determi-
nation method with ¢; determined by the above steps.

Some comments on this OLS algorithm are now in order. For in-depth discus-
sions on the OLS algorithm, see [5,6].

1) The purpose of the original Gram-Schmidt OLS algorithm is to perform an
orthogonal decomposition for P, i.e., P = WA, where W is an orthogonal matrix,
and A is an upper-triangular matrix with unity diagonal elements. Substituting
P = WA into (4.5), we have that d = WA + ¢ = Wg + ¢, where g = Af has the
same meaning as used in our OLS algorithm, and the ag-i) in our OLS algorithm
correspond to the elements of A. Our OLS algorithm does not complete the

decomposition of P = W A, but only selects some domain columns from P.

56

2) The [err]{ = (¢i")2({) T/ (d°7d°) represents the error reduction ratio
due to yg) [5,6]; hence, our OLS algorithm selects significant FBF’s based on
their error reduction ratio, i.e., the FBF’s with largest error reduction ratios are
retained in the final FBF expansion.

4.4 Control of the Nonlinear Ball and Beam
System Using FBF Expansions

In this section, we use the OLS algorithm to design an FBF expansion to approx-
imate a controller for a nonlinear ball and beam system [18]. Our purpose is to
use the FBF expansion as a controller to regulate the system to the origin from a
certain range of initial conditions. We first use the input-output linearization al-
gorithm of [18] to generate a set of state-control pairs for some randomly sampled
points in a certain region of the state space, and then view these state-control pairs
as the input-output pairs in Section 4.3 and use the OLS algorithm to determine
an FBF expansion which is used as the controller for the ball and beam system
with initial conditions arbitrarily chosen in the sampled state space. In other
words, we use the controller of [18] to generate a look-up table of state-control
pairs, and then use the FBF expansion to interpolate these pairs to form the final
controller. For many practical problems, this kind of look-up table of state-control
pairs can be provided by human experts or collected from past successful control
executions.

The ball and beam system, which can be found in many undergraduate control
laboratories, is shown in Fig. 4.2. The beam is made to rotate in a vertical
plane by applying a torque at the center of rotation and the ball is free to roll
along the beam. We require that the ball remain in contact with the beam. Let

z = (r,7,0, 0)T be the state vector of the system, and y = r be the output of the

57

system. Then, from [18], the system can be represented by the state-space model

T T4 0
; B(z122 - Gsinz 0
- (2124 NN u (4.19)
T3 T4 0
24 0 1]
y=z, (4.20)

where the control u is the acceleration of #, and the parameters B and G are
defined in [18]. The purpose of control is to determine u(z) such that the closed-
loop system output y will converge to zero from arbitrary initial conditions in a

certain region.

Figure 4.2: The ball and beam system.

The input-output linearization algorithm of [18] determines the control law
u(z) as follows: for state z, compute v(z) = —azds(z) — ards(z) —1¢2(z) —
aod1(z), where ¢, (z) = 1, $2(z) = 22, ¢3(z) = —BGsinzs, ¢4(z) = —BGrscoszs,
and the o; are chosen so that s* + ass® + a2s® +a18 + ag is a Hurwitz poly-

nomial; compute a(z) = —BGcoszs and b(z) = BGzisinzs; then, u(z) =

58

(v(z) — b(z))/a(z).

In our simulations, we used the u(z) = (v(z) —b(z))/a(z) to generate N (z,u)
pairs with z randomly sampled in the region U = [-5, 5] x [—2, 2] x [-7 /4, 7 /4] x
[-0.8,0.8]. We simulated three cases: Case 1: N = 200,M, = 20, and the
final FBF expansion f(z) of (4.18) was used as the control u in (4.19); Case 2:
N = 40, M, = 20, and the final FBF expansion f(z) of (4.18) was used as the
control u in (4.19); and, Case 3: N = 40, M, = 20, and the control

u(z) = %[f(z) + f4(2)), (4.21)

where f(z) is given by (4.18), and fZ(z) is a linguistic controller which is in the
form of (1.19) determined based on the following four common sense linguistic
control rules:

RL: IF z, is ‘positive’ and z; is ‘near zero' and z3 is ‘positive’

and 4 is ‘near zero,, THEN uis ‘negative/, (4.22)
RL: IF z, is ‘positive’ and z; is ‘near zero' and z3 is ‘negative’

and z4 is ‘near zero, THEN u is ‘positive big,’ (4.23)
Rg‘ : IF zy is ‘negative’ and z; is ‘near zero' and 3 is ‘positive’

and x4 1s ‘near zero, THEN u is ‘negative big,’ (4.24)
RY: IF 2, is ‘negative’ and z; is ‘near zero' and z3 is ‘negative’

and z4 is ‘near zero/ THEN u is ‘positive,’ (4.25)

where the ‘positive’ for z4 is a fuzzy set P1 with membership function ppi(z,) =
exp[—3(2EL=40)2] the ‘negative’ for z; is a fuzzy set N1 with membership
function pm(z1) = e:vp[—%('"—“%lﬁ'g)-)z], the ‘near zero’ for both z; and x4 is
a fuzzy set ZO with uyo(z) = ezp[—1z?], the ‘positive’ for z3 is a fuzzy set

P3 with ups(z3) = exp[—-;-('—"i—"(fﬁf}&l)z], the ‘negative’ for z3 is a fuzzy set

maz(ea+7/49)12), the ‘positive’ for u is a fuzzy set Pu

N3 with pys(z3) = ezp[—3(
with up,(u) = exp[—1(u — 0.1)%], the ‘negative’ for u is a fuzzy set Nu with
pnu(u) = exp[-3(u + 0.1)?), the ‘positive big’ for u is a fuzzy set PBu with

ppeu(v) = ezxp[—3(u — 0.4)%], and the ‘negative big’ for u is a fuzzy set NBu

39

with pnp.(u) = ezp[—3(u + 0.4)?]. The above membership functions for the IF
parts of R} — RY were determined based on the meaning of the linguistic terms;
the parameters of the THEN parts membership functions were determined by
common sense and trial and error. The detailed formula of fZ(z) can be easily
obtained based on (1.19) and the above membership functions.

Clearly, R — RL are determined based on our common sense of how to control
the ball to stay at the origin when the ball is in certain regions. Take RL as
an example. If the ball stays at its position depicted in Fig. 4.2 (which just
corresponds to the IF part of RY), then we should move the beam downwards to
reduce § (but not a lot), which is equivalent to saying “u is ‘negative’,” because
the control u equals the acceleration of & (see (4.19)). Although these common
sense control rules are not precise, the control performance will, as we show below,
be greatly improved by incorporating them into the controller (4.21).

We simulated each of the three cases for four initial conditions, z(0) = 2.4, —0.1,
0.6,0.1)7, [1.6,0.05, —0.6, —0.05]7, [~1.6,—0.05, 0.6,0.05])7, and [~2.4,0.1, —0.6, —0.1]7,
which were arbitrarily chosen in U = [-5,5] x[-2,2] x [-7/4, /4] x[-0.8,0.8)].
Figures 4.3-4.5 depict the output y of the closed-loop system for Cases 1-3, respec-
tively. In the simulations, we solved the differential equations using the MATLAB
command “ode23” which uses the 2nd/3rd order Runge-Kutta method.

Some comments on these simulation results are now in order: a) the fuzzy
controller in Case 1 gave the best overall performance; this suggests that given
sufficient number of state-control pairs, the OLS algorithm can determine a suc-
cessful FBF expansion controller; b) the fuzzy controller in Case 2 could regulate
the ball to the origin for some initial conditions, but the closed-loop system was
unstable for some initial condition; this suggests that sufficient sampling of the
state space is important for the “pure numerical” fuzzy controller to be successful;
and, c) using the same small number of state-control pairs but adding the fuzzy
control rules (4.22)-(4.25), the fuzzy controller in Case 3 showed much better per-
formance than the fuzzy controller in Case 2, i.e., control performance was greatly
improved by incorporating (in the sense of (4.21)) the linguistic fuzzy control rules
into the controller.

We also simulated two extreme cases: (i) using the original controller of [18],

60

0 2 4 6 8 10 12 14 16 18 20

Figure 4.3: Outputs of the closed-loop ball and beam system for Case 1 and four
initial conditions.

Figure 4.4: Qutputs of the closed-loop ball and beam system for Case 2 and four
initial conditions.

61

Figure 4.5: Outputs of the closed-loop ball and beam system for Case 3 and four
initial conditions.

and (ii) using only the pure linguistic controller fZ(z) based on RY — Rf, for
the same initial conditions as in Cases 1-3. Figures 4.6 and 4.7 show the output
of the closed-loop system for the two cases (i) and (ii), respectively. Comparing
Fig. 4.6 with Figs. 4.3-4.5 we see that the original controller of [18] gave the
best performance; this is to be expected because we used the FBF expansions to
approximate this controller. Figure 4.7 shows that if we use the FBF expansion
controller based only on the four linguistic rules (4.22)-(4.25), the closed-loop
system is unstable, i.e., pure fuzzy logic controller with only four linguistic rules

is not sufficient to control the system.

62

-6 A 1 N i s ' L 'y 1
0 2 4 6 8 10 12 14 16 18 20

Figure 4.6: Outputs of the closed-loop ball and beam system using the input-
output linearization algorithm of [18] and four initial conditions.

4.5 Modeling the Mackey-Glass Chaotic Time
Series by FBF Expansion

Figure 4.8 shows a section of 1000 points (from ¢ = 1001 to 2000) of the Mackey-
Glass chaotic time series generated by the differential equation [30]

dz(t) _ 0.2z(t — 30)
dt 1+ z19(t - 30)

- 0.1z(2). (4.26)

Our task is to determine a FBF expansion as a one-step-ahead predictor for the

chaotic time series based on the data section of Fig. 4.8; i.e., we shall determine

£(2) = f(z(t)), (4.27)

where f(*) is in the form of (5), and z(t) = [z(t — 1),...,z(t — n)]7 are past

observations of the series.

63

14

Figure 4.7: Outputs of the closed-loop ball and beam system using the pure fuzzy
logic controller based on the four linguistic rules (4.22)-(4.25) and four initial

conditions.

14 T v v -

121 -

0.8H

A0 ||

0‘12000 1100 12.00 1360 1400 1500 1600 1700 1800 1900 2000

Figure 4.8: A section of the Mackey-Glass chaotic time series.

64

We chose M; = 80 and n = 10. The residuals determined by
e(t) = z(t) — 2(¢) (4.28)

are shown in Fig. 4.9 for ¢ = 1001 to 2000. The series z(t) and #(t) look almost

indistinguishable if we depict them on the same plot.

0.15

0.1

0.05

-0.05

o 160 260 360 400 500 600 700 800 900 1000

Figure 4.9: Residual sequence using the FBF expansion predictor for the chaotic
time series of Fig. 4.8. '

We performed two kinds of statistical tests — autocorrelation test and Chi-
squared test — in order to determine whether the final FBF expansion is a valid
model for the chaotic time series. The autocorrelations of e(t) are plotted in Fig.

4.10. To perform the Chi-squared test, define
(t) = [(t), - 0(t — 7 + DIF, (4.29)

where w(t) is some function of the past observations and residuals, and let

TP = N S e (), (4.30)

t=1001

65

where N = 1000. The Chi-squared statistics are calculated according to [5] as

¢(n) = NgT(TTT) g, (4.31)
where
N+1000
p=N" :-%;m r(t)e(t)/ o, (4.32)

and o2 is the variance of the residuals e(t). Figures 4.11 and 4.12 show the
Chi-squared statistics {(n) for w(t) = €%(t — 1) and w(t) = €*(t — 1)y?(t — 1),
respectively; we see that they‘ ate all within the 95% confidence band. Conse-
quently, the model validity tests confirm that this FBF expansion is an adequate

model for the chaotic time series.

0.8 -

0.4} -

02} -

o-\\/ -

Figure 4.10: Autocorrelations of the residuals of Fig. 4.9. -*- represents 95%
confidence band.

66

35

30

20

15

10

_—

0

0

2 4 6 8 10 12 14 16 18

20

Figure 4.11: Chi-squared statistics {() for w(t) = €?(z — 1). -*- represents 95%
confidence band. ’

3s

30

20

15

10

0

é 4 6 8 10 12 14 16 18

o

20

Figure 4.12: Chi-squared statistics {(n) for w(t) = e*(¢—1)y?(t—1). -*- represents
95% confidence band.

67

t

4.6 Conclusions

In this chapter, we: 1) showed that fuzzy systems can be represented as linear
combinations of fuzzy basis functions; 2) developed an orthogonal least squares
algorithm to select the significant fuzzy basis functions; and, 3) used the fuzzy
basis function expansions as controllers for the ball and beam system and as
predictors for the Mackey-Glass chaotic time series. Through a simple
example we illustrated that the fuzzy basis functions whose centers are inside the
sampling region look Gaussian, whereas the fuzzy basis functions whose centers
are on the boundaries of the sampling regions look sigmoidal. The most important
advantage of the fuzzy basis functions is that a linguistic fuzzy IF-THEN rule is
directly related to a fuzzy basis function, so that the fuzzy basis function expansion
provides a natural framework to combine both numerical information (in the form
of input-output pairs) and linguistic information (in the form of fuzzy IF-THEN
rules) in a uniform fashion. We showed an example of how to combine the fuzzy
basis functions generated from a numerical state-control table and the fuzzy basis
functions generated from some common sense linguistic fuzzy control rules, to
form a controller for the nonlinear ball and beam system. The simulation results
showed that the control performance was greatly improved by incorporating these

linguistic fuzzy control rules.

68

Chapter 5

DESIGN OF FUZZY SYSTEMS
USING A SIMPLE ONE-PASS
METHOD

5.1 Introduction

The two design methods in Chapters 3 and 4 are not simple, in the sense that
they may require intensive computations, since the back-propagation algorithm
performs a nonlinear search procedure and the orthogonal least squares algorithm
needs iterative operations. In this Chapter, we develop a very simple method for
fuzzy system design which performs a one-pass operation on the numerical input-
output pairs and linguistic fuzzy IF-THEN rules. The key idea of this method is
to generate fuzzy rules from input-output pairs, collect the generated rules and
linguistic rules from human experts into a common fuzzy rule base, and construct

a final fuzzy system based on the combined fuzzy rule base.

5.2 Generating Fuzzy Rules from Numerical Data

Suppose we are given a set of desired input-output data pairs:

(39)’ zgl); y(l))’ (xgz)’ 39); y(z))’ ot (5'1)

69

where z; and z; are inputs, and y is the output. This simple two-input one-
output case is chosen in order to emphasize and to clarify the basic ideas of our new
approach; extensions to general multi-input multi-output cases are straightforward
and will be discussed later in this section. The task here is to generate a set of
fuzzy rules from the desired input-output pairs of (5.1), and use these fuzzy rules
to determine a mapping f : (z1,22) — y.

Our new approach consists of the following five steps:

Step 1: Divide the Input and Output Spaces into Fuzzy Regions

Assume that the domain intervals of z,, z, and y are [z7,z7],[z7,z7] and
[y~,y*], respectively, where “domain interval” of a variable means that most
probably this variable will lie in this interval (the values of a variable are allowed
to lie outside its domain interval). Divide each domain interval into 2N + 1
regions (N can be different for different variables, and the lengths of these regions
can be equal or unequal), denoted by SN (Small N), ..., S1 (Small 1), CE (Center),
B1 (Big 1), ..., BN (Big N), and assign each region a fuzzy membership function.
Figure 5.1 shows an example where the domain interval of z; is divided into five
regions (N=2), the domain region of z is divided into seven regions (N=3), and
the domain interval of y is divided into five regions (N=2). The shape of each
membership function is triangular; one vertex lies at the center of the region and
has membership value unity; the other two vertices lie at the centers of the two
neighbouring regions, respectively, and have membership values equal to zero. Of
course, other divisions of the domain regions and other shapes of membership
functions are possible.

Step 2: Generate Fuzzy Rules from Given Data Pairs

First, determine the degrees of given zg'.),:ng) and y¥ in different regions. For

example, zgl) in Fig. 5.1 has degree 0.8 in B1, degree 0.2 in B2, and zero degrees
in all other regions. Similarly, xgz) in Fig. 5.1 has degree 1 in CE, and zero degrees
in all other regions.

Second, assign a given zﬁ‘),zgi) or y% to the region with mazimum degree. For
example, a:gl) in Fig. 5.1 is considered to be B1, and :c£2) in Fig. 5.1 is considered
to be CE. '

Finally, obtain one rule from one pair of desired input-output data, e.g.,

70

S2 Y CE B1 B2
10—\ | —
" 5 T “
m(x,)
83 S2 St CE B1 B2 B3
1.0 —_— —
0.0 : X
. 2
G of @ x
m(y)
S2 S1 CE B1 B2
1.0
0.0 — Y

y- y(y@ y+

Figure 5.1: Divisions of the input and output spaces into fuzzy regions and the
corresponding membership functions.

71

(mgl),a:gl);y(l)) = [zgl)(0.8 in B1, max), mgl)(0.7 in S1, max) ; (0.9 in CE,
max)] = Rule 1: IF 2, is Bl and z, is S1, THEN y is CE;

(2,20, y?) = [z{7(0.6 in B1, max), z{(1 in CE, max) ; y®(0.7 in B1,
max)] = Rule 2: IF z, is Bl and z, is CE, THEN y is BI.

The rules generated in this way are “and” rules, i.e., rules in which the con-
ditions of the IF part must be met simultaneously in order for the result of the
THEN part to occur. For the problems considered here, i.e., generating fuzzy
rules from numerical data, only “and” rules are required since the antecedents are
different components of a single input vector.

Step 3: Assign a Degree to Each Rule

Since there are usually lots of data pairs, and each data pair generates one
rule, it is highly probable that there will be some conflicting rules, i.e., rules which
have the same IF part but a different THEN part. One way to resolve this conflict
is to assign a degree to each rule generated from data pairs, and accept only the
rule from a conflict group that has maximum degree. In this way not only is the
conflict problem resolved, but also the number of rules is greatly reduced.

We use the following product strategy to assign a degree to each rule: for the
rule: “IF z; is A and z, is B, THEN y is C”; the degree of this rule, denoted by
D(Rule), is defined as

D(Rule) = ma(z1)mp(z2)me(y). (5.2)
As examples, Rule 1 has degree

D(Rulel) = mpi(z1)msi(z2)mce(y)
0.8 x 0.7 x 0.9 = 0.504; (5.3)

(see Fig. 5.1) and Rule 2 has degree

D(Rule2)

mp1(z1)mee(z2)mpi(y)
= 0.6 x1x0.7=0.42. (5.4)

In practice, we often have some a priori information about the data pairs.

72

For example, if we let an expert check given data pairs, the expert may suggest
that some are very useful and crucial, but others are very unlikely and may be
caused just by measurement errors. We can therefore assign a degree to each data
pair which represents our belief of its usefulness. In this sense, the data pairs
constitute a fuzzy set, i.e., the fuzzy set is defined as the useful measurements; a
data pair belongs to this set to a degree assigned by a human expert.

Suppose the data pair (a:gl),mgl);y(l)) has degree m(!), then we redefine the
degree of Rule 1 as

D(Rulel) = mp;(z)msy(z2)mee(y)mY, (5.5)

i.e., the degree of a rule is defined as the product of the degrees of its components
and the degree of the data pair which generates this rule. This is important in
practical applications, because real numerical data have different reliabilities, e.g.
some real data can be very bad (“wild data”). For good data we assign higher
degrees, and for bad data we assign lower degrees. In this way, human experience
about the data is used in a common base as other information. If one emphasizes
objectivity and does not want a human to judge the numerical data, our strategy
still works by setting all the degrees of the data pairs equal to unity.

Step 4: Create a Combined Fuzzy Rule Base

The form of the Fuzzy Rule Base is illustrated in Fig. 5.2. We fill the boxes of

the base with fuzzy rules according to the following strategy: a combined Fuzzy

Rule Base is assigned rules from either those generated from numerical data or
linguistic rules (we assume that a linguistic rule also has a degree which is assigned
by the human ezpert and reflects the expert’s belief of the importance of the rule);
if there is more than one rule in one boz of the Fuzzy Rule Base, use the rule
that has marimum degree. In this way, both numerical and linguistic information
are codified into a common framework — the combined Fﬁzzy Rule Base. If a
linguistic rule is an “and” rule, it fills only one box of the Fuzzy Rule Base; but,
if a linguistic rule is an “or” rule (i.e., a rule for which the THEN part follows
if any condition of the IF part is satisfied), it fills all the boxes in the rows or
columns corresponding to the regions <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>