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Abstract

The problem addressed in this research is three dimensional (3-D) tomographic
image reconstruction using direct and statistical approaches. In the former ap-
proach, our focus is the reconstruction of a 3-D object from its cone beam projec-
tions with potential applications in cone beam 3-D X-ray computed tomography
(CT) and single photon emission computed tomography (SPECT). In the latter
approach, we restrict our attention to the applications of positron emission tomo-
graphic (PET) image reconstruction, although many of the techniques described
here can also be applied to SPECT.

A general formula for image reconstruction from cone beam data is derived by
modifying a result due to Kirillov. Applying this formula to various cone beam
geometries results in a class of filtered backprojection algorithms. This formula
is known to lead to exact reconstructions in cases in which the cone vertices form
certain unbounded curves. An example of such a curve is an infinite straight
line. In the case where the curve is a circle, this formula leads to the well known
Feldkamp algorithm, for which the reconstructions are only approximations to
the true image. We apply this general formula to the cases where the curve
is an ellipse and a spiral and new algorithms are derived. For the approximate
inverse, we derive the spatially varying point spread function (PSF), which should
be useful in the design of cone beam imaging systems. The properties of these
algorithms are investigated through studies of the system point spread function
and reconstructions of computer generated phantom data.

The statistical approach to PET image reconstruction described here follows
a Bayesian formulation. The PET image is defined on a two dimensional lattice
as a collection of random variables representing the mean positron emission rate

from the elemental volume (pixel) surrounding each lattice site. Between each

xiii



pair of pixels in the image, a binary line process is introduced to model the pres-
ence or absence of a discontinuity in the image. The image and its associated line
process are jointly modeled as a Markov random field (MRF) with a joint Gibbs
distribution chosen to favor the formation of images consisting of locally smooth,
connected regions. We describe a maximum a posteriori (MAP) estimation algo-
rithm based on the generalized EM algorithm for reconstructing the PET image
using the above model. The incorporation of a line process in the image model
also provides a useful mechanism for the introduction of strong a priori infor-
mation obtained from high resolution registered anatomical magnetic resonance
(MR) images. Through a boundary finding process, we can detect anatomical
boundaries from these MR images and introduce them as fixed prior line sites
in the PET estimation algorithm. The potential performance of the method is

tested using a 3-D brain phantom and patient data.
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Chapter 1

Introduction

1.1 Motivation

Tomography is a non-invasive technique through which the internal characteristics
of a three dimensional (3-D) object can be studied in a visual way, and is widely
used as a diagnostic tool in medicine and industry. Various types of sources, such
as acoustic waves, radio waves, visible and invisible light and X-rays are employed
in tomography depending on the applications. Our attention in this research will
be restricted to X-ray transmission and positron or 4-ray emission tomography
for diagnostic medical imaging.

The transmission and emission term used here simply indicate where the source
originated. In transmission computed tomography (T'CT), a radiation source
is located outside the subject and transmits through the subject. In emission
computed tomography (ECT), a chemical compound with the desired biological
activity labeled with a radioisotope is administered into the subject under study,
the radioactive decay produces a single photon or photon pair emitting from the
inside of the subject. Those photons or photon pairs are then collected by a
detector or detector pair.

The conventional way to reconstruct the entire 3-D subject is in the stacked 2-
D fashion. A 3-D reconstruction is formed by imaging successive cross sections of
the subject, using 2-D reconstruction algorithms and then stacking the resulting

reconstructions. For each cross section of the subject, a detector strip is placed



around this slice to collect the measurements, which correspond to either parallel
or fan shaped line integrals. A more efficient and attractive approach is in the truly
3-D fashion, i.e. a generalization of the 2-D parallel or fan beam reconstruction
algorithms. A detector plane is used to measure the data, representing 3-D parallel
or cone shaped line integrals.

The major emphasis of TCT is anatomical imaging, thus the spatial resolution
and sensitivity to different types of tissue are very important. TCT usually uses
X-ray sources with high photon flux. The reconstruction approach for such a case
is often based on the assumption that the measured data is noiseless, so that the
Fourier slice theorem and inverse Radon transform or other inverse formulae play
very important roles in the development of this approach.

A cone beam data acquisition system provides great potential to obtain recon-
structions with better resolution, sensitivity and faster data collection time than
the other systems. Usually it is impossible to handle the information across differ-
ent transaxial planes in stacked 2-D fashion. Therefore, reconstruction from cone
beam data cannot be treated in the same way as the 3-D parailel beam problem,
i.e. as a set of independent 2-D problems. This is because the theory developed
for fan beam and 2-D and 3-D parallel beam does not offer a totally adequate
means for inverting cone beam data. New theories or formulae [31] [57] [10] [43]
(54] [17] have answered many theoretical questions from different point of views,
such as the stability of the inversion and sufficient conditions on the curve of
cone beam vertices, and therefore led many advances in cone beam tomography.
In practice, closed form inverses can be found for many geometries [9] [66] [6],
however accurate numerical implementation of these inverses is computationally
expensive. In other words, there are no existing algorithms that are both exact
and computationally inexpensive. In addition, in many situations where the in-
verse is only an approximation, it would be desirable to quantitatively evaluate
the performance of the algorithm. Although considerable effort has been directed
at developing accurate and numerically efficient inversion techniques, in order to
fully realize the potential of cone beam imaging systems, a better understanding

of the cone beam inverse problem is required.



ECT is a technique for in vivo measurement of a wide variety of functional
parameters, for example, local blood flow and local glucose metabolism of an
organ. Data acquisition time therefore must be short, which constitutes the great
limitation as well as potential for ECT in clinics. Each photon (pair) in ECT must
be detected and analyzed. This results in an important difference between TCT
and ECT: in general, the statistical variability of measured data in ECT is much
higher than that in TCT. Thus, one of the important and difficult tasks in ECT
is to improve the quantitative accuracy and temporal resolution of reconstructed
images using statistical methodologies and estimation procedures.

A maximum likelihood (ML) reconstruction approach by Shepp and Vardi
[49] has pioneered the development of statistical approaches to ECT image re-
construction. Because of the ill-conditioned nature of the ML approach to image
reconstruction, a variety of statistical approaches have been developed over the
years to overcome this problem. These generally impose additional constraints on
the solution, attempt to impose the structure on the solution through a regular-
izing function or introduce prior information to describe the statistical properties
of the solution through the use of Bayes theorem. By far the most popular, and
that used in this thesis, is the maximum a posteriori (MAP) estimator in which
the solution is chosen as that image maximizing the posterior probability. An
important motivation for using the MAP estimator is the Markov random field
(MRF) model [2], which captures a property common to almost all images, that
is, there is a high degree of spatial correlation in image intensity between pixels
and their neighbors. But MAP estimators employing MRFs may in many cases
produce over-smoothed reconstructions particularly across true boundaries in the
image. This problem may be alleviated to some extent by choosing the smoothing
term to penalize intensity differences only up to a certain threshold [14]. A more
satisfying approach to this problem, is the use of line processes in the MRF model
[13]. In this model, a binary line process is introduced between each pair of pixels
in the image to model the presence or absence of a discontinuity in the image.

Overall, ECT itself has very limited ability to produce accurate anatomical in-
formation due to poor spatial resolution and poor statistics in the measured data.

Magnetic resonance (MR) imaging and X-ray CT are capable of producing high



resolution images of human anatomy but little functional information. Therefore,
these imaging modalities provide complementary diagnostic information. While
they produce images of different parameters, they should share the common un-
derlying anatomical structures and boundaries. Inclusion of a priori anatomical
information should offer great potential to enhance ECT image quality and is
desirable in the regional quantitative analysis of ECT.

According to the above discussions, the goal of this research is to develop
models and approaches to accurate, quantitative and efficient reconstruction. This

research is directed at the following areas:

1. develop general and efficient cone beam reconstruction algorithms which

produce acceptable results for many geometries.

2. develop a methodology to analyse the approximation inherent in these al-
gorithms.

3. develop priors which favor local smoothness as well as discontinuity where

appropriate and facilitate numerical computation of MAP reconstructions.

4. develop computationally efficient algorithms for more desirable MAP recon-

structions.

5. enhance quantitative accuracy and temporal resolution of PET by incorpo-

rating anatomical structures.

1.2 Organization of the Dissertation

This dissertation includes eight chapters and is organized as follows. Chapter 1
states the motivation and goals for this research. This is followed by the organiza-
tion of this thesis and a statement of original contributions made by this research.
In Chapter 2, physics of tomography and observation models are presented. This
includes the case of transmission and emission, and maximum likelihood (ML) re-

construction using the EM algorithm for emission computed tomography. Chapter



3 reviews the existing literature dealing with related topics, including the theo-
retical development and practical inverse techniques for direct 3-D image recon-
struction and statistical approaches to image reconstruction and their application
to emission computed tomography. Chapters 4 and 5 develop an approximate
formula for the reconstruction of a 3-D object from various bounded cone beam
geometries and apply this formula to circular, elliptical and spiral geometries re-
sulting in a class of filtered backprojection algorithms. Although the algorithms
are only approximate, they are shown to produce acceptable results in many cases.
The spatially varying point spread function (PSF) is derived to analyse the ap-
proximation inherent in the algorithms. The properties of the algorithms are
investigated through studies of the system PSF and reconstructions of simulated
data. Chapters 6 and 7 deal with a Bayesian approach to image reconstruction
for PET. The image is modeled using a joint Gibbs distribution of emission inten-
sities and line processes, which are introduced to model the presence or absence
of a discontinuity in the image. A maximum a posteriori (MAP) reconstruction
algorithm based on the generalized EM algorithm is developed using the above
model, it is shown to produce a (local) optimum solution to this problem. Re-
sults are presented from computer simulated phantom, 3-D brain phantom and
patient data. The phantom data is used to explore the potential performance of
the algorithms in a wide variety of test cases, the real data is necessary to vali-
date the overall approach. Finally, Chapter 8 contains conclusions on the research

presented and possible directions for further research.

1.3 Original Contributions

The contributions made by this research are summarized in the following:

1. By modifying a result due to Kirillov, a general inversion formula is derived
for the reconstruction of a 3-D object from a set of cone beam projections.
This formula is known to lead to exact reconstruction in cases where the
cone vertices form certain unbounded curves. Therefore, for any bounded

curve, the resulting inverse is only approximation to the true image.



2. Using this general formula, it is possible to derive a 1-D filtering and 3-
D backprojection algorithm for cone beam tomography for a wide range of
imaging configurations. We have investigated the application of this formula
to the case of circular, elliptical and spiral orbits, and new algorithms are
derived. In the case where the curve is a circle, the algorithms is shown to
be essentially equivalent to the well known Feldkamp algorithm. The appeal
of this approach is that, although the reconstruction operator is only ap-
proximate, the algorithms are of the filtered backprojection type and hence
computationally very efficient, and produce acceptable reconstructions in
many cases. The derivation given here allows a detailed analysis of the

inherent approximation associated with the algorithms.

3. The resulting spatially varying point spread function (PSF) is derived to
quantitatively evaluate the performance of the new algorithms. It is shown
that in the absence of the bandlimiting, the PSF is singular on the surface
formed by the set of all lines that pass through the point source and the
curve, and the values of the PSF are identical zero inside the surface. The
PSF should be useful in determining an upper bound on the resolution of a

proposed cone beam imaging system.

4. An alternative energy function is presented for a Gibbs prior distribution,
where in addition to pixels representing image intensities, a binary line pro-
cess is introduced between each pair of pixels in the image to model the
presence or absence of a discontinuity in the image. The energy function
is designed to favor the formation of images consisting of locally smooth,
connected regions and to facilitate numerical computation of the proposed
MAP algorithm. Two types of Gibbs energy functions are proposed for the
first order and second order neighborhood to cope with different degrees of

image complexity.

5. A maximum a posteriori (MAP) estimation algorithm is developed based on
the generalized EM algorithm for reconstructing PET image using a joint
Gibbs distribution of intensity and line processes. This algorithm, using the

suggested energy function, automatically guarantees the non-negativity of
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image intensity values. In developing the algorithm, a parameter T is used
to allow the values of a binary line site to be on the continuous interval [0, 1]
but eventually converge to either 0 or 1. Through the use of the parameter
T, the rate of convergence of the unknown line process can be controlled
relative to the intensity process and hopefully the algorithm then converges

to a more desirable local optimum.

. The use of a line process in the MRF model also provides a useful mechanism
for the introduction of strong a priori information obtained from high res-
olution registered anatomical magnetic resonance (MR) images. Through a
boundary finding process, we extract anatomical boundaries from these MR
images and incorporate them as fixed prior line sites in the PET estimation
algorithm. The incorporation of information from other imaging modalities
offers great potential to improve the quality of PET images. The overall
performance of the proposed approach is tested using patient MR and PET
data.



Chapter 2

Observation Models for

Tomographic Images

This chapter presents the observation models that will be used in the follow-
ing chapters. Transmission tomography has its root in X-ray imaging, though
other types of sources, for example v-rays, have been used. Emission tomography
includes single photon emission computed tomography (SPECT) and positron
emission tomography (PET). The word single in the former refers to the product
of the radioactive decay, a single photon, while in positron emission tomography
the decay produces a single positron, this positron almost immediately annihilates
with a nearby electron to form two photons, traveling in almost opposite direc-
tions. There are important physical and biological differences between emission
tomography and transmission X-ray tomography. The basic physical difference is
that in emission tomography the information sought is the intensity distribution
of the emitted photons in an attenuating medium, in transmission X-ray tomog-
raphy the attenuation coefficient is sought. The basic biological difference is that
emission tomography is a technique for determining the dynamic changes of bio-
chemical activities but little anatomical information, while X-ray CT produces

high resolution of anatomical images with little functional information.



Figure 2.1: Data acquisition geometries for a single 2-D cross section through an
object or a 3-D region of interest of an object. (a): 2-D parallel beam. (b): 3-D
parallel beam. (c): 2-D fan beam. (d): 3-D cone beam.

2.1 Transmission Tomography

X-ray Computerized Tomography (CT) is an imaging modality producing high
resolution images of the human anatomy. In X-ray CT, an attenuation density
function of the entire 3-D object or a slice of the object can be reconstructed from
the measurements of attenuated X-rays.

In X-ray CT, a X-ray source is placed on one side of a subject, and a detector is
located on the other side of the subject. Consider parallel beams of X-ray photons
propagate through a cross section of the subject, see Figure 2.1(a). These beams,
attenuated due to the photons being absorbed and scattered from their original
traveling directions, are measured on a array of detectors located at the opposite
side of the source. Then the X-ray source rotates synchronously with the array of
detectors to measure another set of data from a different direction. This process
is repeated until measurements have been taken from all directions in the plane.
The X-ray source can be collimated so that the measurements are collected using

either 2-D fan beams or 3-D parallel or cone beams, as illustrated in Figure 2.1.



X-ray Source

Figure 2.2: Mathematical description for X-ray CT scanning.

For accurate reconstructions of emission data, transmission PET or SPECT is
required to correct for the effect of attenuation in emission computed tomography
(ECT). For example, during a transmission PET scan, a patient is positioned
as for the PET scan, but with no internal positron activity present. An external
transmission positron source is placed inside a ring source holder and transmission
PET data are collected. Then the a priori attenuation information can be used to
modify the measured data or can be introduced into an iterative reconstruction
algorithm in a systematic fashion.

Mathematically we may describe the problem as follows. Consider a fixed
plane through the body (the concepts are straightforward to extend to 3-D), see
Figure 2.2. Let f(z,y) denote the attenuation coefficient at a point (z,y) and
L(s,0) be a line inclined at an angle 8 from the Y-axis and at a distance s from
the origin. Suppose a thin X-ray beam is directed into this slice along L(s,9)
and the X-ray beam consists of monoenergy photons, then the intensity of the

attenuated X-ray beam measured on a detector has the following form:

I=1 exp{—/L(a'o) f(m,y)du}, (2.1)

where Iy is the intensity of the incident beam and u is the distance along L(s, 8).

Note that when the photon detection is discrete and becomes counting processes,
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the variable I thus follows a Poisson distribution. Taking a natural logarithm of

the ratio I/l yields the measurements for X-ray CT:

—lnI
g_ Io’

thus from (2.1) we obtain the linear transformation

g=g(s,0)= [

-0 f(z,y)du, o0<s<o0,0<d<m, (2.2)
therefore, the image reconstruction problem is to determine f(z,y) from g(s, 6).

The formula (2.2) is only an approximation even for the X-ray transmission
case (a): it ignores statistical fluctuation due to the limited number of photons
actually transmitted during each measurement and (b): other sources of error
such as the detection of scattered radiation and the assumption of monoenergy
X-ray beams.

In the transmission PET or SPECT case, the emitted photons are of mo-
noenergy, however, the major limitation is that the small number of photons
is detected. Therefore the statistical fluctuation of the data can no longer be
neglected. In this case and X-ray CT case where the photon flux is low and
the photon detection becomes discrete, collecting photons becomes counting pro-
cesses. Thus the variables both I and I, in the equation ( 2.1) follow a Poisson

distribution, the discretized version of (2.1) can be written as

I = Iokexp{—ZPk(i,j)f(i,j)}, (2.3)

where Poisson random variables Io; and I) are the incident and detected photons
in the k-th beam respectively. Pi(Z,7) denotes the length that the k-th beam
intersects a pixel at location (¢,7). The f(7, j)s are the attenuation coefficients to
be estimated. In summary, the log likelihood over all X-ray beams can be reduced

to

L(F|II) = Z{—E{IOk}e‘ZM PG Gd) 4 1 in B{Tox} -
k
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IkZPk(i’j)f(i’j) —In Ik!} )
i
where E{Io} represents the mean of incident photon beam Iox, F' and I are
vectors whose components are the f(¢,j) and I respectively. A ML reconstruction
for TCT using EM algorithm is introduced in [34].

The mapping from f(z,y) — ¢(s,0) in (2.2) is known as the Radon transform.
Radon showed that if f(x,y) is continuous and has compact support, then f(z,y)
is uniquely determined by the values of g(s,0) for all lines L(s,8), i.e. the inverse

Radon transform:

flz,y) = (%,) / / [(89/05)(8,0)] ;5.

-0 £c0s@ + ysinf — s

This transform pair plays a very important role in the development of X-ray CT.
The projection slice theorem, a fundamental result of Fourier theory, leads to
several useful algorithms for obtaining the inverse Radon transform. A conceptu-
ally simple method is the Fourier transform based reconstruction, which directly
follows from the projection slice theorem. Among the various algorithms devel-
oped over the years, the filtered or convolution backprojection method is the most
widely used for both parallel and fan beam data.

In theory, one can easily employ the 3-D projection theorem or Radon trans-
form to directly reconstruct a 3-D attenuation density function of an object from
a set of cone beam projections. However, the algorithms based on these theorems
are not viable in practice, because it is required that measurements be taken from
all directions over a sphere. A motivation for the approach discussed in Chapter 4
and 5 is to develop an approximate solution to this problem, which produces fast

and acceptable results with the minimum amount of measurements.

2.2 Emission Tomography

2.2.1 The Physics of SPECT

12



Collimator

Figure 2.3: Illustration of a cross section of a SPECT imaging system with par-
allel collimators. The photons detected at each detector are proportional to the
summation of the radioactive decays occurred along the strip determined by the
collimator.

SPECT is used to determine the spatial distribution of an injected or inhaled
chemical compound with some desired biological activity tagged with a ~y-ray
emitting isotope, called a radiopharmaceutical. The radioactivity decays by emit-
ting a single photon. This photon penetrates the subject and is detected by a
strip of scintillation crystals equipped with parallel collimators, see Figure 2.3.
The basic purpose of a collimator is to exclude from the detector those photons
which are traveling from directions other than a straight line perpendicular to the
detector. Due to collimation, when a detection occurs, it is evident that the pho-
ton originated somewhere along the line perpendicular to the detector and passing
the point of detection. Thus, photons measured at the detector array correspond
to a series of parallel line integrals. By altering the direction of collimators into
fan shape, the measurements then represent a series of fan shaped line integrals.
If a planar detector is used to collect photons, the pattern of the collimators will

become either 3-D parallel or cone shaped.
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Figure 2.4: Illustration of a PET imaging system with a single ring detectors.
Coincidences detected by a detector pair k are proportional to the total number
of photons emitted along the strip determined by the detector pair k.

2.2.2 The Physics of PET

Contrasting SPECT, in which a single photon and a collimator are employed to
position the location of radioactive decay, is PET. In PET, the chemical compound
introduced into the subject is labeled with a positron emitting radioisotope. An
emitted positron almost immediately combines with an nearby electron, and the
two are annihilated with the emission of two 511kev photons. These two photons
travel in almost opposite directions, penetrate the surrounding tissue and are
detected in coincidence outside the subject by a detector pair, Figure 2.4. From
the coincidence detection, one can only determine that an annihilation occurred
somewhere along the line defined by the two incident points of photon pair at the
detectors

Similar to SPECT, in a single ring detectors of PET, measured coincident pho-
tons correspond to approximations to either parallel or fan shaped line integrals.
In the case where multiring detectors are employed in PET, coincident photons
detected may correspond to 3-D parallel or cone shaped line integrals.

In both SPECT and PET, the measurements represent the radioactivity in

the subject viewed from different directions. According to the principle of image
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reconstruction of computerized tomography, estimation of the radioactivity dis-

tribution may be formulated as the problem of tomographic image reconstruction.

2.2.3 Mathematical Model
The following development is suitable for both SPECT and PET, only PET ter-

minology is used. The generation of data in a PET imaging system is the result
of radioactive decay. The decay of each individual isotopic nucleus is a random
Bernoulli event. Let us examine a time interval I over which a distribution of
positron emitting isotope changes very little. Denote p the decay probability of
each given individual nucleus in some time interval I. Suppose there is a collec-
tion of N atoms in a voxel (small cubic volume), the decay of each nucleus is
independent of the decay of the others, thus the number of decays (photon pairs
emitted from the voxel) d within time 7 follows the binomial distribution. Hence

the probability P of d decays in time I is equal to

P(d) = ( I;r ) p(1-p)" (2:4)

N is typically very large in the case of radioactive decay, so introducing a new

variable A = Np and letting N — oo yields

o - (3 )

Me=r AN
= oA (l"ﬁ) NN —a) (25)

Since the limit in (2.5) is 1, we obtain that P(d) is the Poisson distribution with

the mean A, i.e.
Ade"\

d!

Hence the radioactive decay follows the Poisson distribution with unknown pa-

P(d) = (2.6)

rameter A. Since radioactive decays or photon emissions from one voxel are inde-
pendent of those from any other voxel, the number of photon emissions from the

source voxels are well modeled as independent Poisson random variables. Then
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the joint distribution of the measured data in emission imaging system can be
developed from this model.

For the simplification of notation, we restrict our attention to a single transax-
ial plane of the subject. Imagine that this plane is divided into N x N small
areas (pixels). We use d(z, 7) to denote the number of emissions from pixel (¢, 5),
i,j =1,---,N. The observed data collected on a detector ring around the subject
is denoted by Y, whose elements are coincidences y;. detected by detector pair k,
k=1,.--,M. Assuming there are the total number of D detectors on the ring,
then the maximum value of M should be equal to D(D-1)/2. From the previous
discussion, it is known that d(¢,j)s are independent Poisson random variables
with unknown mean A(z,j), ¢, = 1,---, N. However it is not clear that how the
detected coincidences y;s are associated with the number of emissions d(z, j)s.

In order to find the joint probability of observed data Y by utilizing the Poisson
distribution of a radioactive decay at each location (¢, 7), we define new random
variables, zx(i,j),k = 1,---,M; 4,7 = 1,.+-, N, to be the number of emissions
from pixel (Z,7) which are collected in detector pair k. These variables are inter-
mediate and unobserved. Let Pi(Z,) denote the probability that an emission from
source point (z,) is detected at detector pair corresponding to index k. Py(%,j)
is known and determined by the geometry of the imaging system, the location
of source point (z,7), the probability of attenuation of photons and the detector

normalization. Rewriting the probability for z4(z,7) = m as

P(zi(i,§) = m) = 3 P(zi(i,§) = mld(i, j) = n)P(d(i, j) = n),
where P(zi(z,j) = m|d(i,j) = n) is a binomial distribution parametrized by

Pi(i,7) , thus we have

A, g)"e )

n! ?

P(zi(3,j) =m) = i ( :1 ) P(3,5)™(1 = Be(2,5))" ™

which is simplified to

Play(i,j) = m) = Lelin)AG 7)) MEPE)

m!
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So z(i,7) is a Poisson random variable with mean equal to Pi(z,7)A(¢, 7). Note
that the observed data y; is equal to the summation of all (%, j)s over ¢ and j,
that is

vk = Y xx(1,5),
i

and for a fixed k, z(7, j)s are independent for different Z and j, because all d(z, j)s
are independent. Therefore, the data y; is the sum of independent Poisson random

variables, thus itself is a Poisson random variable with mean equal to
E{n} = Y B{a(ind)) = X0 Pili )M ),
) i,

the different values of k represent different locations of detector pairs. Since a
direction of an emitted photon pair is uniformly and randomly distributed over
the 3-D space, all yxs are independent Poisson random variables with the joint

conditional probability

3 Puliy )M ) e Zoia PHEDNED)
yi! '

P =TI (&, 2.7)

2.2.4 Maximum Likelihood Estimation Using EM
Algorithm

Consider estimating A by maximizing P(Y|A) or the log-likelihood function
L(A]Y) = log P(Y|)) from the given set of data Y. The summation in the con-
ditional probability (2.7) implies that it would be difficult to solve this problem
directly, because it does not possess a locally dependent property. The EM al-
gorithm presented by Dempster et al. (8] is a general approach to iterative com-
putation of maximum likelihood or @ posteriori estimates when the data can be
formulated in complete/incomplete fashion. More precisely, the EM algorithm
explicitly makes use of the density P(X|)) to find A such that

max P(Y|3),
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where P(X|)) is the joint probability of X = {xk(¢,7)}. As first applied to
emission tomography by Shepp and Vardi [49], who treat the actual observed
data Y as incomplete version of the unobserved data X, termed as complete
data, then the EM algorithm for PET is described as

max Ex {log P(X|})[A", Y}, (2.8)

where A" represents current estimates of emission intensities. This algorithm
formularizes a heuristic idea for handling incomplete-data, consisting of essential
Expectation (E) and Maximization (M) steps at each iteration stage. The E
step is to find the conditional expectation of the complete-data X, given the
observed data Y and the current estimated parameter A". Using the fact that
the distribution of zx(z,j), conditioned on A" and yx = ¥_;; zi(¢,7), is binomial
(yk, Pi(,7)A(4,5) Ty 4 Pk(i',j')z\"(i',j')), its mean is equal to

.. . . ykPk(i’j)
E(zi(i,5)|IA", Y) = A3, ey T 2.9
( k(i ])l ) ( J)zi'.j' Pk(i,] )A"(Z 9]) ( )
In the M step, we first replace the complete data by its expectation (2.9) to yield
the result Q(A|A") as

QU = z{-;Pk(i,J‘)A(i,m (2.10)

)

ns s YiPe(i,7) . }
log A
/\ (Z,J); Z""J" Pk(i',j')An(i',j') Og (23]) ?

where those term which are not dependent on A are omitted, since they will
not affect the maximization result. We then maximize Q(A|A") to find updated
parameters A"t! by setting the first derivative of Q(A|A") with respect to each
A(z,7) equal to zero. After simplification, we obtain the well known EM algorithm
for ML PET estimation

i Pe(4,5)
kY i Pl (5

Zk Pk(zv])

AMHL(F§) = A"(4,4) (2.11)
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The images obtained in this manner are generally considered qualitatively better
than those from the filtered backprojection algorithms. However it is well noted
that after several iterations of the EM algorithm the image quality begins to
deteriorate due to the ill-conditioned nature of the ML problem in PET. This
has motivated this research to investigate the Bayesian approach to this problem

through the use of the MRF model with a line process.
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Chapter 3
Review of the Literature

There are many techniques especially developed for tomographic image recon-
struction. Some are more targeted at minimizing computational complexity; oth-
ers are more directed at accurate system modeling. In general, they fall into one
of the two types of approaches: direct and iterative or statistical inversion.

Both techniques have strengths and weaknesses. Direct inversion approaches
were initially developed for X-ray transmission computed tomography, since the
statistical fluctuations in the measurements of X-ray are much less severe than
those in the emission data. Therefore, when applied to the cases where relatively
large number of photons are measured compared with the number of parameters
to be estimated, this type of algorithm often leads to satisfactory reconstruc-
tions. In addition, it is computationally efficient and straightforward. In emission
tomography, the major factor that limits its performance is the small number
of photons detected, which results in reconstructed images with large statistical
uncertainty and poor resolution.

Statistical approaches mainly deal with the problem of reconstruction in emis-
sion tomography, though some effort has been directed at the problem of transmis-
sion tomography, for example in [34]. In the algorithm development for emission
tomography, the use of statistical approaches has demonstrated potential advan-
tages over the direct reconstruction approach, especially in cases where the total

number of detected photons is relatively small. Under this framework, one can
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introduce a prior to describe statistical properties of images or naturally incorpo-
rate a priori information or structure about the spatial distributions of functional
activities in a human body. The images obtained in a statistical manner are gen-
erally considered qualitatively better, but computationally more expensive than
those from direct approaches.

Due to the present computational ability, it is necessary to study both types of
techniques. In fact, the reconstruction of PET or SPECT images in most clinics
is based on the well known filtered backprojection type of algorithms. Clearly,
the computational cost of statistical approaches can be significantly reduced, if
the algorithms are implemented in a hardware board of the type currently used
for filtering and backprojection in clinical PET or SPECT systems. By then, the

statistical techniques may be widely used in clinical uses.

3.1 Direct Reconstruction of A 3-D Object

The recent development of medical imaging systems which acquire cone beam
projection data from 3-D objects has motivated research into direct 3-D image
reconstruction algorithms analogous to the well known filtered backprojection
methods for 2-D image reconstruction from parallel [48] and fan beam [24] pro-
jections. Examples of systems for which such an algorithm would be useful include
the dynamic spatial reconstructor (DSR) [59], cone beam collimated SPECT [11],
[29] and [28], electronically collimated SPECT [52] and the Philips twin cone beam
X-ray CT system [32].

Cone beam tomography has potential advantages over standard parallel and
fan beam geometries for both X-ray CT and SPECT. In the case of X-ray CT,
a cone beam X-ray source and data acquisition system offers the potential for
extremely fast 3-D data acquisition, as in the DSR for example [59]. In SPECT,
cone beam collimators have been designed for use in brain and cardiac studies
that have improved sensitivity and resolution in comparison to parallel or stacked
fan beam collimators [29] [19].

Reconstruction from cone beam data cannot be treated as a set of independent

two-dimensional problems and is a challenging problem both in theory and in
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practice. This is because the theory developed for fan beam and 2-D and 3-D
parallel beam does not offer a totally adequate means for inverting cone beam
data. A new theory or formula needs to be developed to answer questions, such
as the stability of inverses and sufficient conditions on the curve of cone beam
vertices. In practice, one must remember that the computational complexity is
one of the major concerns. As far as we know, there is no existing algorithm that is
both exact and computationally inexpensive. The influence of others factors, such
as detector sensitivity or physical constraints may motivate the use of different
cone beam geometries.

Kirillov [31] gives a closed form solution for the reconstruction of an n-
dimensional complex valued function from its complex line integrals. Rewriting
this work for one-dimensional line integrals of a 3-D object results in a general
inversion formula for the reconstruction of a 3-D object from a set of cone beam
projections, which requires cone beam curves that are unbounded and satisfy cer-
tain other conditions [53] [63]. This formula was first given by Smith [53] who
also showed that an example of such a curve is an infinite straight line. A recon-
struction algorithm based on this result was proposed in which a 3-D coordinate
rotation is employed to reduce the computational complexity of reconstruction.
While this result yields an exact reconstruction, the arrangement of the cone
vertices on a single line is not practically viable.

The reconstruction formulae in [31] and [53] require that the curve formed by
the cone vertices is unbounded. For the case where the object is of finite support,
Tuy [57], Smith [54] and Grangeat 17] show that the conditions on the curve may
be relaxed. They all point out similar sufficient conditions on a bounded curve
of source points from which the image may be exactly recovered, and provide
closed form solutions for more general curves satisfying these conditions. The re-
construction formula of Tuy is based on the relation between the processed cone
beam data and a filtered form of 3-D inverse Radon transform. Although this
formula is known to lead to closed form inverses for many geometries, accurate
numerical implementation of these inverses is usually computationally expensive.
Smith’s derivation [54], unfortunately, contains an error which is pointed out by

Defrise et al. [7). Grangeat [17] has proposed a different, but related approach, in
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which a fundamental relation is established between the cone beam projections
and the first derivative of the Radon transform. Then the derivation of an inverse
formula using this relation becomes straightforward, according to the 3-D inverse
Radon transform. One drawback of this approach is that it requires the rebin-
ning of cone beam data beforing using the reconstruction algorithm. For curves
not satisfying the conditions stated in [57] [54] [17], Finch [10] describes various
inversion procedures for functions of compact support based on a Sobolev space
setting. These results do not include a closed form solution and do not appear to
lead to a computationally feasible algorithm. An alternative approach was taken
in [5] for a cone vertex forming a sphere enclosing the object, rather than a 3-D
curve that this research is concerned with. Again these results do not extend to
our problem. A detailed discussion of the cone beam reconstruction problem and
the question of stability are addressed by Natterer [43], however no algorithm is
provided for the problem treated in this research.

The most commonly employed geometry for cone beam tomography is the
circular orbit. Unfortunately, an exact inverse does not exist for this arrange-
ment. However, several approximate reconstruction methods have been proposed
[41], [9], [54], [17]) and [63]. By far the most widely used of these, is the “prac-
tical cone beam algorithm” of Feldkamp et al. [9]. This algorithm is derived
in a heuristic manner by extending the 2-D fan beam reconstruction approach
to 3-D reconstruction. This method is of the filtered backprojection type, and
thus very computationally efficient, and produces acceptable reconstructions in
many cases. Minerbo [41] has used 3-D inverse Radon transform to derive an
approximate solution for the geometry considered here, however his method does
not result in an efficient reconstruction algorithm. Three approximation schemes
for this configuration are discussed in [54], the first of those is shown in [55] to
be equivalent to the algorithm of Feldkamp et al., however the algorithm and its
properties are not described in detail. Grangeat’s method [17] has been applied
to the special case of a circular orbit, where the shadow zone concept is used to
describe the approximation associated with the algorithm. This method has the
ability to fill the first derivative of the Radon transform by interpolation in this

shadow zone. In Chapter 4, a general approximate formula is derived by adapting
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a result due to Kirillov [31]. The resulting algorithm for this particular geometry
is shown to be equivalent to the well known Feldkamp algorithm. However, the
derivation given in this research allows a detailed analysis of the spatially variant
point spread function (PSF) implicit in the approximation and other properties
of Feldkamp’s algorithm.

There are many alternative cone beam geometries and reconstruction algo-
rithms. The influence of other factors, such as detector sensitivity or physical
constraints or accuracy of reconstructions motivates the use of either the elliptical
or the spiral or more complex configurations. These are addressed in Chapter 5.
Elliptical orbits are an attractive geometry for cardiac studies using cone beam
collimated SPECT, as they allow the camera to closely follow the chest contour.
Gullberg et al. [19] have extended the Feldkamp algorithm to this noncircular
case. An alternative elliptical cone beam reconstruction algorithm is given in [65]
using the general inverse formula described in detail in [63]. Unfortunately, no
reconstruction algorithms are exact for this geometry.

Tuy [57] and Grangeat [17] described sufficiency conditions on the curve of cone
beam vertices, for which inverse operators do exist and derived the corresponding
inverses. In most cases however accurate numerical computation of these inverses
is computationally expensive. Fast approximate reconstruction algorithms for
geometries for which inverses do exist have been described by Clack et al. [6]
for the case where the curve is a pair of orthogonal, concentric circles, Zeng
and Gullberg [66] for the case where the curve is the union of a circle and a
perpendicular line, and Yan and Leahy [65] for a finite spiral curve. The approach
of Clack et al. can be generally described as: (1) converting the cone beam
projections into planar integrals; (2) backprojecting the values obtained from the
integrals; (3) three-dimensional filtering. The basic idea in [66] is to consider the
redundancy in the cone beam data and discard unwanted projection data using
a spatially varying filter implemented in the frequency domain and then employ
the algorithm proposed in [56]. The appeal of the approach in [65] is that the
algorithms are of the filtered backprojection type and hence computationally very
efficient, the approximation inherent in the algorithms are investigated through
studies of the system PSF.
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3.2 Statistical Approaches to Emission
Tomography

Emission computed tomography (ECT) is a unique technique to quantitatively
determine dynamic changes in biochemical activity in the body. The potential
and utility of ECT in diagnostic medicine has attracted many investigators who
have continued to explore potential applications. ECT images have improved
significantly over the last few years. The improvements resulted from a better un-
derstanding of design principles and trade-offs as well as the introduction of novel
concepts. Considerable effort has been directed toward accurate, quantitative
reconstruction in three dimensions of spatial distributions of radioactivity.

The ECT imaging problem may be formulated as one of tomographic image
reconstruction as similar to that in transmission computed tomography (TCT).
One of the important differences between ECT and TCT is the statistics avail-
ability. ECT imaging systems collect approximately 10,000 times less data per
transverse section image than TCT [22]. Thus the assumption that the projection
data is noiseless becomes much less valid than that used in TCT. This is one of
the main reasons the reconstruction strategy for ECT involves investigation of
statistical approaches in order to take into account the Poisson statistics of data.
A statistical approach to ECT image reconstruction offers several potential advan-
tages over the filtered backprojection method currently employed in most clinical
ECT systems: (1) the true data formation process may be modeled accurately
to include the Poisson nature of the observation process and factors such as at-
tenuation, scatter, detector efficiency and randoms; and (2) an a priori statistical
model for the image may be employed to model the generally smooth nature of
the desired spatial distribution and to include information such as the presence
of anatomical boundaries, and hence potential discontinuities, in the image.

PET is the focus of the study of emission tomography in this research for two
reasons. The first one is that, although SPECT has the advantage of being less
expensive, PET imaging has distinct advantages over SPECT, such as relatively
high detection efficiency and relatively good spatial resolution. The second one is

that some correction factors, for example, attenuation correction, can be included
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in a much easier manner in PET than in SPECT. Thus these advantages has
made more efficient to explore the potential performance of proposed algorithms
in a variety of test cases, and to validate the overall approach using real data.
Consequently, the investigation of patient MR and PET data has pointed out the
possible directions for further improving the proposed algorithm.

Reconstruction of PET images in most commercial PET systems is based on
the well known filtered backprojection (FBP) algorithm [48] initially developed
for transmission X-ray computed tomography. Although this reconstruction algo-
rithm is computationally straight forward, the quality of images is severely limited
by the failure of the algorithm to take into account the photon limited nature of
the data. The publication by Shepp and Vardi [49] of a new method for PET
image reconstruction based on a maximum likelihood (ML) formulation sparked
considerable interest in statistical approaches to emission computed tomographic
image reconstruction. In their seminal paper, Shepp and Vardi develop a statisti-
cal model for the data and apply the expectation maximization (EM) method of
Dempster et al. [8] to maximize the resulting likelihood function. The images ob-
tained in this manner are generally considered qualitatively better than those from
FBP. However, it has been widely noted that after several iterations of the EM
algorithm the image quality begins to deteriorate due to the ill-conditioned nature
of the ML problem in the reconstruction problem. Methods to overcome this prob-
lem include early termination of the EM iterations using a statistical hypothesis
test [21], [58] and regularization using the method of sieves [40], smoothing EM
[50]. All these techniques have been shown to alleviate the ill-posed problem to
some extent. The stopping rule [21] [58] has demonstrated a compromise solution
between maximizing the likelihood and minimizing the hypothesis. But it is theo-
retically unappealing since one begins by searching for an optimal (ML) solution,
but then terminates the search before reaching this point. Similarly, the method
of smoothing [50] introduces a simple smoothing step at each EM iteration. As far
as we know, there is no an appealing direct interpretation of this method in terms
of a specified optimization problem. The method of sieves [40] effectively solves
the problem by restricting the solution space using a set of regularizing functions.

While this method is statistically sound, it often suffers from edge artifacts or
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over-smoothing due to the choice of sieve kernel. In the following we will restrict
our attention to Bayesian approaches to the image reconstruction problem.

Through the use of Bayes theorem, one can introduce a prior distribution to
describe the statistical properties of the unknown image and thus produce a poste-
rior probability distribution for the image conditioned upon the data. Maximizing
over the posterior probability yields a maximum a posteriori (MAP) estimation
in which the prior effectively performs a regularizing function and thus MAP es-
timation avoids the ill-conditioning inherent in ML. Liang and Hart [38] have
developed MAP estimators based on the EM algorithm for Gaussian and Pois-
son priors [38]. Levitan and Herman have also developed a MAP EM algorithm
for an uncorrelated Gaussian prior in [37], using a smoothed FBP reconstruction
as an estimated mean. A correlated Gaussian prior is designed to enforce local
smoothness in [25].

An important class of image models, the Gibbs distribution or Markov random
field (MRF) (2], capture a property common to almost all images i.e. that there
is a high degree of spatial correlation in image intensity between pixels and their
neighbors. The MRF models this local interaction by specifying the conditional
probability for each pixel as a function only of those pixels within a local neigh-
borhood of that pixel. It has been shown that the joint distribution for an MRF
has a special form termed the Gibbs distribution [2] which facilitates both the for-
mulation of problems involving these models and efficient numerical computation
of the resulting estimator. The MRF model was first applied in emission tomo-
graphic reconstruction by Geman and McClure [14] and has since been widely
studied [20], [18], [30], [4], [64], 35], [15] and [36]). Hebert and Leahy [20] have
shown that MAP estimation employing an MRF prior, may be implemented using
a modified version of the EM algorithm at little additional cost compared to a
ML estimator. The One-Step-Late (OSL) algorithm of Green [18] evaluates the
energy function of a Gibbs prior at the current estimate to facilitate an MAP-EM
type approach. The algorithms presented in [4], [64], [35], [15] and [36] employ a
joint Gibbs distribution of image intensities and line processes [13] and incorpo-
rate registered a priori anatomical information. Research involved in the use of a

line process is reviewed in the following.
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A problem which arises with the use of MRF models is that in choosing a
prior which favors strong local correlations, abrupt variations in image intensity
are penalized. The resulting effect is that MAP estimators employing MRFs may
produce over smoothed reconstructions, particularly in the vicinity of true bound-
aries in the image. This problem may be alleviated to some extent by choosing
the smoothing term to penalize intensity differences only up to a certain threshold
[14], [20]. A more satisfying approach to this problem, and one which allows us
to naturely incorporate a priori anatomical information, is the use of “line sites”
in the MRF model [13]. In this model, in addition to the pixels representing
the image intensity, one introduces an additional variable between each pair of
neighboring pixels - this variable should take values of either “1” to denote the
presence of a boundary between the two pixels or “0” to represent the absence of a
boundary. One constructs a Gibbs energy function which is a function of both the
pixel intensities and the line sites. Thus when computing the interaction terms
between pixels, one only considers those pixel pairs for which the associated line
site is “0” (i.e. no boundary); in this way one avoids smoothing across boundaries
in the reconstructed image. In addition, a penalty function is added to avoid
forming too many boundaries. Finally, one introduces a smoothing term to the
line sites themselves, to attempt to obtain closed and connected boundaries. This
smoothing term also serves the purpose of discouraging redundant boundaries
and very small regions. A similar approach was proposed with some success by
Johnson et al. [30] for PET imaging. Neighborhood system is expanded in their
image model to consider the blurring effect in the image. However, in that case
no penalty term was employed to limit the formation of too many boundaries.
It can be shown that in the absence of such a penalty term, the algorithm [30]
will converge to a ML solution. Chapter 6 presents a MAP estimation algorithm,
which is based on the generalized EM algorithm using the MRF model with a
joint Gibbs distribution. The Gibbs prior with the second-order neighborhood is
designed to encourage the formation of image consisting of locally smooth and
connected regions. Hopefully the introduction of the parameter T' will make the

proposed algorithm converge to a better local maximum solution.
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Although the use of line processes has produced encouraging reconstructions
[30] [64], It has been observed through reconstructions of simulated data that the
estimated line sites are dependent on the total number of coincidence detections
and even for a large amount of coincidence detections, are sometimes inaccurately
located. This is due to both the finite resolution of the simulated PET system,
and the random nature of the data. A MAP reconstruction approach, including
line site estimation, has the potential for further enhancing the quality of PET
reconstructions.

Magnetic resonance (MR) imaging is capable of producing high resolution
images of the human anatomy. An appropriate choice of pulse sequence can pro-
duce T1 or T2 weighted images with excellent soft tissue contrast. As discussed
in Chapter 1, positron emission tomography (PET) [42] is capable of produc-
ing somewhat lower resolution images of functional activity through the use of
radiolabeled pharmaceuticals. While PET and MR produce images of different
parameters, the underlying anatomical structures and the boundaries between
them are common to both images. In other words, the spatial distribution of
functional activity is dependent on the underlying anatomical structure in which
the activity occurs. Thus if one could extract high resolution structural infor-
mation from the registered MR image, this could be used as important a priori
information about potential boundaries between structures in the PET image. In
the case where registered MR images are available, edge information may be ex-
tracted from these images and used as known @ priori line sites or modeled as an
edge map to reflect the confidence about this information. We note that similar
work for performing this task has been reported by Chen et al. [4], but there is no
details of their approach presented. An alternative algorithm using registered MR
boundaries as fixed a priori information will be discussed in detail in Chapter 7,
based on the use of MRF model with additional line processes [35] [36]. The po-
tential performance of the algorithm was demonstrated using computer simulated
phantom and 3-D brain phantom PET data. The overall approach is validated
using patient MR and PET data. PET and MR images are registered by scalp
surface matching [61], in which scalp contours from both ML reconstructions of

PET and MR images are used. Our experiences with real data indicate that the
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use of the MRF model with a line process is a promising approach to PET re-
constructions, and the incorporation of anatomical MR boundaries should offer
the potential to enhance the quality of PET images. However, a priori boundary
information and line sites in the MRF model should be treated differently such
that the a priori information is only employed as an extra weighted term either
to encourage the formation of line sites or to discourage this formation. A more
sound approach to dealing with MR boundaries is presented by Gindi et al. [15]
who modeled MR boundaries as edge maps whose values are the measurements of
confidence believe towards those boundaries, though it is not clear that how the

values of the map relate to the a priori MR boundaries.
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From (4.31), b may be expressed in terms of x, xo and 8 as:

R (i‘;— - 1) + (a:l - fg;:cg,) cos@ + (zz - fﬁixs) sin @

b= 2o R — x93 cos0 — zo28in 8 » T # 0. (4.35)
The following inequality holds for any x:
(m1 - m.'33) cosf + (a:z - ﬂ)3:1:3) sinf (4.36)
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then: |b] > 0, for any 8 € [0, 2x), and consequently

%) =0, (4.38)

since the argument b of the delta function §(b) does not pass through zero as we
integrate (4.33) with respect to 0.

Equation (4.37) thus describes a set in R? over which fp(x) is identically zero.
This inequality describes a distorted hourglass shape, formed by a double cone
with vertex (zo1, Zoz2, Zo3)7, which cuts the curve ¢(f) as depicted in Figure 4.2.
The set of points satisfying the inequality (4.37) forms the interior of the cones.

The PSF thus has the following form:

0 22}

R 1‘03 - ]'I J zl z03 $3 ("B2 ~ zos :Ba)

folx)= (4.39)
2 Jﬁ‘,ﬂa(b) lim,0 E.(a)dé, otherwise,

where a and b are defined in (4.34) and E,(-) in (4.30).
This result provides some interesting insight into the performance of the ap-

proximate reconstruction. Since the PSF is zero inside the cone described above,
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Figure 4.2: Illustration of the double cone with vertex at xo whose surface passes
through the source curve ¢(#). The points in the interior of the cones satisfy the
inequality (4.37) and define the set over which the PSF is equal to zero.

the reconstruction should improve as this region becomes larger. From (4.37) it
follows that the interior of the cone increases in volume as R is increased. Conse-
quently, one should choose R as large as possible to minimize blurring due to the
PSF in (4.39).

The result in (4.39) holds for all ||Xo|| < R provided zo3 # 0. In the case xo3 =
0, it can be shown that fp(x) = §(x — Xo); this case is discussed in Section 4.3.1.
In Section 4.3.2 we return to the PSF and consider the case for a bandlimited

data acquisition system

4.3 Approximate Reconstruction from Planar
Projection Data

We now assume that the projection data are collected at a planar detector placed
outside the circle ¢(#). Due to the finite detector resolution, there exists a ban-
dlimiting effect on the data. In this section, we present the reconstruction algo-
rithm for planar data, and consider the effects of finite resolution on the resulting
PSF.
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4.3.1 Reconstruction by Filtered Backprojection

To conclude the development, the result in (4.29) is expressed in terms of the

collected, planar projection data. We can rewrite (4.29) as

fx) =1 f fo(x)dt (4.40)
where
Jo(x) = lim [g. (&, 0) %4, Ee(é1)) araprix-p(oy) (4.41)

Assume the projection data ¢,(Z,8) are collected on the plane &; = D where
D is the distance of the detector from the cone vertex. The arrangement is shown
in Figures 4.1 and 4.3. Let Z = (21, 22) denote the planar coordinates, then from

the geometry and (4.2):

gl(zl’22’o)lzl=&1D/éz,zz=&aD/62 = gl(&’a) = "&"gr(&ao)a (4-42)

Substituting (4.42) in (4.41) yields

fo(x) = lim /_°° gl(alD/az,aaD/az,a) Bl

N N
at2
Qaq + 02 +

(4.43)

G=M(x-q(8)).

Making the change of variable z; = &, Dfé;, with d&; = |%|dz;, and using the
definition of E.(&,) in (4.30):

o)

fo(x) = lim g(n,2,0)  Ee(n—2) &

e m\/(_z;g_,)zngr(ﬂgk)’ (%)

Noting that &, = —z; cos @ — z,sin 6 + R and simplifying (4.44) yields the result:

dz,. (4.44)

l)2 R gl(Zl,Zz, 0)

fo(x) = lim
Jolx) = (1 c080 + z,sin 8 — R)* 2 o) 1/"+D2+z

(21 — 2,) dz;. (4.45)




Thus f(x) is recovered by filtering the weighted projections
(Zf + D%+ z%)-lngl(zh z2,0)

with E.(z;) and then performing a weighted backprojection.
In summary we have reduced the problem of reconstructing an image from a

set of cone beam projections to a two stage procedure:

1. 1-D filtering of weighted planar projection data:

R . ¢ !
§(z1,22,0) = lim/ g'lz(zl,zz,ﬂ) E.(z — z,)dz,. (4.46)
¢=0J-c0 \[21* 4 D? 4 23

2. Weighted 3-D backprojection:

f(x) RD? por 3(21,22,9)

"4t o (z1cos0 + z2sin 6 — R)? do. (4.47)

We note that (4.46) and (4.47) are very similar to equation (28) in [9] and identical
as the allowed bandwidth of the function in equation (28) of [9] tends to infin-
ity. The advantage of the preceding development is that this derivation provides
some insight into the inherent approximation associated with the reconstruction
algorithm. Furthermore, as shown in the following, it is possible to derive the
PSF associated with the approximation for the planar data. As in [9], this result
gives exact reconstruction for images confined to the plane of the curve ¢(9), i.e.
z3 = 0. In this case, reconstruction of plane z3 = 0 only, reduces (4.46) and (4.47)

to the (exact) fan beam inversion formula given by equation (49) of [27].

4.3.2 Point Spread Function from Bandlimited Data

We have summarized the PSF in the general form (4.33), assuming infinite band-
width. Probably of more interest is the PSF for bandlimited data. This ban-

dlimited PSF is derived below. The planar projection data for a point source are
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derived in the Appendix as:

gl(zl,zg,ﬂ) = &ng Z? + D? + Z% 6(21 - SED) 6(22 - g—zzD) . (4.48)

Qo2

By substituting (4.48) and (4.46) into (4.47), we can write the PSF for the planar

data as:

hx = B2 /o y (4.49)

47?
1 &o3 éor
6l z, — S8 _da
(271 cos @ + z2 sinf — R)zégz (2:2 &02 D) ll‘l‘n E (zl 002 D) .

Finite detector resolution and the use of sampled data impose finite band-

width on the reconstructed image. To estimate the PSF in this case, we perform
a bandlimiting operation on the data by convolving the planar projection data
with a low pass filter. Assuming no aliasing and a sample interval of A cm
in z; and 2, the bandwidth obtained from the Nyquist sampling theorem is
(—m/A,m/A) radfem in both the z, and 2, directions. To obtain the bandlimited

data we convolve the data with the ideal low pass filter impulse response:

sin ( = )sm ( A ) (4.50)

h(Zl,ZQ) 7‘,22122

Thus the bandlimited PSF is given by including (4.50) in (4.49) to obtain:

RD? 1
472 (:c; cos @ + z,sin § — R)243,

6(22 - —D) llmE (21 - 20_1D) 22 sin (-Z-ZI) sin (%22) dé,

Qo2 =0 Qg 21 T2

Fup(%) (4.51)

where the notation *,,,, is a 2-D convolution with respect to z; and z;. The
convolution with respect to z; is treated in the generalized sense. The result is
found in [47):

i 22 - (245) - (22)
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Figure 4.3: Arrangement for the cone beam imaging system used in the computer
simulation. The cone vertices form a circle radius R, the detector plane is placed
a distance d = 70cm from the origin x = 0 and the object was confined to a
sphere of diameter H = 30cm. The simulations used values R = {20, 40,60}cm.

Finally, fu,(x) can be rewritten as

RD3 27 1 (sin (%(22 - %ﬁ:D)))

Aw p.¢ = . ~ T =
Fur(x) 4A3 Jo (x)cos8 + x28in8 — R)243, £(22— 32 D)

df. (4.52)

(sin (%(zl - %D))) 1 (sin (5%(21 -&up ))2

(2 — D) 27 E(xn - 2D)

In the following section, we use the result (4.52) to evaluate the PSF as a function
of R.

4.4 Simulation Results

The results from Sections 4.2 and 4.3 indicate that the performance of the filtered

backprojection algorithm is dependent on the radius, R, of the circle formed by the
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cone vertices. In the following we evaluate the PSF associated with the approxi-
mate reconstruction, using (4.52), for three different values of R = {60,40,20}cm.
We then simulate a small scale 3-D imaging system using (4.46) and (4.47) for
each of these values of R and compare the resulting reconstructions. The PSF
and phantom reconstructions were computed for the 3-D imaging system illus-
trated in Figure 4.3. The detector plane was placed a distance of 70cm from the
origin x = 0 with the origin of the z,-z; plane at position & = (0, D,0)T shown
in Figure 4.1. Thus for R = 20, D = 90; for R = 40, D = 110 and for R = 60,
D = 130. To obtain a fair comparison in the following simulations, for each case
the number of samples across the projection of a 30cm diameter sphere, centered
at x = 0, was held constant. Thus the data were collected on the planar array
of detectors with sample intervals A = lem, A = 1.33¢cm and A = 3.05¢cm for
R =60, R = 40 and R = 20 respectively. Images were reconstructed and the
PSFs, pr(x), were computed from 64 equispaced angles of view for each value of
R.

4.4.1 The Point Spread Function

The PSF was evaluated for two point sources f;(x) = 6(x — x;), ¢ = 0,1 where
Xo = (0,0,-7)T and x; = (0,—-7,~=7)7 for values of R = {20,40,60} (all values
are given in cm). The PSF’s f:;,p(x) were calculated within a sphere of diameter
30cm using (4.52).

The values of the PSFs are shown on selected 2-D planes in Figures 4.4 and
4.5 and along selected lines in Figures 4.6 and 4.7. A number of observations may
be made from these results. The 2-D plots in Figures 4.4 and 4.5 clearly show the
cone type structure illustrated in Figure 4.2 for the PSF with infinite bandwidth.
Although for the bandlimited case, the PSF is no longer zero inside the cone with
vertex at x and passing through the curve ¢(@), the general conic shape of the
PSF remains. Note also that the shape of the cone changes as the point source is
moved.

These results also indicate that the degradation in image quality becomes

worse as R is decreased. For example, the profiles in Figures 4.6 and 4.7 clearly
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(a): Point source at (0,0,—7)T with R=20.

(b): Point source at (0,0, —7)T with R=40.

(c): Point source at (0,0,—7)T with R=60.

Figure 4.4: The PSFs from (4.52) are computed on the plane (0,z3,23) for a
point xo = (0,0, —7)7 and R = {20,40,60}.
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(a): Point source at (0,—7,—7)7 with R=20.

(b): Point source at (0,—7,—7)T with R=40.

(c): Point source at (0,—7,—7)7 with R=60.

Figure 4.5: The PSFs from (4.52) are computed on the plane (0,2,23)7 for a
point x; = (0, —7,—7)T and R = {20,40,60}.
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Figure 4.6: The PSFs from (4.52) are computed for xo = (0,0,—7)7 and R =

{20, 40, 60}.
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Figure 4.7: The PSFs from (4.52) are computed for x; = (0,—7,—7)T and R =
{20, 40, 60}.
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show the mainlobe of the PSF increases in both the x;, and z3 directions respec-
tively as R is decreased. Note also that the values of the PSF for both point
sources in Figures 4.4(a) and 4.5(a), increase dramatically in the vicinity of the
curve, ¢(8). This is due to the term (z1sin@ + z2cos8 — R)~? in (4.52). Con-
sequently, to minimize reconstruction artifacts, it is important to maintain R as
large as possible with respect to the desired imaging volume.

Finally, we note that these observations concur with the conclusions of Feld-
kamp et al. [9], namely that the degradation is worse in the z3 direction than in
the z;-z; plane. Note for example, that the sidelobes in Figures 4.6 and 4.7 are
higher in the z3 direction than in the z; direction. However, it is important to
recognize the fact, as illustrated in Figures 4.4 and 4.5 that the spatially variant
blurring occurs predominantly in the vicinity of the surface of the cone with vertex
at the point source x and passing through the curve ¢(8).

The utility of these results is that one can determine, for a given proposed
system, an upper bound on the possible resolution using the radius R of the cone
vertices, the location of the detector plane, the available detector resolution and
the maximum extent of the object to be imaged. This information should be useful
in the design of this type of imaging system. In addition, it is straightforward to
modify equation (4.52) to include different projection filters [23] [46] and therefore

examine the effect of these filter functions on the resulting PSF.

4.4.2 Simulated Image Reconstruction

The images were reconstructed using a discretized form of (4.46) and (4.47). The
convolution defined in (4.46) can be implemented either in the spatial domain or
using a zeropadded FFT [47]. In our simulation, we directly employed a discrete
linear convolution with the filter frequency response given by the bandlimited
Fourier transform of the function lime.o E.(&1) defined in (4.30) i.e. [47]:

lw] lw| < /A

0 otherwise,

H(w):{
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Region | Center (cm) | Size of Region (cm) || Intensity
I Z9 zZ3 || &r I T2 I T3

0] 0 [[250[250] 250 u 84

DO =
(=

40| 40| 40| 8.0 | 8.0 8.0 150
3 -3.01 4.0 |-55] 65| 9.0 7.0 200
4 -3.5|-40] 50 || 9.0 | 5.0 7.0 255
5 -35]1-35| 45| 65| 6.0 7.5 0

Table 4.1: Parameters of the 4 regions of the phantom image. Regions 2, 3, 4 and
5 are one sphere, two ellipsoids and one cube respectively with the parameters
given above embedded in the homogeneous sphere defined as region 1 above.

where A is the sample spacing in the planar projection data. Design of appropriate
filters for filtered backprojection has been discussed elsewhere [23] [33] and will
not be discussed further here. The reconstruction is completed by performing a
voxel driven backprojection with linear interpolation according to (4.47) using the
trapezoidal method for numerical integration in 6.

The images were reconstructed from 64 equispaced angles of view for each value
of R. The parameters of the original object, Figure 4.8, are given in Table 4.1.
This object is confined to a sphere of diameter 25¢m centered at x = 0. The
images shown in Figures 4.9, 4.10 and 4.11 were reconstructed on a 30crm diameter
sphere with a voxel size of 0.5cm®. Each figure shows the central 49 slices of the
reconstruction for planes z3 = (k—25)/2 em, k = 1,2,...,49. A more quantitative
comparison can be made from the line plots, Figures 4.12 and 4.13, which show the
values of the original and reconstructed images along the lines (z;,—3.5,—3.5)7
and (—3.5,—3.5,73)7 respectively. These results clearly show deterioration in
image quality as R is reduced. It can be seen that the uniform portion of the
reconstructed image for R = 20 exhibits a decreasing intensity away from the
origin. In addition there are a large number of artifacts outside the 25cm diameter
sphere containing the original object. Although the reconstructions for R = 40
and R = 60 both show some artifacts, there is a clear improvement over those for
R = 20, with the case for R = 60 slightly better than for R = 40.

The above results show that from the view of reconstruction accuracy, it is

advantageous to have cone vertices on a circle with the maximum possible radius,
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Figure 4.8: Cross sectional planar views of the original phantom, 23 = (k —
25)/2 em, k = 1,2,--+,49. The same planes of the reconstruction for different
values of R are shown in Figures. 4.9, 4.10, 4.11
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Figure 4.9: Reconstruction of the phantom from 64 equispaced angles of view
with R = 20.
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Figure 4.10: Reconstruction of the phantom from 64 equispaced angles of view
with R = 40.
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Figure 4.11: Reconstruction of the phantom from 64 equispaced angles of view
with R = 60.
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Figure 4.12: The original and reconstructed images for R = {20,40,60}cm sam-

pled along the line (z;,—3.5,—3.5)7.
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Figure 4.13: The original and reconstructed images for R = {20, 40,60}cm sam-

pled along the line (—3.5, —3.5,z3)7.
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R, relative to the size of the object to be imaged. As R is reduced, the reconstruc-
tions become increasingly sensitive to the errors introduced by the approximate

nature of the reconstruction formula, as given in (4.39).

4.A Appendix

In order to derive the point spread function for the approximate reconstruction
algorithm, we must first derive the projection data for a point source. In the
following we will assume that the point sources are confined to the interior of
a sphere of radius R. Furthermore, we will assume that the imaging volume of
interest is also confined to the interior of the sphere of radius R, and thus the
PSF need only be compute for values of x, with ||x]| < R.

Consider the point image f(x) = 8§(x—Xo) with ||xo|| < R. Let ag = xo—¢(0),
then from (4.2)

o0

g(,8) = /_ : F($(8) + ta)dt = / (e — o)t (4.53)

The rotated projection data, g.(&, @) are found using the transformation & = Mo
as:

.(6,0) = /_ °:° §(MT (16 — dio))dt. (4.54)

Since M is a unitary matrix, §(M% &) = 8(&), and therefore

9:(&,0) = / : 8(té — dio)dt (4.55)

= / _ 8(tdn — Gon)8(t6r — G2) (1613 ~ ioo)a.

To simplify (4.55) we use the properties [1]:

§(cz — 20) = Iicla (z-2) c#o, (4.56)
and
/_ ~ f(@)6(z = 20)dz = f(z0) (4.57)
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Chapter 4

Derivation and Analysis of A
General Inversion for Cone

Beam Tomography

In this chapter, we address the problem of three dimensional (3-D) image recon-
struction from cone beam projections. An inversion formula is derived for the case
where the cone vertices form an unbounded curve by modifying a result due to
Kirillov [31]. To transform the general reconstruction formula to a specific algo-
rithm for a given geometry, one must replace the cone beam projection data to the
actual planar projection data. It is shown that the image may be reconstructed by
one-dimensional (1-D) filtering of the weighted two-dimensional (2-D) projection
data followed by a weighted 3-D backprojection. As discussed in Chapter 3, no ex-
act reconstruction exists for the special case where the cone vertices form a circle.
Therefore, an approximate reconstruction formula is developed using this general
formula and shown to be essentially equivalent to the 'practical cone-beam algo-
rithm’ of Feldkamp et al. [9]. We note that this result was shown independently
by Smith [55)], i.e. that equation (9.5) in [54] is equivalent to the algorithm given
in [9). The appeal of the approach presented in this chapter is that, although
the algorithms for bounded curves are only approximate, they are of the filtered

backprojection type, hence computationally very efficient and produce acceptable
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results in many cases. The derivation given here allows analysis of the spatially
variant point spread function (PSF) implicit in the approximation.

In the following we return to Kirillov’s approach. The reconstruction formula
is derived for a general curve in Section 4.1 by following a development similar to
that in [31] but for real 3-D functionals. The case in which the curve is a single
circle enclosing the object is treated in Section 4.2.1. Since this curve violates
the conditions in [31], [57] and [54], we introduce an approximate reconstruction
formula. The degree of approximation is specifically derived in terms of the result-
ing PSF in Section 4.2.2. The reconstruction formula for planar projection data
is shown in Section 4.3.1. To examine the effect of bandlimited data acquisition
due to sampling, we derive the form of the spatially variant PSF for bandlimited
projection data by introducing an ideal low pass filter in Section 4.3.2. These
results are used to study the effect of the radius of the circle formed by the cone

vertices and the sample rate on resulting image quality in Section 4.4.

4.1 The General Reconstruction Formula

In this section we derive an inversion formula for the reconstruction of a 3-D object
from a set of cone beam projections whose vertices lie along a continuous curve
@(0) through R3, parameterized by § with domain ©, an interval of the real line.
The full derivation is included here since although similar results are given in [54]
and [55], the derivation is not readily available in the literature. Furthermore, it is
necessary for describing the approximation involved in the case treated in Section
4.2 where ¢(0) is a circular curve surrounding the object. Alternative inversion
formulae for functions of compact support are given in [57) and [54)].

Following the notation in [53], let f(x) denote the object to be reconstructed,
where x = (z,%;,23)7. The operation (-)7 denotes the transpose of a vector.
The cone beam data may be expressed as
&

o) (4.1)

aile0) = [ f(9(0)+

where

@(0) = (61(0), $2(0), 63(0))T
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is the curve formed by the vertices of the cones,
a = (a1, az, as)T

and
x|l = y/of + a3 + o3

In the following the modified projection data

ole,0) = poan(en0) = [ F(6(0) + to (42)

is employed. It is easily shown that

1
|e]

for any scalar ¢, i.e. gi(«,8) is homogeneous in . Thus we need only know

9(ecer,0) = —=g(a,0)

g(ax,8) for c on the unit sphere in R®. We maintain the 4-D representation of
g(a, 8) to facilitate derivation of the inversion formula.

Forming the 3-D Fourier transform in a of (4.2) gives

G(8,0) = /Rs /_ °; £(6(8) + ta)e @ Patda, (4.3)

where (o - B) denotes the vector inner product and 8 = (81,32, f3)T. As noted
in [57] and [54], in general the integral in (4.3) does not exist. This problem is
overcome by treating G(8,0) as the generalized Fourier transform [39] of g(e, 6).
In the following, Fourier integrals should be interpreted in the generalized sense
where necessary. Let x = ¢(8) + ta in (4.3), then:

6(8.0)= [, [ 160e- 2 B-2anax.

A second change of variable t = 1/7 yields

G(B,0) = /_: /Ra F(x)e=* P gy DB\ 7| dr. (4.4)
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We now introduce the function from [31]:

=]

K(@,w)= [ F@p)riedr. (4.5)
Using the Fourier transform relationship
Fir) = [, Fox)emxPlax, (1)
it follows that
— *© —i(x-‘rﬂ) iwr
K(B,w) /_ ; /R e dx &7 |7|dr. (4.7)

Comparing (4.4), and (4.7), it is clear that

G(,B,G) = K(ﬂiw)|w=(¢(a).ﬁ) . (4-8)
Furthermore, from (4.6):
1 i(X-7
Jx) = G /m F(rB)e*™P) _ 4B (4.9)

Taking the Fourier transform of K(83,w) defined in (4.5) with respect to w, we

have:

F(rB) = ';'; /_ °; K(B,w)e™" duw. (4.10)

Substituting this result for 7 = 1 in (4.9) gives:

1 *° —t(w—X-
1) = G /RJ /_ "~ K(Bw)e B awdp. (4.11)

Since f(x) may be recovered from K(8,w), according to (4.11), it follows that
sufficient conditions for the reconstruction of f(x) from g(c,#), or equivalently
G(B,0), are determined by the range of (3,w) for which the equality in (4.8)
holds.

The most restrictive sufficient condition on ¢(8) follows directly from (4.8),
i.e. f(x) is recoverable from G(8,0) if for each 3 € R® and each w€R there exists
a point § € ©, where © denotes the domain of ¢(8), such that (¢(8) - 8) = w.
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Equivalently, if for all points (3,w) € (R® X R) the plane (x-8) = w intersects the
curve ¢(0) at least once, then one can reconstruct the object, see [31] and [54].
Suppose for a curve ¢(8) there exist a subset N C (R® x R) with m(N) = 0,
where N = {(8,w)€(R®*xR): (B-¢(0)) # w, for any §€0} and m(-) is the
Lebesgue measure on R?. The values of K(8,w) on this subset N do not affect
the integral in (4.11), and therefore a relaxed sufficient condition is as follows: “for
almost all (8,w) € (R® x R), there must exist a 8 € © such that (8 - ¢(9)) = w”.
Less restrictive sufficient conditions for bounded source curves and functions of
compact support, based on the properties of the function K(8,w), are given in
[57) and [54). To facilitate the following derivation, we additionally assume that
the curve ¢(0) is intersected exactly L times by almost all planes [31], however
we note that the condition is neither necessary nor easy to satisfy in general.
Using the equivalence of K(8,w) and G(83,8) under the above conditions, we
substitute G(8,0) in place of K(8,w) with w = (¢(8) - B), and integrate with

respect to 6 with the Jacobian:

dw

=12

=|¢'®-8)|,

and thus
£00) = G, Jos Sy G800 PO Pragn(s'(0)- B)(& 6) - B)d0dp, (412)

where sgn(-) denotes the sign of the function. Note that this transformation is

only valid under certain restrictions on the curve ¢(0); see section VII in [54].
To complete the derivation , we express g(x — ¢(8),8) as the inverse Fourier

transform of G(3,0) evaluated at a = x — ¢(0) and take the paritial derivative

with respect to @ in the first variable to obtain:
(9c(x — 6(6),6) - 6'(9)) = (—2;—)3 Jrs GB,0)-¢OP) ' (6) - B)aB, (4.13)

where g (,8) denotes the gradient of g(a, ) with respect to a and ¢ (9) the
derivative of ¢(6) with respect to §. Comparing (4.12) and (4.13) we may rewrite
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(4.12) as
1) = [ [(ga(,0) - & (6)) *arh(t: Ol cro— oy @0 (4.14)

where % denotes the 3-D convolution in & and

h(a,8) = sgn('(0) - B)e@Pdp (4.15)

—1
(2r)'L Jre
is treated as a generalized function. Since k(c, #) contains singularities (see (4.24)
below), the convolution integral in (4.14) must be treated in the sense of its Cauchy
principal value.

Equations (4.12) or (4.14) and (4.15) constitute exact reconstruction formulae
for any curve ¢(0) obeying the conditions stated above. However, care must be
taken in the formulation of the generalized Fourier integrals and the treatment of
singular integrals. In addition, direct implementation of (4.14) is computationally
expensive.

In [53] Smith proposes a rotation matrix which reduces the 3-D convolution
in (4.14) to a 1-D convolution for ¢(#) an infinite straight line. In the following
section we derive an approximate formula for ¢(6) a closed circle and employ the
idea of a rotation matrix to arrive at a fast, filtered-backprojection algorithm for

cone beam reconstruction.

4.2 Approximate Reconstruction for ¢(6) A

Circle

Although (4.14) and (4.15) provide an exact reconstruction formula, a source
curve ¢(6) which satisfies the conditions stated above is not viable in practice.
In this section, an approximate reconstruction algorithm is derived for ¢(8) a
closed circle by making a simple approximation and employing the idea of the
rotation matrix. In addition, we analyse the degree of approximation by deriving

the spatially varying PSF inherent in this approximation.

4.2.1 Reconstruction by Filtered Backprojection
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Figure 4.1: Illustration of the cone beam coordinate system. (z,,z,,23)7 is the
fixed object centered coordinate system. The curve ¢(8) is a circle with radius
R, in the plane z3 = 0 centered at x = 0. Data for the value of § shown
are collected on the planar detector z;-2z; and related to the rotated coordinate
system (&1, 42, &3)7 by (4.31).

For a configuration such as the DSR [59] or a cone beam collimated SPECT system

[11], an appropriate curve for the cone beam vertices is the circle
¢(0) = (Rcosd, Rsin6,0)T, 0O =[0,2x]. (4.16)

The arrangement is illustrated in Figure 4.1. It is clear that this curve violates the
conditions stated in Section 4.1. To find an approximate reconstruction formula

we return to (4.8) from which we have

G(B,0) = I{(ﬂ:“’)lw:(qﬁ(g).ﬁ) (4.17)

for all 8 € [0,2x]. Thus for a specific 8, K(8,w) can be recovered from G(8,6)
for all w = (¢(9) - B) = iR cos b + B2 Rsinf in the range

w € [-R\BE+ B3, R\/B2 + B3 ).

Furthermore, as § takes all values in the range [0, 27], the circle ¢)(8) will intersect

almost all planes
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(x-B)=w, we[-R\VAI+BLR\PI+ 53]

exactly twice, i.e. ¢(8) has the property: L = 2.
We now define the approximate inverse solution as

ﬂ’-i-ﬁ .
VA8 —iw—(x.B
Fx) = (27()4 /Rs / o /i K (Bow)e (=B gudg. (4.18)

Using (4.17), and repeating steps equivalent to (4.11)-(4.14) with L = 2, it then

follows that the approximate solution is given by:

769 = [ lga(e,0): #O) sab(e Maex-gndd (419

where h(a,8) is defined in (4.15).
The approximate reconstruction formula (4.19) can now be written in a form

more suitable for computation. To achieve this goal we employ a coordinate

rotation matrix as suggested by Smith [53].
For ¢(0) in (4.16):

@ (8) = (—Rsind, Rcos0,0)7, (4.20)

and there exists a rotation matrix M such that M¢'(8) = ([lp'(6)|,0,0)7. In our

case the matrix is

m7 —sind cos§ O
M=]|mf |=] —cosf —sind 0 |. (4.21)
mg 0 0 1

Note that det(M) =1, MTM = I, and mT = ¢'(9) | (9)||.
This rotation matrix may be employed to simplify (4.15) by setting M3 = B
and noting that d3 = d8 and L = 2, we obtain

h(ex, 0) = sgn(¢'(8) - MTB)e @M Brgj. (4.22)
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Since (o - MT3) = (M - B) we have
sgn(@'(6) - MB) = sgn(M@'(0) - B) = sgn(|l¢'(9)16y).
Setting & = Mc then gives
h(cx,8) = 5(2—_7:)4 /Rs sgn(f)e@Pdp. (4.23)

Using the result from [16]

[: sgn(z)e™Xdz = %,
the integral reduces to
h( 0)——1-5(*)5(*)(-1—) 4.24
a, —4”2012 a3 a) (4.24)

Noting &; = (m; - &) with m; defined in (4.21) we can substitute in (4.19), to

obtain

f(x) = Z7lr—2 fo - (4.25)
(Gex(0,0) - 6 (8)) *axb(mz - )8(ms - o) ———— .
(ZEL . a)
kb (o jat=x—-¢(6)

In the case where ¢(9) satisfies the conditions stated in Section 4.1, (4.25) is the
form of the reconstruction formula given by Smith [53] where M is chosen as the
appropriate rotation matrix.

In our case the reconstruction can be further simplified by performing the
convolution with respect to the rotated coordinates & as follows. Using the same

rotation as above, & = M«, we define the rotated projection measurement as

9:(&,0) = g(MT&,9). (4.26)
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Taking partial derivatives with respect to &:
0, (6,0) = Moig(x,0). (4.21)
Thus
(9a(,6) - ¢'(0)) = (M"g, , (&,0) - $'(0)) = (g, (&,0) - M'(6)).

Since M (6) = (|lp (0)]],0,0)7, the inner product reduces to:

(G0, 0)- 6/ (0) = W N 5522 (4.28)
|t=MQ
Substituting (4.28) in (4.25) we obtain
27 ag,(a 0) . 1 d
=g WO asersia ()| @

The 3-D convolution now reduces to a one dimensional convolution in &;; with

||¢'(9)|| = R, then,
_ = [g,(&, 0) i ] do
f) = 472 / [ day o ) |Ge=M(x—-¢(8))

where #;, denotes a 1-D convolution with respect to &;. Finally, using Cauchy
principal value and integrating by parts, see [27], it is straight forward to show

the following in the generalized sense:

. R = .
fe) = /o 1im (9 (6, 0) *, Bel 1)) emnte—biay) 96 (4.29)

where

Eu(&) = 1/e? el <e (4.30)
‘ ~1/&2 |&|>e.

The result (4.29) is now a reconstruction formula for f(x) requiring 1-D filtering

of the projection data in &; followed by a 3-D backprojection.
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4.2.2 Point Spread Function of the Approximate

Reconstruction

To reveal the inherent approximation associated with the algorithm and to de-
termine the quantitative effect of this approximation on the reconstruction, we
consider the resulting spatially variant PSF. Consider a point image at x = X,

i.e. f(x) = 6(x — xo), where §(x) denotes the Dirac delta function. Defining
ap = Xo — @(0) = (a1, 02, ae3)T, and &o = M(xo — ¢(0)), then:

Qo1 —2Z01 8Sin 0 + o3 cos @
&02 = —X0g1 COS 0— Zo2 sin g + R . (431)
&03 To3

In deriving the PSF, we will assume that the object of interest is confined to the
interior of a sphere centered at x = 0. Consequently, from our definition of &,
it follows that é&o; # 0. The projections of the point image are derived in the
Appendix as (4.59):

N |&2] . . o1, . Oq3,
= — - 6 - . 4.32
g,.(a, 0) &32 (5 o & (4] a3 &02 (07 ( )

Substituting (4.32) into (4.29) and applying property (4.57) to the convolution
integral, the PSF becomes:

h = 2 / - (4.33)

472 Jo
. ~ a -~
(&3 - ?;'3&2) lim Ee la; - :ﬂagl dé.
o2 Goz /e a0z ja=mix-io
Let us define new variables

(4.34)

éoz
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6.3 A New Algorithm for PET Image

Reconstruction

This section presents a MAP estimation algorithm based on the generalized EM
algorithm using the MRF model with a joint Gibbs distribution of emission inten-
sities and line processes. The M-step updates both the intensity and line processes,
achieved in two stages. The M1-step employs a gradient descent method to up-
date the intensities. The M2-step updates the line sites in a similar manner to
the ICA (iterated conditional averages) proposed by Johnson et al. [30).

Due to the relatively complex nature of the brain anatomical structure (Fig-
ure 7.7(a) in Chapter 7), we consider the second-order neighbors for the intensity,
horizontal and vertical and diagonal line fields in the following derivation. In the
following, superscripts on the estimates are omitted, because we use both previous
and current estimates in intensity and line updating schemes to achieve a faster
convergence rate.

A suitable energy function for an eight nearest neighbor interaction model is

suggested as follows!:

UMD = iy {BA5)(1 - L(5,4)) + aly(i, )} +
Tis (B, = 16y )) + alafi,5)} +
Tii {(BIVDN(5,5)(1 = Ly(i, ) + edey (5, 5) } +
505 {(BIVDIN (5, )1 = loslis §)) + adea(iy §)} + H(),

(6.21)

where (3, 7), 1,(¢,7), l:z(¢,7) and L. (¢, ) represent horizontal, vertical and two
diagonal binary line sites respectively. Note that the M2-step of this algorithm
cannot be based on gradient descent, more flexibility is therefore allowed in the
choice of the potential function. In the following we use the index p to denote
any one from {z,y,rz,ry}, i.e. p= {z,y,rz,ry}. In each pair of braces, the first
term reflects our belief that the image values should not change abruptly except

at discontinuities, i.e. when [;(,j) = 1; the second term penalizes each non-zero

1For a finite lattice, care must be taken in defining potential functions on cliques near the
image boundary. For notational simplicity, in the following we assume that appropriate modifi-
cations are made to the potential functions at the image boundary.
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line site in the image; and the term H(!) denotes a measure of interaction between
line sites which encourages the formation of connected lines in the reconstructed
image and suppresses the formation of isolated or unconnected lines. A,(z,7),
Ay(3,7), Arz(3,7) and Apy(2, ) denote the differences between adjacent horizontal,

vertical and diagonal intensities:

/\z(zvj) = ’\(z - laj) - /\(t,])
AH(’a.?) = /\(1,] - 1) - /\(t,])

. L . (6.22)
Ar.'r:(7'1.7) = A(z - 113 - 1) - A(7',.7)
/\ry(ivj) = A(z + 17j - 1) - ’\(23.7)
We employ the following potential form as a line interaction term:
H(l) = —ea Zi.j {[Iy(ivj - D2 - 1,7) + Iy(i’j)lry(i’j)
+l!/(z + 17.7 - l)l"y(i + 1’]) + Iy(z + laj)lrx(i,j)] Iz(’a]) (6 23)

_Iz(i - 17j) [lr:::(z - lvj) + I"y(iaj) - 1] l,(z,])
=l(i,5 — 1) [lra(i = 1,5) + 1y (3, 5) = 1] (3, 5) }

where 0 < ¢ < 1. This type of interaction term is similar to that discussed in [12]
[45]. This function serves the purpose of increasing the penalty on a horizontal
(vertical) line if either of its horizontal (vertical) neighbors on the same rows
(columns) and either of the diagonal neighbors in between are simultaneously
“on”, and decreasing the penalty on a horizontal (vertical) line if anyone of its four
vertical (horizontal) neighbors and the connecting diagonal line are simultaneously
“on”. It also serves the purpose of increasing the penalty on a diagonal line if
both of its horizontal or vertical neighbors are “on” and decreasing the penalty
on a diagonal line if its horizontal and vertical neighbors to be connected are
simultaneously “on”. The parameter ¢ controls the relative penalty associated
with this term. We note these functions encourage connected boundaries and
smoothed corners and as the number of orientations is increased, the function
above can be modified to allow better control of the formation of boundaries.
We now derive the updating procedures for the M1-step and M2-step by fol-
lowing the general recipe (6.18) and (6.20). The Gibbs energy function U(A,1) as

defined in (6.21), results in a function Q(A,{*|A*,I") that is concave with respect
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to each A(z,7) = 0. Hence in the Ml-step, we use the concave nature of the
function to perform a sequence of one dimensional line searches, updating each
of the intensity variables in turn. This simple approach ensures that the function
Q(A™*1,17|A", I*) is monotonically nondecreasing at each M1-step.

M1-step: Setting the partial derivative of @(A, I*|A", "), defined in (6.17), with

respect to A(Z,7) equal to zero and simplifying, yields the quadratic equation:
C1A%(3,5) = [C2 — a(i, )] M3, 5) = 8°(3,§) = O, (6.24)
where C; and C, are defined as follows:

Ci = 287[(1-56,5)+ (1 - 2G5+ 1)+
(1-12G,3) + (1= B+ 1,5)] +
V2B (1 = 1736, 7)) + (1 = I = 1,5 + 1)+
(1= 1,6 d)) + (A= 103+ 1,5 +1))]
Ca = 2By[Mi,5 — 1)(1 = I5(5,5)) + MG, + 1)(1 = 12G,d + 1))+
AC-1,7)1 = 5(E5) + 2@+ 1,5)(1 -G+ l,j))] +
V207 [AG + 1,5 — 1)(1 = 1%, 9))+
Mi=1,j+1)(1 -G -1, +1)+
’\(i - l’j - 1)(1 - I?y(id))"'
MG+ 1,5 +1)(1 -G+ 1,5 +1))].

(6.25)

When computing C; and C,, the most recent estimates of A(i £ 1,7 £ 1) should
be used since the pixel intensities are updated sequentially. Since A(z,7) > 0,
we must choose the non-negative root of (6.24). Assuming C) is non-zero, the

updating scheme for A(z, j) becomes:

NP CRLCY) ks \/lczzgla(z’,j)P + 4G (i)

A5 §) < A™(4,7), after r iterations. (6.26)

n,<n, +1;

In this scheme we update each pixel r times. The estimates A" are then assigned
to AP,
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Since this procedure ensures that the gradient of Q(A, {*|A",{") with respect to
(3, 7) is zero at A"+1(3, j) and the function is concave with respect to A(,5) > 0, it
follows that the above iteration, when applied to all intensity sites in turn, results
in an increase in the function Q(X, I"|A",I"), i.e. condition (6.18) is satisfied. This

result is summarized in the following lemma:

Lemma 6.1 (i). (6.26) is the only non-negative root of (6.24), since 4C1b"(¢, j)
is always nonnegative. (ii). Q(X, I*|A",I") is concave and has a uniqgue marimum
solution (6.26) with respect to each A(,3) > 0 at each iteration of the M1-step.

The case where C; = 0 implies that all line sites involved in C; are “on”. In this
case C, is also equal to zero and the Ml-step at this site reduces to A" (3,j) =
b(3,5)/e(i, 7). In other words, one would expect no intensity smoothing between
neighbors to occur if all the lines around the pixel are “on”.

We now turn to the problem of updating the line sites. Our goal is to obtain
a result in which the estimated line sites converge to the values 1 or 0 that,
jointly with A, maximize the posterior density function. We rule out a stochastic
search as too computationally expensive and restrict our attention to deterministic
algorithms. During the M2-step we wish to update the line processes so as to
satisfy (6.19), or equivalently (6.20). The method of iterated conditional mode
(ICM) [2] can be shown to produce a sequence with an associated energy function
that is nonincreasing and would therefore satisfy (6.20). Combining this ICM
approach with the M1-step defined above, we would expect convergence of this
algorithm to a local maximum of the posterior distribution. However, when the
ICM method is applied to the estimation of line processes, it has been observed
that the line estimates converge faster than the image intensities [45] [30]. It
is intuitively more appealing to have an updating procedure in which the rate
of convergence of the line process can be controlled by allowing the variables
1,(i,7) to assume values on the continuous interval [0,1] but eventually converge
to one of the end points. In this case, a zero-one decision about the presence
of a boundary is delayed until later in the iteration process. By replacing the
conditional mode in the ICM algorithm with a conditional average (ICA), Johnson
et al. [30] developed an iterative algorithm which does allow the line process to

take values in the interval [0,1]. However, there is no guarantee in the case of
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ICA that the line process converges to the values 0 or 1. Furthermore, is it not
proven that ICA necessarily converges to a (local) maximum.

In developing the M2-step below, we adopt a third alternative to ICM and
ICA. Recall that the goal of the M2-step is to update the line sites such that
U+, m+1) < U(A™1,1"). Here we use the iterated conditional average of
a modified energy function with fixed A = A+l Up(Ant1)1) = U(A"H,1)/T,
where U(A*+1,1) is defined in (6.21). Fixing T = 1 would produce an iteration
equivalent to the ICA algorithm [30]. However, as T — 0, it can be shown that
the variables I,(, j) converge to either 0 or 1 and this algorithm would converge
to a local minimum of the energy function U(A"*1,1) with respect to ! on the set
{0,1}~. The goal of this procedure is to use the parameter T to control the rate
of convergence of the line process relative to the intensity process and hopefully
to then converge on a more desirable local maximum of the posterior distribution.

M2-step: Let N, (2, ;) denote the set of intensities and lines which interact with
1,(,7). The local conditional probability of (¢, ), {(2,4), &=(%,7) and I4(3,5)
for the energy function Ur(A"*!,1) is given by

e F {BrgH (1.5P (=t (i)+als(id) —eaSs (.5} (i.5) }

Pr(l2(1,5)|N:=(3,5)) = PO | o-Fla—coS:(ia)}

-k {p,\',““ (,',j)z(l_)y(i,j))+al,,(i,j)—eaSy(i.J')ly(f,.i)}

PT(ly(Z,])lNy(i,])) =

e__;‘_ﬁ,\:*l'l(;'j)? +e %{a-eaSy(i.J‘)}
(6.27)

e_%{5;,\:;1(;,5)2(1-1,3(i.j))+al,,(i.j)-wSr:("-J')’rs("J)}

PT(lrz(za])lN"-‘l-’(z’])) =

TP ) |~k {a—caSes(i))

- 3+{ G Pty () Falryliui)—caSryidMrali) }

Pr(ly (i, )| Ny (02 ) = &

e~ TN (I | o= f{amcaSy(i)
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The terms S.(¢, 5), Sy(%,7), Srz(%,J) and S,,(7,7) are defined as

Se(i,7) = 4,5 — Dea(i = 1,5) + 4,(6, ) (3, )+
Iy(i + l’j)lrz(iaj) + Iy(i +1,5 - l)lry(i + l,j)—
Ic(i - l,j) [Ir:c(i - l’j) + lry(i’j) - 1] -

L+ 1,5) [Lee(d, ) + Ly 4+ 1,5) = 1]

Sy(i,5) = L(i—1,)k( = 1,5) + L, )by (3, 5)+
LG+ D=1, +1)+ (1,7 + D)(2,7 +1)-
ly(iaj - 1) [lrr(i - laj) + Irv(i’j) - 1] -
ly(iaj + 1) [Irx(i - l,j + 1) + lry(iaj + 1) - 1]

Srz(t,§) = L(GLDLE+LF)+LE+L)L(E+1,5—-1)-
L0 +1,7) = bE+1L,5)L(E+1,5 - 1)

Sry(8,5) = L)L)+ L6 - 1,7)L¢7 - 1)-

lx(i - laj)lz(i7j) - Iy(i,j - l)Iy(iaj)'

(6.28)

The purpose of the interaction term H(!) defined in (6.23) are further elucidated
from the line updating scheme (6.29) and the definition (6.28).

The local conditional mean of the binary random variable I (2, §) is then equal
to the probability that I,(i,j) = 1. Using the local conditional mean, the updating

procedure for 1,(i, j) is defined as

1
gl 2\ — . . Lo .
Lrg) = Bll(h DN )] = T e sy ™S Mot
e o e N s ] 1 .
’yq(h]) = E[Iy(z,J)|Ny(‘,.7)] - 1+ e-%:[a-ﬁz\:"'l(i,j)z—casy(i,j)]’ LY <= Ng+1)
1
Ng < Ng41;

Iﬂq ', . E E l’_z ., . er ., . = -
v2(3,5) = Ellez(i, )| Nes(i, 7)) BT ST

F1(; 5 —caSra (i)’

fafs - .. .. 1
9, 5) = Elley(i,5)INry (3, 5)) = 1 4 Fo BT sl < Marti

(i, 5) < I39(i,§), after g iterations; reduce T (6.29)

When computing (6.29) the most recent estimates are used for the neighboring
line sites, (¢ £ 1,7 £ 1).

In general, the updating procedure (6.29) defined above does not guarantee
that Ur(A™*1,1) increases at each M2-step for a fixed T'. In addition, the estimates
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from (6.29) vary with the parameter T. This is an motivation of introducing the
parameter T, since by changing the values of T', one can avoid line estimates to
be trapped at a local minimum too fast. It can be shown that (6.29) converges
to a (local) minimum of the function U(A"*,l) as T — 0 during the M2-step.
The advantage of (6.29) is that we are able to control this optimization process
through T and we may find a better (local) maxima as T is gradually reduced to

zero over several M2-steps.

Lemma 6.2 (i). The line estimate I3(i,j) obtained using (6.29) salisfies the
condition
0<3(4,j) <1 foranyT,n=0,1,2,---. (6.30)

(ii). For fized A, the iteration (6.29) converges to either 0 or 1 as T — 0. (iii).
For fized A\, as T — 0 the iteration (6.29) becomes the iterated conditional modes
(ICM) algorithm with associated energy function U(A,1) and therefore converges
to a local minimum of U(\,1) at the M2-step on the set {0,1}F where L denotes

the number of line process variables.

The proof for Lemma 6.2 is given in Appendix 6.A.

6.4 Experimental Results

In order to evaluate and validate the overall performance of the proposed method
to PET image reconstructions, we have applied this new algorithm to patient
data collected for cerebral glucose metabolism study using 3FDG and dopamine
receptor study using F-DOPA. These patient data, provided by the Division of
Nuclear Medicine at UCLA, were obtained using a Siemens ECAT831 brain scan-
ner equipped with a septal collimator. Each detector ring of the scanner has a
total of 320 detector crystals. These data were collected with automatic randoms
subtractions, where random events were determined through the use of a delayed
time window. Each view of projection data was formed by interlacing two sets of
adjacent views of projections to increase the detector resolution. So these data

were treated as a total of 160 parallel projections with 128 samples per projection.
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In all of the reconstructions shown below, negative detections after subtrac-
tions are then set to zero. It is followed by rebinning the coincident detections into
what they were originally detected, i.e. a total of 320 parallel projections with 64
samples per projection. No scatter measurements or corrections were performed
in this experiment. Corrections for detector response and attenuation were made
and used in all of the reconstructions shown.

Images were reconstructed for two different sets of data, corresponding to pa-
tient ¥ FDG and F-DOPA study. The !®FDG data used here were collected for
a total of 30 minutes, from which images were reconstructed for two different
two-dimensional cross sections through the patient brain. In order to show some-
what dynamic changes of F-DOPA inside a patient brain, the F-DOPA data were
used as follows. The first 18 minutes data were discarded and then the remain-
ing collections were sorted into two sets of data corresponding to the second 32
minutes collection (set 1) and the last 90 minutes collection (set 2). A single
two-dimensional cross section through the patient brain were then reconstructed
from these two sets of F-DOPA data respectively.

For comparison purpose, we have shown reconstructions of corresponding cross
sections of patient brains for each set of data using: filtered back-projection, max-
imum likelihood, maximum a posteriori (MAP), in addition to the reconstructions
of patient brains using the new algorithm discussed in the previous section. The
MAP reconstructions were obtained using the GEM algorithm [20] with the second
order neighborhood of the Gibbs energy function proposed by Geman and Mc-
Clure [14]. These images clearly demonstrate the advantage of statistical methods
to PET reconstruction over the filtered back-projection. Shown in Figures 6.2 and
6.3 are reconstructions of two different cross sections through the patient brain
for the data set of 18FDG study. In Figures 6.4 and 6.5 we show reconstructions
of a cross section of brain for the two sets of F-DOPA data. The images in Fig-
ure 6.4 may offer some useful information that the spatial distributions during
that interval of time are similar to those from FDG studies, while the images
in Figure 6.5 are of more interest in the F-DOPA study. These images illustrate
dynamic changes occurred during the collection to some extent. The MAP results

are a little smoother than the ML images, but overall, the results obtained using
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(c)

Figure 6.2: Reconstructions for a single two-dimensional cross section through a
patient brain after 30 minutes '*FDG data collection. (a): PET reconstruction
using filtered backprojection. (b): PET reconstruction using maximum likelihood
estimation. (c): PET reconstruction using MAP estimation without a line process.
(d): PET reconstruction using the proposed MAP estimation with an estimated
line process.
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(c)

Figure 6.3: Reconstructions for another cross section through the same patient
brain as in Figure 6.2 after 30 minutes '*FDG data collection. (a): PET recon-
struction using filtered backprojection. (b): PET reconstruction using maximum
likelihood estimation. (c): PET reconstruction using MAP estimation without a
line process. (d): PET reconstruction using the proposed MAP estimation with
an estimated line process.
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Figure 6.4: Reconstructions for a single two-dimensional cross section through a
patient brain after the second period of 32 minutes F-DOPA data collection (set
1). (a): PET reconstruction using filtered backprojection. (b): PET reconstruc-
tion using maximum likelihood estimation. (c): PET reconstruction using MAP
estimation without a line process. (d): PET reconstruction using the proposed
MAP estimation with an estimated line process.
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(c) (d)

Figure 6.5: Reconstructions for the same cross section as in Figure 6.4 after the
last period of 90 minutes F-DOPA data collection (set 2). (a): PET reconstruction
using filtered backprojection. (b): PET reconstruction using maximum likelihood
estimation. (c): PET reconstruction using MAP estimation without a line process.
(d): PET reconstruction using the proposed MAP estimation with an estimated
line process.
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an MRF with estimated line sites are superior to the previous results with little
extra computational cost comparing with that of ML or MAP results. There is
now noticeable grey/white matter contrast, the images appear to have more fine
details although the shape of some of the regions appears somewhat forced. The
control parameter T in this experiment is reduced according to the following rule,

similar to that given by Simchony et al. [51]:

~ log(1 + 10k)1-8

T (6.31)

where k is the iteration number and T = 2.01.

6.A Appendix

Results in Lemma 6.2 (¢) and (i¢) are straightforward, the proof for the part (#:¢)
is provided in the following.

Only the estimated horizontal line site I(¢,j) are considered below, but the
same conclusion can be drawn for I,(2, ), I-z(¢,7) and {,,(%,7). We now introduce

a new notation A; and let
Ay = a— A (i,7)? - eaS;. (6.32)
At T = 0, the updating procedure (6.29) for I(¢,j) becomes

0 if A, 20,

6.33
1 ifA; <O. ( )

I2(i,5) = {

By using the notation A, the term which interacts with I;(i,7) in the energy

function U(A,!) can be written as
g~ Aste (i), (6.34)

Therefore, if one applies the ICM algorithm to estimate each I(z,j) with the
energy function U(), 1), the solution at ng-th iteration would be identical to (6.33).
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Hence (6.29) reduces to the ICM and converges to a (local) minimum of U(A,1)

asT — 0.
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Chapter 6

Statistical Models and Methods

for PET Image Reconstruction

In this chapter, we concentrate on a statistical reconstruction approach to PET. As
mentioned previously, one important thing that distinguished PET reconstruction
problem from that arising from X-ray CT is that the measurements tend to be
much more noisy. Therefore it is desirable to develop an estimation approach
that considers the statistical nature of data and to accurately model the data so
that correction factors, such as attenuation, scatter, point or line spread function
can be systematically included. A iterative or statistical approach appears to
to be the top candidate for fulfilling these desires. In addition, the computation
required in PET reconstruction is far from trivial because there are a large amount
of information involved: the algorithms are in general iterative; the minimum
dimension of this problem, even for brain scanning, is 15 x 128 x 128 based on
15 x 320 projections, each consisting of a 64 array of photon counts. For this
reason, it is essential to develop a fast and efficient reconstruction algorithm that
incorporates the statistical properties of data.

We follow a Bayesian formulation introduced by Besag [2] and Geman and
Geman [13]. Based on the belief that image values should not change abruptly
except at discontinuities, the image is model using a joint Gibbs distribution of
emission intensities and line processes. The line process is used to avoid smoothing

cross discontinuities, which commonly occurs in Bayesian image estimation where
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a line process is not included. We describe a MAP (maximum a posteriori) esti-
mation algorithm using the above model. This algorithm employs the generalized
EM (GEM) algorithm to avoid direct optimization over the posterior distribution
which does not share the Markovian property of the prior. The M-step in the
MAP estimation procedure has the interesting property that the function to be
maximized at this step is with the same neighborhood as the prior. Thus the
optimization in the M-step requires only local computations on the image lattice.
This M-step is achieved in two stages. In the M1-step a gradient descent method
is used to update intensities with the non-negativity guarantee, while holding the
line process constant. An alternative M2-step based on the local conditional mean
is described to update line sites, with the intensity process held constant. The
parameter T is introduced in the M2-step so that the rate of convergence of the
unknown line sites can be controlled and we may fine a better (local) maxima as
T is gradually reduced to zero over several M2-steps.

In the following sections, we develop a statistical model for the PET imaging
system. We then develop MAP estimation schemes for MRF priors within the
framework of the generalized EM algorithm. We conclude this chapter with an
illustration of the performance of these estimators as applied to a set of patient

data collected using a Siemens ECAT831 brain scanner.

6.1 PET System Modeling

An important requirement for quantitative PET imaging is that one should have
an accurate statistical description for the data. Let yx, the k-th element of the
observed data Y, denote the number of coincidences detected between the k-th
detector pair. Let A denote an N x N array of mean emission rates from the source,
thus A(7, ) represents the mean emission rate from pixel (2, ) of the source image.

Consider the number of coincidences y; detected between detector pair k. This
number is the sum of three components: t; — the number of true coincidence events
detected; s; — the number of events detected after one or both of the primary
photons has undergone scattering; and r; — the number of random coincidences,

i.e. two independent photons arriving at the detector pair within the coincidence
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window and counted as a true coincidence. Then:
Yk =tk + Sk + Tk (6.1)

Each of the three components in (6.1) is well modeled as a Poisson process. The
true unscattered coincidences, i, form the desired data, i.e. the tomographic
projection data or “sinogram”. The latter two components introduce additive
Poisson noise into the data. Let us consider each of the three components in (6.1)
in more detail.

True coincidences: the probability, Pi(z,7) of detecting a true coincidence
(photon pair) at detector pair & due to a positron emission from pixel (i,7) is
dependent on a number of factors. The most important of these are: the proba-
bility of attenuation, the response of the detectors, and the position of pixel (, )
relative to the detector pair k. We can model ¢ as a Poisson random variable

with mean:

We can factor the detection probability as follows: Pi(¢,j) = axgiP{(,5) where
P{(i, j) denotes the probability that a positron emitted from site (¢, j) produces
a photon pair that, in the absence of an attenuating medium, strike detector
pair k; gr denotes the probability that a photon pair striking detector pair k is
detected; and ai denotes the probability of attenuation of photons that would
otherwise reach detector pair k. The first of these factors can be determined to
reasonable accuracy from simple geometrical considerations. The probabilities
of detection and attenuation are determined experimentally. Inclusion of these
factors in either the standard filtered backprojection algorithm or in statistical
models is straightforward, and they are included in the experimental studies pre-
sented below. There are other factors which affect the detection probability such
as detector dead time and positron range and angular separation. Consideration
of these factors is beyond the scope of this thesis.

Scattered coincidences: these are coincidence detections which occur after
one or both of the primary photons produced by a positron/electron annihilation

is scattered within the body. If one does not consider the possibility of scatter in
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developing the data model, then the annihilation is considered to have occurred
along the strip joining the two detectors - as would be the case for unscattered
coincidences. In practice the scattered component of the data is usually smoothly
varying between detector pairs. In clinical applications, a scatter fraction is often
estimated and subtracted from the data before image reconstruction. In many
cases, the presence of scatter is simply ignored. Due to the smoothness of the
scatter component, the practical effect of this is to produce a positive bias in
the reconstructed image. For quantitative imaging, the scatter must be included
in the formulation. In our statistical model, we could exploit the smoothness
of the scatter function to model the scatter component across a single parallel
projection parametrically. The parameters of this model could then be estimated
in conjunction with the image intensities within the EM framework. A more
sophisticated model would attempt to relate the scatter component to the source
activity, however this is probably infeasible due to the highly complex nature
of the scattering mechanism and the variability of the scatter function between
subjects.

Random coincidences: these coincidence detections arise from the simulta-
neous detection of two photons produced by two different positron annihilations.
They differ from true and scattered coincidences in that the randoms rate scales
as approximately the square of the source activity as opposed to linearly [42).
In most PET scanners randoms are corrected for by measuring a randoms rate
using a delayed timing window [26] and subtracting this from the measured data.
This correction is strictly inappropriate for our statistical model since although
both the data and the measured randoms are Poisson processes, their difference
is not. One way in which randoms may be included in a statistical formulation is
to maintain the off-timing randoms counts r; as an additional set of Poisson data
with unknown mean, .. The parameters g; could then be estimated along with
the image intensities as derived in Section 6.2.3, although clearly this results in
a huge increase in the number of parameters. Alternatively, it may be possible
to use a lower dimensional parametric model, similar to that proposed above for

modeling scatter.
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From the system modeling point of view, the new algorithm developed for PET
image reconstruction is in the normal fashion, i.e. we simply ignore the presence of
scatter, and subtract the randoms counts from the observed coincidence data and
assume the resulting measurements are Poisson, although this clearly introduces

some degree of modeling error into the reconstruction process.

6.2 Statistical Approaches in PET

In this section we develop several estimation schemes for PET image reconstruc-
tion that are based on the generalized EM algorithm. We begin in section 6.2.1

with a definition of the generalized EM algorithm for parameter estimation.

6.2.1 The GEM Algorithm

The MAP estimate of a parameter vector A given a data vector B maximizes the
posterior probability P(A|B), i.e.

max P(A|B) = max {w} ,

P(B)

where P(B|A) denotes the conditional probability for the data given A and P(A)
denotes a prior probability distribution on A. The EM algorithm is a general
method for solving this problem by choosing an intermediate set of unobserved
“complete” data C such that there is a known many-to-one mapping from C to
B. The problem may then be solved by choosing some feasible initial estimate A°

of A and applying the iteration:

E-step: Ec {log P(C|A)|A", B}

6.3
M-step: A™! = arg {max, Q(A|A™)}, n<n+]1, (6.3)

where the function Q(A|A") is defined as

Q(A]A™) = Ec {log P(C|A)|A™, B} + log P(A).
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In general, a closed form solution to the M-step optimization problem is not avail-
able and searching for a minimum of Q(A|A™) at each iteration is computationally
prohibitive. A more general form of this algorithm, the generalized EM (GEM)
algorithm, replaces the M-step with an updating procedure for A which satisfies

the following inequality:
Q(A™'A™) 2 Q(A™]AM).

As shown in (8], the M-step only maximizes a portion of the posterior distribu-
tion while ensuring that the remaining portion is increased, but not maximized.
Therefore at best, this approach only guarantees convergence of the sequence to

a stationary point of the posterior distribution [60].

6.2.2 Maximum Likelihood via EM

For PET image reconstruction, the parameters to be estimated are the emis-
sion intensities, i.e. A = ) where A denotes the set of pixel intensities A(%,j),
i, = 1,---, N. The observed data are the set of coincident detections denoted
by B =Y, with elements yx k¥ = 1,---, M. Let Pi(¢,j) denote the known prob-
ability that an emission from source point (2, ) is detected at the detector pair
corresponding to index k. The unobserved complete data C, as defined in [49],
are denoted (%, 7) and are defined to be the number of emissions from pixel (z, j)
which are collected in detector pair k. The variables zx(i, j) are modeled as con-
ditionally independent Poisson random variables with mean Pi(Z,5)A(i,5). The
incomplete data y; are related to the complete data zx(%,7) as yx = Xi; zx(4, J)
and hence are also conditionally independent Poisson random variables with mean
s Puli NG, 5).

Applying the EM algorithm to the ML estimation problem as discussed in

Chapter 2 we rewrite (2.10) in terms of the result from E-step as

Ex {logP(XN)\*, Y} = 3 {-a(i,i)A(i,5) + (3, ) log A(i, j)} + (6.4)
constant,
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where

a(z’J) = Ek Pk(za])

bu(’:]) = /\n(z,]) Ek {ykPk(l,])/ Zi’,j' Pk(i'vj,)An(i"j')} . (65)

Substituting this result into the M-step and optimizing over A, we obtain the well
known EM algorithm for ML estimation:

yi P (i.J
ik i PN
e PGg)

6.2.3 An EM Algorithm for PET with Independent

Random Measurements

AMHL(G5) = A3, 7) (6.6)

The Siemens ECAT831 brain scanner collects random coincidences occurring in
a delayed time window to correct for randoms. In the case where the random
measurements can be treated as an additional data set one can modify the above
EM algorithm by choosing the data as B = {Y, R}, where R denotes the set
of random measurements, whose elements are ri,k = 1,:-+, M. The unknown
parameters to be estimated as A = {A,Q}, where Q denotes the mean of the
randoms process, including gi, k = 1,---, M. The observed data are the sum of

true coincidences and randoms, i.e.
T R
Y = Ck + Ck ’

where CT denotes the true coincidences including scatters, and CR denotes the
collected randoms at the detector pair k& during the period of PET data collection.

The ML estimate of this problem now becomes to find a A* = {A*(3,5)} and
a Q* = {q;} such that the conditional probability P(Y, R|}, @) is maximized, i.e.

max P(Y, R|A, Q).

In order to apply the EM algorithm to solve the problem, we must form a set of
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complete data first. Let the complete data be
C ={X,C% R} = {x(i,j),C&,rwiij =1, , Nik =1,---,M}.  (6.7)

Then the conditional probability of complete data C given the parameters A and
@ follows

b

P (i,9Mi, 5 .. RN (R | _.. CR . T
P(X,C™, ]2, Q) = ] Se D (Rull A N 1 ety pp eokgy?
Lk zi(2,7)! AL

so the likelihood of the above probability is proportional to

2 A=Pu(8,5)A(, 5) + (i, §) log(Pe(i, 5)AG, ) } + (6.8)

Gk

> {~2q + [CF + rillog s}
%

The E-step of the EM algorithm replaces z4(z,5) and CF by their conditional
mean given {\*,Q",Y, R}. Since zx(¢,j) and CE, i,5 = 1,---, N are mutually
independent Poisson random variables and yi = 3°; ; zx(2,5) + CE. Therefore, the

probability of z,(7,7) given {A\*,Q", Y, R} is binomial with mean

AR On - Pi(3,7)AG 5)
E{xk(za])l)‘ N ,Y’R} _ykZi.j Pk(z,])z\"(z,J)+qL" (69)

and so is Cft with mean

gk
E{CRI",Q"Y,R} = 2k . 6.10
{ k l Q } ykZi,j Pk(’a])’\n(t’]) +q;:' ( )
Substituting the results (6.9) and (6.10) into (6.8) and taking the partial derivative
with respect to A(,7) and gx respectively and letting the results be equal to zero
yields

1 Yiqr
ntl _ r. + — — , 6.11
O 2 [ i P DA ) + af (6.11)

. A*(4,7) Y Pi(3,7)
/\n-{-l , = — — — . 6.12
63 = S haH Ty B v O

89



One chooses feasible initial estimates, A\° and Q° of A and Q and performs the
above iterative algorithm to obtain a ML estimate. We expect the above iteration
to suffer from the same ill-conditioning which usually occurs in conventional ML
PET reconstruction. This problem arises due to the high dimensionality of the
estimated parameters relative to the data. To overcome this problem we could
employ MAP estimators similar to those described below, but with an additional

prior distribution to perform spatial smoothing of the randoms process, Q.

6.2.4 MAP Using MRFs with Intensity Process Only

In [20] a GEM algorithm is described for MAP estimation where the prior distri-

bution for A is a Markov random field:
1
P()\) = Ze""’("), (6.13)

where Z is a normalizing constant, v is a prior parameter and U(A) denotes a

Gibbs energy function defined on the set
Q = {Ai,7) € R | M(i,j) 2 0,5 = 1,--, N}, (6.14)
Applying the GEM algorithm to this problem one obtains the following procedure:

E-step: Ex {log P(X[N)A\", Y} =3 {~a(i,5)AG,5) + 6"(3,5) log A, )} +
i
constant (6.15)

M-step: mfo(/\L\") = Ex {log P(X|\)|\*, Y} — yU(}).

The E-step remains the same as for the ML-EM algorithm. A suitable M-step is
described in [20]. In this case the definitions of the parameters, A, and data, B,
remain the same as for the original form of the ML-EM algorithm. Although with
a suitable choice of U()), this method avoids the ill-posedness of the ML approach,
the algorithm tends to over-smooth the reconstructed image particularly in the
vicinity of true boundaries. To overcome this problem, we now consider the use
of MRF's with an additional line process.

90



Lmmmm-Leg

—HE TR

|

Figure 6.1: Line sites are introduced between each pair of neighboring pixels, and
take the value “1” to indicate the presence of a boundary between adjacent pixels
and otherwise take the value “0”. Three different regions are represented using
‘4, ‘x’ and ‘0’. The line sites are equal to “1” (solid bars) on the boundaries of
these regions.

6.2.5 MAP Using MRFs with Intensity and Line Process

The line process is used to model discontinuity-like edges in images [13], and can
be regarded as an indicator variable which is set to zero wherever neighboring
pixels lie in the same region (i.e. have similar values) and is otherwise set to one.
Let {I(z,7)} represent line sites lying between each pair of neighboring intensities,
as illustrated in Figure 6.1. For the purposes of computation, each I(z,j) may
be either binary valued {0,1} or take any real value on the interval [0,1). The
parameters to be estimated in the GEM algorithm are A = {A,{}. The joint
Gibbs distribution of A and ! may be written in the form [13}:

PO = %e"’u(’\'”, (6.16)

where 7 is a prior parameter. The Gibbs energy function U(A,!) is defined on the
set  x TZ, where Q is defined in (6.14). The notation Z, for the case where the

line processes (i, j) are binary random variables, represents the set {0,1}.
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The GEM algorithm for the MAP problem in this case becomes

E'Step: EX {logP(XlA)l’\n’ Y} = Z {—a(z,])/\(z,]) + bn(z,J) log /\(2,})} +
[K)
constant (6.17)

M-step: max Q(), 13", 1") = Ex {log P(X[N)\", Y} — 7U()1).

Note that in this case, the E-step remains identical to that in (6.4), only the M-
step is changed. The parameters to be estimated in the M-step are the intensities
A(z,7) and the lines {(¢,7). The M-step in the GEM algorithm is selected as an
updating procedure for both A and ! that satisfies the following condition at each

iteration
Q (,\n-l—l’ ln+l|,\n’ ln) > Q ()‘n’ lnlz\", In) )

This is achieved in two steps:

e Mi-step: find estimates of intensities A**! satisfying
Q (A1, 1M Am, ") 2 Q (A, M, 1) (6.18)
o M2-step: find estimates of lines I"*! satisfying
Q (,\n-}-l’ In+1|xn, ln) >Q (/\n+1’ ", In) ) (6.19)

Note that Ex {log P(X|A)]A*,Y} is a constant with respect to I"*' for the
M2-step and therefore (6.19) is equivalent to the following:

— UM, MY > U, I, (6.20)
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MR images share the same underlying anatomical boundaries. Thus if one could
extract high resolution structural information from the MR image, this could
be used as important a priori information about potential boundaries between
structures in the PET image. In this chapter we describe a method by which
this information, extracted from MR images, may be incorporated into the PET

image reconstruction process.

7.1 Incorporation of Prior Anatomical
Information

This section presents a MAP reconstruction algorithm for incorporation of
anatomical MR boundaries. This algorithm is a modified version of the algorithm
developed in Chapter 6 for the case where a priori edge information is partially
available. With the aid of e priori edge information and interaction measure-
ments between neighboring edges, one would expect that the task of estimating
unknown edges becomes easier than the case considered in the previous chapter.
Hence, in order to reduce the complexity of implementation while producing a
similar image quality, We only consider the first-order neighbors for intensity and
horizontal and vertical line fields in the following derivation. The model can be
easily extended to higher-order neighborhoods.

Let us now assume that the line sites, I, consist of two parts: 1) I;: the
set of known edges obtained through some edge detection process from an MR
image; and 2) Ip = {I —I,}. This second set may contain additional edges due
to the presence of discontinuities in the PET image which do not correspond
to anatomical boundaries. It is important to include and estimate the set Ir
since it is possible to obtain additional edges in the PET image due to sharp
changes in function within a single anatomical region. Following the notation in
Chapter 6, then for this problem, the parameters to be estimated are A = {},Ir},
the observed data are B = {Y'} and [, are treated as known constants. The GEM
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algorithm in this case can then be written as:

E-step: Ex {log P(XININ", Y} = 3 {~a(i, /)\i,5) + 8, ) log \i, 1)} +
2
constant (7.1)

M-step: max Q(A, Ip|A", IF) = Ex {log P(X|N)IA", Y} = 4U(X, I, bo).

We denote the line process by I,, where s = {F,a}. Let I, denote the known
locations of edges extracted from the registered and segmented MR image and Ir
the unknown functional boundaries to be estimated. Where appropriate we add
a second index to l, to denote the orientation of the line site: I, , where p = =
denotes a horizontal line site and p = y denotes a vertical line site. For notational
simplicity, in the following we assume that appropriate modifications are made to
the potential functions at the image boundary, a suitable energy function for first

order interactions is then

UML) = BN bi(i i) +odys(i, )+ (L)} + - (7:2)

Do {BA (0 ) (L= ke,olis 1))+ o5 )+ Ha(lo)}-

The line sites I, ,(¢, j) are binary random variables. In each pair of braces, The first
two terms function in a similar manner to those discussed in Section 6.3, except
that a measure of interaction between line sites, H,(l,), is defined separately in
the horizontal and vertical direction. In addition to encouraging the estimated
edges to be connected, H,(l,) also suppresses redundant line sites. Az(¢,7) and
Ay(i,7) are the differences between adjacent horizontal and vertical intensities

respectively, defined as

Ao(i,7) = AE-1,7) = A7)

. .. (7.3)
’\y(z,]) = A(Z,j - 1) - /\(2,]).
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A simple choice of line interaction term would be the functions:

H(l,) = —eaflzs(i—1,7) =l s5(3,5 — 1))lzs(2,5)
Hy(ls) = —eaflyo(i,7 — 1) =1, = 1, 5)]ly,8(%, ),

which indicate that any two line sites from different orientations are independent

(7.4)

to each other. These functions serve the purpose of increasing the penalty on
a horizontal (vertical) line if either of its neighbors on adjacent rows (columns)
is “on” and decreasing the penalty on a horizontal (vertical) line if either of its
horizontal (vertical) neighbors on the same row (column) is “on”. This can be
seen clearly later in the line updating scheme. Again, the parameter € controls
the relative penalty associated with this term. In the case where the term H,(l,)
includes an a priori edge information, using a relatively large € would be beneficial.
We note that as the neighborhood size is increased, the function above can be
modified to allow better control of the formation of boundaries.

We now describe an updating procedure for both A and I that is based on
the GEM method described in Section 6.2.5. Here two types of edge processes are
included: the known prior edges l,, obtained from the MR image, and the un-
known functional edges, I, r, to be estimated. The known anatomical boundaries
Iy, are unchanged throughout the updating process.

In our simulation we found that the overall computational cost was reduced
by updating each intensity (line) site more than once at each M1-step (M2-step).
We also found that the line processes converge faster than the intensity processes
and are therefore updated less often. We thus restate the M1-step and M2-step
in the following way:

M1-step: Condition (6.18) in Chapter 6 for this case can be rewritten as:

Q (A, I A", 13) = Q (W, IRIA™, IF) - (7.5)

Here A**! denotes the estimates from this step, which are obtained by updating

each intensity site an arbitrary number of times, r > 1.
M2-step: Based on the result A**! from the Mi-step, the estimates I3+ should
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satisfy condition (6.20) discussed in Chapter 6 rewritten as:
Q (A, A, 13) 2 Q (A, I3, 1)

or equivalently
— UL I 1) > UM, 13, 1), (7.6)

where I3+ are the line estimates obtained by updating each line site an arbitrary
number of times, g > 0.

The Gibbs energy function U(A,[,) results in a function @Q(X,{E|A", %) that
is concave with respect to each A(Z,7) > 0. Hence in the M1-step, we follow a
similar derivation to that described in Section 6.3

MI-step: Each intensity site is updated in turn using a one dimensional line
search, since Q(), 3|\, I%) is concave with respect to each A(¢,5) > 0. Thus
setting the derivative with respect to A(¢, j) equal to zero, and taking the positive
root of the resulting quadratic equation, yields the unique maximum with respect
to A(f,7). The updating equation is identical to equation (6.26) in Section 6.3,

t.€.

Cy—a(i,j C; — a(i,7)]? + 4C1b07(3, j
yor(i ) = G2 o+ 2201( DI +4GibGi. )

A"l = AP after r iterations, (7.7)

n.<n,.+1;

but with simpler constants C; and C; given by

Cr = 289[(1 - 12,(,5)) + (1 = 1,(5)) +
(1=10.(+1,5)+Q=12,65 +1)]

Cy = 2B8v[A(E-1,5)Q = 15,(60)) + A5 — (1 = &,(,9)) + (7.8)
MiJ + 101 = 12,055 + 1)) + A6 +1,5)(1 = G+ 1,5)))-

When computing C; and Cj, the most recent estimates of A(i 1, j 1) should be
used for fast convergence. In the scheme (7.7) we also update each pixel r times.

The estimates A" are then assigned to A"+,
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The above procedure, when applied to all intensity sites in turn, results in an
increase in the function Q(A, {E|A", %), i.e. condition (7.5) is satisfied. The case
where C; = 0 implies that all lines involved in C) are “on”. In this case C; is also
equal to zero and the M1-step at this site reduces to A™ (2, ) = b%(¢,7)/a(i, 7).

We now turn to the problem of updating the unknown functional boundaries
lp,r while keeping the known prior anatomical boundaries I, , fixed. In developing
the M2-step below, we adopt the ICA approach developed for the algorithm in
Section 6.3. The goal of the M2-step is to update the unknown line sites satisfying
U™, 3 1) < U™, 13, 1,). In this case, we again use the iterated condi-
tional average of a modified energy function: Up(A™*!, I, 1) = U(A™*,1p, L)/T,
where U(A"*!, g, 1,) is defined in (7.2). Fixing T = 1 would produce an iteration
equivalent to the ICA algorithm of [30]. However, as T — 0, the variables I, r(, j)
converge to either 0 or 1 and this algorithm would converge to a local minimum of
the energy function U(A**!, I, I,) with respect to Ir on the set {0,1}%. Through
the use of the control parameter T, we hope that the algorithm converges to a
more desirable local maximum of the posterior distribution.

M2-step: Let N, r(i,7) denote the set of intensities and lines which interact
with I, p(i,7). The local conditional probability of I r(i,5) and I, r(i, ) for the
energy function Up(A™*1,1p,1,) is given by

PT(I::,F(i’ ])le,F(l,])) =
e—%{px'y"“(g',j)’(l—Ix'p)+alg'p—¢a[l:,a(i—1|j)+l:,s(‘.+lDj)-l-f.‘(i'j_l)_”-‘('.’j.*'l)]l"".}

e~ BN IR 4 o=Flomcolleo(i=1d)Ha o (i41,3)~Las(ii=1)=lz.0 (05+1)]}
(7.9)

Pr(ly,r(3, i) Ny,r(3,7)) =

e+ BT (6P (1-y,p)+aly pcally,olini=1)+ly,oli.d+1)=ly.s (i= 1) ~ly.o(i+ 1)y, F }

e— TP (i) + e—rlo—eally,s((5=1)Hy,o (i, +1) =y s (i=1.5) =1y, o (i+1.3)]}

The local conditional mean of the binary random variable I, r(%,5) is then
equal to the probability that I, #(Z,j) = 1. Using the posterior conditional mean,
the updating procedure for /, r(¢, j) is defined as

ng g+ 1 ables - . .
Iz.qF(z’]) = {1 + exp{T[a - ﬂ’\y+l(z1])2 - ea(lz,s(z-l,]) +
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leo(i+1,7) = lo(is = 1) = b6 5 + D}
ny <= ny + 1 and reduce 7',
23(6,7) < L%(5,7), after g iterations;
(7.10)
[e(i,9) = {1+ exp{ e = BXEF1(5 )7 — eallyolij—1)+
lya(i, g +1) = bya(i = 1,5) = Lo(i + 1,51}
ny < ny + 1 and reduce 7',

04 (4,5) « D%(i,5), after g iterations.

When computing (7.10) the prior anatomical edges or the most recent estimates
are used for the neighboring line sites, I, (1 £ 1,7 £ 1).

It is clear that this line updating scheme shares all properties stated in Sec-
tion 6.3. As T — 0, the updating procedure (7.10) defined above guarantee that
Up(A™+! 1p,1,) decreases at each iteration of the M2-step.

7.2 Experimental Results

To illustrate the potential performance of the method described above we have
conducted some preliminary studies in a wide variety of test cases, using both
a computer generated phantom and the real three dimensional Hoffman brain
phantom. Patient data is also used to validate the overall approach. The results
from patient data validated the underlying structure between PET and MR is
correlated, if not identical. They have also pointed out the possible direction for

the further improvement of the algorithms.

7.2.1 Simulated Phantom: Case 1

We began with a real MR image of a patient with a large white matter lesion,
Figure 7.1(a). Using the segmentation method described in [62] we segmented
this image into four distinct tissue types: white matter, grey matter, lesion and

ventricles. The resulting segmentation is shown in Figure 7.1(b) using the mean
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intensity for each class; the boundaries between different regions are shown in Fig-
ure 7.1(c). The result of this segmentation was used as a template for generating a
phantom PET image, i.e. we assume that a radiopharmaceutical is used in which
there will be different amounts of activity in each of the four anatomical regions.
The PET phantom is shown in Figure 7.1(d). In addition to the variations in
activity in different anatomical regions, we added a hot spot in the left side of
the white matter region to demonstrate the ability of the new algorithm to detect
functional boundaries not present in the MR (anatomical) image. We will refer to
this as a functional lesion below. To generate a more realistic image, the intensity
within each region varies according to a first order Gauss Markov random field
model [3].

The computer generated PET data were based on a simplified model of a single
ring of the Siemens ECAT system. The source was assumed to be of maximum
dimension 22cm diameter, the detector ring of diameter 76cm with 384 detectors.
Data were generated as a set of fan beam projections obtained by pairing each of
the 384 detectors with sufficient of the remaining detectors to cover the required
22cm diameter field of view. Factors such as randoms, scatter, attenuation and
detector efficiency were not considered here. However, since the comparisons are
all based on the same data, the comparison should indicate the relative potential
performance of the various reconstruction methods. After generating the means
of the projection data, a pseudo-random Poisson generator was used to gener-
ate Poisson data for each data sample with a mean of 200 counts per sample.
The results are shown in Figures 7.1(e) though 7.1(i). Figure 7.1(e) is a filtered
backprojection (FBP) reconstruction and shows the typical noisy image obtained
with low count rates. Note that there is virtually no distinction between the
mean activity in the grey and white matter and the additional functional lesion is
barely visible. Figures 7.1(f) and 7.1(g) show ML and MAP reconstructions from
the same data - the MAP reconstruction does not include line sites. There is in
both cases a qualitative improvement over the FBP method with the MAP result
smoother than the ML image, but neither of the results shows good white/grey

matter contrast.
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(d) (e) (f)

() (h)

Figure 7.1: (a): Original MR brain image. (b): Segmentation of (a) into four tis-
sue types. (c): Anatomical boundaries extracted from (b). (d): Computed PET
phantom generated from MR template (b). (e): PET reconstruction using filtered
backprojection. (f): PET reconstruction using maximum likelihood estimation.
(g): PET reconstruction using MAP estimation - no lines. (h): PET reconstruc-
tion using this proposed algorithm - estimated lines. (i): PET reconstruction
using this proposed algorithm - some line sites from MR image.
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Figure 7.1(h) shows a reconstruction in which all line sites are estimated. Fig-
ure 7.1(i) shows the MAP reconstruction using line sites in which the anatomical
line sites, Figure 7.1(c), are included, the other line sites are then estimated. These
results indicate that there is a clear benefit to the use of line sites in MAP PET
reconstruction in comparison to the other methods described above. Even when a
priori edge information is not available, this methods performs surprisingly well,
there is now noticeable grey/white matter contrast and the functional lesion is
clearly visible. When the MR information is included the situation becomes even
better. Note also, that although the functional lesion, in the left middle portion of
the PET phantom, does not correspond to any anatomical boundaries, the MAP
estimator, with a line process, is able to clearly detect the presence of this lesion.
In this case the shape of the lesion is somewhat distorted, however, this is to be
expected as it arises from the finite resolution of the simulated PET system. The
importance of this observation is that the use of prior anatomical information
does not preclude the presence of additional structure in the reconstructed PET

image.

7.2.2 Simulated Phantom: Case 2

This experiment involves a simple phantom study. Its purpose is to examine that
the a priori edge information does not impose discontinuities in PET reconstruc-
tions if this does not correspond to functional edges. Figure 7.2(a) is the disk
phantom with an uniform intensity in each region. The simulated PET data is
a set of parallel beam data generated in a similar manner to that described in
the section 7.2.1. The total amount of Poisson data is equivalent to the collection
time of 5 minutes for the Hoffman phantom FDG study. The configuration of
PET imaging system used here is the same as a Siemens ECAT831 brain scanner,
explained in details in Chapter 6. Factors such as randoms, scatters and etc.
are not included. Shown in Figure 7.2(b) is a boundary image extracted from a
cross section of Hoffman brain phantom. This image will be used as anatomical
boundary information in the Hoffman brain phantom study. Figure 7.2(c) is the
reconstruction using the proposed algorithm with a priori edges in Figure 7.2(b).

We also showed the reconstruction using this algorithm with estimated edges in
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Figure 7.2(d). This test case clearly demonstrates that the presence of a boundary
in the anatomical image does not force a corresponding boundary in the recon-
structed PET image, if the data shows no evidence for such a boundary, then it
will not be present in the reconstructed PET image. This is because the function
of the anatomical boundary information is to avoid smoothing across anatomical

boundaries rather than to force the formation of corresponding boundaries in the
PET image.

7.2.3 Real Hoffman Phantom

Images were reconstructed for a single two dimensional cross section through the
three dimensional Hoffman brain phantom. A template for this section is shown
in Figure 7.3(a). The image intensity in Figure 7.3(a) illustrates the activity in
the phantom according to the ratio 4(white) : 1(grey) : 0(black). Figure 7.3(b)
displays the boundaries extracted directly from the template (Figure 7.3(a)) from
which the 3-D Hoffamn phantom was constructed. In the case where the anatom-
ical boundaries were used in PET reconstructions, these boundaries were incor-
porated in the proposed algorithm, rather than those from an MR scan of the
phantom. However we expect a high resolution MR scan should achieve a similar
resolution to that of the digitized template shown. This template was rescaled to
match PET reconstructions, therefore the boundaries were overlaid onto the top
of a MAP PET reconstruction to illustrate the accuracy of the match between
them in Figure 7.3(c).

The phantom was scanned using a Siemens ECAT831 brain scanner, which also
scanned patient data discussed in Chapter 6. The data were collected for a total
of 30 minutes and sorted into three data sets corresponding to collection times of
30 minutes (set 1), 5 minutes (set 2) and 1 minute (set 3). The three sets of data
are preprocessed the exactly same as the patient data, including rebinning and
setting negative values of coincidences to zero. Again, no scatter measurements or
corrections were performed in this experiment. Detector response and attenuation
correction measurements were made and used in all of the reconstructions shown

below.
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(c) (d)

Figure 7.2: Study of a simple computer generated phantom. (a): PET phantom to
be reconstructed. (b): Boundaries extracted from a single cross section of the 3-D
Hoffman brain phantom, which is also employed as anatomical MR boundaries
in section 7.2.3. (c): Reconstruction using the proposed MAP algorithm with
the incorporation of the boundaries in (b). (d): Reconstruction using the same
algorithm but with an estimated line process.
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In this experiment, we have shown reconstructions of the PET phantom using
filtered backprojection for data sets 1, 2 and 3 in Figures7.4(b), 7.5(b) and 7.6(b)
respectively. These images clearly show the deterioration in image quality as
the total number of coincidence detections is decreased. Even for the case of
30 minutes worth of data, the boundaries in the image tend to be blurred and
much of the fine detail evident in the phantom template is lost. Also shown in
Figures 7.4, 7.5 and 7.6 are the reconstructions of the phantom from data sets
1, 2 and 3 using: maximum likelihood estimate and MAP estimate for an MRF
prior without line process. The MRF without a line process uses the second order
neighborhood of the Gibbs energy function proposed by Geman and McClure [14].

In Figures 7.4, 7.5 and 7.6 we show reconstructions of the PET phantom
from data sets 1, 2 and 3 using the proposed algorithms with both estimated
and e priori line processes. The most surprising aspect of these results is the
performance of the MRF prior in the case where the line process is estimated.
Comparison of the boundaries estimated in Figure 7.4(e) with the true boundaries
in Figure 7.4(a) shows a close correspondence. The reconstructions that include
a priori line processes employ the boundaries in Figure 7.3(b), directly obtained
from the template.

While the performance clearly deteriorates in all cases, the proposed approach
is able to reconstruct a reasonable image in cases where the filtered back projection
algorithm yields virtually no useful information. It is clear that the advantage of
using a line process, especially a priori line process in the MRF model becomes
significant over the other methods presented here, as the number of detected
coincidences is decreased. In this example we used only horizontal and vertical
line processes, the effect of this can be seen in Figure 7.1(e), i.e. the vertical and
horizontal boundaries in the phantom are found more accurately than boundaries
at other orientations. This effect was not visible in our experiment with patient
data, in which diagonal line sites were employed. So we hope that by modifying
the model to also include a diagonal line process, the algorithm becomes more

isotropic.
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Figure 7.3: (a): Hoffman brain phantom template to be reconstructed. (b):
Boundaries extracted from (a) to be used as anatomical MR boundaries in the
following reconstructions. (c): An image obtained by overlaying the boundaries
in (b) onto the corresponding slice of an MAP reconstruction.
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Figure 7.4: Hoffman brain phantom and reconstructions after 30 minutes data col-
lection (3,339,279 coincidences). (a): Brain phantom template. (b): Reconstruc-
tion using filtered backprojection. (c): Reconstruction using maximum likelihood
estimation. (d): Reconstruction using MAP estimation without a line process.
(e): reconstruction using the proposed algorithm with an estimated line process.
(f): Reconstruction using the proposed algorithm with a priori boundaries in
Figure 7.3(b).
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Figure 7.5: Hoffman brain phantom and reconstructions after 5 minutes data col-
lection (580,021 coincidences). (a): Brain phantom template. (b): Reconstruction
using filtered backprojection. (c): Reconstruction using maximum likelihood es-
timation. (d): Reconstruction using MAP estimation without a line process. (e):
reconstruction using the proposed algorithm with an estimated line process. (f):
Reconstruction using the proposed algorithm with a priori boundaries in Fig-
ure 7.3(b).
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Figure 7.6: Hoffman brain phantom and reconstructions after 1 minute data col-
lection (120,612 coincidences). (a): Brain phantom template. (b): Reconstruction
using filtered backprojection. (c): Reconstruction using maximum likelihood es-
timation. (d): Reconstruction using MAP estimation without a line process. (e):
reconstruction using the proposed algorithm with an estimated line process. (f):
Reconstruction using the proposed algorithm with a priori boundaries in Fig-

ure 7.3(b).
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7.2.4 Patient Data

The MAP algorithm developed in this chapter was applied to the MR scan and
PET !8FDG data of a patient brain. In order to incorporate a priori anatomical
MR boundary information into this algorithm, one must first register both 3-
D PET and MR images to a common framework. The registration technique
used in this research is developed in [61], termed scalp surface matching, where
scalp contours are extracted from both an ML reconstruction of PET and MR
images and used for this registration. The registration technique searches for
a transformation involving scaling, rotation and translation such that the total
distance from the transformed set of points on PET scalp contours to the B-spline
surface of MR images is minimized. The points-to-surface matching is similar
to that described in [44] in many ways, however it employs a B-spline surface
representation for MR contours to provide a smoother scalp surface. The average
error, measured by a distance from a point on a PET contour to a B-spline surface
of MR, is about 2mm. This is acceptable comparing to the resolution of PET
images.

Figure 7.7(a) is the reinterpolated and registered 2-D cross section of a 3-D
MR scan. The brighter contour is the scalp contour of corresponding slice of
an ML reconstruction of the PET image. This overlaying image demonstrates
accuracy of this matching to some extent. Using the segmentation approach
described in [62], we segmented this image into five tissue types and displayed the
resulting segmentation in Figure 7.7(b) using the mean intensity value for each
region. The anatomical boundaries between different regions were extracted from
Figure 7.7(b) and shown in Figure 7.7(c). We then overlaid the boundaries onto
the corresponding cross section of an ML reconstruction of PET, Figure 7.7(d)
to show the matchness between anatomical and functional structures. There is
a close correspondence between them. The image shown in Figure 7.7(e) is the
reconstruction using the MAP algorithm developed in Chapter 6, which used the
second-order neighborhood for intensities and four directions for line sites. In
Figure 7.7(f), we showed the reconstruction using the proposed algorithm with
both estimated and a priori anatomical boundaries in Figure 7.7(c). Again, it

can be seen that estimated line sites tend to be horizontally or vertically oriented,
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however, this effect is not visible in the image, Figure 7.7(e). This indicates that
using larger size of neighborhoods is necessary. Mismodeling is also present in
the case where a priori anatomical structure is included. This algorithm treats
a priori anatomical boundaries as fixed and exact boundaries of a PET image
to be reconstructed. This is not the case, because many factors and errors, such
as the motion of a head, registration and segmentation error, would make this
assumption less valid. The reconstruction is potentially distorted as a result.

It is expected that the overall performance of the proposed approach is better
in the Hoffman phantom study. This is because that the phantom almost perfectly
fits the assumption of MRF model: sharp boundaries between different regions,
and homogeneous within each region. And also the a priori boundaries used

correspond to the exact boundaries in PET reconstructions.
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Figure 7.7: (a): A single cross section of a PET registered MR scan. The white
contour is the scalp contour from the corresponding slice of an ML reconstruction
of PET. (b): Segmentation of MR scan (a) into five tissue types. (c): Anatom-
ical boundaries from (b). (d): An image obtained by overlaying the anatomical
boundaries of (c) onto the corresponding slice of the ML reconstruction of PET.
(e): Reconstruction using the algorithm presented in Chapter 6 with four direc-
tions of estimated line sites. (f): Reconstruction using the algorithm described in
this chapter with a priori anatomical boundaries of (c) and estimated line sites.
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Chapter 7

Incorporation of Anatomical MR

Data for Improving PET Quality

Our experiences with patient data indicate that the use of MRF with a line pro-
cess is a promising approach to PET image reconstructions and the approach
proposed in Chapter 6 has produced encouraging reconstructions. However, we
have observed through reconstructions of patient data that the locations of esti-
mated line sites are dependent on the total number of coincident detections and,
even for a large amount of coincident detections, are sometimes inaccurate. The
MAP reconstruction algorithm proposed in Chapter 6 has the potential for solving
this problem and further enhancing the quality of PET reconstructions if accurate
line locations can be extracted from images obtained from a registered anatomical
imaging modality (MR or CT) and incorporated in the PET algorithm.
Magnetic Resonance (MR) imaging is capable of producing high resolution im-
ages of the human anatomy. An appropriate choice of pulse sequence can produce
T1 or T2 weighted images with excellent soft tissue contrast. Positron emission
tomography (PET) [42] is capable of producing somewhat lower resolution images
of functional activity through the use of radiolabeled pharmaceuticals. While PET
and MR produce images of different parameters, one would not expect smooth
variations in PET images across MR anatomical boundaries. In other words, the
spatial distribution of functional activity is dependent on the underlying anatom-

ical structure in which the activity occurs. This implies that we assume PET and
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Chapter 8

Conclusions and Directions for
Future Work

8.1 Conclusions

The goal of the research stated in this dissertation was to develop models and
approaches to accurate, quantitative and efficient reconstructions. This goal has
been achieved in several aspects.

We began by reconstructing a 3-D object from a set of cone beam projections.
The algorithms developed here should also work for any other cone beam imaging
systems, such as 3-D X-ray CT, SPECT and 3-D PET machines. The motivating
factor in this approach is as follows. Knowing whether an inverse exists for a
given cone beam geometry is clearly of importance, however algorithms for ap-
proximately inverting cone beam data in case where the inverse does not exist
are also definitely needed. The computational time required is costly because of
the dimensionality: the minimum scale used for a 3-D imaging system requires
reconstruction of 64 x 64 x 64 grids based on 64 projections. Each projection
consists of a 64 x 64 array. Therefore, it may be more desirable to use an efficient
algorithm that produces reasonably good reconstructions than an exact algorithm
with exorbitant computational cost.

For this reason, we have developed a general inversion formula and investi-

gated the application of this formula to the case of circular, elliptical and spiral
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orbits. For a wide range of configurations, this approach will in general lead to
a class of filtered back-projection type of algorithms, but does not produce exact
inverses and we have therefore included a study of the resultant PSF for the three
geometries. In assessing the performance of the new algorithms using both a sys-
tem PSF and computer generated phantom, it is clear that it is desirable to make
the curve of the largest possible radius relative to the object to be imaged. It
also appears, from comparing these results from the three geometries, that using
a circular orbit, with R = 60cm, produces less significant artifacts than any other
configurations tested. Thus if one were free to use any configuration, then a large
circular orbit would be preferred when using this class of algorithm. However, the
influence of other factors, such as detector sensitivity or physical constraints may
motivate the use of either the elliptical or spiral configuration.

Our experience with different sizes of configurations indicates that as long as
the size of a configuration is large relative to the object being imaged, the quality
of reconstructed images does not appear to be sensitive to the change of sizes. In
other words, the error introduced by the effect of bounded curves can be neglected
for a relatively large curve. The major limitation of this approach is felt to be the
requirement that the curve ¢(#) must be intersected exactly L times by almost all
planes [31]. In order to satisfy the condition, one must reorganize the measured
data so that the algorithm uses the data from each ray exactly the same number
of times. This requirement may inspire a possible approach to the improvement
of the current algorithms. For example, by pursuing this approach for the spiral
geometry, but modifying the general form (4.29) to account for redundancy in the
data, it may be possible to derive a more accurate, and yet still fast, reconstruction
algorithm. One should expect a great improvement in the image quality for this
case compared with those shown in the thesis.

We then formulated the PET or SPECT image reconstruction problem in the
complete/incomplete data framework and derived a generalized EM (GEM) al-
gorithm for MAP estimation based on a joint Gibbs prior of intensities and line
sites. We confirmed that the use of the MRF model with a line process is a

promising approach to PET image reconstruction and the need to incorporate
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strong @ priori anatomical information or structure in the algorithms, particu-
larly in situations where the total number of detected events is low such as the
measurement of changes in regional blood flow in activation studies, or in cases
where the dynamics of a radiopharmaceutical are of interest.

In the 3-D phantom experiment, we know exactly the template to be recon-
structed and the MRF model with a line process used fits the 3-D brain phantom
almost perfectly. One attempts to make the claim from the phantom study that
the proposed algorithms provide more accurate and quantitative reconstructions.
However, in the patient experiment, we make no attempt to claim whether the re-
constructions are quantitatively accurate, since it is not certain whether this MRF
model is one of the best ways to describe a human brain. The images appear to
be better than those obtained from the other methods.

Although the reconstruction algorithms are more complex than filtered back
projection, the use of these methods with currently available computers is feasi-
ble. One complete iteration of the GEM algorithm, including updating the line
process, requires about 40 seconds of CPU time on a SUN Sparcstation330. The
number of iterations required for effective convergence varies depending on the
quality of measured data. This per-iteration time is only slightly longer than
the time required to perform one iteration of the ML-EM algorithm. Clearly in
both cases the time could be significantly reduced using a vector array processor
board of the type currently used for filtering and backprojection in clinical PET
systems. The major reason that the computational cost for ML and MAP are
approximately equal is that the dominant operation is the calculation of forward
and back projections during the E-step. This is identical for both ML and MAP.
The optimization in the M-step of the proposed algorithms requires only local
computations on the image lattice, and consequently the computational cost is
relatively small in comparison to forward and back projection operations which
are global.

These results are preliminary and many problems remain to be addressed.
Principal among these are the treatment of scatter and randoms, modifications in
the procedure to provide robustness against registration errors between the PET

and MR images, the development of some procedure to quantify the properties
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of the estimator, and incorporation of a scheme to select the parameters of the

prior.

8.2 Directions for Future Work

The research presented in this dissertation is seen as only a start in a longer-
term effort to quantitatively improve the quality of reconstructions from X-ray
CT and PET or SPECT, and to develop fast and accurate image reconstruction
algorithms for the routine clinical diagnostic use. The applications are so far
restricted to fundamental and clinical research. There are various problems that
must be addressed and solved, before the research can reach the stage of clinical
use.

Different areas of this research could be extended and improved, we are now

working on the following two areas:

e An alternative cone beam reconstruction algorithm for two orthogonal and

concentric circles.

¢ Modeling the inconsistence between the functional and a priori anatomical

boundaries.

Reconstruction from cone beam data: Recall that in deriving the general
formula (4.19), besides the assumption that almost all planes must intersect the
curve ¢(0) at least once, we also assumed that the curve ¢(8) is intersected
exactly L times by almost all planes [31]. As discussed in the previous section,
this condition introduces the major error to reconstructions when applying to
large 3-D curves relative to the object to be imaged.

Here we employ the function L(8,¢(8) - B8) in [56] to denote the number of
times that a source curve is intersected by a plane defined by x - 8 = ¢(0) - 8.
Thus, there are L(B,¢(9) - B) values of G(3,8) corresponding to each value of
K(B,w) in the domain ©. For any bounded curve, a better approximation to the

equation (4.12) becomes

: 1 G(B, 6)eilx-9N-Bl
) = oyt oo o~ (g .00 B

sgn(¢ (6) - B)(¢'(0) - B)d0dB.  (8.1)
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Following a similar derivation to that in Chapter 4, we may rewrite (8.1) as

fex)= [ [(6e@,8)- #'(0) *arh(er,0) s crhu(et, ) qox-pdds  (82)

where # denotes the 3-D convolution in ar and h(«a, 8) is defined in (4.15) without
the constant L. h,{(a,0) is defined as

hu(a,0) = / 1 iePip, (8.3)

1
(2n) Jrs L(B, 4(0) - B)

Again, h,(c,0) is treated as a generalized function. The integer function
L(B, ¢(8)-B) is piecewise constant, whose value depends on both a source location
and an orientation of a plane passing the source point. However, determining the
exact analytical form of L(B, ¢(0) - B) would be a difficult task in many cases.
In the following, we will restrict our attention to the curve consisting of two or-
thogonal and concentric circles. It is known that this curve satisfies the sufficient
conditions stated in [57) [17] and there exists a closed form for this geometry. But
it is difficult to implement as an algorithm. A fast algorithm for this geometry was
developed by Clack at el. [6]. The ideas we will present can be considered as an
alternative approach to this problem by following the general formula described
in this dissertation.

First of all one must derive an analytical expression for the function k,(a,6).
Consider the case where the cone vertices are on the horizontal circle ¢,,_o(f) =
(Rcosd, Rsin8,0)7, see Figure 8.1. The discussion and derivation is straight
forward for the case where the cone vertices are on the other circle 22 + 22 = R?.

It is clear that the circle 22 + z2 = R? and a source point ¢ ,_o(f) =
(Rcos 8, Rsin8,0)7 uniquely determine a cone with the vertex at ¢_,_o(9). We
claim that the curve will be intersected 4 times by any plane that passes through
the source point and intersects the cone mentioned above; otherwise, the curve will
be intersected 2 times. Let us denote C, to be the region that for any 8 € C;, the
plane x -8 = ¢,,_o(0) - B intersects the curve ¢(0) 4 times, and use C; to denote
the region that the plane intersects the curve 2 times. Note that C; + C, = R3.
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Figure 8.1: A cone beam data acquisition system with a source curve consisting of
two orthogonal and concentric circles, where & = M(x—¢,,_o(0)) and ¢.,_o(0) =
(Rcosd, Rsind,0)7.

Thus h,(a, ) in (8.3) can be written as

ho(a, 0) = L 1 eaByg . ! L 2 @Byg. (8.4)

4(2m)3 2(27)3

Next, we need to find the mathematical expression for the region C; and C,, it
is then possible to derive a closed form for the function A,(c, #) in terms of either
& or «. Substituting this result into (8.2) hopefully leads to a fast algorithm.

Modeling the inconsistence: the MAP estimation algorithm described in
this dissertation treats a priori boundaries from registered MR images as the fixed
and known boundaries in PET reconstructions. Our experience with real PET
and registered MR data indicates that this is not the case, it is essential to take
this error between them into account. A approach similar to [15], but not strict
MAP approach, is presented as follows.

Consider the first order neighborhood of image intensities and horizontal and
vertical line sites. We introduce new notations a,(¢,7) and a,(¢,j) to represent

a blurred version of the horizontal and vertical a priori anatomical boundaries

132



respectively. This blurring step is to provide somewhat robustness against reg-
istration error between the PET and MR images. It may be, for example, im-
plemented by convolving a Gaussian distribution with the horizontal and vertical
binary boundaries respectively. Then the value of a(i,7) or ay(i,) is on the
interval [0,1]. The value close to “1” indicates the present of an a priori bound-
ary at the location (z,7). The value close to “0” denotes the absence of an a
priori boundary at such a location. Here we use I:(¢,7) and /,(i,7) to denote
the functional boundaries in PET images. The modified MAP algorithm will
update each I.(z,7) and [ (¢, 7) at each M2-step with the aid of additional infor-
mation obtained from a.(z,7) and ay(¢,j). The basic criterion is that the PET
reconstructions should mainly depend on measurements if a priori information is
inconsistent with the measurements.

We may, for example, define an alternative energy function as

UMD = 3 {820,501 — L5, 4)) + o (6, )y (i 3) } +

Y {BN(,3)(1 = L, 0)) + e2(, )leliy )} + H(D,  (8.5)
4J
where a}(7,5) and ap(z, j) are suggested as

az(i,§) = efl +(~1)eEHNE(, )
(i g) = eft + (=) EHIE(G, ). (8.6)

The function Int(C) represents a operation truncating a real value C to its nearest
integer and « is a constant parameter used in the previous chapters. A suitable

choice for €2(¢, §) and ¢}(¢, ;) may be given as

(i,5) = exp{-la:(i,j) — 12, )]
—faeli = 1,7) = 120 — 1) — [aali + 1, ) = 120 + 1,5)P
—[aa(iyj = 1) = 25,5 = DI = [as(i, 5 +1) — 22,5 + 1))
—layi, §) = I ) = lay( + 1,5) — 6 +1,5))°
—[ayi,j — 1) = 6,5 = D
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Figure 8.2: The neighborhood of line sites considered. (a): A horizontal line site
I-(7,7) and its neighbors. (b): A vertical line site [,(z,7) and its neighbors.

~lay(i + 1,5 — 1) = I2(i + 1,5 — 1))}
(8.7)

(i i) = exp{-lay(i,j) - L5

—[ay(i,5 — 1) = (5,5 — D — [ay (3,5 + 1) = (5,5 + 1))

—[ay(i — 1,5) = ¢ = L, )P = [ay(i + 1,5) = I (i + 1, 7))

~la2(3,5) = 12, 3))* = [a2(3,5 + 1) — L2(6, 5 + 1)

—[az(i — 1,5) = I3(i = 1,5)]?

~las(i =1, +1) = (i - 1,5 + V)P*}.

This definition involves the neighborhood of line sites as shown in Figure 8.2. Note
that the penalty to each non-zero line estimate depends on the fitness between a
priori and estimated boundaries at the location and its neighbors. Therefore the
estimation based on the energy function (8.5) is not strictly MAP. For notational
simplicity, we again use the index p to denote either the horizontal or vertical
direction of boundaries. Let us now examine the case where ap(z,7) 2 0.5. Using
(8.6), then aj(i,5) = afl — €5(4,5)]. If the values of estimated lines are close
to the values of the a priori boundaries at each location involved for (i, ), see

Figure 8.2, a}(¢, j) is small such that a “on” line site at (%, j) is encouraged. When
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the estimated and a priori boundaries do not match very well at the locations,
aj(i,7) tends to the constant e, which implies that the data will dominate at this
situation. The similar explanation can also apply for the case where a,(z,j) < 0.5,
and o (2,7) = ol + 5(%, j)).

One may choose a potential interaction term as

H(l) = -CQZ {[Iz(i - laj) - lx(iaj + 1)]Ix(iaj)+
[ly(i’j - 1) - I!l(i - laj)]ly(iaj) - (8'8)

13(7»,])13(1,] + l)l,,(z,])ly(z + 13.7)} ¢

The first two terms in the braces serve the exactly same purpose as those described
in Chapter 7. The third term discourages isolated and one-pixel wide regions.
Solving the problem along this direction, we hope that the modified algorithm
will produce PET reconstructions with better quality.
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