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paper, we show that when the input is a discrete-time white noise sequence, what
is needed to make the channel identification from its output autocorrelation unique
is reduced to the phase response in the frequency range of —-2—'T <f< 517
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1 Introduction

In high-speed data communications, there exist several scenarios, such as multipoint network
and multipath fading channel, where blind equalization (equalization without the transmis-
sion of a training sequence) has to be performed to mitigate the channel distortion caused by
intersymbol interference. A closely related problem to blind equalization is blind identifica-
tion, which is to identify the impulse response of a LTI channel from its output only, when
the input to the channel is white. It is well established [1] that when the input to a channel
is a continuous-time white noise, no phase information can be extracted from the second or-
der statistics (thus the autocorrelation) of the channel output. However, the situation can be
different when the input to the channel is a discrete-time white noise sequence, as in data com-
munications scenarios. The received signal (before sampling) becomes cyclostationary, instead
of being stationary. In [2], Gardner proposes a channel identification method by exploiting the
cyclostationarity of the received signal. The method is based on the second order statistics
of the received signal. However, the method assumes that a pilot signal is superimposed with
transmitted data and that we know a priori the shape of the pilot signal. Thus, it is not a true
blind identification method. In this paper, we address the problem of blind identification of a
band-limited nonminimum-phase channel from its output autocorrelation when the input is a
discrete-time white noise sequence. The paper is organized as follows. In Sec. 2, we show that
the received signal is cyclostationary when the input is a discrete-time white noise sequence.
In Sec. 3, we address the blind identifiability of a LTI channel from its output autocorrelation
only.

2 Cyclostationarity of The Received Signal

Let us consider a synchronous double-sideband quadrature amplitude modulated (QAM) com-
munication system as shown in Fig. 1. Discrete-time data, a,, are transmitted every T interval
through a LTI channel, which models the effect of the shaping filter, modulation, transmission
media, demodulation, and matched filter on the transmitted data, a,. The channel output is
the continuous-time received signal y(t) given by!

y(t) = an * h(t) = 3" anh(t — nT) (1)

where * denotes convolution.

'In practice, the received signal is contaminated by additive noise. However, in data communications sce-
narios where channel equalization is used, intersymbol interference usually has much greater eflect than noise.
Therefore, the noise is assumed to be negligible and omitted in the analysis.



Now we show that the received signal is cyclostationary with its period equal to T. The
mean of y(t) is given by

Bly(®)} = E(Zawh(t—nT))
= Y E(an)h(t — nT)
= mn Y h(t — nT) (2)
which is periodic with period T. The autocorrelation of y(t) is given by
Ry(tnts) = E{S Y anh(ts — nT)aoh" (t — mT)}
> i g(a,.a’,‘n)h(tl ~nT)h*(ts — mT)

= Y )" Ri(n,m)h(t; — nT)h*(t, — mT) (3)

which is also periodic with period T. That is,
Ry(t1 + kT, t2 + kT) = Ry(ty,12) (4)

Therefore, the received signal (before sampling) is cyclostationary with its period equal to the
transmitting interval T'.

3 Blind Identifiability of A Channel from Its Output
Autocorrelation

We consider the synchronous double-sideband QAM communication system shown in Fig. 1.
A discrete-time white data sequence a, is transmitted through a LTI channel %(t). The chan-
nel output is the continuous-time received signal y(¢). In practice, the continuous-time re-
ceived signal is usually first sampled and the obtained samples are subsequently used for blind
identification. However, information may get lost in the sampling process, for example, the
cyclostationarity of the received signal is lost in symbol-rate sampling. That is why we con-
sider the received signal before sampling. The problem is whether the autocorrelation of the
continuous-time received signal y(t) contains sufficient information to uniquely determine the
channel impulse response kh(t).

From (3) Ry(t1,12) is related to Ry(n1,7n2) by the following equation.
Ry(t,t2) = ZZ Ra(ny,n2)h(ty — i T)R*(t2 — n,T) (5)

ny nz



By taking two-dimensional Fourier transform on both sides of (5), we obtain

Sy(f1, f2) = Sa(fr, )H(f1)H™ (- f2) (6)
where
Sy(fl,fz) = /_o; -/:: Ry(t‘,tg)e‘j“(h‘1+f"°)dt1dt2 (7)
Sa(fir fo) = ZZRa(nl,nz)e‘j21r(f1n1T+f2nzT) (8)
H(f) = /_ = h(t)e~i gy 9)

The input a, is white, R,(n1,n2) = 028(n1 — nz). By substituting it into (8) and (6), we
obtain

S f) = Lo+t (10)
S f) = S oMU+ ot 2 HE (=) (1)
k

Thus, S,(f1, f2) is nonzero only on those lines of f| + f; + £ = 0 where k is an integer (Fig.
2). Note that Sy(—f2,—f1) = S;(f1,f2). Therefore, the values of Sy(fi, f2) on the lines of
h+ 4+ % = 0 for k > 0 completely specifies the autocorrelation R,({y,12). By writing

Sy(fr, f2) = 1Sy (fr, F2)| exp(3(f1, f2)) and H(f) = |H([)| exp(j$(f)), we have on those lines
of i+ a+%£=0,k>0

B(fur o) = U = B(=F2) = (1) - 84 + ) (12)

Now we determine the blind identifiability of a channel from its output autocorrelation, or
equivalently, the determinacy of H(f) from the values of S ( f1, f2) on the lines of f;+ f2+% =0,
for k > 0.

On the line of f; + fo =0,
Sy(f1, f2) = G280V H( L) H™ (= f2) = a26(0)| H(f1)I” (13)

Thus, |H(f)| can be determined from the values of S,( f, f2) on this line. What remains to be
determined from S,(f1, f2) is the channel phase response ¢(f).

The phase response ¢(f) is related to S,(f1, f2) by (12). From (12), we see that ¢(f) is
related to ¢(f+ %) only. Thus, the phase identification problem can be decomposed into solving
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infinitely many sets of equations. For each f in the range of —5z < f < i, the set of equations
of (12) which relates directly or indirectly to ¢(f) can be written in the following form:

I+ %)= 8+ 5= 9+ =T+ ) for i < (1)
For a band-limited channel (H(f) =0 for |f| > W), let

m = [-(W+/)T]

n = |[(W-/)T)
fe = f+§

where [@]and|a| denote the smallest integer larger than a and the largest integer smaller than
a, respectively. Then all the possible equations of (14) are as follows:

¢(fm) = ¢(fms1) = ¥(fm, — fini1)
¢(fm)—¢(fm+2) = ¢(fms_fm+2)

¢(fm)"¢(fn) = d’(fma_fn)
H(fm1) = O(fma2) = P(fms1, —Fms2)
A fn41) — H(fma3) = Y(fms1, = Fms3)

¢(fa1) = ¢(fz) = ¥(far,—fa)

Combining all these equations into matrix form we obtain
Ap=1 (15)

where

¢ = ($(fm)s$(fmsr), -+, 8(fa))”
¢ = (d"(fma-fm+1)a¢(fm7_fm+2)"~-7¢(fma_fn)7
zr/)(fm+l,"'fm+2),1nb(fm+17_fm-t-l?)a'''1¢‘(fﬂ—la—'fﬂ-))T



and A is a sparse coefficient matrix

1 -1 0 0 0
1 0 -1 0 0
10 0 0 .. -l
A=1o1 -10.. o (16)
01 0 -1 0
(00 0 0 . .1 -1

In Equations (15), there are n — m + 1 unknown variables @(f), #(fm+1),: -+, ¢(fa), but the
rank of A is n — m (Appendix I), thus the equations are underdetermined. Moreover,
the matrix formed by deleting any one column of A still has the rank n — m (Appendix I).
Therefore, if we know any one of ¢(f;), we can determine the other unknown phase
variables through (15). Several remarks are provided below.

4

1. Because the above arguments are true for arbitrary f in the range of —517 < f< 711‘"

what is needed to make the channel identification from its output autocorrelation unique
is reduced to the phase response in the frequency range of —5+ < f < 55. That is, if
we know a priori the phase response ¢(f) for —5% < f < 37, the channel is uniquely

determined by its output autocorrelation.

. For a real channel, Sy( f1, f2) has the additional symmetry with respect to the line of f; =

f2, and what is needed to make the channel identification from its output autocorrelation
unique is further reduced to the phase response in the frequency range of 0 < f < %
because of the odd symmetry of the phase response.

. In data communications, the channels are band-limited. When data are transmitted

at Nyquist rate, that is, when T = 5}, the phase response in the frequency range of
—357 < f < 35 is the whole phase response (F‘ig. 3). Thereff)rt?, nothing can be. gained
by employing the cyclostationarity of the received signal. This is not the case with sub-
Nyquist transmission (Fig. 4). In that case, the phase response in the frequency range of
—55 < f < 5 is only a portion of the whole phase response.

Conclusions

We show in this paper that when the input to a LTI channel is a discrete-time white noise
sequence, the identification of the channel from its output autocorrelation is still not unique,
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although what is needed to make the channel identification from its output autocorrelation
unique is reduced to the phase response in the frequency range of —3x < f < 3r.

Appendix I. Rank of the Coeflicient Matrix

From (16), we observe that A is composed of all the possible row vectors of the following
form:

wherel <i<j<n-m+1.

The matrix A which consists of the row vectors {ai;:7=1+1i=1,2,---,n—m}

1 -1 0 0 . . 0 a2
. 0 1 -1 0 . . 0 a3
A =
L 0 0 0 0 . . l _1 an_n"n—m.‘-]

is a submatrix of A. And the matrix A; formed by deleting the Ith column of Ais given by

l

1 -1 0 0
1 0 0
. 0 0 1 0 0 0
A =19 o -1 0 0
-1 0

e l —1-

det(A;) = £1 # 0. Thus, rank(A;) = n — m and consequently rank(A4) =n — m.
Since every row vector of A is a linear combination of the row vectors of A,
aij = Gigy1 T QGixrid2 + 000 F iy

Therefore, rank(A) = n — m and the matrix formed by deleting any one column of A has the
rank n — m.
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Figure 1: Block diagram of a synchronous data communications system.

Sy(fl’fZ)

~=

h

el
4

Figure 2: Nonzero lines of Sy(fi, f2).
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Figure 4: Relation of S,(f1, f2) and H(f) at sub-Nyquist rate.
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