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Abstract

An algorithm was proposed by Shensa for computing the coefficients of wavelet series
transform (WST) or continuous wavelet transform (CWT). With the Shensa algorithm,
we first perform filtering on a sampled discrete-time signal and then apply the Mallat’s
discrete wavelet transform (DWT) algorithm to the filtered sequence, where the prefiltering
is used to reduce the approximation error between the computed and desired coefficients. In
this research, we consider the design of optimal causal and noncausal FIR prefilters which
reduce the approximation error as much as possible with a fixed filter length. Numerical

experiments are provided to demonstrate the performance of the designed optimal prefilters.
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1 Introduction

Two types of wavelet transforms have been used to analyze continuous-time signals in signal
representation, detection and processing 2}, [5). They are the continuous wavelet transform
(CWT) and the wavelet series transform (WST). Let Z, R, L?(R) denote the sets of integers
and real numbers and the space of all square-integrable functions, respectively. Consider a

suitable function ¥(t) whose dilations and translations

{®x(t) & 2729(29t = k)Y, ke

form an orthonormal basis of L2(R). The function () is usually known as the mother
wavelet, and the basis is called a wavelet basis. For f(t) € L%(R), its CWT with respect to
the mother wavelet 9(t) is defined as

CWT{f(t)iab} = [ Z f(O)bas(t)dt, (1)

where A
1 t—
'rl)a,b(t) = \/I_E['»b(_a_)’ a’b € R') a # 0,
and where a and b are called the scale and time parameters, respectively. The WST of f(t)
is obtained by sampling its CWT on the scale-time plane (e,b) with the so-called “dyadic”
grid, i.e.

WST{f(t);j,k} = CWT{f(t);a=277,b=k277}, jkeZ.

The WST coefficients denoted by b;x can be determined by
(>}
bk & WST{f(t);4,k} = /_ JJWvadt, ke (2)

Given a continuous-time signal f(2), we may compute its CWT or WST coefficients by
performing numerical integration with (1) or (2), respectively. However, it is not efficient
to compute the integrals if a large number of wavelet coefficients are to be determined.
For this case, one usually obtain a discrete-time approximation f(mAt) of f(t) through
sampling and apply the discrete wavelet transform (DWT) to the sampled sequence. There
exists a very efficient pyramid-structured algorithm proposed by Mallat to compute the
DWT coefficients [1], [3]. The computed DWT coefficients are then used as approximations
of the desired CWT or WST coefficients. To reduce the approximation error, Shensa [4],
[6] proposed to perform a prefiltering process on the sampled signal f(mAt) to obtain a

new sequence fi (mAt) so that the computed DWT coefficients of the new sequence provides
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a better approximation of the desired CWT or WST coefficients. We derived formulas to
characterize the error between the computed and desired wavelet coefficients for the Mallat
and Shensa algorithms in [7]. In this research, we study the design of optimal causal and

noncausal FIR prefilters used in the Shensa algorithm to minimize the error.

2 Mallat and Shensa Algorithms

Some basic results in wavelet theory [1], [3], [6], [7] are reviewed below. Any f(t) € L*(R)
can be approximated by its projection on a subspace V; C L3(R), i.e.

o0

J-1 0o
[ = Y cxdn®= D D biatir(t)

k==00 j=-00 k=—00

where J > 0 is a given integer,
A o0
ok = / f(&)dar(t)dt.

and bjx, § < J — 1,k € Z, are called the WST coefficients of f(t). They can be computed
from ¢, with the recursion:
. =1 .
R e, o= a1 ®
where h,, and g, are impulse responses of lowpass and highpass filters, respectively.
If the initial sequence cjy in (3) is replaced by the sampled signal z[k] = f(k/27), it
leads to the Mallat algorithm and we denote the computed coefficients by bg-?,;[). The Shensa
algorithm is a generalization of the Mallat algorithm, where a prefiltered version z’[k] of

the sampled signal z[k], i.e.
z'[k] = Zx[m]q[k - m] (4)

m
is used as the initial sequence in (3). The computed coefficients are denoted by b;-’sk). Note
that if g[n] is the unit impulse sequence §[n], the Shensa algorithm is the same as the Mallat
algorithm.

The errors b; x — b;-r) and bjx — b;i_) were analyzed in (7). With slight modification, we

can restate one of the main results in [7] as follows.

Theorem 1 If f(t) is 2/ band-limited, then

J=1 ¢ "
> k- 2R = T [ -2ofiew) - do)lde.  (5)

i<J-1 &



In (5), f(w) denotes the Fourier integral of a continuous-time function f(t) € L?(R) and

Q(w) is the frequency response of a prefilter related to the sequence g¢[n] via Q(w) =

Tn glnje™.
3 Design of Optimal Prefilters

It is clear from Theorem 1 that if f(t) is 2’7 band-limited, to minimize the error resulted

from the Shensa algorithm is equivalent to the minimization of the cost functional
Cre 2 [ 17(=2w)P1Q(w) - d(w)Pdw 6
16 = [ 1f(-270)°|Q(w) - ¢(w)|*dw, (6)
-7

for a given J > 0. The design of the optimal FIR prefilter with respect to a given f(t) is
equivalent to the search of a sequence g[n] of finite length which minimizes Cy 4 in (6). To

do so, we first expand Cy,¢4 as a function of ¢[n] as

Cro = [ |2 St - o] o
= AY ¢*[n] - > Bmndlrlglm]+ > Cualn]+ D,
where ' " '
A = [ -2, (7)
Bun = 2 [ |f(=2)cos((n = m)w)dw, for n#m, (8)
Co = [ 1f-2o) Re(dlw)e™)do, )

D = /_ “ (=27 w) Pl (w)|Pdw.

To solve the above minimization problem, we set
Cre
3g[n]

In particular, to design the optimal prefilter g[n] with nonzero values in Ny < n < N3 — 1,

=0, Vn. (10)

we can express (10) to a linear system of equations
Tq=C, (11)

where T = (mn)N; <<, With

¢ = 24, n=m,
mn 'ana n # m,



and

C = (_CN1 ’ _CN1+13 tt _CN2-21 -CNQ—I)Tt
q = (‘I[Nl]7‘I[N1 + 1]" * ’7q[N2 - 2]’q[N2 - l])T’

and where A, B,,, and C,, are defined by (7), (8) and (9), respectively.

Since Cy4 depends on the signal f(t), the optimal prefilter designed above is quite
restricted. For some applications, we may want to consider a prefilter which performs well
with respect to a class of functions rather than a particular one. It is therefore convenient

to consider a signal independent cost functional
Co= [ F)lQw)- dw)lds, (12

where F(w) is a nonnegative weighting function. Some a priori knowledge of signals such as
the bandwidth and energy distribution are helpful in the determination of the nonnegative
weighting function F(w). A typical choice is the Gaussian-shaped function

F(w) = e, (13)
where a > 0 is a parameter. Generally speaking, a should be larger (or smaller) for signals
with narrower (or wider) bandwidths. Following a similar procedure, it can be shown that
the optimal sequence g[n] minimizing Cy4 are obtainable by solving the linear system (11)

except for the replacement of | f(—27w)|? by the weighting function F(w) in (7)-(9).

4 Determination of Optimal Interpolant

The purpose of prefiltering can be interpreted from another viewpoint. Let f (t) be the
interpolated signal of z[n], i.e.

ft) = X alnlx(2’t - n) = X fzx@'t - n), (14)

where x(t) is a certain interpolant (or D/A converter) so that the computed coefficients bﬁ)

satisfy

o9 = WST{f(t):5,k}, i<J-1,keZ.
If f(2) is close to f(t), bgi) provides a good approximation of b;x. It can be proved [4], 7]
that the impulse response g[n] of the prefilter in (4) is related to the interpolant x(t) in (14)
via

dln] = 2772 [ x(t)a(t - m)at . (15)
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By using (15), we can determine the optimal interpolant x(t) from the optimal filter
response ¢[n]. Let
als) =279 [ x(0o(t - 9)dt, s€R,
and §(w) be the Fourier integral of g(s). Since g[n] = ¢(n) for all n € Z, ¢(s) is a continuous-
time signal which interpolates ¢[n] at integer points. By transforming (15) to the Fourier

domain, we have
§(w) = 273 (w)d(-w), weR. (16)
Besides, we assume that
Bw) #0, for jw] < ,
which is in fact satisfied by most wavelet bases and choose

(s — n)

a(s) = Ll E a7

Since there are only a finite number of nonzero values in g[n], the ¢(s) is 7 band-limited.

Thus we can solve (16) for x(w), i.e.

2/%4(-w) 22Q(~w)
$(-w) 9(-w)

where 6, 4j(w) is an indicator function whose value is 1 for w € [a,b] and 0 otherwise. Note

xX(w) = ‘S(-w.w](w) = 5[—#.1!‘](“")' (18)

that the x(t) obtained from (18) is not the unique solution to (15) for a given g[n].

5 Numerical Results

The test function f(t) is a 2/x-limited signal with J = 6. It has the spectrum f(w) =
e~ (/100 for L] < 267, Both causal and non-causal prefilters are designed. In the non-
causal case, we choose —N; < N3 ~1< —N;+1and N = Ny — Ny is the filter length. The

performance of the signal-dependent optimal prefilter is shown in Figure 1, where we plot

b
J

the filter length N. The Haar, the Daubechies D4 and Dg wavelet bases are compared. Note

the error between b; ;. and given by the left-hand-side expression of (5) as a function of
that the Mallat algorithm corresponds to the case N = 1. We see a significant improvement
of the Shensa algorithm even with a small value of N. Also, the non-causal prefilter performs
better than the causal one when N > 4. For signal-independent optimal prefilter design,

we consider two weighting functions of the form (13) with @ = 0 and 0.1. For a = 0, the



optimal prefilter g[n] can be solved from

min / "
q[n) J—=

Thus the g[n] is exactly the same as the Fourier series coefficient dn, Ny < n < Ny, of H(w)

2

>, gln)e™ - §(w)| dw.

N1 En<N2

in [-7,7). In Table 1, we list the computed filter response sequences g[n] of the optimal
causal prefilters with 1 < N < 10 and a = 0,0.1 for the Daubechies D, wavelet basis. The
performance of the signal-independent optimal prefilter is shown in Figure 2. We also plot
in Figure 3 the interpolant x(t) corresponding to the g[rn] with N = 2 and 4 in Table 1. We

see that the interpolants x(t) associated with the same filter length have similar waveforms.

6 Conclusion

In this article, we studied the optimal FIR prefilter design problem for the Shensa algo-
rithm in computing the WST coefficients. It was shown numerically that the error for the
computed WST coefficients is reduced significantly by using the desgined optimal prefilters
than that obtained from the Mallat algorithm. The interpolant x(t) corresponding to the

optimal prefilter was also examined.
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Table 1:

Figure 1:

Figure 2:

Figure 3:

Figure Captions

Coefficients of optimal prefilters for D4 basis with (a) a = 0 and (b) a = 0.1.

Errors for (a) causal and (b) noncausal signal dependent prefilters.

Errors for (a) causal and (b) noncausal signal independent prefilters.

The interpolants x(t) correspond to the optimal prefilters g[r] given in Table 1 with

(@) N=2anda=0,(b) N=4anda=0,(c) N=2and a=0.1,(d) N =4 and
a=0.1,



length N gn],0<n<N-1
1 1.0000

2 0.6466 0.5846

3 0.6466 0.5846 -0.1975

4 0.6466 0.5846 -0.1975 0.0980

5 0.6466 0.5846 -0.1975 0.0980 -0.0675

6 0.6466 0.5846 -0.1975 0.0980 -0.0675
0.0517

7 0.6466 0.5846 -0.1975 0.0980 -0.0675

0.0517 -0.0420

8 0.6466 0.5846 -0.1975 0.0980 -0.0675
0.0517 -0.0420 0.0353

9 0.6466 0.5846 -0.1975 0.0980 -0.0675
0.0517 -0.0420 0.0353 -0.0305

10 0.6466 0.5846 -0.1975 0.0980 -0.0675
0.0517 -0.0420 0.0353 -0.0305 0.0269

(a)
length N g[n),0<n<N-1
1 1.0000
2 0.6292 0.5527
3 0.6179 0.5884 -0.1805
4 0.6154 0.5942 -0.1975 0.0854
5 0.6145 0.5961 -0.2015 0.0968 -0.0573
6 0.6140 0.5969 -0.2029 0.0998 -0.0659

0.0431
7 0.6138 0.5973 -0.2036 0.1010 -0.0683
0.0500 -0.0345

8 0.6136 0.5975 -0.2039 0.1015 -0.0693
0.0520 -0.0402 0.0287
9 0.6135 0.5976 -0.2042 0.1018 -0.0698

0.0528 -0.0419 0.0336 -0.0246
10 0.6135 0.5977 -0.2043 0.1020 -0.0700
0.0532 -0.0427 0.0351 -0.0288 0.0214

(b)

Table 1: Coefficients of optimal prefilters for D4 basis with (2) a = 0 and (b) e = 0.1.
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Figure 1: Errors for (a) causal and (b) noncausal signal dependent prefilters.
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Figure 2: Errors for (a) causal and (b) noncausal signal independent prefilters.
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Figure 3: The interpolants x(t) correspond to the optimal prefilters ¢[n] given in Table 1
with (a) N=2andae=0,(b) N=4anda=0,(c) N=2anda=0.1,(d) N =4and

a=0.1.
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