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Abstract. The Papoulis-Gerchberg (PG) algorithm is well known for band-limited signal extrap-
olation. We consider the generalization of the PG algorithm to signals in the wavelet subspaces in
this research. The uniqueness of the extrapolation for continuous-time signals is examined, and suffi-
cient conditions on signals and wavelet bases for the generalized PG (GPG) algorithm to converge are
given. We also propose a discrete GPG algorithm for discrete-time signal extrapolation, and investi-
gate its convergence. Numerical examples are given to illustrate the performance of the discrete GPG
algorithm.
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1. Introduction. Band-limited signal interpolation (or sampling) and extrapolation have many
applications in both mathematics and engineering, including radio astronomy, radar target detection,
geophysical exploration, medical image processing and communication theory. The Shannon sampling
theorem provides a signal interpolation formula from discrete samples of a band-limited signal if the
sampling rate is above the Nyquist rate. In the 70’s, Papoulis [12] and Gerchberg (8] developed an
algorithm for extrapolating a band-limited signal outside a known interval. There have been many
extensions and modifications of these two fundamental signal interpolation and extrapolation schemes
(2], [3], [10}, [13), [16], [17], [18], [19], [20], [22], [24), [25], [26], [27], [28]. However, all of them were
derived from the Fourier transform viewpoint. Wavelet theory has been extensively studied for last
several years [4], [5], [7). It provides various attractive multiresolution bases for signal representation
with a good time-frequency localization property. In particular, if the scaling function is chosen to
be the sinc function, the corresponding wavelet subspaces are those formed by band-limited signals.
By extending the Shannon sampling theorem for band-limited signals, Walter [21] derived a general
sampling theorem applicable to signals in wavelet subspaces. In this research, we are interested in
generalizing the Papoulis-Gerchberg (PG) algorithm from band-limited signals to signals in the wavelet
subspaces.

Let us use the following two simple examples to illustrate the nature of the extrapolation problem.
Consider first the Haar wavelet, where the scaling function ¢4(t) = x[0,1)(t), whichis 1 when 0 <t < 1
and 0 otherwise. The wavelet subspaces

E (k+1)

V;= {f(t) : f(?) is constant in each interval YT ) k€ Z} , where j € Z,

consist of piecewise constant functions on intervals of length 2-7. For a signal f(t) € V;, even though
we know the values of f(t) in interval [ko/2/, k1/27), where ko, k) € Z and kg < k), there is no unique
way to extend f(t) outside the interval. Second, consider the sinc wavelet as mentioned earlier where
¢y = L’;,”-‘- and the wavelet subspaces V; are

V; = {f(t) : () is 27 band-limited }.
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For this case, any f(t) in Vj is an entire function [1] so that it can be uniquely determined by its
arbitrary piece. One such extrapolation procedure is in fact provided by the Papoulis-Gerchberg
algorithm. An important focus of this research is to study the convergence of the generalized Papoulis-
Gerchberg (GPG) algorithm and the uniqueness of the extrapolated signal. Several sufficient conditions
on signals and wavelet bases for convergence and uniqueness will be given in §3 and 4. To implement
extrapolation numerically, we propose a discrete GPG algorithm which extrapolates a scale-time limited
sequence.

This paper is organized as follows. In §2, we briefly review the PG algorithm for band-limited
signals and basic results of wavelet theory. We consider the extrapolation for continuous-time and
discrete-time signals in §3 and 4, respectively, and establish a connection between the continuous and
discrete cases. Some numerical examples are given in §5.

2. Preliminaries. We briefly review the PG algorithm for band-limited signal extrapolation and
orthogonal wavelets in this section. The following notations will be used throughout this paper. The
L?(R) denotes all real square integrable functions (or signals) defined on R. For D > 0, the L?[-D, D]
denotes all signals f(t) defined on [-D, D] satisfying

D
/ 1F(t)|2dt < co.
D
Let <, > and || - || denote the inner product and the norm on L%(R), i.e.
< fg>= / fW)e(dt, where £(t),9(2) € LX(R),

and ||f|l? =< £, f >. Similarly, we use <, >p and || -||p denote the inner product and the norm on
L?[-D, D). For f(t) € L*}(R), we define

jw=[ : ft)e-iwa,

to be the Fourier transform of f(t).

2.1. The Papoulis-Gerchberg Algorithm. A signal f(t) is said to be 2 band-limited if its
Fourier spectrum f(w) = 0 for |w| > Q. Let f(t) be Q band-limited and f(t) be given for |t| < T with
T > 0. The question is to recover f(t) for |t| > T. Define two projection operators Pr and Py as

follows:
ri = { 70 ST

and

] —_ f(W), I|<Q:
P“f‘“’"{ 0, >,

where Pr and Pp act on signals in the time and frequency domains, respectively. Let F and F~! be
the Fourier transform operator and its inverse, respectively, and I be the identity operator. Then, the
PG algorithm is defined by the following iterative procedure:

Papoulis-Gerchberg (PG) Algorithm:

(2.1) FOr) = Prf().
For!=0,1,2,---
(2.2) 4@ = Pri(t) + (I - Pr)F=' PaF fO(1).

In [12), it was shown that ||f) — f}| converges to 0 as ! goes to co. For the generalization and
discretization of the PG algorithm for band-limited signals, we refer to (3], [9], [16], [17], [18], [19}, [20],
{22], [24], [28], [27), [28].
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2.2. Orthogonal Wavelets. We focus on real orthogonal wavelets in this paper, and refer to
[4], [5], [7] for more detailed discussion. Let ¢(t) be a scaling function such that, for a fixed arbitrary
integer j,

{6j1(t)) ez, where  @;(1) = 2/%4(27t - k)

is an orthonormal basis of the wavelet subspace V;, and {V}} ;jeZ is a multiresolution approximation
of L*(R), i.e. V; C Vj41 and U; Vi = L*(R). The wavelet function corresponding to ¢(t) is denoted
by ¥(t) and ¥;i(t) = 29/24(27t — k). The associated quadrature mirror filters can be expressed as

(2.3) H(w) = Z hre~*“,  and Gw) = nge'”‘“‘,
k k

where g¢ = (~1)*h;_; and

$(2w) = Hw)p(w), and  §(W) = Gw)$(w).

Then, we have

(24) =3 Y biavi),

j=—co k==

for any f(t) € L*(R) and

00

(2.5) =Y cudnt)=) i bjx¥i(2),

k=-00 i< k=—00

for any f(t) € Vj, where bj; =< f,¢jx > and ¢ju =< f,¢se >. The b in (2.4) are called
the wavelet series transform (WST) coefficients of f(¢), and (2.4) provides the inverse wavelet series
transform (IWST) of b; 1. On one hand, the WST coefficients b;; with j < J can be obtained from
coefficients cs1 by the recursive formulas:

C-1p = V2T, Bp_2kCin
2.6 #) 3 1] 3,0
(2.6) bioip = V21, In=2kCj n,

for j = J,J ~1,J —2,---. On the other hand, we have the following synthesis formula to compute
coefficients c;x from ¢y .,k and b;; with Jo < j < J via

(2.7) Cipin = V2 (Z hp—2kcik + Zgn—zkb',k) )
p k

for j = Jo,Jo+1,---,J — 1. By viewing csn as a sequence z[n], we call (2.6) the discrete wavelet
transform (DWT) of the sequence z[n] and (2.7) the inverse discrete wavelet transform (IDWT) of
coefficients cy,,1 and b :. By using the orthonormality of the wavelet basis, one can prove that both
DWT and IDWT preserve energy.

3. Extrapolation of continuous-time signals. We examine the extrapolation for continuous-
time signals in wavelet subspaces in this section.

3.1. Generalized PG algorithm. Let f(t) € V; for a fixed integer J. Given the value of f(t)
for |¢| < T (T > 0), we are concerned with the determination of the value f(¢) for |t] > T. We propose
the following generalized PG (GPG) algorithm for extrapolation:

Generalized PG Algorithm:

(3.1) £O) = Pri().
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Forl=0,1,2,-..

(3.2) d() = Y <SDba > n(t),
k
(3.3) fU0@) = Prf@)+(I - Pr)g® ),
Note that the above iterative procedure reduces to the standard PG algorithm if ¢(2) = M as

shown below. For this case, f(t) € V; implies that f(t) is 2/ 7 band-limited.

00 = TrEld [ e,

sinw(2's -k (27t -k
21/ 1003 11'(2(-’3 ) )Sl:(z(lz ) e

& / f(,)( )sm:(23 (s)—t) s

o~
—

where the identity in (1)

sinm(2/s— k)sinw(2't — k) _ sinw2'(s —1)
(3-4) z m(27s—k) w(2Jt-k) T x2(s—t)

is obtained by the Shannon sampling theorem. Therefore, we have
§0 W) = Prsg fO(w),
or, equivalently,
9O () = F1 P F 1)
By using (3.3), we obtain
FU0() = Prf(t) + (I - Pr)F ' Pun FFO (1),

which is exactly the same as (2.2) with Q@ = 27 7.
The GPG algorithm has a property similar to that of the PG algorithm. That is, it reduces the
error energy during the iteration process. To see this, we know from (3.3) that

FOI@) = F() = (I = Pr)(¢ - (),
for f(t) € V3. By using (3.2) and (2.5), we have

D~ 1P < 19 = AP =301 < /O~ o6 >

k
D — £I12.
This proves that, for a scaling function ¢(2) and f(t) € V},

(3'5) "f(H-l) - f”z S "f(') - f"z! = 0! 17 2’ e

3.2. Convergence and uniqueness results, We say that a signal f(f) can be uniquely deter-
mined in a signal set S from its segment f(t) defined on interval [4, B), if any f(t),g(t) € S with
J(t) = g(t) for t € [A, B, implies f(t) = g(t) for t € R. In this subsection, we will perform some
theoretical study on the convergence of the GPG algorithm, the uniqueness of extrapolated signals and
their relationship.
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We first focus on the convergence issue. To do so, results from operator theory [14] are needed. Let
us define

(36) Qs 3 be-B—k), (s0)ER?,

and

(3.7) Q5,0 227Q(25,27t)= Y ()b (t).
k=-oc0

The definitions (3.6) and (3.7) also appeared in [21], where Q;(s,t) was called the reproducing kernel
(RK) for the reproducing kernel Hilbert Space (RKHS) V;. In particular, when ¢() is equal to the
sinc function, we know from (3.4) that

sin277(s — 1)

Q==

which is analytic in R2. When the decay of ¢(t) satisfies |¢(¢)] < O(1 + Jt|'+¢)~! for some € > 0,
Q(s,t) in (3.6) is always finite for all real s,¢. In what follows, we assume that Q;(s,t) is continuous
in [T, T)? and finite in R2,

Some basic results are summarized below (see [14]). The following operator defined from L%[-T, T
to itself,

T
Qs g(t) = / 9()Qu(ats, te[-T.T],

is completely continuous and symmetric. We use A and ®;(t) to denote the eigenvalues and normalized
eigenfunctions of operator @, and arrange |Ax| in a descending order, i.e.

(3-8) qu)k(t) = '\kq)k(t): te [—T’ﬂi

for ¥ = 0,1,2,---, where f;rT [®c(t)|?dt = 1 and o0 > [Ag| > [A1| = -+~ Then, {®i(t)}s is an
orthogonal basis of the range space Q;(L*[—T,T]) of operator Q; so that we can write

Qsg(t) = f:/\k < g,%: >7 (1), t € [-T,T], Vg(t) € L})[-T,T],
k=0

Moreover, if all eigenvalues A; are not zero, {®«(¢)}: is an orthonormal basis of L?[—T,T] so that we
have

0
gt) =) <g,®x >1 Be(t), t€[-T,T], Vog(t) € L[-T,7).
k=0
Now, let
K={k:\#0, and k€{0,1,2,--}}.

For k € K, we can extend ®;(t) from [-T,T] to R via (3.8) as

n

T
(3.9) Bu(2) XI; /_  ®(6)Qs (o, )ds

1 T
(3.10) = KZ ( /_ , <I>k(s)¢,y,.(s)ds) ban(t),
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where t € R.

In the following, the symbol ®;(t) with k € K is always used to mean the extended one as given in
(3.9). Properties of the extended ®(t), k¥ € K, are described in the following lemma.

LEMMA 1. The extended &y (t) with k € K as defined in (3.9) are in V; and orthogonal in L*(R),
and the associated \; are greater than zero.

Proof. Due to (3.10), Ax # 0 and the fact that

%

we conclude that ®x(t) € V. To check the orthogonality of ®;(t) in L2(R), we have

2

T
f Ban(s| <[Bllp=1< o0,

o0 oo T T
/ D, (£)Pr, (t)dt = /_ . /\_k_lAT /_ , O, (51)Qu(s1,1)dsy /_ , @i, (52)Qs(52,)ds2

-0

T T )
AhlAh [.T -/-T (I)k, (31)‘1’;,(82) ./-oo QJ(S!,t)QJ(Sg,t)dtdsldsz,

for ky,k2 € K. By using

/—oo Qi(51,1)Q (82, t)dt

Il

_/_ " D 65k (81)65k,(1) Y Buka(82)b, ()t

0k ka3

Z b1k(51)¢5k(82) = Qu(81,82),
%

(3.11)

we can further simplify the above expression to be

[Conwenoa = S [ [ a8, s5)derdss
—-00 kyAky J-T J-T

1 (T
@ ™ / B, (51)Pr,(51)dsy
ky J-T

L =k
YRR 1 2
3.1 = *
(3.12) { 0, ki#khs,

where the equality labeled with (2) is due to the fact that {®,(¢)}« is an orthonormal basis of L#[-T', T].
It is also obvious that Az > 0. a
Consider the space

(3.13) U= {g(t) 1 g(t) = Z ar®x(t) € LE(R) for some constants az, k € K} ,
keK

generated by ®x(¢) with k € K. For any g(t) = 3_, .k ax®i(t) € Uy, we know from (3.12) that

2
ol = 3 %5 < o,
keK

so that U; is a subspace of L?(R). Furthermore, since ®x(t) € Vs for £ € K, U; C V7. Now, we are
ready to state our first main result on the convergence of the GPG algorithm.

THEOREM 1. Let Qj(s,t) be defined by (3.7} and continuous in [~T,T]? and Us be defined by
(3.13). If f(t) € Uy, then ||[f® — f|| — 0 as I — oo, where fO)(t) is oblained from the GPG algorithm
described by (3.1)-(3.3).

Proof. We have the following representation for any f(¢) € Uy,

laxf®
@)= Z arPe(t), where Z T <0
reK teK
6



Given k € K and initialization f3(t) = axds(?), f,(:o)(t) = Pr f1(t), consider the iteration:

{ gg)(t) 1a< fl(:')s¢ln > ¢unl(?),
S0 = Prfi®)+ (- Pr)gd(@).

We want to prove

(3.14) Fe®) = FO () = (T = Pr)(1 = M) ax®i(t), forl=0,1,2,---.
The equality (3.14) is trivial for ! = 0. By assuming (3.14) is true for [, i.e.,
0 = A - -Pr)1 -2 ad()

a; (1) - (I — Pr)(1 ~ z\k)'a,,@k(t)
1-(1- ,\g)')akd)k(t) + (l - /\g)lakpr@),(t),

it can be shown that (3.14) holds for [ + 1. To see this, let us examine

a0 = Y <50 bn > danlt) = /_ : £O(5)Q1(s, t)ds

o0 T
ax(1 = (1 = 2)) /_ B:(5)Qs (s,2)ds + az(l — Az)' f_ B(0)Qs(5,)ds

ap(l — (1 = ) )Pu() + arde(1 — Ax) B (2)
ar(l-(1- /\k)H'l YD ().

Thus, we have

(I — Pr)lax®e(t) — ae(1 — (1 — A) 1)@ (t)]
= (I- Pr)ap(1 - z\k)H'ld’k(t),

£ - 49

and (3.14) is proved by induction. A direct consequence of (3.14) is

(3.15) FO = @) = S ) - £V = (T - Pr) Y (1= M) ax@i(2).
reK teK

In order to show ||f() — f|| — 0 as I — oo, we only have to prove 0 < Ax < 1 for k € K. The fact
Ar > 0 has been proved in Lemma 1. By using (3.12), we have

l [o ] T
o= [ moraz [ e =1,
Ak -0 -T

so that Ax < 1, which completes the proof of Theorem 1. (n}

Based on Theorem 1, we have the following straightforward corollary on the uniqueness of extrap-
olation.

COROLLARY 1. Let Qj(s,t) be defined by (3.7) and continuous in [-T,T)? and Uy be defined by
(3.13). If f(t) € Us, then f(t) is uniquely determined in Uy from the values of f(t) with t € [-T,T).

Although it may not be easy to check the condition f(t) € U; practically, Theorem 1 does tell us
that there exists a subspace U; in V; where the GPG algorithm converges. The observation is not
only of theoretical interest but also provides an important step to the derivation of further results.

For a kernal K (s,t) satisfying K(s,t) = K(i,s) and

N

N
(3.16) 3> waiK(,t) 2 0,

i=1j=1



where the bar denotes the complex conjugate, for any integer N > 0, any N points ¢; € [-T,T] and
any N numbers a;, we say K(s,t) to be symmetric nonnegative definite in [T, T)2. If the inequality
in (3.16) is strictly great than 0, we say that K(s,t) is symmetric positive definite in [-T,T]%. With a
symmetric kernel K(s,t) in (-7, T}?, we can define an operator from L2[-T, T] to L*[-T,T] like Q;,

T
Kg(t) = /_ K(s.0g(e)ds, t € [-T,T)

Then, K(s,t) is positive (or nonnegative) definite if and only if all eigenvalues of the operator K are
positive (or nonnegative). As an example, the kernal Q;(s,1) defined in (3.7) is symmetric nonnegative
definite in [-T, T)? for any é(t).

The following lemma is needed for the proof of Theorem 2.

LEMMA 2. For any f(t) € V; and k € K,

T 00
(3.17) / _®(6)f(e)ds = b /_ _ a0,

Proof. We first prove that (3.17) is true when f(t) = ¢4,(t) for an arbitrary n.

o0 o T
/ ®u(s)bsn(s)ds = /_ 31: /_ E()Qu(, ) an()ds
T o0
= -'\-ll:/-T b(s") ./_oo Qs(8',8)dsn(s)dsds’
T
= XI;‘/;I- @k(s')(ﬁj,,(s')ds'.
For general f(t) € Vy, since f(t) =, andsn(t) and 3, |an|? < oo, (3.17) also holds. m]

The second convergence result is stated as follows.

THEOREM 2. If Qs(s,t) is continuous and positive definite in [—T,T]* and f(t) is uniquely deter-
mined in Vy by f(t), t € [-T,T), then ||f — f|| — 0 when I ~ oo, where fV(t) is obtained from the
GPG algorithm (3.1) -(3.3).

Proof. When Q(s,t) is positive definite in [-T,7)?, we have A\ > 0 for £ = 0,1,2,.-., ie.
K = {0,1,2,3,.--}. Therefore, by using the results summarized in the beginning of §3.2, {®x()}s is
an orthonormal basis of L2[—T, T]. For f(t) € Vs, when t € [-T,T],

@)= ?_o% < f, @ > Bi(t).
By Lemma 2, when ¢ € [T, T], )

f) = ki:)«\k < f, @5 > B(?).
Fort € R, let )

f) = kf;z\g < f,®e > Bi(t).
Then, f(t) = f(t) for t € [-T,T] and

ity = fj < £, VAc®e > (VAR ®i(t)).
k=0
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By (3.12), {v/A¢®x(t)}+ is orthonormal in L?(R). Therefore, ||f||*> < [If]|? < oo. This proves f(t) € U;.
Since Uy C V;, f(t) is also in V;. By assumption, we know that f(¢) is uniquely determined in V; by
f(@t), t € [-T,T) so that f(t) = f(t) for all real t. Thus, f(t) € U; and, by Theorem 1, Theorem 2 is
proved. a

Theorem 2 tells us that if Q;(s,t) is continuous and positive definite in [T, T]?, the uniqueness of
extrapolation in V implies the convergence of the GPG algorithm. Instead of checking the uniqueness
of extrapolation for various functions f(t) of interest in V; individually, the following theorem says
that it is sufficient to check that for the scaling function ¢(¢) only.

THEOREM 3. If Qs(s,t) is continuous and positive definite in [-T,T]* and the scaling function
#(t) is uniquely determined in V; by any one of its segments ¢(t), t € [-2/T - k,2’T - k], k € Z,
then || fO) — f|| = 0 as | — oo where fU)(t) is obtained from the GPG algorithm (3.1) -(3.3).

Proof. Since ¢(t) is uniquely determined in V; by any one of the segments ¢(t), t € [-2/T —
k, 27T — k], k € Z, ¢;x(t) is also uniquely determined by ¢i(t), t € [T, T), for any k € Z. Similar
to the proof of Theorem 2, ¢;4(t) € Uy for all k € Z. This implies that V; C U;. Thus, V; = U; by
U; C V;. By Theorem 1, Theorem 3 is proved. (]

As a direct consequence of Theorem 3, we have

COROLLARY 2. Under the same conditions as staled in Theorem 3, if f(t) € Vj, then f(t) is
uniquely determined in Vj by ils segment f(1), t € [-T,T).

From the definition of positive definite, if Qs(s,t) is continuous and positive definite in [T, T]?
then it is also continuous and positive definite in any [4, B]? with —=T' < A < B < T. The observation
implies the following corollary.

CoROLLARY 3. Let Q;(s,t) be continuous and positive definite in [—T,T)2. If () is uniquely
determined in Vj by ils any segment and f(t) € Vy, then ||f — f|]| — 0 as | — oo where fO(2) is
obtained from (3.1)-(3.3) with [-T,T) replaced by an arbitrarily fired [A,B] with - T < A< B<T,
and also f(t) is uniquely determined in Vy by its segment f(t), t € [A, B].

The proof is completely similar to that of Theorem 3 except replacing [-T, T] by [A, B]. The details
are therefore omitted.

It is easy to see that the Haar wavelet does not satisfy Theorem 3. For the sinc wavelet case where

#(t) = ¢s(1) £ “i:‘r—"", we have the kernal Q;(s,t) = %;—Q by (3.4). The corresponding operator
Qyis

(3.18) @0)= [ @20y, vl m, o(s) € LTI

=T 7!’(8 - t)

We claim that Q;(s,t) is positive definite in [T, T)? for any T > 0. It has been shown earlier that
Q.(s, ) is nonnegative definite so that we only have to prove that all Ax are non-zero. Suppose A\x, = 0
for some kp € {0,1,2,---}. Then

T in2/n(s -
(3.19) ‘/:T ‘bko(s)?—n-‘_%(sﬁs—t)t)ds =0, te [—T,T].

Forallt € R, let

} T in 27 7(s —
b = [ o (PEresd

Then, &;,(t) = ®x,(t) = 0 for t € [T, T] and

ds.

Pﬁko(w), w € [-277,27 7],
0, otherwise.

B (w) = {

Clearly, &1, (t) is 2’ = band-limited so that &, (2) is entire when ¢ is extended to the complex variable

z and ®,(z) = 0 for all z. This implies ®x,(t) = 0 for all t € R and &y, (w) = 0 for all w € R.

Consequently, Pr®,(w) = 0 for w € [-27 7,27 7]. Since Pr®:,(w) is time-limited, similar to the above
9



argument Pr®;,(w) = 0 for all w € R. Thus, Pr®;,(t) = 0 for all £ € R or, equivalently, ®;,({) = 0
for t € [-T,T). This contradicts that $x,(t) is an eigenfunction associated with Ag,. Therefore, we
conclude Ax, # 0 and the claim is proved. Furthermore, since ¢,(t) is an entire function, ¢,(t) is
determined by its any segment. It is clear that the sine wavelet satisfies the conditions of Theorem 3
for any T > 0, and the conclusion in Theorem 3 matches the well known result of band-limited signal
extrapolation.

4. Extrapolation of discrete-time signals. In this section, we consider the discrete version
of the GPG algorithm in §3 for handling discrete-time signals. This is what we need practically. Recall
that the DWT of a sequence ¢;,, = z[n] can be implemented via (2.6) for a certain integer J. The
discrete sequence ¢y, is said to be (J, K) scale-time limited for certain integers J and K > 0 if its
DWT coefficients (with lowest resolution Jo) satisfies that coefficients c;, x and b;; may take nonzero
values only when |k| < K and Jo < j < J. When J and K are sufficiently large, the (J, K) scale-time
limited sequence provides a practical discrete-time signal model.

4.1. Discrete GPG algorithm. Let z[n] be a (J, K) scale-time limited sequence. The values
of z[n), n € N, are given, where the cardinality || = N is finite. The extrapolation problem is to
recover z[n] for n  N. Let Py and Pjx be the following operators:

Pyyln] = { y[(;:]’ ::x

and

[k| < K and Jo <j < J,

_ | dix
Prxdjx _{ 0, otherwise

Let I be the identity operator and D and P~! be the DWT and IDWT operators. The discrete GPG
algorithm can be stated as follows.
The Discrete GPG (DGPG) Algorithm:

(4.1) z[n] = Pyz[n],
Forl=0,1,2,--
(4.2) z+V[n] = Pyz[n] + (I = Py)D~' Py xD2[n],

Similar to (3.5) for the continuous-time GPG algorithm, it can be shown that the error energy of the
discrete GPG algorithm is monotonically decreasing, i.e.

312040 0) - 2fl? < 3 12 Ofn] - 2lnlP,  1=0,1,2,--.

4.2. Convergence and uniqueness results. To show the convergence of the discrete GPG
algorithm (4.1)-(4.2), some tools are needed. We introduce two operators H and G related to the
quadrature mirror filters H(w) and G(w) in (2.3) as follows:

HyK) £ V23 ho-zaln],  and  Gylk] £ V2 ga-asvin].

Let H* and G* be their duals, respectively, i.e.
H*yln) V2 ho-nyft], and  Gyln] £ V2 gn-2eslh].
k E

Then, from (2.7), we have

z[n) = (H%cj—1k+G"bs_1,4)[n}

(H* (H*ej-2,4 + G by_24) + G by_1:) [n]

((H*Y ~%ocsop + (HY ~7" G bsop + -+ H'G"by_2p + G*bs-1,2) [n].
10



We can rewrite the above equation as
(4.3) z[n] = wap, n€Z,

where p and w,, are, respectively, column and row vectors of length (2K + 1)(J — Jg + 1) of the form

P = (csibsebssr, -, byor)’
Wy = ((H.):-Jov ((H*)J—JO_IG.),,J' .’(H‘G‘)"’G:l) ’
and where
Clo = (C€ro—K1Clo—K+1:***1CI0,K)
b; = (b,-k,b,-k+1,---,bj.K),
Gh = V2(9-K-209-K+41-20r "1 §K-2n)

(H‘G.)Yl = 2 (Ehm—mug—l(—?nnZhn|—2n9—l(+l—2np‘“.Ehnl—zngl{-mu) ]
ny L ny

((H.)’G‘)n = (\/-)J-i-l (EZ Zhn,—Zn Njey=2n; " hm—2ngg—K—2nn

ny na

ZZ Z hn,--zn Nij—1=2n; """ hm-znqg—K-l-l—znu
nj

n; n3

ZZ Zh"J—z" Rj—1—2n; " hn;-2n:9K—-2n;) ’

11 na

(I{‘)il = (‘/i)h (ZZ Z: th,-2nth,..1—2nJ, "'hn,—2ngh—K-2n1,

) n3 nJ-1
E E E hnjl—Znth‘_1—2nJl i 'hn;-2n3h—K+l-2nu
e ona Ny

)

Z Z e Z th,—-2nthI—1—2nJ; o h'u-zﬂzhx-z"l) ’

Ny Ny Ay
for1<j<J-Jo—1and J, =J — Jy. Now, by letting
N={ml)m2y'°°’mN:ml <m2<"'<mN})

we obtain the following linear system

(4.4) x = Wp,
where
(4.5) x = (z[m], z[ma), - - -:c[mN])T, and W= (wﬁ, ,w;‘:,, . -,wﬁN)T ,

are known. If p can be uniquely solved from (4.4), then 2[n] with n € A/ can be extrapolated from z[n]

with n € . For p, we have (2K + 1)(J — Jo + 1) 4 1y unknowns. Therefore, to uniquely determine
z[n), it is required that N > rg and that the rank of W has to be 9. The above arguments prove the
following theorem.
THEOREM 4. Let z[n] be a (J, K) scale-time limited sequence. Then, z[n] can be uniquely deter-
mined from z[n], n € N, if and only if the rank of W is ro = (2K + 1)(J — Jo + 1).
11



To extrapolate z[n] outside N via the discrete GPG algorithm is equivalent to the solution of (4.4)
for p. There are two reasons to avoid solving (4.4) directly. One is that the direct computation of
W is expensive. The other is that, even though W is known, to solve the linear system (4.4) is also
expensive. We now go back to the convergence of the discrete GPG algorithm.

THEOREM 5. Let z[n] be a (J, K) scale-time limited sequence. If the rank of W is ro = (2K +
1)(J ~Jo+1), then

(4.6) i jeMn} = z[n]|> = 0, as!— oo.

On the other hand, if (4.6) is true for all (J, K) scale-time limited sequences, then the rank of the
matriz W is rq.

Proof. When the rank of W is rg = (2K + 1)(J — Jo + 1), the DWT coefficients p is uniquely
determined from x by solving the linear system (4.4). Also, WWT has rank rp and is nonnegative
definite matrix. Let A;, i = 1,2,.--, N, be the eigenvalues of WW7 and q;, i = 1,2,--+, N, be the
corresponding eigenvectors, i.e.

(4'7) WWTq,' = ’\l'Qi, i= 1,2,---,N,
where
M 2A22 20 > A1 == AN =0,

and q; forms an orthonormal basis of CV, and where C denotes the set of complex numbers. Let

A
(Y1,¥2, 1 ¥r0) = WT(a1,q2, -+, qr,)-

Since q;, 1 < i < ro, are linearly independent and the matrix WT has rank rg, y; with 1 < i < rp
forms a basis of C". Therefore, there are rp constants a; such that

o
P=)_ayi
i=1
From (4.7), only qi[n] with n € N are given. For 1 < i < ro, we extend q;[n] from n € N to all
integers via

- 1
(4.8) qi[n] = Tw,.WTq,-. n € Z.
]

By (4.3) and (4.8), we have

$=1

o ro o
(4.9) aln) =wap=wn ) aiyi = 3 awa WTiqi = 3 aihiiln].
i=1 i=1

Note that the reason for proving (4.9) is similar to that for proving f(t) € U; in the proof of Theorem
2 or 3.
We now prove that A\; < 1for1 <i<rp. For 1 <i<rp,

0 [+ 2]
- . 1 1. _
Il = 3 (@l 5z 3 e Wl = 5D Wra?

n=-o00 ! n=—00

1 1 - 1 .
= 'jjleWTQi||2 = :@"DPNQ:'IIZ = :\§||PN¢I-'||2
£ 1} 3

IA

LETPT
gllqt'll ,

12



where we use the properties that both D and D1 preserve the total energy and that W7 behaves like
DPy when operating on (J, K) scale-time limited sequences. Thus, A; < 1 for 1 < i < ry. Similar to
the proof of the error formula (3.15), we have

(4.10) z[n] — 2W[n] = (I - Px) rzoa.v\,-(l - Xi) qi[n).

i=1

By 0 < A; £1,1 < i< rp, and similar to the proof of the standard PG algorithm,

o0
Z |z[n] — z®[n]|> = 0, as ! — oo.
N =00
This proves the first part of Theorem 5. If (4.6) is true for all (J, K) scale-time limited sequences z[n],
then z[n) is uniquely determined by z[n]),n € N'. By Theorem 4, the second part of Theorem 5 is also
proved. (m]
Suppose that W has rank ro and Ay, Az, - -+, AN are eigenvalues of the matrix WWT arranged in

a descending order, i.e.

AM2A22 2 A > Agq1 == Ay =0.
Based on (4.10), we obtain an error estimate
|z®fn] = z[n]l < O(Aro(1 = Ar,)'),

for sufficiently large !. Even when the rank of W is rg, the conventional discrete PG algorithm for
band-limited signals [18], [20] usually converges slowly. This is because that the condition number of
the corresponding WWT is usually quite large due to the smoothness of the sinc function. In contrast,
the condition number of WWT7 by using suitable wavelet bases is smaller so that a faster convergence
rate can be achieved (see numerical experiments in §5).

4.3. Connection between continuous-time and discrete-time extrapolation. We exam-
ined continuous-time signals in the wavelet subspace V; in §3, where each f(¢) € V; has the form

0

ft) = Z cirdai(t) = Z Co,k®Iok(t) + Z Z bixjx(t).

k=-00 =—c0 JoLi< k=00

In practice, f(t) is small for large |¢| so that cj,,x and b;: are also small for large |k|. Thus, it is
important to consider signals in the following subspace of V},

k=-K Jo<i<d k==K

K K
Vik = {f(t) 1 f(t) = Z: Clo kOIok(t) + Z Z b 1% x(t)for some constant.sc;o_k,bj,k} .

We call signals in Vj i as (J, K) scale-time limited. This explains the motivation of the definition of
scale-time limited sequences. For f(t) € V; x, we have
K K
JO =) cordn®) = D cnpdr®+ Y. Y biawie(t),

k k==K JoLi<l k==K

where
ik =< f,056 >, Crok =< [Pk >, bip =< fi >.

Since ¢(t) behaves like a lowpass filter, c; is close to f(k/27) [11], [15], [23] for sufficiently large J.
Therefore, we can replace ¢;; or z[k] with samples f(k/27) and use the discrete-time GPG algorithm
to provide a good approximation for continuous-time signal extrapolation.

13
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FIG. 1. The test signal z[n).

5. Numerical Examples. In this section, numerical examples are used to illustrate the theory
in §4. The wavelet basis used is the Daubechies D4 [6]. The test signal z[n] as given in Fig. 1is a
(J, K) = (4,2) scale-time limited signal with Jo = 1, whose DWT coefficients are ¢, x = 0, b; 1 = 1.0,
1 <j7<3,1<£k <5 Since the low resolution coefficients c; x are 0 for this case, z[n] is in fact
generated by the 15 wavelet coefficients b;:. Thus, z[n] has 7o = 15 degrees of freedom. We consider
four test cases: the values z[n] are given for n € N with N = {n:1 < n <15}, {n:1 < n < 30},
{n:1<n<42}and {n:1<n<45}.
It is clear that the standard PG algorithm does not apply appropriately since z[n] is not band-
limited. We use the discrete GPG algorithm (4.1)-(4.2) to compute 2()[n] iteratively. Let e; denote
the 2-norm of the extrapolation error at Ith iteration, i.e.

1/2
e & (Z |&Ofn] - :c{n]l"’)

The convergence history of e; as a function of the number of iteration is plotted in Fig. 2. One can
clearly see that the errors remain about the same for N = 15, 30 while the errors decrease as iteration
proceeds for N = 42, 45. In other words, the discrete GPG algorithm converges to the correct solution
only when N = 42 and 45. This convergence behavior can be explained by examining Table 1, where
we show the ranks and the first 15 eigenvalues of WWT for all four cases, where W is defined by (4.5).
Note that the ranks of W are equal to the degree of freedom of z[n] only when N = 42 and 45. For
N =15 (or N = 30), there are 4 (or 1) zero eigenvalues among the largest 15 eigenvalues.

To determine 2[n] outside A is equivalent to the determination of wavelet coefficients b; 1,1 < j < 3

and 1 < k < 5, which are all equal to 1 by design. Let bﬂ be the corresponding DWT coefficients of
z®[n). The convergence of z()[n] to z[n] is equivalent to the convergence of bg'{ to b;x. We observe
from Tables 2 and 3 that all b;'l converge to the true values 1 of b; ;. for N = 42, 45, and the convergence

14
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TABLE 1

first 15 eigenvalues of WW7 rank of W

1.00000
1.00000
0.00065

1.00000
1.00000
0.00000

1.00000
0.97964
0.00000

1.00000
0.96402
0.00000

1.00000
0.11057
0.00000

11

1.00000
1.00000
1.00000

1.00000
1.00000
0.97843

1.00000
1.00000
0.79403

1.00000
1.00000
0.40207

1.00000
1.00000
0.00000

14

1.00000
1.00000
1.00000

1.006000
1.00000
1.00000

1.00000
1.00000
0.99793

1.00000
1.60000
0.97843

1.00000
1.60000
0.36378

15

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

15

1.00000
1.00000
0.97843

1.60000
1.00000
0.72182

15




TABLE 2

1

B 1<i<3,1<k<5

1.08760
1.00013
1.00019

0.59008
1.00000
1.00000

0.00000
0.99501
1.00000

0.00000
0.47866
1.00000

0.00000
0.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

0.92549
1.00000
1.00000

0.15589
1.00000
1.00000

0.00000
1.00000
1.60000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

0.99550
1.00000
1.00000

0.92973
1.00000
1.00000

=
[l

45

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

TABLE 3

1.00000
1.00000
1.00000

B, 1< <3, 1<k <5

0.99954
1.00000
1.00000

1.06050
1.00009
1.00013

0.85387
1.00000
1.00000

0.00000
0.99722
1.00000

0.00000
0.64568
1.00000

0.00000
0.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

0.93937
1.00000
1.00000

0.31247
1.00000
1.00000

0.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

0.99953
1.00000
1.00000

0.99268
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

16

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
1.00000
1.00000



rate is fast. In contrast, there are 4 (or 1) bj-fl’s which do not converge to 1 for N = 15 (or N = 30)
due to the zero eigenvalues existing in the matrix WW7T,

6. Conclusion. In this paper, we proposed a new iterative algorithm which extends the well
known Papoulis-Gerchberg (PG) algorithm for band-limited signal extrapolation to signals in the
wavelet subspaces. The convergence of the generalized PG (GPG) algorithm and the uniqueness
of extrapolated signals for both continuous-time and discrete-time cases are investigated. Several
conditions on signals and wavelet bases to achieve convergence and uniqueness are described.

There are many topics worth further investigation. One interesting problem is signal extrapolation
with noisy data. For band-limited signal extrapolation, the relationship between the PG algorithm
and its discrete version has been studied in [18], [20], [26], where the discrete-time model converges to
the continuous-time one when the sampling rate goes to infinity. However, for extrapolation in general
wavelet subspaces discussed in this work, the precise connection between continuous-time and discrete-
time models is still not well understood. Furthermore, since various bases can be provided by wavelet
theory, it is believed that the proposed GPG algorithm should have many potential applications in
signal recovery.
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