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Abstract

Image compression based on a multiresolution approach has been inten-
sively studied over the last ten years, including the Laplacian pyramid method
by Burt and Adelson and the pyramidal wavelet transform (PWT) method by
Mallat. In this research, we propose a modified wavelet transform known as the
full wavelet transform (FWT) for image compression. By the FWT, we apply
recursively the two-scale wavelet decomposition to all subimages so that an im-
age is decomposed into blocks of the same size. It is shown experimentally that
energy compaction is achieved in both the spatial and frequency domains via
FWT, and can be effectively utilized to achieve high image compression ratio
while preserving good image quality. Moreover, entropy coding is used for im-
prove the overall performance. Numerical experiments show that our algorithm
has a comparable performance with several existing methods. The relationship
between the proposed method and other popular image compression methods
such as DCT, PWT and SBC (subband coding) is also discussed.

1 Introduction

Image compression methods based on a multiresolution approach have received a
lot of attention over the last ten years. The major advantage of the multiresolu-

tion approach is that it provides a graceful degradation between image quality and
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compression ratio and is hence suitable for progressive transmission. The first mul-
tiresolution compression method, which is usually known as the Laplacian pyramid
scheme, was proposed by Burt and Anderson [2]. The basic idea is to decomposition
an image into a low resolution image by lowpass filtering and a detailed image which
is the difference of the original image and the low resolution image. By recursively
performing the decomposition for the lower resolution images, we obtain a sequence
of detailed images of different resolutions which can be encoded separately. Improve-
ments of the Laplacian pyramid scheme were considered by Uncer [22]. With recently
developed wavelet theory, the application of wavelet transform to image data com-
pression has been studied by many researchers (1], [6], (7], [14], [17], [16], [27]. The
wavelet-based methods are very similar to the one proposed by Burt and Anderson
except that the lowpass and highpass filters used in the wavelet transform have to
satisfy a certain requirements so that the transformed image is in fact obtained via
orthogonal transformation. Since the transform is usually performed by using a pyra-
midal structure proposed by Mallat [16], [17], we call the wavelet-based compression
methods the pyramidal wavelet transform (PWT) scheme.

We present a new method for image compression based on a modified wavelet
transform called the full wavelet transform (FWT) in this research. With the FWT,
we first apply the two-scale wavelet decomposition to the original image and obtain 4
subimages. Then, we apply the two-scale wavelet decomposition to all 4 decomposed
subimages and obtain 16 subsubimages. The procedure is performed recursively until
a desired level is reached. Thus, an image is decomposed into small blocks of the
same size via FWT, where each block corresponds to a particular frequency band (or
channel) whereas each transform coefficient in the blocks corresponds to a local spatial
region in the original image. We observe experimentally that energy compaction is
achieved in both the spatial and frequency domains via FWT. That is, most energy
is concentrated in either low frequency blocks or transform coefficients associated
with spatial regions with strong variations such as edges or textures. The energy

compaction property can be effectively utilized to achieve high image compression



ratio while preserving good image quality.

The study of the human visual system indicates that most important information
of an image exists in edges where the gray levels of pixels have a larger variation. Due
to the observation, image compression based on edge contour extraction and coding
has been examined by many researchers (8], [12], [13]. The resulting methods exploit
the spatial localization property of the original image in contrast with transform
coding methods which utilize the frequency localization property of the transformed
image. Based on the discussion on energy compaction in Section 2.3, one can easily
see that the edge information of the original image is compactly summarized in the
FWT coefficients.

Following the decomposition procedure, we adopt a very simple scheme for the
quantization and coding of FWT coefficients. We call the block consisting the lowest
frequency components the d.c. block and all other blocks the a.c. blocks, and the
FWT coefficients in the d.c. and a.c. blocks are quantized separately. The d.c. block
contains a smoothed and downsampled version of the original image. The gray levels
of coefficients in the d.c. block often have a Gaussian density and can be quantized
with 6 bits to keep the fidelity. A bit allocation scheme is used to generate a bit
assignment map for coefficients in the a.c. blocks, which are then quantized based
on the Laplacian or Gaussian densities. Finally, the entropy coding is used to encode
the quantized FWT coefficients. While a general theory is lacking at this point, we
demonstrate experimentally that the proposed algorithm perform very well.

The paper is organized as follows. We review the conventional pyramidal wavelet
transform, introduce the new FWT, and illustrate the energy compaction property
of the FWT in Section 2. We examine the quantization and coding of FWT coef-
ficients in Section 3. Numerical experiments are given in Section 4 to demonstrate
the performance of the FWT method. In Section 5, we discuss the relationship be-
tween our proposed algorithm and three other popular compression schemes, i.e. the
DCT (Discrete Cosine Transform), PWT (Pyramidal Wavelet Transform), and SBC

(SubBand Coding) schemes. Concluding remarks are given in Section 6.



2 Image Transform via 2-D FWT
2.1 Full Wavelet transform

The wavelet transform provides a multiresolution tool for signal analysis. The two-
scale discrete wavelet transform of a sequence f[n] can be viewed as passing the
signal through a quadrature mirror filter (QMF) consisting of a low- and high-pass
filter pair denoted, respectively, by k[k] and g[k] with g[k] = (=1)*A[1 — k]. The
forward transform can be written as

a = V2T, h[n—2k]f[n],
di = V2L,gln - 2k|f[n],

while the inverse transform takes the form
fln] = v2 (Z hln — 2klex + D g[n — ‘Zk]bk) .
k k

Additional constraints can be imposed on A[k] and g[k] so that the resulting wavelet
representation has some nice properties [20]. Many wavelet transforms with various
filter responses k[k] have been proposed. They include the Haar basis, the family of
Daubechies bases [5], and the spline wavelet basis [16], [17]. For 2-D signals, one can
generalize the above idea by forming the tensor product of 1-D wavelet transforms
along horizontal and vertical directions so that the signals can be decomposed into the
low-low (LL), low-high (LH), high-low (HL), and high-high (HH) frequency channels.
For details on the relationship between the wavelet transform and filter bank theory,
we refer to [10] and [23].

There exist many possible ways to generalize the above two-scale wavelet trans-
form to the multiple scale case. The conventional approach is to apply the two-scale
decomposition recursively only to the lowest frequency channels. Since it can be
efficiently implemented via a pyramidal computational algorithm [16], [17], we call
it the pyramidal wavelet transform (PWT). The second approach is to apply the
two-scale decomposition to channels which contains a significant amount of energy

or information. The structure of the computational algorithm can be well described
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by binary and quad trees in the 1-D and 2-D cases, respectively, so that it is called
the tree-structured wavelet transform (TWT) [3]. Coifman, Meyer and Wickhauser
[4] recently generalized the wavelet basis function to include a library of modulated
waveform orthonormal bases called wavelet packets. It turns out that the application
of the tree-structured wavelet transform to a signal is equivalent to representing it
with a certain wavelet packet basis. Finally, we may consider the recursive application
of the two-scale decomposition to all frequency channels, and call it the full wavelet

transform (FWT).

2.2 Block Decomposition

Let I, denote the original image of size L x L where L = 2'. By recursively applying
the wavelet decomposition r times to Iy, we obtain a transformed image I, consisting
of R x R (R = 27) subimages and each subimage contains M x M (M = 2™ and
I = m + r) pixels. Each subimage is called a block and is labeled from left to right
and top to bottom with 2D indices (k,!) where 0 < k,! < (R —1). The pixel inside a
subimage is similarly labeled by 2D position indices (m,n) with 0 < m,n < (M -1).
The c(k,l;m,n) is used to denote the value of the transform coefficient located at
position (m,n) in block (k,!). Thus, an image can be decomposed into the union of
blocks of the same size via the FWT. The FWT decomposition of the Lena image of
size 512 x 512 with the Haar basis and » = 2 is given in Fig. 1, where gray levels in
each block are normalized to be between 0 and 255 for the ease of visualization. Note
that the block (k,!) = (0,0) carries information of the lowest frequency channel and
is quite different from other blocks. For convenience, we call it the d.c. block and all
other blocks with (k,!) # (0,0) the a.c. blocks.

Each block obtained by the FWT corresponds to a frequency band while each
transform coefficient corresponds to a local spatial region. By increasing the level
number r of the FWT, we can increase frequency resolution at the expense of spatial
resolution. There are two relationships of our interest with the above FWT decompo-

sition: the relationship between different blocks and the relationship between different



transform coefficients. Due to the space localization of the FWT, the quantization
error is confined within a local area whose size is controlled by M. On the other
hand, we want to choose R large enough so that there are sufficient frequency blocks
to fully utilize the spatial domain correlation. Thus, we have to consider a balance
between the values of R and M. To compress of an image of size 512 x 512, we find
empirically that it is suitable to choose » = 3 or 4 so that the block is of size 64 x 64
or 32 x 32.

2.3 Energy Compaction

Each block obtained by the FWT corresponds to a frequency band. The energy of
block (%,1) can be calculated by
M-1M-1
Ey(k, 1) = Z Z le(k, i;m, n)|2 (1)
m=0 n=0
Since most images consist primarily of smooth or, equivalently, low frequency com-
ponents, it is often that the d.c. block contains the highest energy among all blocks.
For 512 x 512 Lena image decomposed into blocks of size 32 x 32 (or 64 x 64) with the
Daubechies Dy basis, the d.c. block contains 80.1% (or 90%)of total energy. While
the d.c. block provides a smoothed and downsampled version of the original image,
the a.c. blocks provide information of edges and textures which are crucial for human
visual effect. Thus, even though a.c. blocks contain a relatively small portion of total
energy, effective coding of the FWT coefficients in a.c. blocks is important for image
quality. To examine the energy compaction effect in the a.c. blocks, we plot the
cumulative histogram of these blocks for the Lena image in Fig. 2, where the y-axis
is the percentage of total a.c. energy and the x-axis is the percentage of total a.c.
blocks. The total numbers of a.c. blocks are 255 (or 63) for blocks of size 32 x 32 (or
64 x 64). We can see from the figure that 10% of a.c. blocks have around 87% (or
77%) of total a.c. energy for the case of block size 32 x 32 (or 64 x 64).
We next consider the energy compaction property of the FWT coefficients with

respect to their spatial positions. The energy of position coefficients at (m,n) in all
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a.c. blocks can be expressed as

R-1,R-1
Ep(m’ n’) = Z Zk:ﬂ,l:o,(k.l)#(O,O)Ic(k’ I; m’ n)lz' (2)

To examine the energy compaction effect, we plot the cumulative histogram with
respect to position indices for the Lena image in Fig. 3, where the y-axis is the
percentage of total a.c. block energy and the x-axis is the percentage of total number
of spatial positions. The total number of spatial positions is 1024 (or 4096) for block
size 32 x 32 (or 64 x 64), and we observe from the figure that around 60% (or 80%)
of the total a.c. energy comes from only 20% of spatial positions.

Combining results in Fig. 2 and Fig. 3, we also note that a smaller block size
achieves better frequency energy compaction but poorer spatial energy compaction,
which is in fact consistent with the uncertainty principle. To see the energy distribu-
tion of spatial positions, consider the case of block size 64 x 64. We divide the 4096
spatial positions into three groups, i.e. white, gray and black, and plot them in Fig.
4, where the top 70% a.c. energy is located in the white region, the second 20% is
covered by the gray region, and the last 10% is in the black region. As shown in the
figure, we see that energy is concentrated in the FWT coefficients corresponding to
edges along the hat and face and textures in the hair region. It implies that the FWT
coefficients in these regions have larger variances, and have to be quantized with more

bits.

3 Bit Allocation and Quantization

Successful image compression methods depend on suitable transforms for energy com-
paction as well as good bit allocation and quantization schemes for data representa-
tion. As illustrated in Fig. 1, the d.c. block provides a low resolution representation
of the original image while a.c. blocks primarily provides information about edges and
textures. This observation suggests the application of different quantization schemes

to d.c. and a.c. blocks.



3.1 D.C. Coefficients

To preserve good quality of the decompressed image, a reasonably accurate represen-
tation of the FWT coefficients in the d.c. block is necessary. Since the FWT coefli-
cients in the d.c. block represent a smoothed version of the original image data, its
histogram is closely related to that of the original image when the number r of decom-
position is small. However, if » becomes larger, the histogram can be approximated
by the Gaussian probability density function due to the central limiting theorem, and
the coefficients can be effectively quantized with the Lloyd-Max quantizer.

To determine the number of quantization levels, we have studied the relationship
between quantization levels and the mean square errors of the decompressed image
using only the d.c. block. It is found that the mean square errors in the reconstruc-
tion image do not decrease significantly if the number of quantization levels is higher
than 64 (=2f) for an original 8-bit image. Thus, 6 bits is used to quantize the d.c.
coefficients in our compression experiment. Since the quantization level is high, the
quantization error is in fact relatively insensitive to the probability density assump-
tion. Thus, even though the histogram of d.c. coefficients may not have a distribution
close to the Gaussian density when r» = 3 and 4, the Lloyd-Max quantizer with the

Gaussian density assumption is still applied.

3.2 A.C. Coeflicients

A. Bit Allocation

To assign the number of quantization bits to FWT coefficients ¢(k, {;m, n) in a.c.
blocks, we may group the coefficients according to their block (frequency) indices
(k,!) or position (space) indices (m,n), where the distribution of FWT coefficients
in each spatial or frequency group is assumed to has a zero mean, since they are
obtained by highpass filtering. By assuming the distribution is uniform in one domain,
say, the spatial domain, we first concentrate on bit allocation due to the nonuniform

distribution in the frequency domain, and then use a weighting function to compensate



the nonuniform spatial distribution.

An optimal bit assignment scheme assigns bits to different groups of data in such
a way that the distortion caused by the quantization process is rninimized with a
fixed total number of quantization bits. The total mean square quantization error in
a.c. blocks can be expressed as

Dic= ) d(k1),
(k4)#(0,0)

where d(k,!) is the mean square quantization error in block (k,!). According to the

rate distortion theory [11], one can express d(k,!) of the form
d(k, 1) = €& 272 Brig}(k, 1), (3)

where €}, is the quantization performance factor, By is the bit rate to be used in the
block (k,!) and

=iy E k !

ok, 1) = M2 E 3 le(k, l;m,n)[? = ”( )

m=0 n=0

(4)

is the variance of FWT coefficients at block (%,!). Then, by assuming that the FWT
coefficients are uniformly distributed in all spatial positions and using the mean square
error as the distortion measure, one can obtain the following optimal bit allocation
formula [11)

1

= Y. log,op(k,{), (5)
AR = 1) 400

Biy=By+ = log2 ab(k ) -

where By, is the number of bits assigned to coefficients in block (k,!) and By is the
desired average number of bits per block.

However, it is obvious that the FWT coefficients are not uniformly distributed in
all spatial positions so that equation (5) has to be modified. Several ways to modify
(5) has been discussed in the literature. For different distortion measures, Tribolet
and Crochiere [21] proposed to use a frequency weighting function in the above bit

allocation formula. For (5), the modified equation assumes the following form:

1
AR -1, lZ

Bl =By + %mgz o2(k, Dw(k, 1) —
HE0.0)

lng O'g(k, l)w(k’l), (6)



where w(k,!) denotes the weighting function. In the context of nonidentically dis-
tributed random variables with distinctive distortion measure, modified bit allocation
formula can also be obtained [9].

In the above discussion, the weighting function w(%,[) and the objective function
By ; have the same parameters k and !. Here, we consider another generalization by

considering a weighting function parameterized by another index set (m,n), i.e.

. _ a1 2 _ 1 2
Bitimn =B+ 3 log, o3 (k, Dw(m,n) —2(R2 VY (k'lgo'o)mzmlogg a; (k, Dw(m,n).

In particular, the weighting function w(m,n) is chosen to be the variance of FWT
coeflicients at position (m,n) in all a.c. blocks

Ep(m,n)

), ™

w(m,n) = o2(m,n) =

where E,(m,n) is given in (2) and R? — 1 is the total number of a.c. blocks. Thus,

we obtain the following bit allocation formula

= 1 1 1 1
Bk,l,m,n = Bb + E logZ abz(k’ 1) + § 10g2 az(m, n) - 5 10g2 pf - § 10g2 P: (8)

1
= C+5 [logy ai(k, ) +logy ap(m,n)] 9)

where C is a constant, p} and p? are, respectively, the geometric means of block and

block variances for a.c. blocks, i.e.

1/(R?-1)
) , pf, = (Hm,na;‘:(m,n)

ot = (Mnpoood(k, 1 )
The bit allocation formula (9) implies that the product of block and position vari-
ances is in fact used as a criterion for grouping the coefficients in the FWT domain.
Although we do not derive it on a theoretical basis, it serves as a good empirical
formula and works pretty well in practice. Some experimental justification of the
formula (9) is given below.

It is clear that the FWT coefficients assigned with the same number of quantization

bits may belong to different blocks and different positions. Based on the number of
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[ Bit No. | No. of Pixel | Mean | Variance |

0 159972 0.00 17.0
1 51979 0.04 75.9
2 27481 | -0.08 200.2
3 12711 | -0.11 913.2
4 5122 0.73 4538.7
5 709 [ -8.54 | 182493
6 74| -26.26 | 82518.2
7 0| 0.00 0.0

Table 1: Partitioning of FWT a.c. coefficients with D8 basis, and 9.8:1 compression
ratio.

| Bit No. | No. of Pixel | Mean I Variance |

224238 | 0.01 36.7
21808 | 0.27 429.3
8480 | -1.39 1733.9
2912 | -4.18 7510.0
610 | 5.73 | 31286.5

0] 0.00 0.0

] W —| O

Table 2: Partitioning of FWT a.c. coeflicients with D4 basis and 22:1 compression
ratio.

assigned quantization bits, the FWT coefficients in all a.c. blocks can be rearranged
into several groups. To verify the efficiency of the bit allocation formula (9), we check
whether the variances of these groups meet the form of the rate distortion function
as given by (3). Two typical examples are used to illustrate a very good match.
Consider the decomposition of the 512 x 512 Lena image into blocks of size 64 x 64.
We list the variances of each group with two different compression ratios in Tables
1 and 2. One can clearly see that the variance values in each group approximately
increase by a factor of 4 as the assigned bit number is increased by 1.

B. Quantization

The distribution of coefficients in the pyramidal wavelet transform domain within
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a single frequency band has been studied [17]. Similar results can also be found in
the literature of subband coding [24]. These coeflicients can be described by the

generalized Gaussian density function

p(z) = ae =",
where s
be 1 T2
=—— and b=—(=¢5)/?
‘=g ¥ 0. r(%)) ’

and where o, is the standard deviation of the data. The values ¢ = 2 and ¢ = 1 corre-
spond to the Gaussian and Laplacian density functions, respectively. In the subband
coding context, Westerink et al [24] used both chi-squared (x?) and Kolmogorov-
Smirnov testing methods to test the distribution of coefficients in the high frequency
bands, and suggested the value ¢ = 0.5 for the optimum quantizer design. Note that
the shape of p(z) with ¢ < 1 is sharper than that of the Laplacian density.

To effectively quantize the coefficients, we need to know the distribution of the data
in each group. A typical histogram of a.c. coefficients allocated with 1 to 4 bits are
shown in Fig. 5. In this work, the Lloyd-Max quantizer is used. The Laplacian density
is used for groups with 1 or 2 quantization bits while the Gaussian density is used for
groups with more than 2 quantization bits. For 1 and 2 bit quantization group, there
are many coefficients with values close to zero. We use 3 and 5 quantization levels
to replace 2 and 4 quantization levels, respectively, and then code the quantization
levels with entropy coding to reduce the number of quantization bits.

To determine the number of bits assigned to each FWT coeflicient at the decoder
end, we have to know the constant C and the values of log, o7(k,!) and log, o2(k,1)
according to (9). In practice, we quantize log, oZ(k,!) and log, o%(m,n) with 8 levels
(or 3 bits) and store these values into two matrices of size M x M and R X R as side

information.



4 Numerical Experiments

We have applied the FWT compression method to the 512 x 512 Lena image, and

considered the following design choices:

e wavelet bases: Haar, Daubechies D4, D8 and truncated 17-tape cubic spline

bases;
e block sizes: 32 x 32 and 64 x 64.

The quality of the reconstructed image is measured by the peak signal to noise ratio
(PSNR) which is defined as

2552
PSNR(dB) = 10log,, MSE’
where
1 L-1L-1
MSE( Mean Square Error ) = I g ;)(:;;‘.J — zi4)?,
1= J:

and where z;; and %#;; denote the gray scales of the pixel at position (z,7) of the
original and reconstructed images, respectively. To see the performance of the pro-
posed FWT compression method, we plot the PSNR versus compression ratio in Figs
6 and 7, where the compression ratio is computed by also taking the side information
needed for image reconstruction into account. The original and several decompressed
Lena images are shown in Figs. 8 (a)-(d) for visual judgement.

We compare the performance of the proposed compression scheme with respect to
different bases in Fig. 6. We see that the D4 and D8 bases give the best performance.
The D4 basis has one extra advantage, i.e. it has an integer multiple of 1/32 on its
filter coefficients (h[0]= 11/32, h[1]= 19/32, h[2]= 5/32, h[3]= —3/32) so that the
algorithm may be easily implemented with hardware. It is interesting to see that the
spline basis does not perform as well as the D4 and D8 bases. This can be explained
by that our compression algorithm uses correlation among a.c. blocks and a wavelet
basis function with a larger number of taps for convolution may not provide a good

space domain energy compaction property.
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The performance of the proposed compression scheme with respect to different
block sizes is given in Fig. 7. Two block sizes 64 x 64 and 32 x 32 have been tested.
For this example, the 64 x 64 block size gives the better result for the compression
ratio less than 40 while the 32 x 32 block size performs better for the compression
ratio larger than 40. This is due to a larger amount of side information is needed to
store the position and block variances. The two matrices are of sizes 64 x 64 and 8 x 8

for the 64 x 64 block while they are of sizes 32 x 32 and 16 x 16 for the 32 x 32 block.

5 Relationship with Other Compression Meth-
ods: Review and Comparison

The FWT compression is closely related to three different types of compression
schemes: the Pyramidal Wavelet Transform (PWT), the Discrete Cosine Transform
(DCT), and the SubBand Coding (SBC) compression techniques. In this section, we
will briefly review each compression scheme, and then discuss the similarities and

differences of these schemes with our new method.

5.1 Pyramidal Wavelet Transform (PWT)

The pyramid-structured image compression scheme was first proposed by Burt and
Anderson [2]. The basic idea is to decomposition an image into a low resolution
subimage by lowpass filtering and a detailed subimage which is the difference of
the original image and the low resolution image. For the high frequency detailed
subimage, the pixel-to-pixel correlation is removed so that only data with a small
dynamic range remain. Besides, since the pixel values usually have a Laplacian-like
distribution, the Loyld-Max quantizer can be effectively applied for data compression.
The lowpass filtered subimage consists primarily of low frequency components and can
be down-sampled as a coarser approximation of the original image. The size-reduced
low resolution subimage contains most important information of the original image,

but can be encoded less expensively. The above decomposition can be recursively
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applied to low resolution subimages, which leads naturally a multiresolution method.
To reconstruct the original image, quantized data at different levels can be combined
from the coarsest level to the finest level in a sequential way.

A pyramid-structured image compression scheme, which is called the PWT com-
pression here, was also proposed by Mallat [17]. His idea to decompose an image into
a low resolution subimage and a detailed subimage is exactly the same as the one of
Burt and Anderson. The main difference is on the scheme to achieve image decom-
position. The two-scale image decomposition and synthesis is achieved by using the
quadrature mirror filter (QMF) banks which guarantee aliasing cancellation and per-
fect reconstruction. A recursive application of the two-scale decomposition leads to
a wavelet transform which possesses a good spatial and frequency localization prop-
erty and is useful for multiresolution image representation. The detailed information,
which exists in the high frequency detailed subimage in Burt and Anderson’s work,
is now contained by three subimages, each of which has a quarter size of the original
image and corresponds to a directional high frequency band. The image data size
is preserved the same as the original one via the PWT scheme where as the image
data size is increased to 4/3 of the original image size with the Burt and Anderson’s
scheme. In order to quantize transform coefficients for PWT compression, Mallat

modeled the histogram of those coefficients with the following function
h(u) = K x e~ (/)

where u denotes the transform coefficient and parameters K, a and f are chosen to
give the best data fit. The PWT compression scheme can encode an image with less
than 1.5 BPPs (bits per pixel) with few visible distortions [15], [26].

Since the coefficients obtained via the pyramid-structured wavelet transform are
of different sizes in different scales, the correlation between them in different scales
are hard to evaluate. Besides, quantization rules vary from bands to bands since
they have different distributions characterized by different parameters X, o and B.

This makes the quantization procedure computationally expensive. In contrast, we

15



decompose the image with the FWT which results in subimages of the same size. The

correlation between transform coefficients is exploited.

5.2 Discrete Cosine Transform (DCT)

Image compression methods based on block transforms have been extensively studied
over the last 15 years [25], among which the DCT-based compression scheme is the
most popular one and considered to be the state-of-the-art method. Block transform
compression is achieved by the energy compaction property via various transforms
in the transform domain. For this family of methods, transform coefficients are first
obtained by performing an inner products of a set of complete orthonormal basis
functions and a series of windowed signals with finite support. They are then effec-
tively quantized by taking advantage of their special statistical distributions such as
Laplacian or Gaussian distributions. The major difference between the block trans-
form and PWT (or SBC) compression is in their implementation. For the wavelet
transform (or SBC), the image is convolved with an analysis filter bank and followed
by a downsampling procedure. The downsampled subimages are either quantized
or processed through a further analysis filter bank. The recovering process of the
wavelet transform (or SBC) includes a upsampling procedure followed by a synthesis
filter bank. Despite the difference, the block transform and the wavelet transform (or
SBC) compression are in fact kind of similar at least in the conceptual level. That is,
the inner product of the set of basis functions with windowed subimages is equivalent
to a filtering process and, therefore, inner products obtained from the same basis
function can be viewed as transform coefficients in the same subband. This explains
why the block transform compression is sometimes viewed as another kind of SBC
technique [19]. The choice of basis functions (or impulse responses of filter banks)
in block transform, wavelet transform and subbanding coding are nevertheless very
different due to different goals in the original development of these methods.

The DCT-based compression technique has been well developed, and many vari-

ants have been proposed. There are two critical steps in their implementations. One
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is to locate the regions in the transform domain which contain importment informa-
tion and assign them with a certain number of bits for quantization which is known as
the bit allocation. The other is to quantize the transform coefficients effectively. For
bit allocation, it is common to use the variance distribution method (18], where coeffi-
cients with larger variance values are selected and bits can be assigned with a certain
bit allocation formula. The Loyld-max quantizer is often used for quantization. The
DCT-based compression methods perform reasonably well for a compression ratio
around 10. However, it is relatively difficult to get a compression ratio much larger
than 10. Besides, the compressed image does not degrade gracefully by increasing the
compression ratio. That is, if the compression ratio is raised above some threshold
value, we may not be able to get any meaningful image via decompression at all.
This limitation of DCT-based methods may be attributed to that the correlation
of coefficients in the same position of all blocks is not strong enough. Recall that
by using the block DCT transform, we partition the image into small small blocks
in the spatial domain and transform them independently. Consider the case that
one spatial block consists primarily of a smooth surface while another block contains
a textured pattern. Since the frequency components depend on the corresponding
spatial blocks, the correlation of the transform coefficients in these two blocks is
low. Thus, we conclude that the DCT compression methods take advantage of the
frequency localization property of the DCT transform and utilize only the frequency
correlation. In contrast, our FWT compression scheme utilizes not only frequency

but also spatial correlation.

5.3 SubBand Coding (SBC)

With the subband coding (SBC) technique, we decompose an image into several
subimages by using quadrature mirror filter banks so that each subimage has its fre-
quency components concentrated on a particular frequency band called the subband.
Then, each subimage is encoded independently via predicative differential coding or

vector quantization with the use of the statistical property of data in each subband.
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Several advantages have been mentioned in the SBC literatures. First, data in dif-
ferent subbands may be encoded with different methods such as PCM, DPCM and
DCT to exploit the maximum redundancy in each subband. Second, the quantization
error in each subband is confined to that band only. Third, based on results from
human perception research, we can give different weightings to different subbands
and allocate the number of bits accordingly with the objective that the decompressed
image looks more pleasant with respect to the human visual system.

The major difference between the FWT and SBC is that the FWT utilizes both
intra-band and inter-band correlations while the SBC only uses the intra-band corre-
lation. The edge information in an image is usually spread over different subbands,
but the correlation between subbands is not utilized at all in the SBC. With the SBC,
we want to minimize the correlation between different subbands as much as possible
so that it is desirable to design a multiband filter bank which has sharp transition
among different subbands. To implement such a filter bank often requires filters of
a large number of taps, and the computational cost is higher. In contrast, since the
FWT method exploits the correlation between different subbands, there is no need
to design filter banks with sharp transition among subbands, and filters with a small
number of taps such as Haar,D4, D8 basis functions [5] can be conveniently used.

The computational cost can therefore be reduced.

6 Conclusions and Extensions

We presented a new method for image compression based on the full wavelet trans-
form (FWT) combined with a simple quantization scheme and entropy coding in this
research. The new method is suitable for progressive transmission due to the na-
ture of multiresolution representation. Besides, it adopts a regular block size so that
side information about the data address can be reduced. In particular, we illustrate
the energy compaction property of the FWT in both the spatial and frequency do-

mains. This important property can be effectively exploited via novel quantization
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and coding. Even though only a simple quantization scheme was used in this research,
numerical experiments showed that the proposed algorithm does give a comparable
performance with several existing methods.

There exists room to improve the proposed method, say, the use of vector quan-
tization to quantize the FWT coefficients in the a.c. blocks. It is under our current
investigation. We showed the energy compaction property of the FWT with numeri-
cal data. Theoretical study on this topic is certainly valuable. It also seems attractive

to apply the FWT method to compress speech signals.
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Figure 2: Cumulative histogram of the energy of a.c. blocks.
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Figure 4: Energy distribution in different spatial positions in a.c. blocks.

24



Number of Occurenco
g

Number of Occurence
g B

SN I,

-150 100 50 0 50 100 150 20 250 200 150 100 50 0 50 100 150 200 250
Vahx of Trssform Cocflicieats ia Group | Value of Trnsforn Coefficieats ia Grozp 2

(a) (b)

100

Number of Occurence
< &
—_

Number of Occurence
A N

A l ; Il o H
400 <300 200 100 0 10 20 300 400 600 0 00 400 600
Value of Traaform Coefficients in Group 3 Vil of Transform Coefficicnts in Group 4

(c) (d)
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Figure 8: (a) Original and (b)-(d) decompressed Lena images with (b) compression
ratio = 16:1 and PSNR = 32.3, (c) compression ratio = 32:1 and PSNR = 29.56, (d)
compression ratio = 69:1 and PSNR = 26.7.
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