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Abstract

First-order statistics of impulsive noise processes are developed from the filtered-impulse
mechanism. Under appropriate assumptions on the spatial and temporal distributions of
noise sources and the propagation conditions, we show that the instantaneous amplitude of
the received noise obeys the symmetric stable distribution, which is a natural generalization
of the Gaussian distribution and enjoys many of its familiar properties. In the case of
narrowband reception, the joint distribution of the quadrature components of the received
noise is isotropic stable. The noise phase is then shown to be uniformly distributed on
[0,27] and independent of the envelope, as in the Gaussian case. The distribution of the
envelope, on the other hand, is a heavy-tailed generalization of the Rayleigh distribution.
Compared with existing models, such as Middleton’s statistical-physical canonical models,
the symmetric stable model is much simpler and mathematically more appealing. Direct
comparisons with experimental data show that this model fits closely a variety of non-

Gaussian noise.



1 Introduction

It is a common practice in statistical communication theory to assume that communi-
cation channels are corrupted by additive Gaussian noise processes. In many situations,
this assumption is reasonable and can be justified by the central limit theorem. It also
greatly simplifies the implementation and analysis of the receiver structures. Unfortu-
nately, there are also many communication channels encountered in practice that are highly
non-Gaussian, many of which are the so-called impulsive channels. These impulsive chan-
nels tend to produce large-amplitude interferences or sharp noise spikes more frequently
than one would expect from the Gaussian channels. For example, the main source of inter-
ference in extremely low frequency (ELF) communications is the atmospheric noise, where
local thunderstorm activities may produce such sharp noise spikes [1]. Other examples
of impulsive communication channels include underwater sonar communication channels,
urban radio networks and certain telephone lines (2, 3, 4].

For impulsive channels the mathematically appealing Gaussian noise model is no longer
appropriate for designing optimal signal processing algorithms, because the large dynamic
ranges of impulsive noise generally result in significant performance degradation for systems
optimized under the Gaussian assumption. A well-known example is the matched filter
for coherent reception of deterministic signals in Gaussian white noise. If the channel
noise is actually impulsive, serious degradation in performance occurs, such as increased

false alarm rate or error probability {5]. On the other hand, a modest degree of nonlinear



signal processing based on the actual noise statistics can lead to a much better receiver
than the matched filter [6, 7). Consequently, knowledge of the statistical properties of
impulsive noise processes is essential for designing effective signal detection and estimation
algorithms.

There have been considerable efforts, over the last forty years, in developing accurate
statistical models for non-Gaussian impulsive noise. The models that have been proposed
so far may be roughly categorized into two groups: empirical models and statistical-physical
models. Empirical models are the results of attempting to fit the experimental data by fa-
miliar mathematical expressions without considering physical grounds of the noise process.
Commonly used empirical models include the hyperbolic distribution, Hall’s generalized
“t” distribution and Gaussian mixture models [10, 11, 12]. Empirical models are usually
simple and thus may lead to analytically tractable signal processing algorithms. However,
they may not be motivated by the physical mechanism that generates the noise process.
Hence, their parameters are often physically meaningless. In addition, applications of the
empirical models are usually limited to particular situations.

Statistical-physical models, on the other hand, are derived from the underlying physical
process giving rise to the noise, which takes into account the distribution of noise sources
in space and time, and their propagation to the receiver [13, 14, 9). Among them, some
of the most general models are those developed by Middleton [3]. Middleton’s models
may be divided into three classes according to the bandwidth of the noise relative to

that of the receiver. The Class A model is used to describe the first-order statistics of



narrowband noises, i.e., those with spectra comparable to or narrower than the receiver
passband, whereas the Class B noise has a bandwidth broader than the passband of the
receiver. The Class C model is a linear mixture of the Class A and Class B models.
Each class is parameterized by physically meaningful and measurable parameters. In
addition, these models are canonical in that the mathematical forms do not change with
the changing physical conditions, and are known to fit closely a variety of non-Gaussian
noise encountered in practice.

Although Middleton’s canonical statistical-physical models for impulsive noise provide
a realistic description of the underlying physics of noise processes, they are mathematically
involved and not easy to derive. This is particularly true for his Class B model. It has seven
parameters, one of which is purely empirical and hence in no way related to the underlying
physical situation. In addition, it has to be approximated by two distinct distribution
functions. Consequently, it is difficult to accurately estimate the model parameters from a
finite number of observations [15]. Furthermore, mathematical approximations are used in
its derivation in order to get usable expressions for the characteristic and density functions.
As it is pointed out in [16], these approximations are equivalent to changes in the assumed
physics of the noise. Since these approximations and the corresponding changes in the
basic assumptions about the noise physics can not be directly related, it is not obvious
how the final mathematical formulas and the physical scenario are connected.

In this paper, we present an analytically tractable and mathematically appealing model

for certain man-made and natural impulsive phenomena, such as automobile ignition noise,



atmospheric noise and noise observed on telephone lines. Specifically, symmetric stable
distributions are suggested as an appropriate model for the first-order statistics of a general
class of impulsive noise. It is shown that the stable model can be derived from the basic
filtered-impulse mechanism of the noise process under appropriate assumptions on the
distribution of noise sources in space and time and their propagation conditions. These
assumptions are simple, yet reasonably realistic. As a result, the stable model is much less
complicated than Middleton’s models and more accessible to engineers. In particular, it has
only two model parameters, both of which are physically meaningful and can be determined
by the underlying physics of the noise process. Excellent agreement between the stable
model and experiment is demonstrated for several types of man-made and natural impulsive
noise, as shown by a variety of examples in the paper.

The use of stable distributions as a basic statistical modeling tool can also be justified
by the generalized central limit theorem, which states that the limit distribution of the sum
of independent and identically distributed random variables must be stable [17]. Hence, if
an observed signal or noise can be thought of as the result of a large number of independent
and identically distributed effects, the generalized central limit theorem suggests that the
stable model may be appropriate. Stable distributions also enjoy many familiar properties
of the Gaussian distribution such as the stability property, and in fact include the Gaussian
distribution as a special case. They have been found to provide useful statistical models
in many disciplines, such as financial economics, physics and electrical engineering. For

a tutorial on the properties of stable distributions, their applications, and other topics in



stable signal processing, see [18] and the references therein.

The paper is organized as follows. Section 2 outlines the filtered-impulse mechanism
for impulsive noise processes. The spatial and temporal distributions of noise sources and
the propagation conditions are also discussed in this section. In Section 3 it is shown that
the first-order distribution of the instantaneous noise amplitude is symmetric stable. The
basic properties of symmetric stable distributions, including the stability property and
the generalized central limit theorem, are discussed in details in Section 4. Narrowband
reception is considered in Section 5. It is shown that the quadrature components of the
received narrowband noise are jointly isotropic stable. Based on this result, the first-order
statistics of the noise envelope and phase are also derived. Section 6 compares the present
symmetric stable model for impulsive noise with existing models and experimental data,

followed by concluding remarks in Section 7.



2 Filtered-Impulse Mechanism of Noise Processes

Most of the natural and man-made impulsive interferences may be considered as the results
of a large number of spatially and temporally distributed sources which produce random
noise pulses of short duration. A typical example of such noise sources is the lighting
discharges of thunderstorm activity, which are the main cause of atmospheric noise. Other
examples include ice cracking, automobile ignition and telephone switching transients. The
noise received at any location is the superposition of these pulses, and hence depends on
the spatial and temporal distributions of the individual sources and the propagation of
their pulses to the receiver.

On the basis of these observations, the familiar filtered-impulse mechanism [19, 20, 13, 3]
is used in the development of the present model for impulsive noise. By this mechanism,
the impulsive noise is considered to consist of the linear superposition of independent,
randomly occurring elementary pulses originated from sources distributed over both space
and time according to the Poisson law. The waveforms of these elementary pulses are
assumed to be identical, although their amplitudes, phases and even their durations may
vary in a random way with prespecified distributions. The strength of received pulses is
assumed to decrease with the distance from the sources to the point of observation in a
known fashion. Simplifications of the source distributions and propagation processes are

introduced to yield analytically tractable results.



2.1 Noise Processes

Let us assume, without loss of generality, that the origin of the spatial coordinate system
is at the point of observation. The time axis is taken in the direction of past with its origin
at the time of observation, i.e., t is the time length from the time of pulse occurrence to
the time of observation.

Consider a region  in R*, where R® may be a line (n = 1), a plane (n = 2) or
the entire space (n = 3). For simplicity, we assume that € is a cone with vertex at the
point of observation. Inside this region, there is a collection of noise sources (e.g., lighting
discharges, automobile ignition) which randomly generate transient pulses. It is assumed
that all sources share a common random mechanism so that these elementary pulses have
the same type of waveform, aD(t;8), where the symbol @ represents a collection of time-
invariant random parameters that determine the scale, duration, etc., and a is a random
amplitude. We shall further assume that only a countable number of such sources exist
inside the region 2, distributed at random positions X;,X3,---. The source-to-receiver
distance will be designated by the random variable r, i.e., 7; = |x;|. These sources emit
pulses, a;D(¢;0;),: = 1,2,---, independently at random time t;,1,,- - -, respectively. This
implies that the random amplitudes {a;,az, -} and the random parameters {6,,8,, -}
are both i.i.d sequences with the prespecified probability densities p,(a) and pg(8) respec-
tively. The location X; and emission time ¢; of the ith source, and the random parameter
9; and amplitude a; are assumed to be independent for all : = 1,2,---. And all of them

are also independent of all other random variables. The distribution of random amplitude



a, pa(a), is assumed to be symmetric, i.e.,

Pa(a) = pa(—a), (1)

which in particular implies that the mean of the noise is zero.

When an elementary transient pulse aD(t;0) passes through the medium and the re-
ceiver, it will be distorted and attenuated. Let the noise pulse emitted from a source
located at x possess a waveform representable at the output of the receiver as a function
of time, t, by W(t;x,0). The relation between W(t;x,8) and aD(¢;8) will be discussed
shortly. The receiver is assumed to linearly superimpose the noise pulses so that the ob-

served instantaneous amplitude of the noise at the output of the receiver and at the time

of observation is

X = i W (ti; xi, 0;) (2)

i=1
where N is the total number of elementary noise pulses arriving at the receiver at the time
of observation. More will be said about N later.
The statistical properties of the received noise amplitude X depend on two major
factors: the prevailing propagation conditions and the distribution of noise sources in both

space and time. Each of them is examined next in details.



2.2 Propagation Conditions

The physics of propagation and reception controls the strengths and waveforms of the
received transient noise pulses. It can be determined from a knowledge of the beam patterns
of source and antenna, source location, impulse response of receiver, and etc., as Middleton
has demonstrated in [21]. Although his expression for the received waveform W(t; x, §) is
very general and able to describe major classes of noise processes, it needs to be simplified to
yield mathematically tractable results. We shall assume that the effects of the transmission
medium and receiver on the transient pulses may be separated into two multiplicative
factors: filtering and attenuation. Without attenuation, the medium and receiver may be
treated as a deterministic linear time-invariant filter. In this case, the received transient
pulse is the convolution of the impulse response of the equivalent filter and the original
pulse waveform aD(t;8). The result is designated by aE(¢;d). Note that, unlike previous
models such as those developed by Middleton (3], we place no restrictions on the bandwidth
of the receiver. Qur analysis applies to narrowband as well as wideband receptions.

In its most general form, the attenuation factor, g(x), is a function of the source location
relative to the receiver, and may be derived from the beam patterns of source and antenna
and physical laws of electronic-magnetic transmission in the medium [21]. As a first-order
approximation, we shall assume that the sources within the region of consideration have
the same isotropic radiation patterns and the receiver has an omin-directional antenna.
Then the attenuation factor is simply a decreasing function of the distance from the source

to the receiver. A good approximation is that the attenuation factor varies inversely with



a power of the distance [14, 3], i.e.,

g(x) = ar/r? (3)

where ¢, is a positive constant and p > 0 is the attenuation rate, and where r = |x| is
the distance from the source to the receiver. Typically, 1/2 < p < 2. For example, the
waveguide-mode theory of long-distance propagation in the atmosphere shows that the
attenuation factor is given by

g(x) = cexp(—dr)/r?

where p = 1/2 [22]. Since the constant d is usually very small, the above function may be
approximated by (3) with p =1/2.
Combining the filtering and attenuation factors, one finally obtains the waveform of

the received pulse which is originated from a source located at x:
W(t;x,0) = aU(t;x,0) (4)

where

Utix.0) = SEY),  p>0. (5)

By (2), the observed instantaneous amplitude of noise at the time of observation can be

10



rewritten as

X = 3 aill(t%:,8). (6)

=1
2.3 Spatial and Temporal Source Distributions

Since the numbers of sources in non-overlapping regions may be considered as independent
random variables and since there are usually many sources, each with an extremely small
chance of falling into any particular region, it is reasonable to postulate that the total
number of sources in a particular region is Poisson distributed [23]. Likewise, it may be
assumed that the total number of elementary pulses emitted by the sources within a time
interval is also Poisson distributed. Based on these characteristics, we shall assume that
the number, NV, of noise pulses arriving at the receiver is a Poisson point process in both
space and time, whose intensity function is denoted by p(x,t). This basic assumption
is one of the essential features of our model as well as many of the previous models for
noise-generating processes (19, 13, 14, 21].

The intensity function p(x,1) represents the approximate probability that a noise pulse
originated from a unit area or volume will arrive at the receiver during a unit time interval,
and thus may be considered as the spatial and temporal density of the noise sources. Since
the noise sources need not to be homogeneously distributed in either space or time, the
most general form of the intensity function p(x,t) depends on both the source location x
and its emission time ¢, where x € 0 and ¢t € R* = [0,00). However, for simplicity, we

shall restrict our consideration to the most common case where the source distribution is
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time-invariant so that p(x,t) = p(x). This is in no way a serious limitation in our model,
considering the fact that the observation period is usually very short.

In most applications p(x) is a non-increasing function of the range r = |x|. The number
of sources that occur close to the receiver is usually larger than the number of sources that
occur farther away. This is certainly the case, for example, for the tropical atmospheric
noise where most lighting discharges occur locally, and relatively few discharges occur at
great distances [14]. If the source distribution is symmetric about the point of observation,
i.e., there is no preferred direction from which the pulses arrive, then it is reasonable to

assume that p(x) varies inversely with a certain power of the distance r 3, 14]:
Po
p(x,t) = —r (7)

where g, po > 0 are constants.
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3 First-order Statistics of the Instantaneous Noise

Amplitude

To compare with the experimental studies and to design optimum and suboptimum re-
ceivers for impulsive communication channels, we need to know the first-order statistics of
the instantaneous noise amplitude X given in (6). By taking advantage of the proposed
model for the noise process, we are able to derive a simple result for the characteristic func-
tion of X. But before we actually derive the characteristic function, let us briefly review
some of the basic facts about Poisson processes which will be needed shortly. First, if Ny.r
is the number of noise pulses originated from sources inside a spatial region V and emitted

within a time interval T', then Nyr is a Poisson random variable with the parameter

I = /V /T p(x,1)dxdt, 8)

so that

)\k
P(Nyp =k)= %exp(—/\v,y), k=0,1,2"--. 9)

And its factorial moment-generating function is given by

evr(t) = E("v7) (10)
= exp(Avr(t —1)).

13



On the other hand, if it is known that the receiver receives exactly Ny pulses that come
from a spatial region V within a time interval T and if the actual source locations and
their emission times are (x;,t;),z = 1,---, N, then the random pairs (x; ¢;),i =1,---, N,
are independent and identically distributed. And their common joint density function is
given by

f(x,t)=-p()‘);—’Tt), xeVteT (11)

[}

where the normalizing constant Ay 7 is given by (8). In addition, the number of sources,
N, is independent of the locations and emission times of all the sources. All of the above
results are the consequences of the basic Poisson assumption [23].

To calculate the characteristic function, ¢(w), of the noise amplitude X, we first restrict
our attention to those noise pulses emitted from sources inside the region Q(R,, R;) and

within the time interval [0,T), where
Q(R],RQ) =N {X . R] < IXI < Rz}. (12)

Let Ng1, 2,1 be the number of pulses emitted from the space-time region Q( Ry, R,) % [0, T).

Then by (8) and (10), Ng, g, is a Poisson variable with parameter

T
M= [ _— | e, thaxat (13)

14



and

E(tNT'Rl'Rﬁ) = exp(Ar,R, R, (t — 1)). (14)
The amplitude of the truncated noise is given by

Nr,Ry R,
XT’RllRZ = Z (t') x" ) (15)

=1

The observed noise amplitude X is understood to be the limit of X7 g, r, as T, R; — o
and R; — 0 in some suitable sense.

By our previous assumptions, {a;,t;,xi,0;}%2, is an i.i.d sequence. Hence, X1 R, g,
is a sum of i.i.d random variables with a random number of terms, whose characteristic

function can be calculated as follows:

OT.R1 Ry (W) = E{exp(jwXrrr,)}

= E[E(exp(jwXT R, R,)) | NT,R\.R,) (16)
= E{[¥r.p,.m(w)"rrm}
where
YT.RRy (W) = E{exp(jwa,U(t1;x1,60,)) | T, U Ry, Rp)}. (17)
By (14)a
PT,Ry, Ry (W) = eXp(A1,Ry R, (¥T,Ry Ry (W) — 1)) (18)

Recall that a,,8, and (xi,?,) are independent, with density functions p.(a),ps(8) and

15



SR, R, (X, 1) respectively, where by (11),

t
framt) =250 s eaR, Ry, telo,T). (19)
ATrRlvRZ
Therefore,
— )—/°° (a)d / (0)d0/Tdt LY o (iwali(t x, 0))dx. (20)
TR W)= | o Pel@)0a Jo PUEIEE ) Q(R1,R;) AT,R,,R, SXPUWETLE X, Z)Jax.

Combining (5), (7), (20) and (18), one can easily show that the logarithm of the charac-

teristic function of Xt g, g, is

e T
log p7.r, Ry (w) = po /_ " pafa)da /e pa(8)d0 /0 [ o lexplwac P E(5 ) - 1)rtdx

(21)
where r = |x|. Noting that the distribution of the random amplitude a is symmetric (see

(1)), one can further simplify the above equation to get

-] T
log v7,R, R, (W) = 2po/0 pa(a)da/epg(Q)dQL dt /Q(R)[cos(waclr"’E(t;Q)) — 1jr~*dx.
(22)

Now, log ¢7,r,,r,(w) approaches the following limit

log p(w) = 2p0 /ooo pa(a)da/epg(Q)dQ/ooo dt _/;z[cos(waclr"’E'(t;Q)) —1jr™dx  (23)
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as T, Ry — oo and R, — 0, where ¢(w) is of course the desired characteristic function of
the noise amplitude X.

To further simplify p(w), we rewrite the above integral involving the spatial coordinates
x using the polar coordinate system. Since ) is a cone with vertex at the origin, (23) can

be written as follows:

log ¢(w) = 2¢2p0 /000 pa(a)da/e pg(Q)dQ/:o di /ooo[cos(waclr"’E(t;Q)) —1r*1-4dr (24)

where ¢, is a constant determined by the shape of £ and n is the dimension of the space.

We then make a change of variable, replacing »~? by r, to get

log p(w) = %czpo Awpa(a)daLpQ(Q)dQ[Jw dt /ow[cos(waclrE(t;Q)) —1}r~*"1dr (25)

where

(26)

is an effective measure of an average source density with range. As we will see in the next
section, a determines the degree of impulsiveness of the noise.

We shall assume that 0 < a < 2. Otherwise, the integrand in (25) is not absolutely
integrable. Using the following elementary integral [24]

I'(p) cos &F

(o <]
pw=1 2 _
z#7 " sin® azdr = - —m—M8M8=
./o Qutlgn

a>0, -2<u<0

17



one can easily show that for 0 < a < 2,

[ = D ppecos Ta s — T e (27)
0 r a 2 2al(a) sin Pha

where I'(-) is the usual gamma function defined by
I(z) = /0 T eletdy, (28)

Using the identity (27) and (25), one finally obtains the characteristic function of the

instantaneous noise amplitude as follows:

log p(w) = —7|w|® (29)

where

2¢fcapol'(1 — a) cos T

y= — | epa(@)da [ po@)ds [ atlEE 0 > 0. (30)

A random variable whose characteristic function ¢(w) has the form defined by (29)
is called symmetric stable. Hence, we have shown that the probability distribution of the
instantaneous amplitude of impulsive noise is symmetric stable. Stable distributions are an
important class of distributions in probability and statistics, whose properties are discussed

in details in the next section.
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4 Symmetric Stable Distributions

Symmetric stable distributions belong to a more general class of distributions called the
stable distributions, which may be symmetric or asymmetric. As a natural generalization
of the Gaussian distribution, stable distributions are increasingly important in both the-
ory and applications [18]. In this paper, we will deal exclusively with symmetric stable

distributions.

4.1 Characterizations of Symmetrical Stable Distributions

The symmetric stable distribution is defined by its characteristic function as follows:

©(t) = exp(jat — 4[t|*), (31)

where the three parameters have to be confined to the domains

—0<a<oo,v20,0<a<? (32)

in order for (31) to be a valid characteristic function. It is easy to show that a probability
distribution with its characteristic function given by (31) is indeed symmetric with respect
to the location parameter a. Hence a is also the median of the distribution. The scale pa-
rameter v is called the dispersion. If 4 is limited to strictly positive values, the distribution

will be non-degenerate. The most important parameter of a symmetric stable distribution
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is the characteristic ezxponent, a. It determines the shape of the distribution and plays
a critical role in impulsive noise modeling, as we will see shortly. A symmetric stable
distribution with characteristic exponent a is often called symmetric a-stable, or simply
SaS. Two important special cases of the SaS distributions are the Gaussian (a = 2) and
Cauchy (a = 1) distributions.

Stable distributions inherit two most important characteristics of the Gaussian dis-
tribution, namely, the stability property and the central limit theorems [18]. They are
responsible for much of the appeal of stable distributions as statistical models of uncer-
tainty.

The stability property states that stable distributions are invariant under linear com-
binations. Specifically, if X;,..., X, are independent and symmetrical stable with the
same characteristic exponent «, then for any constants a,...,a,, the linear combination
YR, a;X; is again SaS. This can be readily shown by using the characteristic functions
of stable distributions. More importantly, the converse is also true. Namely, stable distri-
butions are the only family of distributions that are invariant under linear combinations.
Intuitively, the stability property is very desirable in noise modeling, as it has been demon-
strated in the Gaussian case.

The central limit theorem, on the other hand, often provides a theoretical justification
for stable models, as it does for the Gaussian model. Recall that the ordinary central
limit theorem says that the only possible limiting distributions for sums of independent,

identically distributed random variables with finite variance are Gaussian. A more powerful
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version of the central limit theorem, called the generalized central limit theorem, states
that the family of stable (symmetric or asymmetric) distributions contains all the limiting
distributions of sums of i.i.d. random variables. In particular, if such variables have large
or infinite variance, which is usually the case under an impulsive environment, their sum

is approximately stable.

4.2 SaS Density and Distribution Functions

Without loss of generality, we shall assume that all SaS distributions are centered at the
origin so that @ = 0. In this case, a SaS distribution is determined by two parameters,

0 < a £2and 4 > 0, through its characteristic function

Paqy(t) = exp(—7t]%). (33)

Its density and distribution functions are denoted by f,-(2) and F,,(2) respectively. If
7 is equal to 1, the SaS distribution is called standard. Notice that by this definition, the
standard Gaussian distribution has variance equal to 2, not 1.

Since the characteristic function @, (%) in (33) is absolutely integrable, the correspond-
ing probability density function f,(z) is continuous and can be found by taking the inverse

Fourier transform of ¢, ,(t), namely,

Jfan(z) = %/:o cos(zt) exp(—yt*)dt. (34)
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By integrating (34), one obtains the corresponding distribution function

1 1 f°sinzt
Foq(z) = 3t ;[) ; exp(—~t®)dt. (35)

Based on (34), one may investigate the analytical properties of Sa$ distributions. For

example, all derivatives of the density function f,,(z) exist and are given by

d" 1 oo | Esinzt
Eifa.-v(fﬂ) == /0 t" exp(—7t®)dt, n2>0.

T
&+ cos zt

Using the basic definition of the gamma function in (28), one can easily show that

d" 1 n+1

Idm_nforﬁ(xn S 7ra7("""‘)/°'r( a )’ (36)

i.e., fa(z) has bounded derivatives of arbitrary orders. Hence, SaS densities are very
smooth and well-behaved functions.

Unfortunately, no closed-form expressions exist for general SaS densities, except for
the Gaussian (a = 2) and Cauchy (a = 1) distributions. Instead, we derive power series

expansions for the SaS density function f,,(z). Since

2 (=1)F o
COsST = x
Z':‘) (2k)!
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one has

1 ro 2 (-1 k$2k
Jaqn(z) = ;/0 (,g,((-?)_k)!

%) exp(—vt*)dt.

To interchange the integral and summation, we need to have

S

/ 1% exp(—7t®)dt < oo (37)

)l

so that Fubini’s theorem may be used [25]. One can easily show from the properties of the

gamma function that (37) is satisfied if 1 < a £ 2. In this case, using the fact that

o0 1 2k +1
2k a -
_/0 = exp(—7t°)dt = ay /e I( )

«

one has

1 i (—1)’c 2k+1

Jal®) = 7 - Gt o )™ (38)

By expanding the function exp(—+v¢®) and using contour integral, one may also show that

[17] for 0 < @ < 1 and z # 0,

1
7,-,71/&

Z( l)k" (ak+1)sm(—)( d2l y-ake, (39)

l/a

fan(z) =

In summary, the SaS density function with dispersion v and zero location parameter is
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given by

(1 & (=1)*! . . kar z| ok
7 ; % I(ak + I)SID(T)(W) 0<axl
% a=1
foale)={ T+ )
: Z(_l) (2k+1)( )2 l<a<?
maylle o (2k)! a Tyl
\ 2\/1~ﬁ exp(~z*/47) a=2.

The graphs of the standard SaS density are shown in Fig. 1(a) for a few values of a,
with o = 2 corresponding to the Gaussian density and & = 1 corresponding to the Cauchy
density. Observe that SaS densities have many features of the Gaussian density function.
For example, they are all smooth, unimodal, symmetric with respect to the median and
bell-shaped. In addition, although not shown in the graphs, the SaS stable density may be
shifted and scaled by the location parameter a and the dispersion +, just as the Gaussian
density by its mean and and variance. In fact when a = 2, i.e., when the SaS density
is Gaussian, the location parameter a is the mean and the dispersion v is a half of the
variance.

Although the behavior of a non-Gaussian SaS density is approximately Gaussian near
the origin, it is visibly different at the tails from a similarly scaled and centered Gaussian
density, as shown in Fig. 1(b). Specifically, the tails of non-Gaussian SaS densities decay
at a lower rate than the Gaussian density tails. And the smaller « is, the lower the decay

rate. Consequently, if a SaS random variable is observed, the smaller « is, the more likely
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Figure 1: (a) Graphs of the standard SaS density function corresponding to the values
a = 2.0,1.5,1.0 and 0.5; (b) tails of the densities in (a).
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it is to observe values of the random variable which are far from its central locations. In
other words, the smaller o is, the more impulsive is a SaS random variable. The heavy-
tailed character of non-Gaussian SaS distributions has important implications in modeling

impulsive noise and is further discussed in the next section.

4.3 Tails and Moments

As shown in Fig. 1(b), the tail behavior of a Sa§ density is determined by its characteristic
exponent a. The exact relation between o and the “thickness” of the tails can be made
more explicit. Recall that the Gaussian density is an exponential function and hence its
tails decay exponentially. The tails of non-Gaussian stable distributions, on the other
hand, decay algebraically. For the Cauchy distribution (e = 1), this is certainly true
since its density in the standardized form is 1/7(z% + 1). For a general non-Gaussian SaS
distribution with density f,,(z) and 0 < a < 2, one can show, using an identity relating
two stable densities with different characteristic exponents (see Equation (6.10) on pp. 549
in [17]), that

'llim |$|a+1fan(x) = C(a,v) (41)

where C(a,7) is a positive constant depending on « and 4. Hence, the decay rate of the

-

tails of a SaS density is asymptotically on the order of z=*~!, much slower than that of

the Gaussian density.
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To determine C(«, ), we note that f, . is symmetric so that

Paq(t) = 2/000 faqy(T) costzd

and hence

1 = aqlt) = 2 /0 ” fan()(1 = costz)da.

Assume ¢ > 0. By a change of variable and dividing both sides by %, the above equation

can be written as

1 —-cosu

(1= Par /1% =2 [ (W) far (/) — o du

Letting ¢ — 0% in the above equation and noting (41), (27), and the fact that

Jim (1 — paqy(t))/t* = lim (1 —exp(=7[t[*))/t" = 7

one finds that

Cla,v) = 7%F(a) sin %‘z, for0<a<?2. (42)

Note that by (42), C(a,y) — 0 as a — 2. Consequently, the algebraic behavior of
the tails of a SaS distribution becomes less obvious as a approaches to 2. In fact, one
can show [26] that as a approaches to 2, the non-Gaussian Sa$ distribution approaches

to the Gaussian distribution in a continuous fashion. Hence, there is no gap between
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the Gaussian distribution and the rest of the SaS family. By a proper choice of the
characteristic exponent one may use SaS distributions to model a variety of different
phenomena, from those which exhibit a Gaussian type of behavior to those which are
highly impulsive.

An important consequence of (41) is the non-eristence of the second-order moment
of stable distributions, except for the limiting case & = 2. Specifically, let X be a Sa$

random variable with zero location parameter and nonzero dispersion 7. If 0 < a < 2,

then
E|X|P=00, if p2a (43)
and
E(|X]?) = D(p,a)ysa <o0 if 0<p<a (44)
where +1
2 0(E=)N(~p/a)
= 45

depends only on « and p, not on X. For an elementary proof of (44), see [18].

Hence for 0 < a < 1, a-stable distributions have no finite first or higher-order moments;
for 1 < a < 2, they have the first-order moment and all the moments of order p where
p < ¢; for ¢ = 2, all moments exist. In particular, all non-Gaussian stable distributions
have infinite variance. The significance of infinite variance in signal processing is discussed

in details in [18].
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4.4 Amplitude Probability Distribution

A commonly measured statistical representation of impulsive noise is the amplitude prob-
ability distribution (APD), defined as the probability that the noise magnitude is above a
threshold. Hence, if X is the instantaneous amplitude of impulsive noise, then its APD is
given by

P(|X|>z)=1-F(z)+ F(-=z)

as a function of # > 0, where F(z) is its distribution function. The APD can be easily
measured in practice by counting the percentages of time for which the given threshold is
exceeded by the noise magnitude during the period of observation.

In the case that X is SaS with dispersion 7, its APD can be calculated from (35) as

sin t:z:

P(X|>2)=1-= / exp(—t%)dt. (46)

By integrating (40), one can also represent the APD of SaS noise using power series as

follows
( ) k-1 k
% 3 (= 1) (ak + 1)sm(ﬂ)( ';"’,L)-ak 0<a<l
=1
2
1-— —arctan(x/'y) a=1
P(|X| > z) =« 7" _q)t 2k+l . (47)
——Z W=7 l<a<?
e et (2L +1)! a qt/e
‘ 1 — erf( —2\/_ a=2
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where erf(z) is the standard error function defined by

2

erf(z) = ¥ du.

2 (= _
vz €
By integrating (41), one can easily show that

lim 2°P(1X| > 2) = (2/a)C(a 7). (48)

Hence, the APD of SaS noise decays asymptotically on the order of z=%. As we will see
in Section 6, this results are consistent with experimental observations.

Figs. 2 and 3 plot the APD of SaS noise for various values of a and 4. To fully
represent the large range of the exceedence probability P(|X| > z), the coordinate grid
used in these two and subsequent figures employs a highly folded abscissa. Specifically,
the axis for P(|X| > z) is scaled according to —log(—log P(]X| > z)) and the axis for
the exceedence level z is in decibel. As clearly shown in Fig. 3, Sa$ distributions have a

Gaussian behavior when the amplitude is below a certain threshold.
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Figure 2: The APD of the instantaneous amplitude of SaS noise for a = 1.5 and various
values of «.
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Figure 3: The APD of the instantaneous amplitude of SaS noise for ¥ = 1 and various
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32



5 First-order Statistics of Envelope and Phase of

Narrowband Noise

In the proceeding sections we have shown that the instantaneous noise amplitude is a SaS
random variable and investigated the properties of SaS distributions. This result applies
to both narrowband and wideband receptions. However, in most communication systems,
the receiver is usually narrowband. In such cases, it is of interest to derive the first-order
statistics of the envelope and phase of the received impulsive noise. Based on the general
physical mechanism postulated in Section 2, we will show that the instantaneous phase is
uniformly distributed in [0, 27], and the distribution of the noise envelope is a heavy-tailed

generalization of the familiar Rayleigh distribution.

5.1 Joint Characteristic Function of the Quadrature Compo-
nents

When the receiver is narrowband with the central frequency wyp, the typical waveform,
E(t;8), of the noise pulse after reception (see Section 2.2) may be represented by its slow-

varying envelope V (t;8) and phase ¢ as follows

E(t;0) = V(t;8) cos(wot + ¢). (49)
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Here the envelope again has a fixed waveform containing random parameters §. The ran-
dom phase ¢ of the pulse at the time of observation is assumed to be uniformly distributed

in [0,27] and independent of the envelope and all other random variables. Equivalently,

E(t;0) = E.(t; 8) coswot — E4(t;0) sin wpt (50)

where the “in-phase” and “out-of-phase” quadrature components are defined by

E(t;0) = V(t;0)cos ¢, E,(t;8) = V(t;0)sin ¢. (51)

By (6) and (5), the received narrowband noise at the time of observation is

X = X, coswot — X sinwpt (52)

where the quadrature components of the noise are given by

N N
Xe= Zaiuc(ti;xi,gia ¢i)1 Xs = ZaiUc(ti;xiaQﬁd’i) (53)
i=1 =1
and where
Ueltix,0,8) = ZEe(8), Ueltsx,0,4) = S Eu(6;0) (54)

To find the first-order statistics of the envelope and phase, we need the joint distribution

of the quadrature components X. and X; of the noise process. In a similar way that
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(25) was derived and taking into account the random phase, we can show that the joint

characteristic function of X, and X,
p(wi,wz) = E(exp(j (w1 X. + w2 X,)))
is given by
log ¢(wr, wn)) = z%c”"’ [ pe(arda [ po@)de [“ s [ ds [7 Gulo,0,8,r)ar  (59)
where the integrand
Ga(a,8,¢,7) = [cos(ac;r(w) Ec(t; 8) + w2 E,(8;0))) — 1)r—? (56)
and a is again given by (26). Using (51), one can rewrite the integrand as follows
Gal(a,8,¢,7) = [cos(acrriw|V (t;8) cos(¢ — ¢u)) — 1]r~"" (57)

where

w = (wy,ws), |w|=yw?+w} ¢@,=arctan(w;/w). (58)

From (27), one finds that the joint characteristic function of the quadrature components
of the noise is given by

log p(w1,wa)) = —7|w|* (59)
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where

1=c [ apu(a)da [ pa@d [~ VDR [T cos(@)dg >0 (60)

with
c§cz2pol’'(1 — &) cos %a

C3 =
paw

A bivariate random vector whose characteristic function ¢(w;,w,) has the form defined by
(59) is called isotropic a-stable, which is a special case of multidimensional SaS random

variables.

5.2 Bivariate Isotropic Stable Distributions

Multivariate stable distributions are similarly characterized by the stability property and
the generalized central limit theorem. They preserve the characteristic exponent 0 < a < 2
and include the multivariate Gaussian distributions (@ = 2) and the multivariate Cauchy
distributions as special cases. In addition, they share many important properties of the
multivariate Gaussian distributions. For a general discussion on the multidimensional
stable distribution, see [18].

Multidimensional stable distributions are, however, much more difficult to describe than
the univariate stable distributions mainly because they in general form a nonparametric
family. An important exception is the class of multidimensional isotropic stable distri-
butions, which has many properties that are similar to the univariate SaS distributions.

Here, we investigate the two dimensional case, which is sufficient for our purposes.
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A bivariate isotropic a-stable distribution is, in its most general form, defined by a

characteristic function of the form

@(t,t2) = exp(j(arts + aats) — 7[L|*) (61)

where

—0<a,a2<00,7>0,0<a<? (62)

and £ = (4,12), |t] = /12 + 3.

The parameters a;, a; determine its central location. It is easy to check that a prob-
ability distribution defined by (61) is indeed isotropic with respect to the center (ay, a;).
The parameters v and « are the dispersion and the characteristic exponent, respectively.
They play the same roles as in the univariate case. Two important special cases are the
bivariate isotropic Gaussian (@ = 2) and Cauchy (a = 1) distributions. Note that the two
marginal distributions of the isotropic stable distribution defined by (61) are SaS with
parameters (a;,v, ) and (a,,7, a) respectively.

As usual, we shall assume (a,, a;) = (0,0) so that all isotropic stable distributions are
centered at the origin. In this case, a bivariate isotropic a-stable distribution is param-
eterized by the characteristic exponent o and dispersion v as shown in its characteristic

function

Par(t1,12) = exp(—7[t|%). (63)
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Denote its density and distribution functions by f, ,(z1,2z2) and Fo(z1,22). If, further-
more, 4 = 1, it is said to be the standard isotropic a-stable distribution.
The density function f, . (z1,z2) is the inverse Fourier transform of the characteristic

function in (63), i.e.,

fa,.,(xl,mg) = (27!')-2‘/t ./t? exp(—j(mltl + xztg))exp(—ﬂ_t_l"‘)dtldtz (64)

Let z = (z1,22) and |z| = \/2? + z%. Using the polar coordinate system for the integral,

one can show that

fa"Y(ml’ -'172) = Xaﬂ(lg-l) (65)
where

Xaq(T) = 1 -/oo sexp(—ys®)Jo(sr)ds, r>0. (66)

il 27 Jo ? =
Here,
1 s= .
Ja(z) = ;/0 cos(z sin§ — nd)do (67)
is the nth order Bessel function of the first kind.

It is apparent from the following integrals [24]

© 1
/0 zexp(—az?)Jo(bz)dz = %—exp(—bz/lla), a>0,b>0
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and 3
a2y I'(n + -2-)

Va(a® + By

o0
/ e % Ja(b2)z" M dz = a>0,b>0,n> -1,
0

that

xan(r) = ﬁexp(—ﬂ/zw) (68)

2

Xl.'Y(r) = 27?(7’2 +72)3/2' (69)

When o # 1 or 2, no closed-form expression is known for the integral in (66). But,
by exploiting the basic properties of Bessel functions, one can find the following series

expansion [27]

2t & (—l)k 2 1/ay—ak-2
wiy2la Z A (T({ak/2 + 1)) sm( )(7‘/ ) 0<ax<l
Xan(T) = !
92k+171a72/a Z (k'))2 (2k i 2)("/’)’1/‘")2'c l<a<?2.
(70)

In addition, xq.4(r) is also a heavy-tailed function. Specifically, one can show [27] that

im r**2x,4(r) = B(e,v) (71)

r—o0

where B(a, <) is a positive constant. Hence, X4,4(r) has an algebraic tail of order a + 2.
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5.3 First-order Statistics of Noise Envelope and Phase

From (52), the noise envelope A and phase ¥ are determined by the quadrature components

X, and X, as follows

A=/X2+ X2, ¥ =arctan(X,/X.). (72)

Since X, X, are jointly isotropic a-stable with density function f,(z;,z2), the joint

density of the envelope and phase is given by
fla,¥) = afay(acos,asing), ¢=>0, 0<4 <2 (73)

From (65) and (66), it follows that

fla,¥) = axaq(a) = 2% [)oo sexp(—ys*)Jo(sa)ds. (74)

Since the bivariate density f(a,%) is independent of ¥, the random phase is uniformly
distributed in [0,27] and is independent of the envelope. This is a well-known fact for the
Gaussian case.

The density of the envelope, on other hand, is given by

0
0

f(e) = a/ sexp(—vs*)Jo(as)ds, a > 0. (75)
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By integrating (75) and noting the following identity of Bessel functions [28]
/0 " sdo(s)ds = zJy(z)
one obtains the envelope distribution function
F(a) = a/(;oo exp(—vt*)Ai(at)dt, a > 0. (76)

From (68), (69) and (70) the envelope density is also given by the following series

. 2ak+l 0o ( 1 k=1 g . konr a okt

-y g ! (P(ack/2 + 1)) sin(—=)(57z) 0<a<l

a”y

12 1 ~2\3/2 a=1

flay=1 (@®+7) (77)
1 (=1 2L +2. 8 o
22"071/0‘ Z (k' )(71/0) 1<a<?2
| 5 exp(=a?/47) a=2.

Note that when a = 2, one obtains the familiar Rayleigh distribution for the envelope.

The APD of the envelope is given by

P(A>ad)=1- a/ooo exp(—7t*)Jy(at)dt, a 2> 0. (78)
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Or, by integrating (77), one obtains

([ 9ak+l o0 (__ 13yk-1 oo
2 Z( l:')k (P(ak/2+1))2sin(k7-)(7_:’/:)-ak

T k=1

-
J (a2 + 72)i/2

1 & (=1* 242, a 5
L= S L TPk ) o )

| exp(—a?/47)

From (71), it follows that

and hence

lim a**! f(a) = 27 B(a,7) > 0

a—+Co

lim a®P(A > a) = (27 /a)B(a,7)

a=—C0

(80)

(81)

i.e., the envelope distribution and density functions are again heavy-tailed. In particular,

the APD of the envelope is asymptotically algebraic, i.e.,

P(A>a)=0(a") asz— o0

(82)

Figs. 4 and 5 plot the APD of the SaS noise for various values of @ and 4. Note

that when a = 2, i.e., when the envelope distribution is Rayleigh, one obtains a straight

line with slope equal to —1. Fig. 5 again shows that at low amplitudes the Sa$ noise is

basically Gaussian (Rayleigh).
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Figure 4: The APD of the envelope of narrowband SaS noise for @ = 1.5 and various

values of 7.
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As a consequence of the algebraic character of its distribution, the envelope has no

moments of order larger than «. All moments of order less than « are finite and given by

PUT(p/OTC 4P/ pta o< p<a (83)

BA) = ——a(/2)

For a proof of (83), see [27].
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6 Comparisons with Existing Models and Experi-

mental Data

There exist mainly two types of models for impulsive noise: empirical models and statistical-
physical models. Although they are usually very simple, empirical models are designed only
to fit the measured statistics of the noise. They do not consider its underlying physics,
and their uses are limited to particular situations. Statistical-physical models, on the
other hand, are well motivated physically and specified by physically meaningful param-
eters. However, they often have the disadvantage of being lack of closed forms for the
resulting probability distributions except in certain limiting situations.

In this section, we compare the SaS model with some of the typical empirical and
statistical-physical models that have been proposed to date. Direct comparisons with
experimental data are also made for various types of man-made and natural impulsive

noise.

6.1 Middleton’s Statistical-Physical Models

Statistical-physical models are typically based on the same filtered-impulse mechanism
used to derive the SaS model earlier in this paper, with different assumptions for the noise
source distribution and propagation condition [13, 9, 14, 3]. Among them, some of the most
general are the Class A and Class B models suggested by Middleton [3]. In developing these

models, considerable attention is given to the detailed structures of the basic waveforms of
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the emissions and the spatial-temporal distribution of the noise sources. In fact, under the
assumption that reception is narrowband, a generally applicable, although complicated,
expression is derived for the basic waveforms and used in deriving Class A and B models.
As a result, these two models are canonical, i.e., they are invariant of the particular physical
conditions as long as the received noise is narrowband. Unfortunately, they are also very
complicated and difficult to derive. Furthermore, since several approximations have to be
made in their derivations in order to get usable results, it is not obvious how the final
mathematical formulas for the probability distributions of the Class A and Class B models
and the underlying physics of the noise are connected [16].

The SaS model, on the other hand, is derived from simplified assumptions on the source
density and propagation process. The main simplifications are that the beam patterns of
the receiver antenna and noise sources are nondirectional and that the noise sources are
istropically distributed in space. However, the inverse-power characteristic of the prop-
agation law and source density is preserved. No further approximation is used in the
derivation. And the derivation is much simpler than that of Middleton’s models. It is
interesting to note that the Class A model may be derived exactly if one uses similar
simplications of the source distribution and propagation condition [16].

Because of the nature of its assumption on the received noise waveforms, the SaS model
is necessarily constrained to Class B noise, which includes atmospheric noise, automotive
ignition noise, and other non-intelligent noise. In fact, the SaS model and the Class B

model are closely related. To see this, one notes that the characteristic function of the
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instantaneous amplitude of a Class B interference in the absence of Gaussian background
noise! can be approximated by two distinct functions which are suitably joined at some
appropriate threshold zop [29]). Specifically, when the noise amplitude is less than 25, the

density function is approximately determined by the following characteristic function

pB-1(t) = exp(—b1aAa°[t|°). (84)

When the noise amplitude is larger than zop, the approximate characteristic function is

(pB_.”(t) = e 4B eXp(ABC_b“&!ItP,Z). (85)

All the parameter in (84) and (85) are non-negative and physically meaningful. In partic-
ular, the parameter « is exactly the same one defined by (26).

An immediate observation is that as the threshold zp5 approaches to the infinity, the
SaS model and the Class B model coincide. Consequently, the SaS model may be viewed
as a limiting case of Middleton’s Class B model. One can show that the tails of the
distribution function determined by (85) is much lighter than the algebraic tails of the
SaS distribution. While this ensures that the Class B model has finite variance, it is
often the algebraic behavior of the tails of the SaS distribution that is of interest in

practice, as we will see later. Also, the full Class B model is very complicated and can

1Gaussian background noise is neglected in the development of the SaS model since its contribution
is usually insignificant in the presence of impulsive noise.
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not be easily used in designing signal processing algorithms. This further suggests that
the SaS model is more desirable than the full Class B model. One should also note that
the envelope distributions of Sa.S noise and Class B noise are generally different. While
the characteristic function of the envelope of Class B noise can be approximated by two
functions similar to those in (84) and (85) (3], that of the envelope of SaS$ noise is a

heavy-tailed generalization of the Rayleigh distribution.

6.2 Empirical Models and Experimental Data

Many of the empirical models are based on the experimental observation that most of
the impulsive noise, such as atmospheric noise, ice-cracking noise and automotive ignition
noise, are approximately Gaussian at low amplitudes and impulsive at high amplitudes
[8, 9, 30]. For example, the Gaussian behavior of atmospheric noise at low amplitudes
is the result of many distant lightning discharges, whereas its impulsive behavior at high
amplitudes is caused by strong spikes from nearby thunderstorms. A typical empirical
model then approximates the probability distribution of the noise envelope by a Rayleigh
distribution at low levels and a heavy-tailed distribution at high levels. In many cases,
it has been observed that the heavy-tailed distribution can be assumed to follow some
algebraic law 2", where n is typically between 1 and 3 [6, 10, 31, 6].

The behavior of the SaS model coincides with these empirical observations, i.e., SaS
distributions exhibit Gaussian behavior at low amplitudes and decay algebraically at the

tails. But unlike the empirical models, the Sa$S model provides physical insight into the
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noise generation process and is not limited to particular situations. It is certainly possible
that other probability distributions could be formulated exhibiting these behaviors, but
the SaS model is preferred for several reasons. First, stable distributions share many con-
venient properties with the Gaussian distribution, such as the stability property, as shown
earlier. In addition, they are very flexible as a modeling tool in that the characteristic
exponent a allows us to represent noise with a continuous range of impulsiveness. A small
value of a implies that the noise is highly impulsive, while a value of « close to 2 indicates
a Gaussian type of behavior. Lastly, it agrees very well with the measured data of a variety
of man-made and natural noise, as demonstrated below.

Our first example is atmospheric noise, which is the predominant noise source at VLF
and ELF. Fig. 6 compares the SaS model with experiment for typical ELF noise. The
measured points for moderate-level Malta ELF noise in the bandwidth from 5 to 320 Hz
are taken from [1]. Since the ratio of bandwidth to center frequency is not small at ELF,
the APD of wideband SaS noise given by (47) is used. The characteristic exponent o
and the dispersion < are selected to best fit the data. Fig. 7 is analogous to Fig. 6, and
compares the SaS model with experiment for typical VLF noise. The experimental APD
is replotted from [32] and the theoretic APD is calculated from (79) be selecting best values
of a and 4. The two figures show that the two-parameter representations of the APD by
SasS distributions provide an excellent fit to the measurements of atmospheric noise.

Similar conclusions are also applicable to other man-made and natural impulsive noise,

as shown in Figs. 8 and 9. Fig. 8 is an example of primarily urban automotive ignition
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noise, whereas Fig. 9 shows the APD for fluorescent lights in a mine shop [32]. In both
cases, the agreement between theory and experiment is very good.

Another example of SaS noise is the impulsive noise observed on telephone lines.
These impulsive interferences are caused by several sources including lighting, switching
transients, and accidental hits during maintenance work. A detailed empirical study shows
that noise on several telephone lines can be adequately modeled by SaS distributions with

characteristic exponents close to 2 [4].
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Figure 6: Comparison of a measured APD of ELF atmospheric noise with the SaS model
(experimental data taken from [1]).
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SaS model (experimental data taken from [32]).
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Figure 8: Comparison of a measured envelope APD of automotive ignition noise with the
SaS model (experimental data taken from [32]).
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Figure 9: Comparison of a measured envelope APD of fluorescent lights in a mine shop
office with the Sa.S model (experimental data taken from [32])
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7 Conclusion

The symmetric stable model has been developed for impulsive noise from the familiar
filtered-impulse mechanism of the noise generation process. It is shown to be a direct
generalization of the Gaussian model and share many of its convenient and appealing
properties, such as the stability property. The stable model is also very flexible and able
to describe a wide variety of non-Gaussian phenomena, from those which only slightly
deviate from the Gaussian to those which are severely impulsive. In addition, it is found

to be consistent with both experimental data and prior theoretical results.

56



References

1]

[2]

(3]

[4]

[5]

[6]

[7]

J. Evans and A. S. Griffiths, “Design of a Sanguine noise processor based upon world-
wide extremely low frequency (ELF) recordings,” IEEE Transactions on Communi-

cations, vol. COM-22, pp. 528-539, 1974.

F. W. Machell, C. S. Penrod, and G. E. Ellis, “Statistical characteristic of ocean
acoustic noise processes,” in Topics in Non-Gaussian Signal Processing (E. J. Wegman

et al, ed.), pp. 29-57, New York: Springer, 1989.

D. Middleton, “Statistical-physical models of electromagnetic interference,” IEEE

Trans. Electromagnetic Compatibility, vol. EMC-19, no. 3, pp. 106-127, 1977.

B. W. Stuck and B. Kleiner, “A statistical analysis of telephone noise,” Bell Syst.

Tech. J., vol. 53, no. 7, pp. 1263-1320, 1974.

J. Seo, S. Cho, and K. Feher, “Impact of non-Gaussian impulsive noise on the perfor-
mance of high-Level QAM,” IEEE Trans. Electromagnetic Compatibility, vol. EMC-

31, pp. 177-180, May 1989.

R. M. Lerner, “Design of signals,” in Lectures on Communication System Theory

(E. J. Baghdady, ed.), pp. 243277, New York: McGraw-Hill, 1961.

W. B. McCain and C. D. McGillem, “Performance improvement of DPLL’s in non-
gaussian noise using robust estimators,” IEEE Trans. Commaun., vol. COM-35, no. 11,
pp. 1207-1216, 1987.

57



[8] W. Q. Crichlow, C. J. Roubique, A. Spaulding, and W. M. Beery, “Determination
of the amplitude probability distribution function of atmospheric radio noise from

statistical moments,” J. Res. NBS, vol. 64D, pp. 49-56, 1960.

[9] P. Beckmann, “Amplitude probability distribution of atmospheric radio noise,” Radio

Science, vol. 68D, pp. 723-736, 1964.

[10] P. Mertz, “Model of impulsive noise for data transmission,” IRE Trans. Commun.

Systems, vol. 9, pp. 130-137, June 1961.

[11] H. Hall, “A new model for “impulsive” phenomena: Application to atmospheric-noise
communication channel,” Technical Report 3412-8, 66-052, Stanford Electron. Lab.,

Stanford Univ., 1966.

[12] M. Bouvet and S. C. Schwartz, “Comparison of adaptive and robust receivers for
signal detection in ambient underwater noise,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. ASSP-37, pp. 621-626, May 1989.

[13} K. Furutsu and T. Ishida, “On the theory of amplitude distribution of impulsive

random noise,” J. of Applied Physics, vol. 32, no. 7, 1961.

(14] A. Giordano and F. Haber, “Modeling of atmospheric noise,” Radio Science, vol. 7,

pp. 1101-1123, 1972.

58



[15] D. Middleton, “Procedures for determining the parameters of the first-Order canonical
models of class A and class B electromagnetic interference,” IEEE Trans. Electromag-

netic Compatibility, vol. EMC-21, no. 3, pp. 190-208, 1979.

[16] L. A. Berry, “Understanding middleton’s canonical formula for class A noise,” IEEE

Trans. Electromagn. Compat, vol. 23, pp. 337-344, 1981.

[17) W. Feller, An Introduction to Probability Theory and Its Applications, vol. II. New

York: Wiley, 1966.

[18] M. Shao and C. L. Nikias, “Signal processing with fractional lower order moments:
Stable processes and their applications,” Proceedings of IEEE, accepted for publication

in 1993.

[19] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J., vol. 24,

pp. 296-320, 1944.

[20] D. Middleton, “On the theory of random noise. phenomenological models. I,” J. of

Applied Physics, vol. 22, pp. 1143-1163, 1951.

[21] D. Middleton, “First-order probability models of the instantaneous amplitude, part
P P

I,” Report OT 74-36, Office of Telecommunications, 1974.

(22] A. Watt and E. Maxwell, “Characteristics of atmospheric noise from 1 to 100 kc,”

Proc. IRE, vol. 45, pp. 787-794, 1957.

[23] E. Parzen, Stochastic Process. San Francisco, CA: Holden-Day, 1962.

59



[24] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. New

York: Academic, 1965.
[25] W. Rudin, Real and Complez Analysis. New York: McGraw-Hill, 3rd ed., 1986.

[26] A. V. Nagaev and S. M. Shkol’nik, “Some properties of symmetric stable distributions

close to the normal distribution,” Theory Prob. Appl., vol. 33, pp. 139-144, 1988.

[27) V. M. Zolotarev, “Integral transformations of distributions and estimates of parame-
ters of multidimensional spherically symmetric stable laws,” in Contribution to Proba-
bility: A Collection of Papers Dedicated to Eugene Lukacs (J. Gani and V. K. Rohatgi,

eds.), pp. 283-305, Academic Press, 1981.
[28] N. McLachlan, Bessel Functions for Engineering. London: Oxford, 2nd ed., 1955.

[29] D. Middleton, “Statistical-physical models of man-made and natural radio noise, part
II: First-order probability models of the instantaneous amplitude of Class B interfer-

ence,” Report NTIA-CR-78-1, Office of Telecommunications, 1978.

[30] E. J. Wegman, S. C. Schwartz, and J. B. Thomas, eds., Topics in Non-Gaussian Signal

Processing. New York: Springer, 1989.

(31] O. Ibukun, “Structural aspects of atmospheric radio noise in the tropics,” Proc. IRE,

vol. 54, pp. 361-367, 1966.

60



{32] D. Middleton, “Statistical-physical models of man-made and natural radio noise, part
II: First-order probability models of the envelope and phase,” Report OT 76-86, Office

of Telecommunications, 1976.

61



