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ABSTRACT

In this paper, the development of a new algorithm is presented for the deconvolution of
an unknown, possibly colored signal which is observed through two or more unknown channels
described by rational system transfer functions. The algorithm not only reconstructs the
input signal but also determines the roots (poles and zeros) of the multipath channels with
enhanced accuracy, even in the presence of additive Gaussian noise at the channel outputs.
This algorithm can also be used in multichannel system identification problems. In this
paper, it is assumed that the additive noise processes at the outputs of the unknown channels

are white. Results are presented for both noise-frce and noisy cases.
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1. Introduction

The problem of deconvolving signals observed through two or more unknown multipath
channels arises in many signal processing applications (see, for example, [1]). The unknown
channels are usually modeled by rational system transfer functions with additive noise at their
outputs. The problem of recovering the input of the channels is based on the determination
of the orders and roots (poles and zeros) of the channel transfer functions.

Several of the existing multichannel adaptive system identification algorithms, gener-
ally fail in determining the orders and roots of the channels with sufficient accuracy. The
reason is mainly twofold: First, the performance surface may be highly ill-conditioned which
leads to very slow convergence rates for stochastic gradient type algorithms [2])-[4]). Secondly,
the possible presence of additive colored noise (with generally unknown variances) leads to
a bias in the root locations determined by any algorithm based on the minimization of a
mean-squared error cost function. These include the RLS-type algorithms {5}-[8])-

The aforementioned limitations of the existing algorithms motivated us to develop
a new algorithm for determining the orders and the roots of the unknown channels with
enhanced accuracy. The algorithm is based on eigenvalue decomposition of the data matrix.
It also employs a balancing technique to compensate the different noise levels at the channel
outputs in order to reduce the bias of the estimated root locations. In this paper, the noise
processes at the channel outputs are assumed to be white. The analysis for colored noise is
currently under investigation, and will be reported in the future.

The organization of the paper is as follows. In Section 2, a detailed problem formulation
is given. Also the adaptive system employed by the algorithm is described. In Section 3, basic
lemmas used in the development of the algorithm are given and their possible utilizations are
explained. In Section 4, the basic framework utilized in the development of the algorithm is
described. In Section 5, some experimental results are given. Finally, some conclusions are
given in Section 6. The proofs of several lemmas stated in this paper may be found in the

Appendices.

2. Problem Formulation

2.1. The Unknown System Model

The block diagram of the unknown system model is shown in Figure 1(a). It is assumed that

the number of channels, p, is greater than one.



All channels are fed by the same unknown signal z(t) which needs to be recovered from
the observations {u{t); i =1,2,..,p}. It is assumed that z(¢) is a wide-sense stationary

and possibly colored signal with
E{z(1)} =0 Vi (1)

where E{.} denotes the statistical expectation operator.

The channels of the unknown system are described by the rational system transfer
functions C;(z7!), given by,

Ni(z7)
-ﬁz?)- i= 1,...,]) _ (2) )

Ci(z7") =
where M;(z~!) and D;(2~1) are polynomials in z~! of orders N; and D;, respectively. Al-
though the powers of z appearing in D;(2~') are strictly non-positive, they are allowed to
be both negative and positive in A;(z?). It is assumed that the channel transfer functions
Ci(z~!) have no common poles or zeros. Furthermore, we assume that the roots (poles and
zeros) as well as the orders of the channels are unknown and that there are no roots at the
origin.

The channel output signals, denoted by ri(t), ¢ = 1,...,p, are corrupted by additive

noise processes n;(t), { = 1,...,p. The following assumptions are made about the noise

processes,
E{ni(1)} =0 i=1,..,p (3)
? for r=0, .
Efnit)ni(t +7)} = { o for v 0 i=1..p (4)

that is the noise processes are zero mean white sequences with variances o?. We have assumed
different noise variances for each channel to set up a more realistic model. Furthermore, we

assume that,
E{z(t)ni(t+7)}=0 i=1,..p and Vi,7 (5)

and
E{n;(t)nj(t+7)} =0 i#j and Vt,7. (6)

The noisy channel output signals given by,
w(t) = r(Q)+n:(t) i=1,..,p (7)

are the only observations of this multichannel system. Our aim is to recover the unknown

signal z(t) from observations u(t), i = 1,...,p. More specifically, we want to determine the
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orders N; and D;, and the roots of the multipath channel transfer functions C;(z~1), i =
1,...,p, with enhanced accuracy.

For simplicity, but without loss of generality, we will consider the two-channel case
(that is, p = 2) in the remaining part of this paper. However, the results will be applicable

to the general case where p > 2.

2.2. The Adaptive System Model

Consider the two channel adaptive system shown in Figure 1(b). The channel transfer
functions are finite order polynomials Wy(z~!) and Wp(2~1) in z~! with orders W, and W3,

respectively. That is, we have,

W) = wotwnaz +.. 4 w2 (8)

Wo(z™Y) = wyo+waaz™l ..+ waw, =W (9)

where the polynomial coefficients w; ; i = 0,..., W; and w2 i=0,...,W; are assumed to be
adaptable via some algorithm. A convenient way to represent the polynomials in (8) and (9)

is to put the polynomial coefficients into a vector form. That is,

wy, = [we, w11, -, WILW, ¥ (10)

w, = [wyo, W21, ., W2, W, ]T . (11)

In other words, the polynomials Wy (z~!) and W»(z~!) are the equivalent polynomials of the

vectors w, and w,, respectively. The composite tap weight vector is defined as,

w=[w] w] ]:(1;1’,+W3)x1 . (12)

The two channels of the adaptive system are fed by the observation signals u;(t) and

uz(t), respectively. For convenience, we define the following composite regressor,
u(t) = [wa(t), wa(t = 1)y ooy wa(t = Wh), w2(t), w2(t = 1), o, w(@=W2)JT . (13)
Therefore, the error signal e(t) is given by,
e(t) = wTu(t) . (14)

Many of the existing multichannel system identification algorithms such as the stochas-

tic gradient type algorithms [2]-[4], and the RLS based algorithms [5)-[8]), aim to minimizing



the mean-squared error (MSE) defined by,

T

E(w) = le()? (15)

t=0
(or a weighted version of it) where T is the length of the time interval.
Assuming that the observation signals u1(t) and uz(t) are noiseless ( that is, 0y = 02 =

0), and assuming that the adaptive channel orders are chosen such that,

W, No+ Dy (16)

W, - (17)

1\’1 + D2 ]
the unique family of solutions for W (z~!) and W,(z!) that minimize £(w) is given by,

wi(z"l) = aMNa(z" YYDy (z7Y) (18)
W2(Z_1) = —aNl(z’l)Dg(z“) (19)

where o is an arbitrary constant. With the above family of solutions, we have,
E(w)=0 . (20)

Thus, if we can find some vector w for which £(w) = 0, then the set of roots of the chan-
nel transfer functions, C;(z71) and Cy(z~!), can be obtained by factorizing Wi(z7?) and
Wy(272). .

A similar result can be obtained if one of the orders, W; or W, is chosen as in (16) or
(17), and the other is overestimated. Without loss of generality, assume that W, = N2+ Dy
and W, > Ny + D;. More specifically, let Wy = Ny + D2 + AK. Then the unique family of
solutions for Wy(z~1) and Wp(2~?) for which £() = 0 is given by,

Wi(z™?) = aNa(z7)Dy(=7Y) (21)
Wo(z™h) = —aNi(z7)Da(z7")0ak(z7") (22)

where 8ax(z~1) is a polynomial of order AK having all of its roots at the origin, and a is
an arbitrary constant.

The minimization of £(w) can be achieved by employing an adaptive control method
such as the LMS algorithm or the multichannel RLS algorithms (conventional or modular).
Computer experiments have revealed that the stochastic gradient type algorithms (such as

LMS) may have extremely poor performance in such applications. This is mainly due to
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large eigenvalue spread which leads to very slow convergence rates [2]-[4]). The least-squares
based algorithms (such as the conventional or modular multichannel RLS [5]-[8]) are not, in
general, affected by the eigenvalue spread. However, it can be shown that the presence of
noise in the observation signals u;(t) and ua(t) causes a bias in the estimated root locations
of the channel transfer functions C;(z~1) and Cy(z™!), when £(w) is employed.

In this paper, we assume that the orders Ny, Na, Dy, D3, of the channel transfer func-
tions, C1(2~1) and Cz(z7'), are unknown. Therefore, we may not be able to choose the
adaptive system orders W, and W, as in (16) and (17). However, we assume that the

adaptive system orders can be overe.stimated, in the sense that,
Wy 2 N+ Dy (23)
W, > Ni+Dy . (24)
Our objective is twofold:
i) to determine the minimal orders of the adaptive channels, that is,
Wim = N+ Dy (25)
Wom = M+D2 , (26)
and
ii) to estimate the root locations of the channel transfer functions Ci1(z~') and Cy(271) with

sufficient accuracy.

To achieve these goals, we make use of certain lemmas described in the next section.

3. Basic Lemmas Leading to the New Algorithm
3.1. Extraneous Zeros of the Adaptive Systems

As described in Section 2, if the channel orders are known and the channel noise variances
are zero, there is a direct relationship between the roots of the unknown channels and the
roots of the adaptive systems. However, in general, the equalities in (16) and (17) do not
hold and thus the minimal roots can not be determined by (18) and (19). Therefore, we need
a similar relationship between the minimal roots of the unknown channels and the roots of
the adaptive systems when the orders are overdetermined (that is, the case where (23) and

(24) hold by strict inequality). More specifically, we will assume that,
W, = No+D1 4+ K, (27)
W, = NM+D2+ K> (28)



where K, and K, account for the extraneous zeros of Wi(2~!) and W,(z™1), respectively.

Also, we will assume that the channel output noise variances are zero, that is
oy=02=0 = w(t)=ri(t) and uy(t) =rt) V¢ . (29)

For the discussion in this part, we will make use of the following matrix

u(T)
uI(T-1)

A, = (30)

o7 (1)

where u(t) is the composite regressor defined by (13). Also, we define the following sample

correlation matrix,

R,=AlA., . (31)

Lemma 1:
Assuming o7 = 02 = 0 and z(t) is persistently exciting, for sufficiently large T', we
have,
dim(R(R,)) = I +1 (32)

where R(.) denotes the null space of a matrix, and dim(.) denotes the dimension of a vector

space. Also,
K = min{K,, K3}. (33)

A proof of the above lemma is given in Appendix A. In Lemma 1 the term persistently
ezciting refers to the fact that the input signal z(t) is such that for sufficiently long time of
observations, the matrix A, achieves the greatest possible rank that is possible for any input
signal and for arbitrarily long observation time.

Corollary 1:

With the assumptions in Lemma 1, R, will have exactly (X + 1) zero eigenvalues and
(K + 1) linearly independent eigenvectors corresponding to these eigenvalues.

The proof of the above corollary is obvious.

In this paper, we will denote the eigenvectors corresponding to the (X + 1) zero eigen-

values of R, as g, i=1,..,.(K+1)



Lemma 2:
Assuming g; = 0, = 0, the error signal ¢( 1) can be made identically zero for all t by

the following family of system transfer functions for the adaptive channels,

Wi(z™") = aNa(z"M)Di(z"1)8u(z) (34)

Wg(z-l) —o.f\,fl(z'l)'Dg(z"’)ﬂg(z'l) (35)

where the polynomials 8,(z7!) and 62(z~") have orders K; and K7, respectively, and they
have exactly the same factorizations except for the one with the larger order having all of its
extraneous zeros at the origin. Alse, & appearing in (34) and (35) is an arbitrary constant.
A proof of the above lemma is obvious.
Without loss of generality, assuming that K2 > Ky and defining AK = (K2 — K,), we

may write the family of solutions given by (34) and (35) as,

aNy (2" )YDiy (27N (z71) (36)
—aN (z7)Do(z7 )0 (271 )0ak (z71) (37)

Wl(z"‘)

Wy(z71)

where 8ax(z71) is a polynomial of order AL™ having all of its roots at the origin.
Corollary 2:
Assuming 0; = o2 = 0 and z(t) is persistently exciting, the error signal e(t) can be
made identically zero for all t if and only if the transfer functions for the adaptive channels

are of the form,

Wiz = eNp(z")Di(z")Bi(27Y) (38)
Wa(z™") = —aNi(z"))Da(z"1)a(z"") (39)

where the polynomials 8;(2~1) and 8;(z"!) have orders Ky and K3, respectively, and they
have exactly the same factorizations except for the one with the larger order having all of its
extraneous zeros at the origin. Also, @ appearing in (38) and (39) is an arbitrary constant.

A proof of the above corollary is given in Appendix B.

Therefore, any solution for the adaptive channel transfer functions Wy (z~1) and Wy(z"1)
that make e(t) = 0 Vt will have K (where K is as defined in (33)) common zeros appearing
exactly at the same locations. The other zeros will be at different locations since we assumed
that the unknown channels have no poles or zeros in common. Furthermore, the locations

of the K common zeros are completely arbitrary.



The following corollary forms the basis of a root detection algorithm.

Corollar)} 3:

Assume that the eigenvectors g, i = 1,...,(K + 1), corresponding to the (K + 1)
zero eigenvalues are partitioned as in (12). Let these partitions be denoted as ¢, ,, ¢;, i=

1,..., K. Let,

Qii(z"h) = g}:].[l, o,z iz, LK (40)
Qia(z") = 54{2.[1,2-1,...,:-“’2]7 i=1,.,K . (41)

That is, Q;1(z~!) and Qi2(z"1) are the equivalent polynomials of the vectors g, , and g,
respectively. Then, the minimal roots of Qia(z7Y), i=1,..,K, (or,-Q.',z(z“)) will be
exactly at the same locations. The extraneous roots will, in general, be at different locations.
Furthermore, for a given i € {1,..., K}, the minimal roots of Q;1(2~") and Q;2(z71) will
be at completely different locations and the extraneous zeros will be at exactly the same
locations.

The proof of the above corollary follows easily from the previous lemmas and corollaries.

3.2. Noise Balancing Method

Our discussion thus far is based on the assumption that g; = o2 = 0, which may be unrealistic
in practice. In general, there is always noise and, furthermore, the noise variances at each
channel may be different; that is, 01,02 # 0 and o1 # 0.

In this case, we will no longer have the equalities described in (29). To make the
preceeding analysis useful in the presence of noise, we will develop in this section a noise
balancing method.

We define a noise matrix

&(T)
(T -1)
An - . (42)
n(1)
where n(t) is the composite noise regressor defined by
a(?) = [na(2), ... m(t—W), na(t), ..., na(t—Ws) |- (43)
The noiseless channel output matrix is defined by
=(T)
(T -1)
A= . (44)
(1)
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where the regressor r(t) is defined by
L(t) = [T](t), eeey rl(t - u,l)’ Tg(t), weey 1‘2(! - Wg) ]T . (45)

Thus, we have,

Ay =A  + Aq (46)
which implies that
R, = R.+ R, + 2474, (47)
where
R.=ATA, and R,=AT4A, . (48)

Note that the matrix R, obeys all the results obtained for Ry in the previous section.
This is because, for oy = o3 = 0, we have R, = R,. Thus, even in the noisy case, R, will
have a total of (K + 1) zero eigenvalues (where K is given by (33)) and the corresponding
linearly independent eigenvectors will have the properties described in the previous section.
However, since r(t) is not observable, we have to develop results for u(t).

In the forthcoming analysis, we will assume that the data length is sufficiently long so

that the assumptions given by (3)-(6) imply that,
R, = diag(01, ---, 01,02, ..., 02) (49)

and
ATA, =0 (50)

where O is the zero matrix. Therefore, we have,

R, ~ R, + diag(o1, ...,01,02,...,02) . (51)

Wi+l Wa+1

From (51), it is clearly seen that for oy # 02, the eigenvalues and eigenvectors will not in
general obey the conditions established in the preceeding section. However, the following
lemma will enable some kind of noise balancing.

Lemma 4:

Assume that R, has eigenvalues A, and corresponding eigenvectors v, fori=1,...,(Wi+
W, + 2). Consider the matrix,

R(€) = Ry + P(£) (52)
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where P(£) is defined by
‘ P(€) = diag(¢, ...,£,0,..,0) . (53)

Wi+l Wi+l
If £ = 02—0y, then the matrix R(€) will have the eigenvalues (Ay,;+02) and the corresponding
eigenvectors will still be v, ; for i = 1,...,(W1 + W, + 2).

The proof of the above lemma is obvious.

Therefore, for £ = o2 — 01, the matrix R(£) will have K + 1 minimum eigenvalues
which will be equal to o, and the corresponding eigenvectors will obey the Corollary 3.

In cases where o; and oy are very different, regardless of the data length, the root
locations estimated from the eigenvectors of R, may be extermely bias;d. To remove this
effect, the noise balancing method described by (52) may be employed. However, since the
noise variances are not generally known a priori, an adaptive method for determining the
parameter £ must be developed based on a suitable criterion. The choice of this criterion is

currently under investigation.

4. The “Algorithmic Fractals” Framework

The exact formulation in this Section will be carried out for the noiseless case. However,
it can be approximated for the noisy case. The minimal systems we are searching for are

described by the transfer functions

Wim(z!) = aMp(z")Di(z7") (54)
Wg.m(z_l) = —aM(Z—l)Dg(Z_l) . (55)

These solutions may be obtained from (36)-(37) by letting 6,(z7!) = 1. It should be reminded
that the transfer function @ax(z~!) may appear either in Wi m(z71) or Wym(27?). Its
presence in the final solution is not a problem since it represents a system with all of its
roots appearing at z = 0. -

Each polynomial pair Q;:(z7?) and Q;2(z7!) obtained from the eigenvectors g, for

i=1,...,/{ can be written as

Qi1(z™Y) = Wim(z™)8ia(z"") (56)
Qix(z7Y) = Wam(zDia(z"Y) (57)

These equations represent K pairs of system transfer functions each of which is 2 minimum

mean-squared error solution of the two channel system identification problem. Each pair,
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i=1,..., K, of transfer functions will only differ from another by 8;1(z71); the polynomials
Wy m(z71), W, m(271) will always be the same, whatever the value of i.

These observations lead to an “algorithmic fractals framework”: Each pair of transfer
functions Q;1(z~), Qi2(z71) can be thought of as the output signals of a two-channel
system where the channels have transfer functions Wy m(z7!) and Wy m(271), respectively,
and input signal 8;;(z~"). This model is illustrated in Figure 2(a). Comparing Figure 2(a)
with Figure 1(b) we see that the two block diagrams are essentially the same. Note that each
of the K pairs of transfer functions given by (56),(57) represents a distinct experiment in
which the system transfer functions are the same, but the input signals 8;1(27?) are different.

The “a.lgoriihinic fractals” framework is analogous to the original problem formulation.
The main difference is that in the original problem, the input and output signals were
assumed to be stochastic power signals whereas now they are finite length deterministic
energy signals.

The solution proceeds in a similar fashion as in the original problem, and it involves
an adaptive finite impulse response system as shown in Figure 2(b). The channel outputs
are now obtained by partitioning the eigenvectors ¢ for i = 1,..., K. Once the orders of
the adaptive channels in Figure 2(b) are proposed, linear equa.tidn; 'in ter.ms of the channel
transfer function coefficients are obtained. Finally a similar eigenvector analysis is carried

out for this new system of equations. If the orders are correctly chosen, the channel transfer

functions will be

W) = W) (59)
Wz(z-l) = W1(Z-1) (59)

5. Experimental Results

In this section, we will present several experimental results both for the case where o1 =
o2 = 0 and also for the case where oy # 0 and 02 # 0. In all experiments, we will assume

that the pole and zero polynomials of the chaunels are given by

NMi(z™h) = 1.0+1327' 4044272 - 2178270 (60)
M(z™!) = 1.0-1.12"' 40.28:7% +1.6427° + 0.16z7° (61)
Di(z™') = 1.0-0.6z"1 +0.21z72 + 0224272 - 0.0782 " (62)

Dy(z71) = 1.0+0.1z7" +0.49:7% - 0.223:73 - 0.096:7¢ - 0.1837:°  (63)
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and their orders are, Ny =3,N, =4,D, =4,D;=5.
The minimal orders, W; ,, and W, of adaptive channels will be both 8, and the

corresponding minimal root locations are shown in Figure 3(a) and (b), respectively.

5.1. Noise-free Case

Experiment 1:

Assume that W, = W = 8. Then the matrix R, will have a single zero eigenvalue with
the eigenvector g,. The family of solutions for Wy(z™!) and Wy(z™?) for which £(w) = 0
will be given by (18) and (19). Note that the polynomials Wi(z~!) and Wy(2~1) will be
the same as the equivalent polynomials ©;1(27") and Qy 2(27") of the vectors g,,2nd g,
respectively, where 9%, and q, , are the partitions of ¢, as described by (12).

Obviously, k) = K2 = 0 and the polynomials Q1.1(z7t) and @y 2(z~") will have no
common roots.

Figures 4(a) and (b) show the roots of @;,1(27") and Q1 2(z7"), respectively. They
are exactly at the locations shown in Figures 3(a) and (b).

Figures 5(a) and (b) show the root locations obtained by the LMS algorithm. Although
the iterations go up to 30000, convergence is far from being achieved even in the known order
case and the absence of noise. The results concerning the LMS algorithm will not be given
in the forthcoming experiments since they are all unsatisfactory.

Figures 6(a) and (b) show the root locations obtained by the Modular Multichannel
RLS algorithm applied for 1000 iterations. Clearly, similar results have been obtained by
the eigenvector-based method.

Experiment 2:

Assume that W, = Wy = 10. The matrix R, will have eigenvectors, ¢, i=12,3,
corresponding to the 3 zero eigenvalues. The number of extraneous roots are Ky=K;=2.

In Figures 7, 8, and 9, the root locations of the polynomials Qi1(z71) and Q;a(z71) for
i=1,2,3, are shown. A careful observation reveals that the minimal roots of the channels
appear at the true locations as shown in Figure 3. Furthermore, for each pair of vectors
% and % g i = 1,2, 3, the extraneous roots appear at exactly the same locations. On the
other hand the true roots appear at different locations.

The results of the modular RLS algorithm applied for 1000 iterations is shown in
Figure 10.. Since the modular RLS solution satisfies £(1) = 0, the corresponding equivalent

polynomials can be factorized as in (38) and (39). Therefore the modular RLS solution has
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2 (= K, = K3) pairs of roots occuring at exactly the same locations.

Experiment 3:

Assume that W, = W, = 14. Thus the matrix R, will have 7 eigenvectors ¢, i=
1,...,7 corresponding to the zero eigenvalues. The number of extraneous roots are K, =
K, = 6. Figures 11-17 show the root locations corresponding to each of the eigenvectors,
‘B i1i=1,..,7.

Figure 18 shows the results obtained by the modular RLS algorithm. The minimal
roots appear at different locations and the 6 extraneous roots appear at exactly the same

_locations.

Obviously, for the noiseless case, tl.1e performances of the eigenvector based algorithm

and the modular multichannel RLS algorithm are similar in terms of correctly determining

the orders and roots of the unknown channel transfer functions.

5.2. Noisy Case

We repeated the three experiments described in the previous section by including the presence
of additive, uniformly distributed, white noise with oy = 02 = 1. This corresponds to
SNR = 10dB at both channel outputs. Since the noise variances have been chosen to be the
same for both channels, noise balancing has not been used in the following experiments.

Experiment 4:

The adaptive channel orders are W, = W, = 8, which implies that K; = K, = 0.
Therefore the matrix R, defined in (48) will have a single zero eigenvalue. The correspond-
ing eigenvector will approximately be equal to the eigenvector of R, corresponding to its
minimum eigenvalue.

In Figure 19, the roots obtained by the eigenvector of R, corresponding to its minimum
eigenvalue are illustrated. Although some of the roots appear to be very close to the true
ones, there is a significant shift in the locations of some others.

In Figure 20, the modular multichannel RLS results are presented. Although the
algorithm has been applied for 10000 jterations, the convergence is not satisfactory.

Experiment 5:

The adaptive channel orders are as in experiment 2. Figures 21-23 show the roots of
the eigenvectors of R, corresponding to the 3 minimum eigenvalues. Note that some of the
roots are very close to their true locations. Also some of the extraneous roots may be easily

determined since they appear approximately at the same locations for both channels and for
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each of the three eigenvectors. However, it seems difficult to determine the exact orders.

In Figuré 24, the modular multichannel RLS results are shown. The results are far
from being satisfactory. The eigenvector-based method seems to give a better insight to the
true orders and root locations of the channels.

Experiment 6:

In this experiment, the adaptive channel orders are chosen as in experiment 3. Fig-
ures 25-31 show the roots obtained by the eigenvectors of R, corresponding to the 7 minimum
eigenvalues.

In Figure 32, the modular multichannel RLS results are shown. Although in the
presence of noise, both the eigenvector decomposition and the modular multichannel I-{LS
seem to perform badly, it is clear that the eigenvector decomposition gives a better idea

about the true root locations and true orders.

6. Conclusions

In this paper, results have been summarized which lead to the development of a new al-
gorithm for the deconvolution of unknown signals observed through two or more unknown
channels.

It has been observed through experimental results that some of the well known methods
in the literature (LMS and modular multichannel RLS) perform quite unsatisfactorily in the
presence of noise.

The eigenvector analysis of the sample correlation matrix R, seems to be very promis-
ing for more accurately determining the roots and orders of the channels through which the
unknown signal is observed. The cost of enhanced accuracy will probably be a significant

increase in the computational requirements compared to many of the other algorithms.
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Appendix A

Without loss of generality, assume that K = min{K,, K>} and define AK = K2 - K;.

Let
W,’ = N+ D (A.l)
W, = N+ D+ AK (A.2)
and
Av = Au; Aug ] (A3)
where
w(T - K) (T - K)
Au; =] : and Au5 =1 : (A4)
(1) %3(1)

and the regressors, 2}() and u5(t) are defined by

(1) = (), w(t-1), .., u(t- W1 +K)] (A.5)
wh(t) = [uat), wa(t=1), o, ua(t-Wi+K)] . (A.6)

From the discussion leading to (21) and (22), we have
dim(N(A4y)) = 1 (A.7)

where R(.) denotes the null space of a matrix, and dim(.) denotes the dimension of a vector

space.
Let
U1 = [ul(t), wy(t - 1), e u1(1) ]T (A.8)
g = [u2(t), ux(t - 1), -\ uz(1) )7 (A.9)
and define
Af.'n"’"’ = r-Kems = BT-K4 | Ay | 27— fogms - » Y2, 7K1 | Aug ] . (A10)

With this definition, we have,
A% =4, and AN =4, (A.11)
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where A, is given by (30).

Consider A(J 0) given as
AU =t rop | Ay LAy ] (A.12)

Note that, in each row of Af,‘."”, the first entry belongs to a strictly more recent time instant
than the other entries of the same row. Since we can control this entry arbitrarily by the
input z() at the same time instant without affecting the other entries of the same row, it
is always possible to make the first column of A( 0 , that is, ¥} 7_g-4q, linearly independent
from the remaining columns by properly controlling u;(t) through sufficiently many number

of time instants. Therefore, we have,
dim(R(AL?) = dim(R(4w)) =1 . (A.13)
Now consider AS‘:’O), that is,
AB'O) =¥ ks Br-k41 4w 4] - (A.14)

Following a similar argument, it can be shown that it is always possible to make the first

column of A( ) linearly independent from the other columns. Therefore, we have
dim(R(A%) = dim(R(4a8M) =1 . (A.15)
Extending the above discussion further, we find that
dim(R(AKD)) = dim(R(ALMN) =1 . (A.16)

Now consider A( 1) giben by

Ka
ASY = (8 gy s Bl | A |27 ki 1 Ay ) - (A.17)

Using (18)-(20), it is trivial to show that the column uj r_g4, can be expressed as a linear

combination of the remaining columns. Therefore

dim(R(A%V)) = 14 dim(r(AS M) =2 . (A.18)
Similarly,
dim(X(AKD) = 1 + dimR(AF M) =3 . (A.19)
Finally, we obtain
dimRAFy =K +1 . (A.20)

17



Using the fact that A,("."‘K) = A, and remembering that the matrices A, and R, have the

same null spaces, we have

dim(R(R.))= K +1 . (A.21)

Appendix B

From Lemma 2, we conclude that the K extraneous roots of Wi(z7!) and Wa(z71)
can be chosen in an arbitrary manner. Also, it can be shown that these K arbitrary roots,
together with the arbitrary constant a appearing in (34) and (35), imply an exactly (K +1)-
dimensional subspace S; for w such that for each w € S;, we have E(w) = 0. Furthermore,
there is a one to one correspondence with the set of K extraneous roots and the vectors in
Si.

From Lemma 1,’wé. know that the dimension of null space of R, (or equivalently, A,)

is exactly (K + 1). Therefore this space must be S; and thus Corollary 2.
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Figure 3: Desired root locations for (a) adaptive channel-1, and (b) adaptive channel-2.
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Figure 4: Adaptive channel root locations obtained by EVAM for the noiseless case. (a)
4

channel-1, {(b) channel-2.
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Figure 5: Adaptive channel root locations obtainec by LMS algorithm for th~ noiseless

case. (a) channel-1, (b) channel-2.
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Figure 6: Adaptive channel root locations obtained by Mcdular RLS algorithm for the

noiseless case. (a) channel-1, (b) channel-2.
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Figure 7: Adaptive channel root locations obtained by EVAM (using ¢,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 8: Adaptive chann:! root locations obtained by EVAM (using ¢,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 9: Adaptive chaniel root locations obtained oy EVAM (using ¢,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 10: Adaptive chanuel root locations obtained by Modular RLS algorithm for the

noiseless case. (a) channel-1, (b) channcl-2.
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Figure 11: Adaptive channel root, locations obtained by EVAM (using g, ) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 12: Adaptive channel root:locations obtained by EVAM (using g¢,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 13: Adaptive channel root'locations obtained by EVAM (using g,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 14: Adaptive channel root locations obtained by EVAM (using g,) for the noiseless

case. (a) channel-1, (b) channel-2.
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Figure 15: Adaptive channel root locations obtained by EVAM (using ¢,) for the noiseless

case. (a) channel-1, (b) channel-2.
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case. (a) channel-1, (b) channel-2.
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Figure 17: Adaptive channel root locations obtained by EVAM (using ¢.) for the noiseless

case. (a) channel-1, (b) channel-2.



Figure 18: Adaptive channel root locatio1s obtained by Modular R1.S algorithm for the

noiseless case. (a) channel-1, (b) channel-2.
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Figure 19: Adaptive channel root locations obtained by EVAM for SNR =~ 10dB. (a)

channel-1, (b) channel-2.
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Figure 20: Adaptive channel root locations obtained by Modular RLS algorithm for SNR

=~ 10dB. (a) channel-1, (b) channel-2.
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Figure 21: Adaptive channel root locations obtained by EVAM (using q,) for SNR =~ 10dB.
(a) channel-1, (b) channel-2.
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Figure 22: Adaptive channel root locations obtained by EVAM (using ¢,) for SNR 2 10dB.

(a) channel-1, (b) channel-2.
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Figure 23: Adaptive channel root locations obtained by EVAM (using ¢,) for SNR = 10dB.
(a) channel-1, (b) channel-2.
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Figure 24: Adaptive channel root locations obtained by Modular RLS algorithm for SNR
= 10dB. (a) channel-1, (b) channel-2.
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Figure 25: Adaptive channel root locations obtained by EVAM (using g, ) for SNR = 10dB.
(a) channel-1, (b) channel-2.
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Figure 26: Adaptive channel root locations obtained by EVAM (using ¢,) for SNR = 10dB.
(a) channel-1, (b) channel-2.
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Figure 27: Adaptive channel root locations obtained by EVAM (using ¢,) for SNR = 10dB.

(a) channel-1, (b) channel-2.
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Figure 28: Adaptive channel root locations obtained by EVAM (using ¢, ) for SNR = 10dB.

(a) channel-1, (b) channel-2.
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Figure 29: Adaptive channel root locations obtained by EVAM (using ¢, ) for SNR = lde.
(a) channel-1, (b) channel-2.



expé  (N1=15,n0s=10000,var=1)(w1)

imaginary part

imaginary part

1 i

-1 0.5 0 0.5 1

real part )
Figure 30: Adaptive channel root locations obtained by EVAM (using ¢,) for SNR = 10dB.

(a) channel-1, (b) channel-2.
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Figure 31: Adaptive channel root locations obtained by EVAM (using g.) for SNR =~ 10dB.

(a) channel-1. (b) channel-2.
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Figure 32: Adaptive channel root locations obtained by Modular RLS algorithm for SNR
z 10dB. (a) channel-1, (b) channel-2.



