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Abstract

A wide range of research has been published on the problem of estimating the
parameters of electromagnetic and acoustical sources from measurements of signals
measured at an array of sensors. In the quasi-static electromagnetic cases examined here,
the signal variation from a point source is relatively slow with respect to the signal prop-
agation and the spacing of the array of sensors. As such, the location of the point sources
can only be determined from the spatial diversity of the received signal across the array.
The inverse source localization problem is complicated by unknown model order and
strong local minima.

The nonlinear optimization problem is posed for solving for the parameters of
the quasi-static source model. The transient nature of the sources can be exploited to
allow subspace approaches to separate out the signal portion of the spatial correlation
matrix. Decomposition techniques are examined for improved processing, and an adap-
tation of MUlItiple SIgnal Characterization (MUSIC) is presented for solving the source
localization problem. Recent results on calculating the Cramer-Rao error lower bounds
are extended to the multidimensional problem here.

This thesis focuses on the problem of source localization in magnetoencephalog-
raphy (MEG), with a secondary application to thunderstorm source localization. Com-
parisons are also made between MEG and its electrical equivalent, electro-
encephalography (EEG). The error lower bounds are examined in detail for several
MEG and EEG configurations, as well as localizing thunderstorm cells over
Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a

parsing technique for improving the performance of the optimization problem.
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Chapter 1
Introduction

A wide range of research has been published on the problem of estimating the
parameters of electromagnetic and acoustical sources from measurements of signals at
an array of sensors. In the quasi-static electromagnetic cases examined here, the signal
variation from a point source is relatively slow with respect to the signal propagation and
the spacing of the array of sensors. Consequently, the location of the point sources can
only be determined from the spatial diversity of the received signal across the array. The
inverse source localization problem is complicated by unknown model order and strong
local minima.

This thesis focuses on the problem of source localization in magnetoencephalog-
raphy (MEG), with a secondary application to thunderstorm source localization. The
processing of magnetoencephalography (MEG) data distinguishes itself from conven-
tional array processing techniques on several points. The evoked response signal
received at the array is transient. Preferably, assumptions about an appropriate model for
the transient are minimal, thus precluding the use of pattern matching or matched filter-
ing techniques. The signal is assumed quasi-static, so that fluctuations in the signal
arrive simultaneously at all sensors and thus no time-of-arrival information is available. |
The location must be derived solely from the spatial disparity of the signal across the
array, hence the “near-source” designation of this research. The evoked response time
series from distinct sources can be assumed to be at best only linearly independent, so
that partial temporal coherence often degrades minimum variance approaches. Conven-

tional approaches reduce coherence through spatial smoothing, which depends on the



shift invariance of an array; the spatial disparity of the MEG signal makes this approach
inappropriate. The MEG dipole model generates a three-dimensional manifold, such
that the orientation or “polarization” of the neural source must be considered. The MEG
model also suffers from a rank deficiency in the radial direction, which can complicate
the formulation.

These differences notwithstanding, the MEG model can be recast into formula-
tions similar to other source localization problems. This dissertation examines in detail
the basic MEG current dipole model and its variations, then presents methods for solv-
ing for the parameters of the model, beginning with the conventional nonlinear least-
squares approach. A suboptimal approach to solving the difficult nonlinear problem is
introduced, then shown to be a variation of MUlItiple SIgnal Characterization (MUSIC).
Cramer-Rao Lower Bounds for the multidimensional array manifold problem are
derived, then simplified to a meaningful closed form expression for lower bounds on
localization error. The technique of time-eigenanalysis is introduced to analyze the
short-time correlations in the signal. Information from the time-eigenanalysis is used to
parse the transient neural signal into appropriate segments that enhance the SNR and
success of the MUSIC techniques.

This research and its extensions of array signal processing techniques are also
applicable to other problems of near-source quasi-static electromagnetic fields. In addi-
tion to demonstrating the novel approaches with the MEG model, this thesis also pre-
sents applications in electroencephalography (EEG) and thunderstorm source
localization. We discuss the background of the MEG model in more detail below. We

then follow with a brief introduction to the thunderstorm source model.



Chapter 2
Localization Background

2.1 Magnetoencephalography

Magnetoencephalograms (MEG) (and electroencephalograms (EEG)) are non-
invasive methods of studying the functional activity of the human brain with millisecond
temporal resolution. Much of the work in MEG and EEG in the last few decades has
been focused on estimating the properties of the internal sources of the fields from the
external measurements (e.g., Snyder 1991). The most straightforward model for describ-
ing the external evoked magnetic field or surface evoked potential is the single equiva-
lent current dipole. This model and its variations, both in EEG and MEG, contains a
transfer function or lead field model to relate each dipole’s intensity, orientation, and
location to the externally measured fields. The general inverse problem is to find the
three location parameters and the three moment parameters that comprise the unknown
parameters for each dipole.

An array of Superconducting QUantum Interference Device (SQUID) biomag-
netometers may be used to measure the spatio-temporal magnetoencephalogram (MEG)
produced by the brain. Given these external magnetic field measurements, one would
like to compute a “neuromagnetic image,” specifying the three-dimensional current den-
sity that produced the magnetic field. Accomplishing this requires inversion of the Biot-
Savart law. Unfortunately, this general inverse problem is ill-posed because different
neural current distributions may produce the same external field measurements. As a
result, physical models of the underlying current distributions are employed; William-

son et al. (1983) provide a good overview of the general topic.



Of particular interest is the localization of the neural currents evoked in response
to a given sensory stimulus, such as auditory or visual. An external magnetic field may
be produced by this primary neural current, for which the simplest and most widely used
composite model is the “dipole in a sphere.” Here, the primary current is modeled as a
current dipole or set of dipoles, and the head is modeled as a conductive sphere. A cur-
rent dipole can accurately model neural activity localized to one site, representing the
coherent activation of a large number of individual neurons (Scherg and von Cramon
1985a). The return or global volume currents are distributed over the sphere of the head,
and the external magnetic field generated by the volume currents has no component nor-
mal to the head surface (Trip 1982, Ilmoniemi et al. 1985, Sarvas 1987). Thus, in this
simple model, the component of the magnetic field oriented radially from the head is
produced by the primary dipole current alone.

Given a suitable source and head model, the inverse problem can be reduced to
the nonlinear optimization problem of computing the location and moment parameters
of the set of dipoles whose field best matches the MEG measurements in a least-squares
sense. Singh et al. (1984) discussed neuromagnetic imaging (NMI), which extends the
dipole model by assuming a large set of current dipoles, each with a fixed location at the
center of a voxel (volume element) of a three-dimensional volume within the brain. The
MEG data and image are linearly related; however, because of the large number of
unknowns in the three-dimensional image, there is generally not a unique solution. Ilmo-
niemi et al. (1985) described the general forward problem and presented minimum norm
inverse solutions. Jeffs et al. (1987) investigated several cost functions to select an
appropriate solution from the set of feasible solutions. Dallas (1985) investigated the
imaging problem using a direct Fourier-based inversion approach, Alvarez (1990)
recently presented Fourier-based solutions for the two-dimensional case, and Wikswo

et al. (1990) have had success in imaging two-dimensional objects with their MicroS-
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QUID apparatus. In this thesis we present methods for solving for a small parsimonious
set of dipoles as a means of avoiding the ill-posed problem associated with the full three-
dimensional image model.

As in all modeling situations, a trade-off exists between model complexity and
generality and the ability to reliably estimate the model parameters from the given mea-
surement data. Initial MEG dipole models used single time “snapshots” of the measured
spatial magnetic field, where a spatial dipole model was fitted at an instance in time, usu-
ally at a local or global response peak. These MEG models are direct counterparts of
EEG dipole models, known as instantaneous state dipole models (Wood 1982). To
increase the complexity of the source models that can be effectively employed, research-
ers have begun to incorporate temporal modeling assumptions. The addition of a tempo-
ral model increases the range of the measurements that can be used in model fitting. A
spatio-temporal dipole model and the necessary associated assumptions are presented in
detail in (Scherg and von Cramon 19853, Scherg 1989).

The spatio-temporal models differ in the manner in which they describe the time
dependence of the data. Scherg and von Cramon (1985a, 1985b) use dipoles fixed in an
unknown location and orientation, and therefore the time dependence is represented by
a scalar time series specifying the magnitude and polarity of the current flow. Maier
et al. (1987) implicitly assume the same model, but use principal components analysis
(PCA) to derive the locations. Achim et al. (1988) compare the instantaneous state
dipole model with PCA dipole fitting and spatio-temporal modeling; in their three-
dipole fixed orientation spatio-temporal model, they assume that two of the dipoles are
known in orientation and location (information obtained from the instantaneous state
dipole model), and thus search for only one unknown dipole location and orientation. In
(Scherg and von Cramon 1986), Scherg and von Cramon have fixed location, but uncon-

strained orientation, and they introduce the idea of dipole source potentials, or regional
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dipoles (Scherg 1989), where three elemental dipoles with orientations in orthogonal
directions may occupy the same physical location.

These differences in formulation can be grouped into three spatio-temporal
dipole models: i) unconstrained (“moving and rotating™) dipoles, ii) dipoles with a fixed
location (“rotating” or “regional”), and iii) dipoles with a fixed location and a fixed ori-
entation (“fixed’’). We assume that the parameters of location, orientation, and magni-
tude are all unknown. Our intent here is not to argue the merits of one model over
another, but rather to show how each model may be solved efficiently within a common
linear algebraic framework. In each case, we show that the model can be mathematically
reduced to the same general expression, allowing the same approach to finding the
inverse solution. This expression will unify our approach to solving the inverse problem,
no matter which model we choose.

Neuromagnetic fields are very weak, ranging from 101210 10" tesla (T). In
comparison, the Earth’s magnetic field is in the UT region at about 5 x 10 T and urban
background noise can generate fields roughly at 100 T. Measurements are made typi-
cally in a magnetically shielded room using superconducting quantum interference
devices (SQUIDS) in conjunction with a gradiometer configuration for the pickup coils.
To keep the noise of the electronics below that of the fields, as well as achieve supercon-
ductivity, the entire sensor arrangement is refrigerated to near absolute zero in a Dewar
filled with liquid helium.

Fig. 1 displays a schematic illustration of a single sensor system. The gradiom-
eter configuration uses pickup coils wound in opposing directions, such that spatially
distant signals are canceled as they pass through all of the coils. The weak and dissipat-
ing neural fields effectively pass only through the nearest coil and are therefore not can-

celed. The single channel system is also expanded to 7 and 37 channel systems. More
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FIGURE 1. Single MEG sensor schematic from (Lewis and George 1980). The single
channel sensor depicted here is also configured in a 7 and 37 sensor “bowl™like arrange-
ments, which allow the cluster of sensors to be placed next to the scalp. Other arrange-
ments include a helmet of fixed sensors sites about the entire head.
recently, a 61 position “helmet” with two sensor orientations per position was intro-
duced, as well as a 64 channel first-order gradiometer system.

The diameter of the pickup coil is typically 1-2 cm, and the sensor integrates the’
magnetic flux passing normal through the plane of the coil. The thickness of the Dewar
wall, the thickness of the skull, and the minor standoff of the Dewar from the patient’s
scalp typically separate the coil and the nearest neural source by at least 1-2 cm. In (Jeffs
et al. 1987), simulations show that each of the gradiometer coils can be reasonably

replaced with a simpler point source sensor model measuring the field at the center of

the coil.



In EEG, the typical use of the sensor data is to generate three dimensional con-
tours by interpolating between the data points. Given MEG sensors’ much greater cost,
generating contours from MEG data offers little advantage. The focus has instead been
on source localization, which attempts to infer from these external magnetic fields what
and where the underlying sources were. Although EEG data has also been used for
attempts at source localization, the simplicity of the MEG model (discussed in
Chapter 3) relative to the EEG model implies a greater chance for success in arriving at
a solution.

In Chapter 3, we present each of the three data models, and in Chapter 4, we dis-
cuss the calculation of the error function in fitting these models to spatio-temporal data.
In Section 4.2, we present a computer simulation to illustrate the performance of these
spatio-temporal modeling techniques. Chapter 5 presents a new suboptimal but faster
method of solving the least-squares problem using a subspace scanning approach. In
Section 5.2, we discuss how this subspace scanning is statistically equivalent to the
MUltiple SIgnal Classification method (MUSIC) (Schmidt 1986). We also present anal-
ysis to show that although PCA dipole fitting is similar to these subspace methods, PCA
will generally fail in the multiple dipole case, whereas these methods will generally suc-
ceed. We present a simulation of this scanning method, using the same example data

from Section 4.2. We then present results from an actual somatosensory experiment.

2.2 Electroencephalography

As part of the Cramer-Rao Lower Bound studies presented in Chapter 7, we
compare the lower bounds of magnetoencephalographic arrays with those of electroen-
cephalographic arrays. The research and computational work of the EEG specific for-
mulas was conducted by Michael E. Spencer. A summary of the EEG model is presented

in Section 3.3 and in (Mosher et al. 1993). For our purposes in this dissertation, the EEG
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model is treated as a variation of the MEG manifold, although obviously more compli-

cated. Background and derivation details will be presented in Mr. Spencer’s dissertation.

2.3 Thunderstorm localization

Lightning has always been a primary safety concern at NASA. Most systems
concentrate on detecting lightning occurrence and locations, but do not locate the source
of the lightning. Kennedy Space Center (KSC) is high on the isokeraunic curve averag-
ing 80 to 90 days per year during which thunderstorm activities occur. This frequency
of activity greatly influences both normal operations and launch operations. The electric
field mill network is an electrical system, deployed at KSC, of which the implementation
provides information on lightning location and storm electrification. The electric field
mill network, however, does not identify the electric field structure aloft. NASA has cri-
teria that limit activities and launches when field levels exceed 1kV/m. A more accurate
determination of the distribution and strength of storm cells is needed to assess their
ability to produce triggered lightning. If a new technique could infer the electric field
structure aloft from ground-based data, NASA could improve lead time to issue and can-
cel storm warnings.

We adapted the MUSIC eigenanalysis approach developed in this research,
which allows us to scan three dimensional space searching for multiple electromagnetic
sources. This technique should significantly enhance NASA's ability to characterize
potential electrified sources and thus enhance the ability to determine the probability of
triggering lightning with launch vehicles. This new method is very graphically oriented
in a manner quite consistent with existing RADAR and lightning systems in use, and
therefore should readily integrate into forecasters’ needs for rapidly assessing informa-
tion in a real-time operational environment. The end goal is to process the data from the

KSC field mill into useful interpretations about the nature of an electrified storm cell.
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This dissertation includes summaries of some of our activities under a grant from NASA
KSC.

Cloud generation, electrification, and thunderstorm physics are complex and
well beyond the scope of this dissertation. However, at the simplest modeling level, the
thunderstorm localization problem at NASA is remarkably similar to the MEG/EEG
problem. An isolated thunderstorm cell can be modeled as a point charge positioned
above a perfect grounding plane. The electric field at the Earth’s surface ranges from
-300 volts/meter (v/m) in fair weather to as high as +15,000 v/m as a storm cell passes
directly overhead. Excepting lightning strikes, the signal recorded by a ground-based
array of sensors is effectively quasi-static, and inverting the array of signals and deter-
mining the source locations suffers from the same problems that plague MEG and EEG
research.

The electric field mill in use at Kennedy Space Center-Cape Canaveral Air Force
Station (KSC-CCAFS) is shown conceptually in Fig. 2, along with a photograph of field
mill 4. An overview of the field mill theory and design is presented in (Maier and
Strange 1988). The KSC-CCAFS field mill array comprises 31 such field mills in a net-
work across the Cape, as structured during the summer of 1991. Fig. 3 presents the loca-
tion of the sensors, numbered 1 to 34; sensor numbers 3, 24, and 31 were not used. The
mills measures the DC and low frequency electric field (to 5 Hz) at the Earth’s surface,
producing a measurement situation not unlike MEG or EEG.

The data sets recorded at CCAFS are based on a 10 bit digital word sampled 60
times a second. The base quantization level is 30 v/m, with the zero baseline set at code-
word 512 (out of 1024 possible). The dynamic range is limited to codewords between
12 and 1012, representing values of +/- 15 kV/m. The data stream from all sensors is
time-tagged and recorded continuously. Reduced 10 samples per second data sets are

also made available.
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FIGURE 2. Exploded view of the mechanical parts of an electric field mill and the basic
wiring of the stator plates (Maier and Strange 1988). The pickup coil senses the alignment
of the rotor blades over the stator blades and picks off the signal from the differential amp.
At the bottom is a photograph of Field Mill #4 in operation. The cement pad at the base of
the sensor is two foot by two foot in dimensions.
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FIGURE 3. The electric field mill network at Kennedy Space Center and the Cape Canav-

eral Air Force Station, as configured during the summer of 1991. Overlaid is the sensor
response to a thunderstorm over a four hour period. We note that the storm is apparently
to the west of the KSC array and somewhat southem, as seen by the relative lack of activity
on the cceanside and northern sensors.

Because NASA has no reliable source inversion technique to use operationally,
the primary use of the data is for generating contour maps. The contours are generated
from one minute averages and updated every five minutes in normal operations. The
contour algorithm is based on an exactly constrained set of linear equations, representing
a set of point charges of unknown intensities six kilometers above each field mill. The

model is inverted to obtain the charge intensities, then these charge intensities are used

in a new forward model representing a fine contour grid. Isocontours are typically drawn
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at 1000 V/m, and the zero contour specially denoted. Interpretation of the contours is not
unlike interpretations of EEG contours.

In theory, the field mill can also be used to assess lightning strikes, as described
in (Maier and Strange 1988). In practice, the role of detecting and locating cloud to
ground lightning strikes is assumed by specialized detection arrays, such as the National
Lightning and Detection Network. The electric field mill represents one of several
modalities in use by operational personnel to assess thunderstorm threats. The primary
tools in assessment, in order of importance, are weather radar, lightning detection, and
electric field mill data.

The primary operational procedure for the field mill data focuses on the field
level value; in general, values above 1 kV/m will halt launch operations, and values
above 2 kV/m will halt ground operations. Unfortunately, these levels are also found
under non-threatening conditions, such as fog, smoke, or sea spray. The limitation in set-
ting better launch and ground field mill criteria appears to center on the need for objec-
tive interpretations of the array output. Indeed, one of the promises of the techniques
presented in this research is to better integrate the interpretation of field mill data into
real-time operations, such that unnecessary operational halts can be avoided.

As an example of a data set, Fig. 3 shows the electric fields recorded over a four
hour period, as a storm grew, then dissipated. Fig. 4 shows an overlay of all of the sensor
recordings. The tail portion of this data set will be examined more closely as an applica-

tion of time-eigenspectrum and MUSIC (Section 9.3).

13



i ol 4856-7
ectric field in volts/meter 1759:2150

- 10kv -

- Skv

- —Skv

| _10kv August 5, 1991

1758 1832 1906 1939 2012 2046 2118

Time (2400 clock)

FIGURE 4. August 5, 1991 KSC data set. Fig. 3 shows the spatial distribution of the data
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Chapter 3
Forward Models

In this chapter we first discuss the general spatiotemporal model common to
MEG, EEG, and the thunderstorm localization. We then present MEG and EEG version
of the “dipole in a sphere” model, where sources are represented by current dipoles, and
the head is modeled as a four concentric shell sphere. This model illustrates how we
adapt a specific MEG or EEG model to the general electromagnetic model, which is in
turn used to determine the Cramer-Rao lower bounds. We then follow with a brief sum-
mary of the simple thunderstorm model.

As discussed in the chapter “Localization Background” on page 3, physical
models are used to represent both the neural current sources and the enclosing head
shape and conductivity. Source models range from simple current dipoles to complex
current surfaces. Head shape and conductivity models range from spherically symmetric
conductors to finite element models based on individual anatomy. The combination of
source and head model is known as the forward model. Given any arbitrary static current
distribution, the magnetic field can be obtained from the Biot-Savart law. For source
dipoles in a spherically symmetric conductor, Iimoniemi ez al. (1985) point out that the
source model can be reduced to consideration of just the primary source elements,
regardless of the orientation of the sensors outside of the sphere. If the measurements
are restricted to the radial orientation, the model simplifies further (Ilmoniemi et al.
1985, Sarvas 1987).

Although the degree of complexity can vary greatly, in all cases the forward

model specifies the complete current distribution within the head via a set of source
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parameters (e.g., locations, magnitudes). In other words the forward model provides a
mapping from the source parameters to the resulting magnetic fields. In general, we can
partition the parameters of any forward model into linear and nonlinear parameters. In
this chapter, we show how this partition of spatiotemporal models provides a convenient
algebraic form, a form which highlights the difficult nonlinear parameters. Although our
development utilizes a specific forward model-current dipoles in a spherically symmet-

ric conductor—the basic approach can be applied to any forward model.

3.1 General Model

By the superposition of electromagnetic sources, we can always separate the
intensity of the sources as a linear term, whether we are considering these simple EEG
and MEG spherical models or any other combination of head and source model. The

vector of measured samples at time j can be modeled as

, .
a() = Y Gl)g ) = [G(), ..., G(,)] q.|.(.’ ) = G(Oe(), (EQD)
i=1 q,0)
where a(j) represents the column vector of surface potential or magnetic field measure-
ments, or a combination of both. Column vectors / and g are both concatenations of the
parameters for p dipoles, [ = [}I, s }‘]T and ¢ = [a], s ,;;IT . The vector I, repre-
sents the three-dimensional location of the ith current dipole, and a,. represents the cor-
responding three-dimensional dipole moment. The matrix G(i,.) represents the “gain
transfer” matrix for the ith dipole, which relates the dipoles’ moments to the vector of

measurements and has a nonlinear dependence on the dipole locations.
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For n time slices, we can extend this model by assuming that the dipole locations

are fixed, yet allowing the dipole moments to vary with time:

A = [a(l),...,a(n)] = GA)[g(1),....qm)] = GDQA . (EQ2)
We present in the next section a detailed description of the MEG model, then fol-
low it with an overview of the EEG model and the thunderstorm model. The EEG model

derivation and its partial derivatives were provided by Michael E. Spencer.

3.2 MEG Model

3.2.1 Biot-Savart Law

In this section, we present the Biot-Savart law in a convenient discrete matrix
notation for discrete source elements, which we then use to develop the spatiotemporal
dipole models commonly used in MEG research. The general model in every case
requires determining the unknown set of parameters {}, M, S}. The linear time varying
parameters, S, can always be found using a direct pseudoinverse solution, but, in general,
the time invariant location parameters, /, must be found using an iterative nonlinear min-
imization algorithm. The block diagonal matrix, M, depends on whether we use the
rotating or fixed dipole model; in the rotating model, M is simply an identity matrix, and
in the fixed model, M contains the unit orientation parameters, m. The goal here is to
show that each model can be expressed in a common framework and solved in a simi-
larly efficient manner.

We begin by examining the model for a single dipole, then expand this model to

account for multiple dipoles. Establishing an origin, denoting the pth dipole position
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as I, and observing the mth measurement at sensor location p,,,, we can write the Biot-

Savart law for a current dipole as

b, = k22 On ) (EQ3)
lpm =1l
where k = [y / (4%) is a constant, g, is the dipole moment, J,, is the dipole location, p,,
is the ith measurement sensor location, and b,, is the magnetic field at p,,,. A SQUID bio-
magnetometer is used to acquire the magnetic field at position p,,, but it measures only

one component of the three-dimensional field. Thus, only a scalar measurement is made:
b,=b,-r,, (EQ4)
where r,, denotes the unit orientation of the mth sensor. The operation * - ” denotes

the dot product of two vectors.

Combining equations (3) and (4) yields

=g,4, (EQ5)

The vector g,,, can be viewed as a gain vector, relating the moment intensity of
the dipole to the measurement at position p,,,. If we let each gain vector be represented
asa 1 x 3 row vector and the moment as a 3 X 1 column vector, then we can arrange the

measurements from m locations in a matrix form,

P, —lp) xr
b, e, -1 g
p=|.|=¢ .. |la)=]|.|le) =60 pe,.  EQO
bm (pm -lp) x T Em
3
| -5l

The matrix Gp(l5, p) can be considered to be the gain or relationship between a

unit moment source at [, and the column vector of measurement locations p. From this
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form we clearly see the linear relationship between the moment g, and the measure-
ments vector b. As we will show in Section 4.1.2, this form also focuses our attention on
the more difficult nonlinear parameters in the matrix G,(!;, p).

Although derived for a single dipole, each column in G(J,, p) could also be
viewed as the model for three elemental dipoles or dipole source components, with all
three sharing the same location, but in oblique directions (Scherg and von Cramon
1986). For simplicity, we will continue referring to these collocated elemental dipoles as
one dipole, with moment ¢. This model easily extends to the multiple dipole (not collo-

cated) case by superposition. For p dipoles,

q
b=[G,..6] . (EQ7)
qp

or simply b = G(l, p)q, where G(l, p) can be partitioned into the smaller matrices

Gy p), as defined in (6). Similarly, ¢ may be partitioned as the concatenation of the

moment vectors for each of the p dipoles. For m sensors and p dipoles, vectorbis m x 1,
matrix G is m X 3p, and vector ¢ is 3p X 1. For notational simplicity, we usually drop

the dependence on I and p from our notation of G.

3.2.2 Dipole in a Sphere

Our model in Equation (7) describes the external magnetic field as the sum of the
individual fields from p dipoles. For simplicity in deriving the model, the biomagnetom-
eter is assumed to make a perfect point field measurement. We also assume that this field
is due to the local primary current only, as we are ignoring the global volume or return
currents. In more sophisticated head and source models, the return currents, the finite

coil area, and the gradiometer configuration of a practical SQUID biomagnetometer
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could also be included, resulting in a very similar formulation to that presented
here (Ilmoniemi et al. 1985, Sarvas 1987, Jeffs et al. 1987).

Many researchers have correctly noted that only the two tangential dipole
moment components need be computed for the “dipole in a sphere” model. A radially
oriented dipole inside a spherically symmetric conductor produces no external magnetic
field, since the field from the surface return currents cancels the field from the primary
dipole current (Trip 1982, Iimoniemi et al. 1985, Sarvas 1987, Nunez 1986, Williamson
and Kaufman 1981). Additionally, the magnetic field normal to the surface of the sphere
(i.e., radial from the center of the sphere) is due solely to the primary tangential dipole
currents; volume or return currents in the surface of the sphere contribute nothing to the
radial magnetic field.

A common MEG geometry is therefore an array of sensors arranged radially
about the surface of the head, which is sensitive only to the tangentially oriented primary
dipole currents. As noted by (Ilmoniemi et al. 1985, Sarvas 1987), the nonradial sensor
orientations record magnetic fields that are also functions of only the tangential dipole
moments, but the associated model is not as simple as for the radial sensors.

In this research we will therefore assume that the radial component is immeasur-
able and that only the two tangential components are measurable. Thus each submatrix
G, will be m x 2, corresponding to the gain in the two tangential directions. We can refer
to these two tangential components as ¢ and 6, e.g., G, = [Gy Gg]. We emphasize that
although we are using the dipole in a sphere model as an example, all results are suffi-
ciently general such that extensions to other models containing all three moment com-

ponents are straightforward, such as for the EEG model.
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3.2.3 Unconstrained Location and Orientation

The instantaneous state dipole (Wood 1982) is the simplest of the dipole models,
for which we consider just a single time slice of data, typically at the peak of the
observed MEG response. The straightforward extension to the full temporal information
is simply to treat each time slice with a separate static model. At each time slice, the
locations and moments are calculated for each dipole, independently of all other time
slices. Since no constraints are placed on the parameters of the dipole, this model allows
both moving and rotating dipoles. The model is simply Equation (7) with a time

parameter »n inserted, b(n) = G(n)q(n), which we would solve foreachn, n=1, ..., n.

3.2.4 Fixed Location, Unconstrained Orientation

When the instantaneous dipole model is solved for several sequential time
points, the location of the dipole can appear to move as a function of time. Many
researchers believe it is more realistic to assume that different parts of the cortex with
different cortical function are activated electrically when they perform their specific
tasks (George et al. 1989, Demunck 1990). The “movement” seen in the instantaneous
state dipole would therefore be more accurately modeled as two or more stationary
dipoles which are activating electrically at different times. Rather than allowing the
dipole locations to vary with time, as in the above model, this second model restricts the
location of the dipoles to be constant throughout the measurement interval, but allows
the moment intensities and orientations to vary. We begin with the previous model, fix
the gain matrix to be a constant with respect to time, and represent the model in a com-

pact matrix form,

[6Q1) ... 5n) = G[gQ1) ... q(n) (EQ8)
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or B = GQ. Each column of the Q matrix may be partitioned to represent the moments
of p dipoles at time n,

q,(m)|  |m(m)s,(n)
gm) =1 ... | = (EQ9)

g,m)|  |m,ms,n)
where each partition g,(n) can be represented by its unit moment orientation m(n) and
scalar intensity sp(n). Hence, each row of Q can represent the time series for one com-

ponent of one tangential dipole (Scherg and von Cramon 1986).

3.2.5 Fixed Location and Orientation

Since no constraints are placed on the time series of the three components for
each dipole, the orientation of the dipole can vary or “rotate” over time. Some research-
ers (Scherg and von Cramon 1985a, 1985b) argue that physiologically a dipole orienta-
tion should not rotate, because the dipole model represents a fixed neuroanatomical
structure. If we fix the unit orientation of each moment to be the same for all time slices
and allow only the magnitude and polarity, s,(n), of the moment to vary, then we can

express the matrix Q from above as

m[s,(1) ... 5,(n)

m,[s,(1) ... 5,(n)
. (EQ 10)
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Thus, our constrained model is now separated into three components,

b,(1) ... b(n)
B = = GMS . (EQ11)
b, (1) ... b, ()
As before, G represents the m X p gain matrix between p unit dipoles and the array of m
sensors. The 2p x p block diagonal matrix M represents the fixed unit orientation
moments. The moment intensity matrix S is p X n.

Grouping as B = (G M) S = A S, we retain the same general separation into two
matrices as for the other models. The difference here is that we have both the time invari-
ant location Z and moment orientation parameters M in the first matrix A, rather than just
the location as before. Each column of G represents the gain of one component of one

dipole, but each column of A = [4, ..., A,] = G M now represents one complete dipole.

3.2.6 General MEG Model

The most general model contains both rotating and fixed dipoles. We might
argue that two fixed dipoles may be so closely located that they appear in our data as one
rotating dipole. We may also have rotating dipoles that rotate so little as to appear fixed
in orientation. The general model accounts for both types and will be useful in deriving
further results in this paper.

We simply alter our definition of a rotating dipole to be one which must rotate,
such that its two component time series cannot be partitioned as a fixed moment orien-
tation and a scalar time series (i.e., the time series are linearly independent). For p, rotat-

ing dipoles and pyfixed dipoles, we partition the pairs of rows of @ as the rank two
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submatrix Orp=Ig¢p qep]T for rotating dipoles and the rank one submatrix Qg, = [m, s:]

for fixed:
[quN]T [q¢|q91]r
o Izp 0 PPN
[96p,905,] [905,905,]
0= = ™ (5, +1) , (EQ 12)
T T
me «1)S(p,+1) S, +1
0 m
L 4 .
T T
ml’sl’ sl’

where s,, is the scalar amplitude over time for the pth fixed dipole, gy, is the scalar ampli-
tude over time of the ¢ component of the pth dipole (likewise, 8), and I,.isa 2p, X 2p,
identity matrix. We can now express our moedel as B=G Q=G (M S)=H S, where H
=G M is our “hybrid” gain matrix, a combination of the previously defined G, and A,
submatrices,

GM=H=[G,,...,Gpr A}, ... Apd . (EQ 13)

The rank of this matrix H is r =2 p,. + ps which is effectively the number of
dipole source components (Scherg and von Cramon 1986) in our model. The matrix S is
the corresponding time series for each dipole component; if two dipole components are
collocated, then by our definition they represent one rotating dipole.

The rotating and fixed models are just specializations of this model, and the
instantaneous dipole model is just this model for one time slice. For no fixed dipoles (p¢
=0), M is simply a 2p, X 2p, identity matrix, and we have the rotating dipole model of
Equation (8), with 3p unknown location parameters in the gain matrix H(l,M) = G(D.
Similarly, for no rotating dipoles (p, = 0), we have the fixed dipole model of
Equation (11), with 4p unknown location and constrained unit moment parameters in the

gain matrix HI,M) = A(I,M). As we will show in Chapter 5, successful localization
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requires that we determine the rank , i.e., the number of dipole components, but not nec-

essarily the number of rotating and fixed dipoles.

3.3 EEG Model

One study completed in this research was a comparison of the lower bounds
between MEG and EEG for effectively identical head models and array configurations.
We present in this section research work performed by Michael E. Spencer.

The EEG dipole model is more complex than the MEG model, and assumptions
must be made for the conductivities and shell thicknesses. The earliest models were for
the dipole in a single homogeneous sphere (Wilson and Bayley 1950), which led to a
closed form solution (Brody et al. 1973); however, this single sphere model is too sim-
plistic because it does not model the relatively high resistivity of the skull layer. A three
concentric sphere model that includes the scalp and skull layers was derived by (Arthur
and Geselowitz 1970). The four sphere model, which also accounts for the cerebrospinal
fluid layer, is derived by (Cuffin and Cohen 1979). Other models recently published
include the three eccentric sphere model (Cuffin 1991) and the four sphere anisotropic
model (Zhou and van Oosterom 1992).

In this research we use the four concentric sphere model. For a single dipole
model at point 2, each element in (1) of the column vector of surface potential measure-
ments represents the voltage at a single surface point B and is expressed as the inner

product of the (3 x 1) gain vector é‘, and the (3 x 1) dipole moment vector a:

aT sy & o

Vp) = g/l p)q , (EQ 14)
where for clarity we show the dependence of the gain vector on both the dipole location
and sensor position. The gain matrix G(i) for a single dipole is the concatenation of the

-

gain vectors for all sensor positions p.
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Fig. 5 shows the coordinate system used for the basic EEG formulas. For a dipole
on the z-axis, the potential on the surface of the four sphere model referenced to infinity
is given by (Cuffin and Cohen 1979). Other dipole locations are found by applying rota-
tion transformations to the basic formulas. We can express the gain vector for the four

sphere model for arbitrary dipole position 1as

il

L n-1
év(i. i;) =) w(n)[ ] [;,-P:(cose')cos¢‘+;y- P'l. (cos0') sing' +;l-nPn(cos9')] (EQ15)

R
nsl
where
P(-) = Legendre polynomial of order n,
P:() =  Associated Legendre polynomial,
R = outside radius of head sphere (in m),
; s ;y. . ;z. = basis for rotated coorgp!ate axes, 5h\at plac t\I] digqlg. on
the z’-axis, i.e. 0 = ayl, 0 = a,l, andi 1 r = a,l,
0',¢' = polarcoordinates of P in the rotated system (Fig. 5).
The weighting function w(n) in (15) is given by
1 2n+1)* (cd) ™!
win) = | ——; |LEarl {ed) (EQ 16)
4my,R nl'(n)
where
Mmy = @' (62" 'n k= 1) (k= 1) (a4 1)+ (k4 n+1) (pn+n+ 1) )
[ (kn+n+ ) + (n1) (k=1 d>* Y
’ ’ 2n+1 (EQ17)
+ (A DT (k= 1) (kpnt eyt m) +62  (knan+ 1) (= 1) }
c{nlky=1) + (kyn+ky+n) ™t}
Y Y:
h=ﬁ,g=l,@=i, (EQ 18)
Y2 Y3 Ya
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FIGURE 5. EEG Coordinate system for dipole on z-axis in a spherical head model. The
EEG model generalizes to an arbitrary dipole location using standard coordinate transfor-
mations.

and v,, Y, ¥;» ¥, are the conductivities of brain, cerebrospinal fluid, skull, and scalp,
respectively, and b, c, d are the inner sphere radii normalized to the outer head sphere
radius. Fig. 6 shows the four spheres with their respective radii and conductivities. Over-
laid on the spheres are the sensor locations for the 37 channel pattern (one of the sensor
arrays analyzed in this dissertation).

The formula for this EEG model explicitly shows that the voltage has a nonlinear
dependence on the dipole and electrode locations and a linear dependence on the dipole
moment. The conductivities and radii shown were taken from (Cuffin and Cohen 1979).

We note that the relatively thin skull thickness, 4 mm in this case, gives favorable values
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FIGURE 6. Four concentric sphere model of head (Cuffin and Cohen 1979). The radii and
conductivities are shown for the inner brain sphere, the cerebrospinal fluid layer, the skull
layer (shaded), and the scalp layer. The EEG electrodes are located on the surface of the
scalp at a radius of 8.8 cm; MEG coils are radially oriented 10.5 cm from the head center.
For the 37-sensor case, the sensors are positioned in rings of 1, 6, 12, and 18 sensors
each, separated by 12 degrees as measured from the z axis. The left figure shows the sen-
sors as viewed from above. The right figure is the side view and shows the EEG electrodes
and the MEG coils that lie in the xz-plane {y=0) for the 37-sensor arrangements. The anal-
ysis quadrant shows where the CRLB bounds are computed relative to the head spheres
and sensors.

for dipole localization; thicker skulls will produce higher error bounds. For example,

(Stok 1987), uses a skull thickness of 6 mm.

3.4 Thunderstorm Model

In this section, we review the basic thunderstorm model. In the simple form
examined in this dissertation, the model is very similar in form to the simple current
dipole model of MEG and EEG research.

The contour map presently generated at KSC is implicitly based on a point
charge model, albeit 31 charges in a fixed pattern about the Cape. These contour patterns
generated are still subject to quite a degree of interpretation, and the patterns vary sig-
nificantly in the presence of minor fluctuations. In this section, we introduce a much
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simpler and more readily interpreted model. The thunderstorm model used in this study
is intentionally simplistic, so that the processing methods used to solve the model are not
lost in the complexity of the parameters. Success with simple models will allow careful
building of more sophisticated and hopefully more accurate models.

The model used here is the point charge model. Any complex distribution of
static charges can be simplified to a point charge if viewed from a distance relatively
large compared to the diameter of the charge distribution (Feynman 1962). We assume
a point charge source of intensity Q coulombs located at position (x Ve zq) . The
observer position is on the ground at position (x, y, 0) . We use the sign convention that
a positive electric field indicates that a positive charge would move upwards (i.e., the
negative of the potential gradient). In weather related terms, our sign convention is “fair
weather negative.” Representing the earth as a perfect ground plane, the electric field at

the surface has only a nonzero vertical component:

E-= ~%% _ (EQ 19)
2me ( (x-x,‘,)2 +(-y,) 2+Z§)

where € is the permittivity of the medium, here assumed to be free space.
The above formula is for a single charge and a single sensor. The extension to
multiple charges and sensors follow directly that of the MEG formulation. We can thus

arrange our data into a spatiotemporal matrix as:

E = [e(t),..,e(t)] =GClq(t),....q(2,))] =GQ . (EQ 20)
Thus the vector e represents the electric field signal at a single time instance due to p
sources. Over a fixed interval of time, we acquire n such vectors of data. We observe that
this data is changing as a function of time, and we therefore need a time dependent
parameter. The sampling interval of 60 samples/second is relatively fast compared to the
ground speed of the thunderstorm, and we will process the data in relatively short time
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segments. During these intervals, we can approximate the position of the storm as rela-
tively fixed in space and assume that only the intensity Q is changing as a function of

time.
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Chapter 4
Least Squares Solution

In this chapter, we show how a least squares error is generated by implicitly or
explicitly projecting the measurements onto the orthogonal complement of the subspace
formed from the appropriate forward model. We use the dipole in a sphere model as an
illustration, where the nonlinear parameters are the locations of the dipoles and possibly
the fixed orientation. The cost function is shown to be a function of these nonlinear
parameters only, thus reducing the number of parameters to be searched. The nonlinear
parameters are iteratively adjusted to minimize this error through standard nonlinear
minimization techniques. The optimal nonlinear parameter set is then used to perform a
linear least squares fit for the linear parameters. We present approaches for efficiently

calculating these cost functions, then conclude with a three dipole simulation example.

4.1 Error Function

4.1.1 Separation of Linear Parameters

Consider the general model of p, rotating dipoles and p fixed dipoles for our
data, B=H(I,M) S, where HI,M)is mXr,Sis rxn, andr=2p,+pf. H(l, M) has 3p
unknown location parameters and pyunknown constrained moment parameters. We
collect # time samples from each of m SQUID biomagnetometers and form a spatio-

temporal matrix of data F = [f{(1), ..., fin)]. We model this data as F - B = N, where N
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represents the error between the measurements and our model. We define our measure

of fit as the square of the Frobenius norm,

m n

Is= Y Y (i) -bW}* =IF-Bl;

i=1j=1

= |F-Ha, Ms|;

(EQ21)

The goal is to find the set {I, M, S} that minimizes this error.

The simple approach is to use this cost function directly in an iterative minimi-
zation algorithm, which would search for all five parameters for each one of p dipoles at
each point of » time instances, for an overall total of 5pn parameters (Romani and Leoni
1984). Thus a three dipole model would require searching a fifteen parameter space at
every time instance. This same cost function, however, can be viewed as a projection
minimization that can greatly reduce the computational cost, yet incorporates the infor-
mation of all the time slices.

Given I and M (hence, H), a solution for the matrix S that will minimize J; g is

S=H'F, (EQ22)

where H' is the well-known pseudoinverse solution (for full column rank H),
H' =HHy'H, (EQ23)

or the more general Moore-Penrose pseudoinverse (minimum norm) solution,

H =vZ* U7, (EQ24)
where H=UZX VT isa singular value decomposition (SVD) and Z* is the diagonal
matrix T with its nonzero elements inverted (Golub and van Loan 1983). This minimi-
zation for S will hold for all sets {I, M}, including the optimal set {l, M} * that minimizes

the cost function Jy g.
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‘We can replace § with this pseudoinverse solution before solving for {I, M}. The

cost function can be equivalently expressed as

Is=IF-HSP=F-BEF)R=1a-aayFR=|Psr|.  EQ2s)

The matrix P,l, and its orthogonal complement Py are projection matrices: Py
projects data onto the column space of the matrix H, and P; is the orthogonal comple-
ment projection, that is, the projection of the data onto the left null space of H. Thus, the
squared error can be explicitly computed as the projection of the data matrix, F, onto the
left null space.

We have used the separation of the unknown parameters into linear and non-lin-
ear components and have factored out the linear moments. While this method has often
been used by other MEG researchers (Scherg 1989, Maier et al. 1987, Achim et al. 1988,
Demunck 1990), the mathematical details have not always been stated or explained
explicitly; references (Golub and Pereyra 1973, Guttman and Pereyra 1973) give a full
mathematical justification for this approach. The benefit is that J; ¢ is now an explicit
function of only the parameters in H. An iterative minimization routine need only
explicitly consider this reduced subset of parameters, which can considerably reduce the
convergence time.

This cost function can be minimized directly by a non gradient-based method,
such as the Nelder-Meade simplex, used by many researchers because of its simplicity
and apparent robustness to local minima (Achim et al. 1988). Alternatively, gradient-
based methods are typically faster, but require either analytical or numerical partial
derivatives of the projection matrix. Simple analytic expressions of the partials of the
projection matrix are derived in (Golub and Pereyra 1973, Guttman and Pereyra 1973),
and these expressions, in turn, require only partials of the gain matrix H. In practice,

however, any slight change in the head or source model requires a recalculation of the
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partials, and the simplex method or other non gradient methods are therefore usually
preferred for their simplicity (Maier ez al. 1987, Achim et al. 1988).

The computational complexity of the least-squares estimation problem is highly
dependent on the number of nonlinear parameters that must be estimated. In the instan-
taneous state dipole model, the location of each dipole must be computed independently
for each time slice n. In comparison, the number of nonlinear parameters in the rotating
dipole model drops dramatically. For p dipoles and n time slices, in both cases we have
2pn linear parameters, but the gain matrix G is a function of only 3p location parameters
for the rotating dipole model, rather than 3pn for the instantaneous dipole model. Thus
the rotating dipole model requires an iterative search of only the 3p non-linear location
parameters, followed by a simple 2pn linear fit for the moment parameters. For the fixed
dipole model, the dimensionality of the search space in the iterative minimization algo-
rithm is increased relative to the rotating dipole model from 3p parameters (locations
only) to 4p parameters (locations and constrained unit orientations). Only the pn param-
eters of the time-series magnitude and polarity of the moments in the matrix S can be
calculated using a simple linear fit.

An approximate approach to the fixed dipole model is to group the model as B =
G (M S), which is effectively identical to the rotating dipole model B = G Q. Once Q is
found, we form a second equation, M S = @, from Equation (10), and solve for M and S.
The advantage of this approach is that M S = Q can be solved efficiently using the SVD.
Each set of two rows of Q represents the time series for the two tangential components
of one dipole. If the dipole is truly fixed in orientation, then this 2 X n matrix partition
is of rank one. An SVD of this partition of the matrix will give the best rank one fit, and
a simple analysis of the singular values will confirm the quality of this fit. If the rank one
fit from the SVD is perfect, then the solution is optimal; however, in general this approx-

imate approach is not guaranteed to give the same result as that which would be obtained
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by solving B =A S. The appeal lies in keeping only 3p unconstrained parameters instead
of 4p constrained parameters in the iterative search space. An example of this method is
shown in Section 4.2. One possible extension of this approach may be to embed this

two-step process into each iterative error calculation, rather than solving M S = Q only

once at the end of the iterations.

4.1.2 Error Function Computation

The greatest computational burden in fitting the multiple dipole model occurs in
the iterative nonlinear minimization routine, which must repeatedly form the nonlinear
gain matrix H, then solve the inverse matrix problem for cost function J s for different
sets of parameters. By using the SVD and the QR decomposition (Golub and van Loan
1983), we can significantly reduce the number of multiplications required. This analysis
also leads naturally into Chapter 5, where we present an alternative method of solving
the least-squares problem using these same decompositions.

If the number of time samples, n, is greater than the number of sensors, m, then
the use of an SVD of F gives an efficient form for calculating the above error function.

Decomposingas F=U X V7, the least-squares cost function can be rewritten as

1= |Pie [ = lrwevl, = [rsosl, = IPinl,. Q29
where we are able to drop the term VT because orthogonal matrices preserve the F-norm.
Since F is m X n, then the diagonal matrix Z of singular values has at most m nonzero
terms. Therefore W = UZ is only m X m, as opposed to the larger m X n data matrix F.
Greater savings occur if the number of non-zero singular terms, r, is less than m,
i.e., F is not of full row rank, because then W would have correspondingly fewer

columns, . With noise considerations, the singular values are almost always strictly

greater than zero, so we can amend r to be the number of singular terms “significantly”
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greater than zero. The corresponding r components in the decomposition are the princi-
pal components that “adequately” describe the data, where the user must decide what is
adequate and what is significant. Using these significant components reduces the com-
putational cost but results in a suboptimal least-squares solution. Chapter 5 more fully
exploits this possible decomposition. A two-stage approach would be to use this
reduced r set for the coarse fit, then return to the full m set of components for the com-
plete fit.

If an SVD is used to calculate the pseudoinverse of H, then a further reduction
in the number of multiplications can occur. Denoting the decomposition as
H = [U,l?,] ZVT, where H is m X r, then let U, contain the columns corresponding to
the r non-zero singular values, and let fJ, correspond to the m-r zero singular values,

I
where r is the rank of H. Then Pf, = U,U,, and the cost function can be calculated as

v'w|, Ee2)

TP
oW, = 1wik-|p, W = 1w

Jis = "P:W"i =
where the second form follows from the well-known equality for the Frobenius norm
W1} = |2+ [Pl

The selection between the two forms depends on the rank r and the decomposi-
tion method used, since either projection matrix may also be efficiently computed by
using the QR decomposition of the gain matrix H. The choice of SVD or QR decompo-
sition is application dependent. In general, the calculation of an SVD is more expensive,
because it calculates the two eigenvector spaces U and V by iteratively converging to a
solution. However, “economy” SVD versions (Dongarra 1979, Mathworks 1990) can be
run in which only the principal component eigenvectors are calculated, i.e., those in U,
above, resulting in considerable savings if the rank r of H is small relative to m. By
comparison, QR decomposition is noniterative, and it outperforms a full SVD calcula-

tion. If the rank of H is large, then QR decomposition generally outperforms even the
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economy SVD. Either method of decomposing H will outperform the undecomposed
projection matrix, Py = H H'. These decomposition approaches also have better numer-
ical properties than inverting (HT H) or solving via Gaussian elimination (Golub and
van Loan 1983).

4.2 MEG Simulation

We conclude this chapter by presenting the results of simulations in which the
spatio-temporal models described are applied to a set of simulated MEG data. Data were
simulated for the case of three dipoles, all three with fixed locations, two with fixed
moment orientations and the third with a rotating orientation. The data were computed
for an array of 37 closely spaced sensors radially oriented and positioned on the surface
of an imaginary sphere of radius 12 cm.

Because the head model was assumed to be a spherically symmetric conductor
and the sensors were arranged radially outside of the sphere, then only the fields due to
the primary tangential dipole currents were computed, as discussed in Chapter 3. How-
ever, rather than compute the parameters in a spherical or rotated coordinate system, we
employ a Cartesian coordinate system and solve for the three constrained moment
parameters per dipole, using the pseudoinverse form of Equation (24). A total of 100
time samples were generated and corrupted by additive white Gaussian noise with an
SNR of 10dB. SNR is computed as the ratio of the average magnetic field measurement
power to the variance of the noise. The resulting simulated MEG data are shown in
Fig. 7.

The parameters for this data were estimated using two of the models discussed:
a) fixed location but unconstrained orientation; and b) fixed location and orientation. For
the “rotating” model, the locations of the three dipoles were estimated using a Nelder-

Meade simplex search to minimize J; ¢ in Equation (25) over the dipole location param-
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FIGURE 7. Simulated MEG data for 37 radially oriented sensors, 100 time samples from
each. Sensors are positioned on an imaginary sphere of radius 12 cm, centered on the ori-
gin, with Sensor 1 located 12 cm above the(x,y) plane at (x,y,2) position (0,0,12). Three
dipoles were simulated about 3 cm radially below the sensors numbered 9, 13, and 17.
Zero-mean Gaussian noise with a standard deviation equal to one-tenth the peak was
added, for an SNR of approximately 10 dB. Each numbered trace represents the time
response for the corresponding sensor, with the plots arranged in their approximate spatial
position in the (x,) plane.

38



eters; Equation (22) was then used to find the moment time series. The true and esti-

mated locations are listed in Table 1 and the estimated time series are shown in Fig. 8

overlaid with the original simulated time series.

TABLE 1. Estimated Locations and Moments. The locations were found using a Nelder-

Meade simplex algorithm for the rotating dipole model. The number of dipoles, 3, was

assumed known, and the simplex algorithm searched for the best 9 location parameters that
fit the data in a least-squares sense. Once the locations were optimized, the time series were
found via a simple linear least-squares fit. The time series for the second and third dipoles
were decomposed into a rank 1 model, from which the fixed moment orientations were found

Dipole 1 Dipole 2 Dipole 3
True and Estimated Locations (cm)
1y ly [ 1y ly 1, 1 ly 1,
2800 -1.700 8300 | -2900 -1.600 8300 | 0.000 3300 8400
True
Estimated | 2-817 -1.691 8335 <2910 -1.594 8225 | -0056 3320 8.358
True and Estimated Moments (from SVD)
my my m, my m, m, m, my m,
True (N/A, rotating) 0770 0525 0369 | 0516 -0.797 0313
Estimated 0770 0518 0373 | 0507 -0.800 0.320

For the fixed orientation and location model, rather than iteratively search for

dipole locations and orientations, we used the two-step approximate method discussed

in Section 4.1.1. In this method, we use the results of the rotating model above, which

searched the nine parameter location space only. The identified time series were then fit

to a rank one model (per dipole) via an SVD, resulting in the time series displayed in

Fig. 8. The true and identified moments for the two fixed dipoles are displayed in

Table 1. Because the third dipole actually had a rotating moment, then the SVD of its

time series properly revealed a poor rank one fit.
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FIGURE 8. Estimated moment time series for three dipoles. Three dipoles of tangential ori-
entation (no radial component) were given overlapping time series and projected into Car-
tesian coordinates, one time series per coordinate per dipole. The dipole model for the
unconstrained moment orientation was then used in a simplex algorithm to find the loca-
tions.
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(Fig. 8 continued) The nine time series were found with a simple least-squares fit and plot-
ted for each of the three components of the three dipoles in figures (a) to (c). An SVD was
then performed on the second and third dipole time series ((b) and (c)) to approximate the
dipole model for constrained orientations, and the resulting dipole moment magnitude and

polarity is plotted in (d).
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Chapter 5

MUSIC

In this chapter we introduce a new MEG inverse algorithm. Although it is gen-
erally suboptimal in a least-squares sense, this algorithm has the strong advantage of
“scanning” quickly with a one dipole search, rather than the p-dipole search necessary
in a complete fit. In Section 5.2.4, we discuss how this algorithm is analogous to the sta-
tistically derived MUSIC direction-finding algorithm for polarized sources (Schmidt
1986). Section 5.4.2 examines the related method of PCA dipole fitting, but shows
where this method differs and why it generally fails. We first develop the algorithm for
the rotating dipole, then extend it to include the fixed dipole model. We then consider

the general hybrid case of both fixed and rotating dipoles.

5.1 Order Selection

Perhaps one of the greatest problems in MEG analysis is determining the number
of dipoles: if too few are selected for any of the models, then the calculated dipoles are
biased by the missing dipoles; if too many dipoles are specified, then spurious dipoles
are introduced, which may be indiscernible from the true dipoles. Since the computa-
tional cost and numerical sensitivity of most iterative minimizations increases dramati-
cally with the number of parameters, then too many dipoles also adds needless
computational burden.

Other authors have shown that examination of the spatial surface topography can
be misleading if time series are overlapping and/or dipoles are placed such that one max-

imum potential cancels another (Achim et al. 1988, Nunez 1986). As an alternative,
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analysis of the dimensionality or rank of the data matrix F is often made in an attempt
to determine the true number of dipoles. In general, for p dipoles, the rank of the model
data matrix B will be limited by
Rank(B) = min(Rank(H), Rank(S))<2p. (EQ 28)

The upper limit comes from either H or §, since each dipole moment component
in S has a corresponding column in H, with at most two moment components per dipole.
For the lower limit, the problems usually arise in S, where the matrix is of full row rank
only if all time series are linearly independent. If all dipoles are rotating, then § is at
most rank p; however, if all dipoles are fixed in orientation, then § is at most rank p. If
any combination of the spatially distinct dipoles have linearly dependent time series
(perfectly correlated), then the rank of S drops accordingly.

For the general model with p, rotating and pyfixed dipoles, the rank of H isr=
2 pr + pf. As we will show, we do not explicitly need to know p, and py, if the time series

are sufficiently independent and the SNR sufficiently large.

5.2 Dipole Models

5.2.1 Rotating Dipole Model

We consider first the case where all dipoles rotate, that is H(l, M) = G()) M =
G(1). From Equation (25), we express the least-squares cost function as
Jis=IF -G QP =IP; FI? (EQ 29)
where G is m x 2p, Q is 2p x n, and M is the identity matrix, since all dipoles are
assumed rotating. We can interpret the least-squares problem as trying to find the gain

matrix G whose orthogonal subspace projectorPé minimizes J; g. Since G is of rank 2p,

then the orthogonal complement projectorPé is of rank m - 2p.
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In the method developed here, we first find the best orthogonal projector o
regardless of the gain matrix, and then find the gain matrix G that best fits this projector.
The first step in this method is to minimize over all possible orthogonal projectors of
rank m - 2p, for which we form the first cost function,

J=IPLFI2, (EQ 30)

Minimizing J; over all PLis equivalent to finding the best rank 2p projections of
F. From (Golub and van Loan 1989, Corollary 2.3), the best rank 2p approximation of
F is formed from the first 2p components of the SVD. Hence, we decompose F as
F=UzV = [Uzpflzp:IZVT, where U, contains the 2p left singular vectors associ-
ated with the 2p largest singular values, and ilz,, contains the remaining m-2p left singu-
lar vectors. The best rank 2p approximation of F is given then by F,, = [Usz;p F.

The best orthogonal projector is therefore

Pt = flzpfl; (EQ31)
Once we have formed this best orthogonal projector P, then the second step is
to find the gain matrix G most orthogonal to this projector. Orthogonality between pt
and G =[Gy, ..., Gp] implies Pl is orthogonal to each Gy, where Gp, is them X 2 gain
matrix for a single dipole. Since the pth matrix depends only on the location of the pth

dipole, our scanning function for rotating dipoles, J,(p), is derived from this orthogonal-
ity,
2
el - Jola);
= 2 = 1U2G,l;
16,

whereép =G,/| Gp||:_ is the normalized gain matrix. Normalization is necessary so

J(») (EQ 32)

that a small value for J,(p) is an indication of closeness to orthogonality and is not sim-

ply due to a relatively small gain.



If P+ is a reasonable approximation to the optimal P;L;, and a G exists such that
|| PJ'G"i = 0, then each of the Gp submatrices will be orthogonal to P, andJ (p)=0
when evaluated for each correct location (the conditions under which these approxima-
tions hold true will be discussed in Section 5.2.4. Our scanning method therefore is to
search over all possible one-dipole locations and at each location evaluate J,(p), looking
for minima. The explicit steps will be presented in Section 5.3. The general approach is
to evaluate J,(p) over a fine three-dimensional grid, plot its inverse, and look for p sharp
“spikes”.

Provided the gain matrices are linearly independent over the scanning space, the
scanning function will not display more than p spikes, since the existence of more, for
instance p + 1 spikes, would suggest there are m + 2 orthogonal column vectors in an m-
dimensional space, which is not possible. We may however find fewer than p spikes.
Each evaluation of J,(p) actually represents the projection of the column vectors for two
tangential components in G,. If the dipole is fixed in orientation, then only a linear com-
bination of the two vectors may be orthogonal, and J,(p) would not necessarily be a min-
imum at the dipole location. The next section extends this scanning method to

accommodate these fixed orientation dipoles.

5.2.2 Fixed Orientation Dipoles

We now assume all dipoles are fixed, such that our model for the fixed orienta-
tion dipole, as shown in Equation (11), is B = [G()) M] S = A(l, M) S, where § is the
scalar time series and M is the matrix of fixed unit orientation moments. The gain
matrix G is still m X 2p, but M is 2p X p and § is p X n, where p is the number of
dipoles. Thus, A(J, M) is anm X p matrix and the full least-squares cost function is

2
. L L. .
J g = min A"P AF” . where P}, is an orthogonal projector onto an m-p subspace, rather
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than an m-2p subspace as for Pé We otherwise proceed identically as above, arriving at

an analogous cost function for a fixed dipole,

L2
|4 pll

whereA , =474 p||: is the normalized gain matrix for fixed dipoles, U , NOW contains
the m-p left singular vectors associated with the m-p smallest singular values, and we
note that for the vector A the L, norm is equivalent to the Froebinius norm.

Note that J{p) is now a function of four parameters. If J{p) were evaluated in the
same manner as the rotating dipole scanning function, then not only would we need to
scan over all possible locations I, but at each location we would also have to scan over
all possible constrained unit orientations m, thus extending our scan from three dimen-
sions to four dimensions. However, we now show that we can instead continue to search
over only the three-dimensional locations [, and at each location implicitly select the
best orientation m which minimizes our cost function. We achieve this by using the sep-
arability of A, = Gym), and applying the constraint m:m = 1, since m,, is, by our defi-
nition, a unit moment orientation vector.

For a given three-dimensional location I, G,({,) is completely specified, so we

seek to minimize the cost function J{p) with respect to m,,

- ||A nz o
_zeml, 038
Toml
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T AT

m G'P G m

= [ Tp - PP (EQ 36)
m G G m
[ Dd e
subject to m:m = 1.

From Equation (36) we recognize that minimizing this problem is equivalent to
finding the minimum generalized eigenvalue (e.g., (Strang 1980), Page 277, (Golub and

van Loan 1989), Page 470) of the expression

T - T
G!P'G,m, = \G,G,m, (EQ37)

T
If we denote the SVD of Gp as Gp = UszGpVG

» Where Ug, contains only the princi-

pal eigenvectors associated with the non-zero singular values, then the generalized

eigenvalue problem can be expressed as
T T T T
[VszGpUGp]PL[UszGpVGp] mp = A'[VszGpUGp:l [UGpZGpVGp mp . (EQ 38)
By pre-multiplying both sides by z;;vgp, we can simplify to
T T T
Ug,P Ug,[Z6,Vepm,) = MZe,Veplm, (EQ 39)
so that we can now solve the equivalent simpler minimum eigenvalue problem,

JP) = Mol Ug, P Ug,} (EQ 40)

where A_. { } denotes the minimum eigenvalue of the bracketed term.

min
Thus we need not explicitly scan for or calculate the best moment orientation that
minimizes J{p), but rather calculate just the eigenvalue associated with this moment.
Consequently, the fixed dipole scanning procedure is the same as for the rotating model,
except that at each location in our 3-D scanning grid we calculate the smallest eigenvalue
of the bracketed term. For the fixed p-dipole model we expect to find p locations where

J{p) = 0. The optimal moment orientation at each minimum of J{p) is found indirectly

as the eigenvector associated with minimum eigenvector.
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Note that calculating this cost function requires finding the smallest eigenvalue
of only a2 x 2 matrix. Also note that depending on the dimension p of the orthogonal

projector, this small2 x 2 matrix may be more efficiently formed as

T T T T r
Ug, I-U,U,)Ug, = I- (U,Ug,) (U,Ug), (EQ41)
where U), again represents the p left singular vectors associated with the p largest singu-
lar values of F. Thus, this cost function may be calculated with relatively little compu-

tational burden.

5.2.3 Fixed and Rotating Dipoles

In the mixed case, we have p, rotating dipoles and pyfixed dipoles for a total of

p = p, + pydipoles. Our general model is therefore

[qol qm]r

B =HS = [[G¢| Gm] [ or Gep;l A ...APJ [qwr ‘lep;l (EQ42)

We have two related scanning functions for rotating and fixed dipoles, J(p) and J{p).

Examining J(p), we see that
PUL T
1) = "Plé,,"i _ " Gp :P“p (EQ 43)
1Z6 -
_ P vl el vl o

2 2
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where 6; and 0 are the two non-zero singular values associated with G,,. The vectors
e;=[1, O]Tand e> =0, l]T form an orthogonal unit moment orientation pair that spans

the row space of G,. By comparison, J{p) can be viewed as

Jp) = Ay { UG, P UG,

— || pt *
- "P Uapmp

(EQ45)

wherem; is the optimal m, that minimizes J{p) over all unit moment orientations at that
location. Comparingm; with e; and e, above, we can describe the rotating dipole scan-
ning function as a weighted average measure of how all dimensions of G, project onto
the noise subspace, while the fixed dipole function is a measure of how one optimal
dimension of G, projects. Thus when J,(p) =0, then J{p) = 0.

The rank of H is r = 2p, + pyand is the crucial piece of information for this
model, We otherwise proceed as for the fixed dipole model. At each location, we calcu-

late the hybrid scanning function

1) = Aol U{;pil,if,rvcp} (EQ 46)
where ff, now contains the m-r left singular vectors associated with the m-r smallest sin-
gular values, as compared to m-2p and m-p vectors for the two previous models. If at a
location p we have a fixed dipole, then G, m, represents a linear combination of the vec-
tors in G, that is orthogonal to the noise subspace projector (f],i],r) , and we obtain
J,(p) = 0. Correspondingly, if at a location p we have a rotating dipole, then G, is
already orthogonal to the noise subspace projector, regardless of the fixed orientation m,,
we attempt to assign, and we still obtain J,(p) = 0. Thus we can use the fixed dipole
scanning method for both rotating and fixed dipoles. We summarize the complete steps

in the following section, where we show that this same algorithm can be derived under

the proper statistical conditions.
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5.2.4 Signal and Noise Subspaces

In the previous section we examined the rotating, fixed, and hybrid models sep-

arately. In this section we proceed directly to the general hybrid model B = H(I, M) S

and assume that the hybrid gain matrix may represent any mix of fixed or rotating

dipoles. We state the assumptions necessary for proving some of the MUSIC assertions.

[AH] (Gain Matrix Assumption) Them X r hybrid gain matrix H, m > r, is of full col-
umn rank r for p dipoles. In other words, the gain columns of the dipole components
cannot be combined to simulate the gain columns of a third dipole component. For p,

rotating and pyfixed, p=p, + psand r = 2p, + pg.

[AS] (Asynchronous Assumption) The moment time series for different dipole com-
ponents are asynchronous or linearly independent, i.e., the time series of one compo-
nent is not simply a scalar multiple of the time series from another component, nor
can any combination of time series form another time series. Thus the time series

matrix S is also of full rank r.

[AW] (Noise Whiteness) The additive noise is considered temporally and spatially
zero-mean white noise with variance 62, such that the expectation of the outer prod-
uct of them X n noise matrix is E{N(r) N(n)T}= 021, where n is the number of time
slices. This requirement may be eased by prewhitening of the data, if the noise statis-
tics are known.

The key assumption is that spatially distinct dipoles have linearly independent

time series over the measured time segment; however, no constraint is imposed on

whether or not the dipole moment is rotating, i.e., the method will work for either fixed

or rotating dipoles.
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Our model for noiseless data with m sensors, n time slices, and r elemental dipole
components is B=H S, where His mXr,m>r,and § is r Xn, r < n. Consider the
model for the noisy data under the assumption AW of zero mean white noise, F=H S

+ N. The spatial autocorrelation of the data is then

Rp=E{F(n) F(n)T} = E{{HS(n) + N()[HS(n) + Nn))T} = HRGH + oI (EQ47)
where E{ } is the expectation operator, and Rg= E{S(n) S(n)T}; by assumption AS, this
correlation matrix Ry is of full rank. The square symmetric matrix Rz may be written in

terms of its eigendecomposition as

R = OADT = [0,0,) [A’ A] [©,®,]7 (EQ 48)

where we define A, as the diagonal matrix containing the r largest eigenvalues and @
as the matrix containing the corresponding eigenvectors. By our assumptions, it is well
known that the eigenvalue equal to the variance of the noise, A = o2, repeats with mul-
tiplicity m - r (Schmidt 1986). Accordingly, A, = oI, and @, is the matrix containing
the corresponding m - r eigenvectors.

Comparing Equations (47) and (48) and using assumptions AH and AS, it is
straightforward to show that the space spanned by @ is identical to that spanned by H
Rg HT; therefore, @, is said to span the signal subspace. The space spanned by @,, is the
orthogonal complement of the signal subspace and is referred to as the orthogonal or

noise subspace. Based on these observations, it can be shown that the quantity

Maind Uy @o®,Ugy } (EQ49)
is zero for any matrixG, = Ug,Zs, VZP corresponding to a true dipole location
(Schmidt 1986). Thus we can determine the dipole locations exactly using Equation (49)

provided R, and hence ®,, is known exactly.
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In practice, MUSIC approximates R by R = (1/n) FFT. Estimates of the
signal and noise subspaces, fbs and &>o, are formed using an eigendecomposition of R .
Using this approximation for @,, Equation (49) is now equivalent to Equation (40),
which was derived using a deterministic suboptimal least-squares approach. Thus the
scanning method presented in this chapter is also equivalent to the MUSIC algorithm for
“polarized sources”, as defined in (Schmidt 1986), when the assumptions presented here

hold true.

5.3 Summary of the MUSIC Algorithm

Summarizing the MUSIC algorithm,

1. Given them x n data matrix F for m sensors and » time samples, perform the
T
eigendecomposition of the estimate R = (1/n) FFT = ®AD . Order the eigenval-
ues, such that A; 2 A, 2 ... 2 A,,,. Equivalently, perform the SVD of F, where the eigen-

values are the square of the singular values.

2. Select the separation point 1 <r < m between the signal and noise subspace
eigenvalues. By assumptions AH and AS, r=2p, + p where p,. is the number of rotating
dipoles and pyis the number of fixed dipoles; therefore,  is the number of elemental
dipoles. While theoretically A,;, = o2 repeats with multiplicity (m-r), in practice there
is some spread among the smaller eigenvalues, depending on the number of time slices n
used to estimate R . If the signals are of sufficient strength and sufficiently uncorrelated
during the time interval, then a distinct drop in the magnitude of eigenvalues will occur
between A, and A, ;. (A more detailed treatment of the order determination problem is
given recently by Chen et al. (1991).) Form the estimated matrices fb: andfbo from the

corresponding signal and noise eigenvectors.
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3. Over a fine grid of three-dimensional locations {(x, y, z)p}, calculate the cor-
respondingm X 2 gain matrix G, for each location, obtain the principal left eigenvectors
Ugp of Gp, using an SV;) such that G, = UGPZGPVQP, and evaluate
J,@) = A ngfbofb »Ugp} »i.€., the minimum eigenvalue of the bracketed expres-
sion. Form two-dimensional slices through the three-dimensional space, e.g., (x, y)
planes for constant z, and plot the function Z{(x, y, z),} = 1/J(p) as contours, images,

or oblique mesh plots.

4. Ateach sharp “spike” (minimum of Jp), check to see if the entire subspace of
G, is orthogonal to the noise subspace (both eigenvalues of { ngfbofD:U Gp} are
approximately zero), indicating that the dipole is rotating. Alternatively, if memory stor-
age is not an issue, then at each point when ezvaluating Jy(p) we can also calculate the

T
(Do UszGp

rotating cost function J (p) = A EGpIIi" Locations

whereJ (p) = J,(p) = 0 indicate rotating dipoles. If the dipole is indeed fixed (only
J,(p) = 0), we estimate its orientation by calculating the eigenvector associated with
Amin- We repeat this analysis until we find p, rotating dipoles and pyfixed dipoles such
that r = 2p, + ps. We can refine the estimate of the locations by either using a finer grid
in these areas, or by using these estimates as the initialization point for a p-dipole least-

squares search.

5. Form the hybrid gain matrix H(l, M) and solve for the time series, § = H'F.

Note that we do not explicitly need to know the number of rotating versus fixed
dipoles, p,. versus pg, instead, we need only r=2p, .+ pr The values of p, and pyare then
found by the MUSIC algorithm. We also note that Step 4 indicates the possibility of
detecting rotating dipoles by examining not only J,(p), but by also examining the other
eigenvalues of { U(T;p&)afl):U G p} found in the calculation of JAp); however, we have not

studied differences in bias and variance among these various measures of fit.
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5.4 Comparison to Other Dipole Fitting Methods

5.4.1 Least Squares Scanning

It should be emphasized that the MUSIC scanning procedure is quite different
from fitting the full data with a single dipole. The appeal of the one-dipole model is the
relative simplicity with which we can form Gp. An alternative to the MUSIC approach
would be to simply fit a one-dipole model at each point in a scanning grid, i.e., compute

the function

o) = |PF (EQ 50)

“Least-squares scanning” is then the evaluation of this function as the single
dipole is scanned through the head region. The dipoles are assumed to lie at the locations
corresponding to the local minima of J; g5. Since we are fitting a one-dipole model, this
method will naturally work when there is a single source. However this method gener-
ally fails, for example when there are multiple sources that are closely spaced or that
generate fields of greatly differing intensities.

Least-squares scanning is equivalent to the beamsteering approach of conven-
tional direction-finding and suffers from the same problems of poor resolution and inter-
source interference. The MUSIC approach itself was first proposed in the direction-find-

ing arena to overcome these problems (Schmidt 1986).

5.4.2 PCA Dipole Fitting

The MUSIC algorithm fits a one dipole model to a subspace derived from the
data. Principal Components Analysis (PCA) dipole fitting is a related method often
examined in MEG analysis, usually with poor resuits (Maier et al. 1987, Achim et al.

1988, Mocks and Verleger 1986, Wood and McCarthy 1984). Although PCA dipole fit-
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ting also scans a one dipole space derived from a similar decomposition, the subspace
framework presented here allows us to examine this method and show where it fails.

PCA dipole fitting begins with the identical step of decomposing the data
matrix F into its orthogonal components, F = UzV7, then selecting the signal subspace.
As described by Maier ez al. (1987) and analyzed by Achim et al. (1988), the columns
of U are the spatial distribution of the principal components, and the columns of V are
the corresponding time functions. The matrix W = UZ’ describes the “factor loadings,”
where I’ contains only the r principal singular terms; this definition of W is consistent
with our definition in Section 4.1.2.

The PCA method fits a series of r single dipole models to the principal compo-
nents as follows. The pth dipole location and moment are chosen as a least squares fit to
a linear combination of the factor loadings,

mi“t‘,. q,," G,)e,- ch" (EQ51)
where G,(I,) is the gain matrix for a dipole at location [, and g,, is the dipole moment.
In (Achim et al. 1988), Achim et al. chose the individual terms of cpto be Cop= 1 and
¢ip = 0fori#p. Inthis case asingle dipole is fit to each of the columns of W. Alternative
choices of the rotation factors ¢;,, such as Varimax, are discussed and analyzed in
(Mocks and Verleger 1986, Wood and McCarthy 1984) and eisewhere.

The error in Equation (51) can be written as

Joea®) = | We,-G,q|? = |we,-6,G,fwe,) ||§ = ||P;,,ch||z (EQ 52)

where P,l;p represents the orthogonal projection for a single dipole. The limitations of
PCA dipole fitting are now apparent. PCA dipole fitting will succeed only if the coeffi-
cients in ¢, are correctly selected, such that Wep, lies in the two-dimensional subspace

spanned by G,,. However, this requires that we know the dipole location before we begin.
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As an example of the inaccuracy of PCA, Achim ef al. (1988) show a case in which PCA

severely mislocates one of three dipoles in a noiseless simulation.
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Chapter 6
Applications of MUSIC

6.1 MEG

6.1.1 Simulation

In this chapter, we present results using the MUSIC algorithm for both simulated
data and experimental somatosensory data. We begin by using the same simulation
model and data as in Figure 7 on page 38, where at each of 37 sensor locations we sim-
ulate 100 time samples. Since by design we have two fixed dipoles and one rotating, then
our data model has a rank of four for three dipoles. We perform an SVD of the simulated
noisy data matrix F and plot the singular values, of which the first ten are shown in
Fig. 9.

The abrupt drop between values 4 and 5 give a clear indication in this simulation
that the number of elemental dipoles is 4. We form the noise subspace estimatefbn from
the eigenvectors associated with singular values 5 to 37. We form the gain matrix at each
voxel in the region x=-5t0 5 cm, y=-5t0 5 cm, and z=6109.5 cm, at 0.5 cm intervals.
The minimum eigenvalue at each position using Equation (40) is found, then the
inverses of these values are formed into two-dimensional images for fixed z.

The results are shown in Fig. 10. The cost function shows three distinct peaks in
Fig. 10(a) between z = 8 and z = 9 cm. The true locations, given in Table 1 on page 39,
are just below the plane z = 8.5 cm and agree well with the positions shown in the figure.
Fig. 10(b) shows the inverse of the second eigenvalue found in the evaluation of

Equation (40). The figure shows a distinct peak for the single rotating dipole in this sim-
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FIGURE 9. Singular values for simulated noisy data matrix F. For clarity, only the first 10 of
37 singular values are plotted. The abrupt drop between singular values 4 and 5 gives a

clear indication in this simulation that the number of elemental dipoles is 4. The noise sin-
gular values corresponding to indices 5 and upward are seen to be approximately equal.

ulation. We could refine our estimates by either scanning more finely around the z =8.5

plane or by using these scanning estimates as an initialization point for a full three-

dipole least-squares fit.

6.1.2 Phantom Example

A seven-sensor, 2nd-order gradiometer system was placed in six different posi-

tions about a glass sphere of radius 9 cm, for a total of 42 measurement locations. Four

dipole sources were placed inside the sphere, which was filled with a conducting solu-

tion. The sources were coaxial cables, with the inner conductor extending 1 mm beyond

its coaxial sheath. The sources were located within the sphere using a probe position

indicator.
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FIGURE 10. Simulation Results. Each subimage is a two-dimensional slice in the (x,y)
plane for z= 6 cm to 9.5 cm. Each (x,y) slice was formed at 0.5 ¢m intervals, from -5 to
5 cm in both the x and y directions. The simulation data are identical to the least-squares
example, where the SNR is approximately 10 dB. The top set of images is from the fixed
dipole function, J{p), Equation (34). Here we have encoded the image as white to repre-
sent the minima in the cost function. The lower set of images, also from the fixed dipole
model, shows the second (non-minimum) eigenvalue; a minimum in the second eigen-
value indicates the presence of a rotating dipole, as discussed in the text. The single min-
imum here correctly identifies the one rotating dipole. The true locations, given in Table 1,
are approximately in the z= 8.3 cm plane, with good agreement in the positions indicated
here.
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Fig. 11 displays the average absolute response recorded over all sensors, where
we see the overlap between the source responses. Each source produced an approxi-
mately 30 ms wide monopulse, with each source firing about 8 ms after the previous,
such that the fourth source was activated before the first source had completed its

response.

Phantom Data, Four Sources, 8 ms delay, 30 ms duration
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FIGURE 11. Average of the absolute response across all sensors for the phantom
experiment.

Using the MUSIC algorithm, the data set was scanned over a 20 cm source cube
at a 0.5 cm sample interval to establish the overall quality of the data and to confirm the
absence of ambiguous head regions (strong local minima). These 5 mm scans were then
used to select the 1 mm scan region. The results of the 1 mm scans were examined by
converting the three dimensional metric information into two dimensional slices. From
these slices the “peaks” (points where the metric approached zero) were identified. The

true locations of the sources and the identified locations are given in Table 2.
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In Fig. 12 we show two axial slices from the one millimeter MUSIC scans. Both
slices span the x-axis horizontally from -2 to 2 cm and the y-axis vertically from -2 to
2 cm. Figure (a) is for z = 6.5 cm, and Figure (b) is for z = 7.8 cm. The locations of the
peaks are given in Table 2. Sources 2 and 4 were well resolved, as indicated by the nar-
row peaks in both figures and the good agreement with the true locations in Table 2. The
other source that was identified had a much broader peak that spans the region near
Sources 1 and 3, indicating that these two closely spaced sources may not be resolvable
by this array configuration. Indeed, the three sources identified explain 99 percent of the
data variance.

TABLE 2. Coordinates of located sources (centimeters) for the true, MUSIC, three (“LS 3”)
and four (“LS 4”) dipole least-squares fit. The “Error” is distance to the true location, and
the “Variance %?” is the percent variance explained by the locations. Dipole (3) was not
distinguishable as a separate source in the MUSIC run.

Source True MUSIC LS3 LS4
X 0.16 0.2 0.3 0.3
Dipole 1 y -0.82 -1.0 -1.0 -0.6
5.90 59 58 6.1
Error _ _0.2 02 _ 0.3
—x 088 09 05 0.6
Dipole 2 y -0.28 04 -0.3 -04
z 630 6.5 5.9 6.2

Error — 02 06 03
= ~ x 0.15 0.3
Dipole 3 y -0.30 -0.6
z 5.20 6.1
" Emor - 1.1
X ~ 027 03 03 0.3
Dipole 4 y 0.81 0.8 1.0 1.1
z 1.75 78 84 8.4
Error I ' | 0.7 0.7

~ Variance % 99.4 989 994 T 997
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z=6.5cm

z=7.8cm

FIGURE 12. One millimeter MUSIC axial slices of phantom data in the x-y plane. Each
image spans -2 to 2 cm on the x-axis horizontally and -2 to 2 cm on the y-axis vertically.
Table 2 gives the locations of the peaks.
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The true locations were then used as the initialization point for a nonlinear least
squares localization algorithm. Both a three dipole and a four dipole model were fit to
all of the data. The moment orientation was not constrained. As shown in Table 2, the
least-squares solutions were just slightly better able to explain the variance of the entire
data set, but at an increased error in the location over that of the MUSIC results. We see
that the MUSIC results are quite good for this data set. Repetitions of this experiment

should be conducted to determine the variance of these results.

6.1.3 Somatosensory Example

For the somatosensory experiment, the data were generated by vibrotactile stim-
ulation (using a piezoelectric speaker element) of the right thumb, the right ring finger,
and then both digits simultaneously. The intent was that the evoked field pattern for
“both digits” might reflect a summation of the fields evoked by the stimulation of thumb
and ring finger alone. The data were collected during eleven placements of a seven-sen-
sor, 2nd-order gradiometer system, at each placement averaging 300 trials. The data
were digitized for 300 milliseconds (100 pre-stimulus and 200 post-stimulus) at 1 kHz
and were filtered on line between 1 Hz to 100 Hz. Fig. 13 displays the average absolute
time response across all sensors for the three experiments, “ring”, “thumb”, and “both”.
Since piezoelectric stimulation creates a large stimulus artifact, the data were partitioned
into a prestimulus interval up to 0 msec and a poststimulus interval after 24 msec.

Fig. 14 plots the first ten singular values from the decomposition of the spatio-
temporal data matrices. The upper three curves are from the SVD of the poststimulus
data matrices, and the lower three correspond to the prestimulus. The shape of the post-
stimulus curves and the merging of the prestimulus curves leads us to select the first six
eigenvectors as our signal subspace. (For subspace orders five and four, we also obtained
results similar to those presented below.) Fig. 15 displays the results of a five millimeter
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FIGURE 13. Average Absolute Evoked Field. The data were rectified across all sensor
locations and averaged to give an indication of the temporal activity.

grid MUSIC scan for the “both digits™ stimulation, using the first six principal compo-
nents of the poststimulus interval. Each subimage represents an axial slice of the head in
five millimeter increments along the z-axis, with the left ear at the top of the image and
the nose at the right. The head coordinate system used was the x-axis through the nose,
the y-axis through the left ear, and the z-axis up through the top of the head.

One millimeter scans were then centered on the observed peaks seen in the five
millimeter scans. Fig. 16, Fig. 17, and Fig. 18 display axial scans in one millimeter
increments, fromx=-2to2 cm, y=3to 7 cm, and z = 6.1 to 8 cm. We see a clear shift
in the response among the three data sets in both the y and z coordinates. Fig. 19 sum-
marizes the results from the z = 7.3 centimeter slice, where we have overlaid contour
plots with full gray scale images. Here we clearly see the distinct separation between the

peaks for the thumb and the ring finger stimulation. The response due to the “both digits”
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FIGURE 14. Singular Values of Somatosensory Data Matrices. The top set of curves cor-

respond to the three sets of poststimulus data (data after 24 msec), and the bottom set cor-
responds to the prestimulus data. We selected order six as our signal subspace; similar
results were obtained for orders five and four.
stimulation actually peaks in the z=6.9 cm plane, but we see in this z=7.3 cm plane the
indications of a possible summation of the response from the two somatosensory cen-
ters. A more thorough analysis would include discussions of noise correlation, order
selection, and physiological interpretation, but we defer such analysis, since the empha-

sis here is simply to illustrate the utility of MUSIC analysis with real data.

6.2 Thunderstorm Localization

6.2.1 Simulation

Fig. 20 displays the simulated positions of two “storms” for ten different sequen-

tial instances. The point charges were each positioned at an altitude of 4 km and givena
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2.5cm

FIGURE 15. Axial scans of the “both digits" stimulation case. Each subimage is a two-
dimensional slice in the (x,y) plane for x=-10to 10 cm, y=—10t0o 10 cm, and z=4 to
8.5 cm. The scanning grid increment is 0.5 cm in all directions. Based on these results, a
1 mm scanning grid was then formed around the indicated minima.

6.4cm 6.5m

FIGURE 16. One millimeter axial scans of Ring Data. Each subimage is a two-dimensional
slice in the (x,y) plane for x=—2t02 cm, y=3to 7 cm, and z= 6.1 to 8 cm. The scanning
increment is 0.1 cm in all directions.
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FIGURE 17. One millimeter axial scans of Thumb Data.

B.2cm L3¢ 6.4cm

FIGURE 18. One millimeter axial scans of Both Digits Data.
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FIGURE 9. Comparison of the one millimeter scans at z= 7.3 cm. The (x,y) dimensions

remain x=—2 to 2 cm and y = 3 to 7 cm. Contour plots of the axial slices are overlayed

with a gray scale image of the data. On the left is the “ring” data, in the middle is the

“thumb” data, and on the right is the “both digits” data.
nominal charge of 10 coulombs. Random noise uniform over +/- 0.5 coulombs was
added to each charge for ten samples at each time position. Thus 100 total time samples
were simulated for the charges as they moved across the cape. The bottom figure in
Fig. 20 displays the total simulated fields measured across the KSC sensors. We thus
have one charge passing from west to east over the Vertical Assembly Building while
the second charge moves roughly from north to south over the Cape Canaveral Air Force
Station. The intent is to show (a) the sharpened resolution as the storm cells move from
outside the array into the center of several sensors, and (b) the relative ease with which
MUSIC tracks two simultaneous charges.

Fig. 21 shows the overlay of all 31 simulated time sequences across the cape.

The abrupt transitions correspond to the jump from one storm position of ten samples to
the next position, i.e., we did not smoothly move the storms from position to position.
These jumps serve as our discontinuity or incoherence in trying to fit our model to the
data, effectively serving here as our lightning strikes. Since the quasi-static charge model
requires a stationary source, we can visually see how this simulated data should be par-

titioned into ten even segments of time; however, we need a more objective measure of

dividing this stream of data.
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FIGURE 20. Two simulated charges. The top figure shows the position of the two charges
for ten different time segments. The bottom figure shows the simulated field intensity
recorded at each sensor as the two “storms” pass through the Cape.
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FIGURE 21. Overlay of simulations. All of the simulated fields recorded at each sensor are
overlaid here. The visibly abrupt changes indicate where we have shifted the “storm cells”
up to the next time segment, for ten time segments total.

Section 9.3.1 presents the results of apply time-eigenanalysis to this same simu-
lation to show how the data could be parsed. Here we simply assume we know how to
partition the time data into its proper segments. Fig. 22 is the MUSIC scan of the first
time segment of simulation presented in Fig. 20. In this position, both charges are just
outside of the KSC array, one charge to the west, the other offshore. The top figure is the
MUSIC scan at 4 km in altitude, where we have colored the MUSIC intersections from
“poor” to “perfect” as dark red to white, respectively. We see in this image perfect peak-
ing at the correct position “1”, as confirmed in Fig. 20. We also note the relatively broad
smearing around these peaks, to be expected from the Cramer-Rao results. The bottom
figure in Fig. 22 illustrates the vertical smearing of the MUSIC spectrum as well. The
results of ten MUSIC scans, each at increasing 1 km increments, are stacked on top of

one another, but we have only tagged with a “*” those regions of the slices whose inter-
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section was greater than 85%. Effectively we are viewing a large distorted three-dimen-
sional ellipsoid in space, whose center represents the source location.

We contrast the smearing of these position 1 results with the precision of the
results in Fig. 23, which presents the MUSIC results for position 6. In this position, both
storm cells are well situated within a cluster of sensors. The top figure is again the
MUSIC scan at 4 km, and here we note the tightness of the peak. The bottom figure is
the view again from the southwest of all ten MUSIC scans for each corresponding 1 km
of altitude, where only those regions greater than 85% tagged with a“*.” In contrast with
the position 1 results, here we see excellently localized peaks in both the horizontal and
vertical directions. This well-focused MUSIC sphere corresponds directly with the
excellent Cramer-Rao results predicted for these regions of the cape.

We ran the MUSIC spectrum for the other eight simulated positions as well,
obtaining comparable results, then plotted them in a manner identical to Fig. 22 and
Fig. 23. These ten images were then arranged in a sequence and played as a “cine” or
movie loop on the computer. The result is a very effective demonstration of the ability
of the MUSIC scans to reinterpret the KSC array of field mill data into a visually infor-
mative and insightful sequence of graphical images. One area of further research is to
integrate this visual modality of the mill data into the other graphical weather presenta-
tions, such as weather RADAR, LDAR, and the lightning detection network. Effective
integration will allow the weather forecaster to more readily assess and incorporate the

unique field mill information into the overall weather operations.

6.2.2 Intense Lightning Example

Fig. 24 displays 360 seconds of thunderstorm data, parsed down from 600 sec-
onds of data that contained several lightning strikes. The parsing was done using time-
eigenanalysis as a guide, described in Chapter 9. We selected two time segments, one
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FIGURE 22, MUSIC Simulation I. The time segment is the first in the simulation, when the
“storm cells” are just outside of the KSC array. The top figure is the view from above the
Cape, and the bottom view is the view from the southwest. The analysis was done on 1 km
planes, and any voxels greater thatn 85% were simply tagged to form a stack of images as
seen here. We observe how the MUSIC spectrum smears away from the array, consistent
with the Cramer-Rao analysis.
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FIGURE 23. MUSIC Simulation {l. The time segment is the sixth in the simulation, well sit-
uated within the KSC array. In contrast with Fig. 22, we note the tightness of the MUSIC
peak inside of the KSC array, again consistent with the CRLB analysis.
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FIGURE 24. Using the time-eigenspectrum techniques discussed in Section 9.3, we
parsed 600 seconds into the 360 seconds shown here. We then divided this segment into
six even segments of 60 seconds for MUSIC processing.

with residual lightning activity still evident, the other a much more static region between
strikes.

The top figure in Fig. 25 is from the second time segment, time data 61 to 120,
and the bottom figure is from the fourth time segment, time data 181 to 240. Segment
two contained many low similarity regions in its time-eigenspectrum, and the MUSIC
spectrum is correspondingly broad and somewhat poor. Segment four contained a very
stable low rank time-eigenspectrum, and we see a corresponding well defined peak. The
peak aligns with the intuitive interpretation of the storm center, obtained by examining
the field levels manually. We also note the same broadening of the peak of the solution
outside of the array, as was seen in the simulation data presented in Fig. 22.

Fig. 26 more closely shows the peak seen in the right of Fig. 25. We again tag all
MUSIC results above 85% for the 1 km planes, and view this stack from the southwest.
Here we see the stack peaking at a minimum of 10 km, which would appear to be unre-
alistically high; however, further examination leads us to believe that the coronal damp-
ing of the fields are the cause of this vertical error. Further research effort will investigate
if we can incorporate coronal damping into the model to allow more accurate vertical
positioning
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FIGURE 25. MUSIC Thunderstorm example. The top figure is from the second time seg-
ment, time data 61 to 120, and the bottom figure is from the fourth time segment, 181 to
240. Segment two still contained residual lightning activity, and its MUSIC spectrum
appears correspondingly broad and poor. Segment four contained a very stable low-rank
region of data, and we see a corresponding well defined peak. The peak aligns with the

intuitive interpretation of the storm center, obtained by examining the fields manually.

75




o 10,000 meters
W~

s 8,000
-
W« 6,000

FIGURE 26. MUSIC Example detail. Tilting the fourth segment into a southwest view, we
see that the MUSIC scan is peaking above 10 km, although it is well defined in the hori-
zontal plane. The error in locating the storm vertically is believed due to the coronal damp-
ing of the fields.

We repeated this MUSIC analysis for the other four 60 second segments and
again formed a cine loop for presentation and analysis. The loop shows peaks over a
range roughly between the two presented here. The overall result is a quite consistent
localization of the source in the same region of the cape, even with data not ideally quasi-
static.

For an additional example, in Section 9.3.3 on page 136 we examine an End-of-
Storm-Oscillation (EOSO) for its time-eigenspectrum, then produce MUSIC images of

two regions in the EOSO.
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Chapter 7
Cramer-Rao Lower Bound

7.1 Background

The simplest head model in use is a set of homogeneous spherical shells, for
which the MEG model is straightforward and the EEG model is still tractable, but with
more parameter assumptions. Although a dipole comprises six parameters, the focus of
most research has been on the accuracy of determining the three location parameters.
Early studies compared the relative localizing ability of EEG and MEG (Cuffin and
Cohen 1979, Cohen and Cuffin 1983). In (Stok 1987), several of the model parameters
were varied to determine which had the greatest impact on accuracy. In (Cuffin 1990 and
Cuffin 1991), the head shape and sphere models were examined for their accuracy
impacts. In (Cuffin 1986), variations of noise and measurement errors were explored for
several array configurations. In (Kaufman ez al. 1991), the dipole source is expanded to
a larger spatial extent to test the dipole assumption in cortical folds for both EEG and
MEG models. In (Achim ez al. 1991, Baumgartner et al. 1991), the spatiotemporal
model was examined to determine its effectiveness in improving location accuracies.

The accuracies found and the conclusions drawn by these studies vary widely.
Direct analysis of the localization error is complicated by the nonlinearity of the location
parameters, the sensitivity to the moment orientation, the moment intensity, the back-
ground noise power, the orientation and spatial extent of the sensors, and the absolute
position of the dipole. Consequently, most of these studies and comparisons were
restricted to specialized dipole locations or sensor positions. The error results were gen-

erally established by experimental data or by Monte Carlo analysis. More recently,
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dipoles implanted in patients have been used in an attempt to determine localization
errors in MEG (Balish ez al. 1991) and to compare localization errors between EEG and
MEG (Cohen et al. 1990). The results of (Cohen et al. 1990) have particularly lead to
recent controversy, with the study criticized on methodological grounds in (Hari et al.
1991, Williamson 1991). In (Therapeutics and Technology Assessment 1992) and (Ano-
gianakis ez al. 1992), the call is for a careful consideration of the absolute accuracies of
either modality under conditions that are fair to both modalities. As noted in (Cohen and
Cuffin 1983) and repeated in (Anogianakis et al. 1992), EEG and MEG provide comple-
mentary data, and the use of both modalities can contribute to overall improved accu-
racy.

Our analysis of dipole localization error for MEG and EEG is based on the well-
known Cramer-Rao Lower Bound (CRLB). The CRLB provides a lower bound on the
variance of any unbiased estimator of the location and other model parameters. By deriv-
ing a closed-form expression for the bound, we can compute it efficiently for a much
wider range of conditions than can studies based on Monte-Carlo simulations or exper-
imental data. The bounds are useful only if they are relatively tight (i.e. if they are not
overly optimistic compared with the true localization error variances) and if the estima-
tors employed have relatively small biases. To demonstrate the usefulness of the bounds,
we present a Monte Carlo simulation which indicates that the CRLBs, in most cases,
give reasonably accurate predictions of actual localization error variances.

We note that there are important limitations to this analysis, primarily due to the
fact that the CRLB holds only under the assumption that the model is correct. The
bounds give no insight into the effect of modeling error on localization accuracy. Nev-
ertheless, in many of the cases shown, the CRLB gives surprisingly large lower bounds,
even under fairly optimistic assumptions. Since modeling errors tend to degrade, rather

than improve, performance, these results indicate that the accuracy of dipole localization
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based on single time epochs is often limited by the inherent ill-posed nature of the prob-
lem. The models used here are some of the simplest in use. In general, more complicated
models would be more prone to modeling errors and could have more parameters to esti-
mate. Consequently, the bounds presented here may pose fundamental limits on EEG
and MEG localization performance.

In this research, we present the Cramer-Rao lower bound for the general spa-
tiotemporal model for an arbitrary number of sensors, an arbitrary number of time
instances, and an arbitrary number of dipoles with arbitrary moments. We then present
the formulas for the dipoles in a four shell sphere model for both the EEG and MEG
case. These formulas are used in the subsequent sections to examine the lower bound on
errors for several different array and dipole configurations. The localization error
bounds are computed for one and two dipoles located in a plane in the upper hemisphere
of the head. For each location, a search is performed over all possible dipole orientations
to determine the best and worst results and the average localization error bounds. Graph-
ical error contours are displayed for a quadrant in the upper-head hemisphere, providing
rapid assessment and comparison of the two modalities.

Our emphasis is to present optimistic operating conditions with perfect models,
many sensors, and low noise power, so that we may establish if the corresponding lower
bounds indicate the potential for good dipole resolution. The use of identical sensor pat-
terns allows, in each case, a cautious, but direct comparison of the differences in MEG

and EEG source localization ability.

7.2 CRLB solution

The Cramer-Rao lower bound (CRLB) (e.g., Sorenson 1985) is an important
result in estimation theory that establishes a lower bound on the variance of any unbiased

estimator of a set of unknown parameters. Determining the bound requires a joint prob-
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ability density function for the data. While the existence of an unbiased estimator that
attains the bound is not guaranteed, we can use the bound to establish fundamental lower
limits on the accuracy with which the parameters may be estimated. In applying the
CRLB to dipole localization, we can use this result to determine, under certain modeling
assumptions, minimum mean squared localization errors for dipolar sources. To demon-
strate that these bounds are meaningful in this application, we need to show that (a) the
estimators we use are effectively unbiased, and (b) the bounds are relatively tight, i.e.,
that the lower bound on the variance is close to the true attainable variance with a given
estimator. To investigate the utility of the CRLB, we performed Monte Carlo studies
using nonlinear least-squares for localization. The results of this study are reported in

Section 7.3.

7.2.1 Derivation

Consider a set of data F, which we model as F = G()Q + N , where N is the
unknown noise and G(/)Q is the noiseless deterministic data. We assume that the loca-
tions / and the orientations and magnitudes Q of the dipole moments are unknown. We
also assume that the noise N is zero-mean, spatially and temporally white, and normally
distributed, and that it has an unknown variance v. For convenience, we group these

parameters into one vector V,

\Y2 Ly T
v = [v.q), .. gL, 0 L) (EQ 53)
where each moment vector at each time instance j is the concatenation of the individual

moments for each dipole, as

¢ = [410), - 0,00 - (EQ 54)

Cramer-Rao Inequality Theorem: Let \y be any unbiased estimate of the deter-

ministic parametersin F = G(I)Q + N . Then the covariance matrix C of the errors
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between the actual and estimated parameters is bounded from below by the inverse of J,

as

" ~ T
C=E{(y-¥)(y-¥) } 27" (EQ 55)

where J is the Fisher Information Matrix

3= E{[Zlos pirlw][Los o w)]’}. (EQ 56)

E{ } denotes the expected value or mean of the enclosed term, and p(F| v) denotes the
probability density function for the data with parameters .

See (Sorenson 1985) for a proof of this result. The inequality in (55) states that
the difference matrix (C - J’l) is positive semi-definite, and as a consequence, the vari-
ance of each parameter V; is individually bounded by the corresponding diagonal ele-
ment in J-!. Under the assumption that the noise is spatially and temporally white and
normally distributed, an closed form expression for (55) is possible. We derive below the
Fisher Information Matrix and the corresponding Cramer-Rao lower bound for the gen-
eral spatio-temporal model. We derive this result for the case of m sensors, n time
instances, and p dipoles, in a general form that is applicable to both EEG and MEG data.

We define some notation and develop the bound to parallel the work of (Stoica

and Nehorai 1989). We define D as the partials of the gain matrix G:

ik = [y ka’ Ll

a Y
d(lJr Yy=—G(,)
f al, *
d@y=1[d(l,),d(,),d(,)]

D=[dd), ....ddy, ...,dd,)] EQ5T)
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where 1,y refers to the x-axis component of the k™ dipole location, and, similarly, for the
other subscripts. Arrange the p moments at thejth time slice, q(j), into a block diagonal

matrix,

1,®q,() 0
X()= : (EQ 58)

0 I,® q,()
where I is a 3 x 3 identity matrix and “ ® ” denotes the Kronecker product. (The Kro-
necker product of a (p x q) matrix A = {a;;} and an (m x n) matrix B = {b;;} is the (pm
X qn) matrix, {aijB}, denoted by A® B.)
With our parameters and their partials thus redefined into the matrices G, D, and
X, we group these together into two more matrices before deriving the Fisher Informa-
tion Matrix. This notation also simplifies the expressions for inverting the FIM to obtain

the lower bounds:

n

r=Y [(DX()"(DX())]

i=1 (EQ 59)
A(j) = G'DX())

T T, T
A= (A, ..., A()']
Thus, for m sensors, n time slices, additive zero-mean white noise with a vari-
ance v, and the dipole moments and locations grouped as defined above, the Fisher

Information Matrix is (Stoica and Nehorai 1989)

w9 0
12V
=30 1866 a (EQ60)
T

=
g
e |
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The three diagonal elements represent the information content of the scalar noise vari-
ance, the set moment parameters, and the set of location parameters, respectively. The
off-diagonal terms represent the cross-information between the various parameters.
With this partitioning and with the use of standard matrix inversion formulas (Sorenson
1985), we can readily invert this matrix analytically. We are particularly interested in the
diagonal elements, since the Cramer-Rao lower bound for the ith parameter ; is simply
the ith diagonal element of ! (Sorenson 1985).

The off-diagonal zero elements in J make the lower bound for the scalar noise
variance particularly easy to calculate:

2
CRLB(v) = % . (EQ61)

where CRLB( ) denotes the Cramer-Rao lower bound on the error covariance matrix of
the enclosed vector. The lower bound covariance matrix for all p locations in / is found

in the lower 3p x 3p portion of matrix J/,

CRLB() = v[T-A"[1,® (6'6)"]a]” . (EQ 62)

Simplifying using (59),

= v[z (DX()) " (DX(j)) -
j=1

] -1, (EQ63)
_-|e™pxq)
[(DX(1)7G... DX) 61 [1,® (67G) ']

G'DX(n

n n -1
= v[z (DX() T(DX{) - ¥, (DX() "6 (G'6) ' G'DX()| , (EQ64)

j=1 j=1
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" -1
= v[z @x()' [1-6(676)7'6"] (on))] : (EQ 65)

Jj=1

n -1
= v[z (DX(J'))TPé(DX(i))} . (EQ 66)

j=1
where Pé = (I- GGT) = (I-P;) is the orthogonal complement of the projection
matrix for G, and G! is the full rank pseudoinverse of G, GT = (G'G) " G’ .

The lower bounds for the moment series at each time slice j can be readily
expressed in terms of the lower bound for the location. If we define y= CRLB(l)/v,

then the lower bound covariance matrix for each moment time slice j, j = 1,...,n is

CRLB(() = v[ (676)"' + 6T DX(y (6" DX ] . (EQ67)
These formulas depend on inverting GG, and therefore a brief discussion about
its rank is important. In the EEG and MEG cases studied in this research, we assumed
that the dipole lay in the tangential plane, i.e., that the radial component was assumed
known and equal to zero. Since G comprises submatrices G; for each dipole, then each
G; must be appropriately expressed as a 2 x 2 matrix, before attempting the inverse of
GTG. If GTG becomes singular for a particular selection of dipoles, then the inverse is
undefined, and we cannot calculate the variance. The reduced rank Moore-Penrose

pseudoinverse is inappropriate here.



The Fisher Information Matrix and its inverse provide insight into how each
parameter affects the estimate of the other parameters. Repeating (60), for m sensors, n

time slices, and variance v, the Fisher Information Matrix is

I mn W
v 0 0
0 |I®GG A

0 AT r

(EQ68)

< | =

The upper-left diagonal term in J, (mn) / (2v) , represents the information for the esti-
mate of the noise power. The other entries in the first column and first row represent the
cross-information between the noise power and the other parameters of our model,
namely the moments and locations of the dipoles; these off-diagonal elements are zero.
The CRLB requires that this matrix be inverted, and these zeros allow us to partition the
matrix into two separate submatrices and invert them separately. Thus, the noise vari-
ance submatrix cannot affect the parameters in the other submatrix. Of course, the other
lower bounds depend on the noise variance (there is a scalar noise variance term leading
the matrix), but whether or not we assume that we know the noise variance is irrelevant,
because the submatrix inversion to calculate the moment and location lower bounds is
the same whether we estimate the noise variance or assume it.

In contrast, the lower bounds on either the set of moment parameters or the set
of location parameters depend on whether we estimate both sets of parameters or assume
one set known. We represent the information for the moments and the locations in the
lower right submatrix in (68). The cross-information between the moments and the loca-
tions is represented by the off-diagonal term A. If we assumed perfect knowledge of the
moments, then the CRLB of the locations would reduce to the first bracketed term in

(62). Similarly, if the locations are perfectly known, the CRLB for the moments would
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reduce to the first bracketed term in (67). In the general dipole localization problem, we
know neither the moment nor the location, and the second term in each of these CRLB
equations shows that we cannot simply ignore the cross-information term A. This cross
coupling will always increase the error lower bounds, except in the rather specialized

case of PJ(;.D = D ,i.e., where the partials matrix is completely orthogonal to the gain
matrix. Thus, consideration of the estimation of both the moment and the location is crit-

ical to better lower bound accuracy.

7.2.2 Location Error Lower Bounds

Equations (61), (66), and (67) above are for the general multiple dipole spa-
tiotemporal model. They express the lower bound for the variance, the dipole location,
and the dipole moment. Our approach in this research is to focus on the variance of the
dipole location error, since much MEG and EEG work emphasizes the ability or inability
of the different modalities to locate the source of neural activity. To gain insight into the
utility of the formulas and establish some basic lower bounds, we simplify the studies to
the single time slice case and to the case of multiple dipole sources of equal scalar inten-
sity Q. In this case, the scalar Q factors out and can be grouped with the variance of the

noise. Equation (66) reduces to

CRLB() = v[ (DX(1)) PL(Dx(1))]" . (EQ 69)

If we assume all dipoles to be of equal intensity Q, then X(1) can be factored as
QX, where X comprises just the orientations of all the dipoles, and we have dropped the

single time index for convenience. Thus (69) can be factored as

-1
CRLB()) = é[(DX)TPé(DX)] . (EQ70)
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Broadly speaking, D represents the matrix of partial derivatives of the gain transforma-
tion with respect to the locations, X represents the moment orientations scaled to unity,
and Pé is a projection operator onto the orthogonal complement of the column space of
the gain matrix G. Equation (70) illustrates how the dipole intensity and the noise vari-
ance can be lumped into a single scalar ratio of the two values, v/Q?, and that the
moment orientation can be isolated into a single term X. We can therefore easily scale

our results for any desired noise power and moment intensity levels.

7.2.3 Best, Average, and Worst Dipole Orientation

For one dipole, the lower bound error analysis for EEG generates a 7 by 7 cova-
riance matrix: one dimension for the noise variance, three dimensions for the moment,
and three dimensions for the location. In the case of MEG, we only have two dimensions
of the moment we can estimate, but in either case we always have three dimensions
assigned to the location. If we use Cartesian coordinates for our location parameters,
then the difference vector between our estimate of the location and the true location can

be written as

Location Error Vector = [ (x-%), (y—9), (z-2)] . (EQ71)
The corresponding 3 by 3 submatrix bounding the error covariance for these parameters

would be

| 2 2 2—
cxx cxy ze
CRLB() = |¢° & o] - (EQ72)

Xy ¥y Ty

2 2 2
_ze Gyz Gz;_
Independent of our choice of coordinate systems, this bounding matrix can be

represented by an error ellipsoid. The major axes of the ellipsoid are found as the eigen-
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vectors of the bounding matrix. The lengths of the axes are determined from the corre-
sponding eigenvalues. The eccentricity of the ellipsoid indicates the directional bias that
the error vectors will exhibit. Indeed, the minor axes of the ellipsoid represent the “pre-
ferred directions” discussed in (Cohen and Cuffin 1983). If we consider the errors in any
direction to be equally important, then we can ignore this directional bias and, instead,
focus on the scalar length of this error vector. The lower bound on the expected squared
value of this length is the sum of the eigenvalues, or equivalently, the trace (sum of the
diagonal elements) of the bounding matrix. Hence, at a given location I and fora given
moment 2 , we can define our scalar localization error bound in Cartesian coordinates
as
1

RMS Location Emror: 60, g) = (0, +0), +0%) 2 (EQ73)
which, physically interpreted, is the lower bound on the root mean square (RMS) length
of the three-dimensional error vector given by (71).

We emphasize in (73) the dependency of this calculation on the moment of the
dipole; different moment directions at the same location will generate, in general, differ-
ent error ellipsoids. Since radial sources represent “silent sources” for MEG data, we
have largely restricted our examination to sources lying in the tangential plane for both
MEG and EEG data. This restriction also simplifies our analysis of the RMS location
error, because the moment orientation can now be parameterized by the single parameter
0 describing the angle the moment makes in the tangential plane.

For a given point l , we can “scan” over all possible 6, observing the RMS loca-
tion error. Fig. 27 presents such a scan for two different cases. We see a strong depen-
dency on the dipole orientation for one situation and relatively little dependency for the

other. We retain three values from these curves: the best (lowest) RMS error, the worst,
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Error vs. Dipole Moment Angle
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FIGURE 27. RMS Location error as a function of moment orientation angle. The moment
direction was restricted to the tangential plane, because radial moments represent blind
sources for MEG sensors. For each 8, the RMS location error is calculated using (70). This
figure shows a comparison between two different sensor arrays for the same dipole loca-
tion. The upper curve is for the dense 127-sensor pattern (see Fig. 31 for description),
which is relatively more sensitive to the moment orientation, versus the lower curve for the
127 upper-hemisphere pattern (Fig. 29), which is insensitive to moment orientation. We
retain three values from the curves: the best (lowest) error, the worst, and the average over

all 0.

and the average over all angles. We illustrate in the examples to follow the sensitivity of
some sensor patterns to dipole orientation.

For two dipoles, we extend the above approach. Since two dipoles represent six
location parameters, we have a six-dimensional bounding matrix that represents all of
the correlations between the parameters. If we focus on the error vectors that extend
from the true locations to the estimated locations, we can still interpret the sum of the
first three diagonal terms as the lower bound on the mean square error for the localiza-
tion of the first dipole. The complexity is that each RMS error length depends on both
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dipole moments and both locations. We can express these RMS values using the six
diagonal terms of the bounding matrix, expressed here in Cartesian coordinates as

G*(Ipqplzqu)"( lxl+ 1yl+czlz1)
}

S, (lp (Ip lz, ‘lz) = (o 2:2 +0 2)'2 + °z2z2)
(EQ74)

If we again restrict the moments of both dipoles so that they lie only in the tan-
gential plane, we can parameterize these scalars as functions of angles for each moment.
For a given pair of dipole locations, (i 1 iz) , we scan over all possible combinations of
0, and 0, and again find the best, worst, and average RMS lengths for each dipole. In
general, the best orientation occurs when the two moments are arranged orthogonally,
such that the peak intensities of the dipoles are well separated in the field array. The
worst arrangement is for both dipoles to be aligned in the same direction, such that their

intensity peaks coincide and lie poorly across the array.

7.3 Monte Carlo Comparison

All of the results presented in this research represent the lower bound on the vari-
ance of the estimated location parameters for any unbiased estimator. In this section, we
present the results of a Monte Carlo simulation based on a standard least-squares esti-
mator for a 37 sensor MEG instrument. The full CRLB analysis assumptions are pre-
sented in Chapter 8 and the specific details of the 37 sensor arrangement are presented
in Section 8.1.4. We present the Monte Carlo results both to confirm the formulas and
to demonstrate the closeness of the CRLBs to the actual RMS error results from our

Monte Carlo study.
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For each point on a 5 mm grid in a selected region of the upper positive quadrant
of the x-z plane, we positioned a dipole in the best moment orientation as found by our
CRLB analysis. We synthesized the single dipole forward model across the array using
the same dipole intensity as in the analysis. For each grid point, we ran 5000 realizations
of zero mean white Gaussian noise at the sensors, using arandom number generator with
the same standard deviation as that used in the analysis. For each noise realization, we
estimated the dipole location parameters using the Nelder-Meade nonlinear least-
squares approach described in (Mosher ez al. 1992). We initiated the search within a
10 mm region around the true location to enhance the possibility of finding the global
minimum and to avoid converging, instead, into a local minimum.

From these trials, we calculated the mean and RMS location error at each grid
point. The mean location error for 95% of these grid points was less than 0.07 mm. This
indicates that the nonlinear least-squares estimator is effectively unbiased for this single
dipole case. The RMS location errors were observed to be greater than or equal to the
CRLBs, within normal experimental variation. We then continued the Monte Carlo anal-
ysis for a larger region in the upper head quadrant, restricting our repetitions to 100 trials
per grid point. Fig. 28 presents the RMS location errors and the corresponding CRLB
results. In all regions where the anticipated standard deviation is less than a few centi-
meters, we see excellent agreement between the Monte Carlo and CRLB results. The
overall result is a confirmation of both the MEG CRLB formulas and evidence that the
least-squares estimator comes very close to meeting the CRLB.

At a 5 mm spacing, the MEG Monte Carlo simulations here required many days
of computation on a Sun SPARCstation 2 computer, because each of the error trials
could require many hundreds of calls to the generating function, and because at each
point in the grid, we perform 100 or 5000 trials. The equivalent EEG model would

require an order of magnitude greater processing time, because of the greater complexity
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FIGURE 28. Monte Carlo simulation and comparison. The top figure shows the computed
CRLB:s for a single dipole in a 37-channel MEG system. The bottom figure is the resuit of
a 100-trial Monte Carlo simulation at each point in a 5 mm grid, using the same dipole
intensity and noise variance as was used in the CRLB analysis. The dipole was oriented
in the “best” direction, as found from the CRLB analysis. In deep regions, the signal
received at the array is much weaker than the additive noise, and the Monte Carlo runs
experienced difficulty converging. In the shallow head regions, the signal at the array is
improved, and we see excellent agreement between analysis and simulation.
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of its gain transfer function. This computational burden for a single Monte Carlo study,
with a single dipole orientation, underscores the utility of the CRLB calculations in more

rapidly assessing many sensor arrangements and all dipole orientations.
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Chapter 8
Applications of CRLB

8.1 MEG and EEG

8.1.1 Parameter Assumptions

Analysis Region

The formulas presented in Chapter 3 for the dipole in a four concentric sphere
model are the general formulas for arbitrary sphere radii, tissue and skull conductivities,
sensor and dipole locations, and dipole intensities and orientations. The CRLB formulas
presented also apply for the general spatiotemporal model. Here, we restrict our numer-
ical analysis to a few relatively simple cases of symmetric array patterns and one or two
dipoles. The CRLB formulas require that the partial derivatives of the gain matrix with
respect to the unknown location parameters also be calculated. The tedious calculations
for the EEG model were carried out by hand by Michael E. Spencer, and verified using
Maple V, a symbolic algebra computer program. The MEG partials were straightfor-
ward.

Figure 6 on page 28 displays one of the array patterns used here with relation to
the spherical model. The other patterns were similarly symmetric about the z-axis,
which runs through the center of the array. Because of this high degree of symmetry, we
restrict our analysis region to the positive x-z plane. The error results in this plane can
then be inferred by symmetry for the entire upper hemisphere. As this analysis plane is
rotated about the z-axis, differences will arise because of the finite spacing of the sen-

sors; however, these differences are not anticipated to be great.
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Dipole Orientation

One of our goals in this study was to allow careful and cautious comparisons
between EEG and MEG data. For the simple dipole in a sphere model used here, the
radially oriented dipole generates no external magnetic field, so EEG holds an obvious
advantage. We therefore restricted the orientation of the dipole to lie in the tangential
plane for both the EEG and MEG data for most of the following error analyses. This
restriction also simplified the parameterization of the dipole orientation to the single
parameter 0, the angle the moment makes in the tangential plane. We note that this is not
unduly restrictive, since all of the results presented here scale with dipole intensity Q. In
the case of MEG data, a dipole with a radial component and an intensity Q would simply
project into the tangential plane as a dipole with intensity Q cos¢, where ¢ is the angle
made by the dipole with respect to the tangential plane. All of the standard deviations
for the MEG data presented here could then be appropriately scaled to include any
desired radial component. For comparison we also present some EEG results in which
we place no restriction on the dipole moment orientation; the results are similar to those

from the tangential dipole study.

Dipole Intensity

The bounds presented in (70) could be normalized to the ratio V/QZ, but these
units of sensor noise variance v to dipole intensity Q are nonintuitive and give the user
no relative feel for the absolute localization error. We therefore attempt to establish some
realistic values for the dipole intensity, and in the next subsection, the noise variance.
We note that this ratio can be viewed as a signal-to-noise ratio, defined here as SNR(di-
pole) = Q/c, where G is the standard deviation. By fixing the dipole intensity at O, then
moving this dipole about the upper hemisphere, the actual signal intensity received by

the sensor array will vary, roughly, as the inverse function of the squared distance to the
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array. Hence, if we consider a second definition, SNR(array), to be a function of the sig-
nal at the array (either an average across all sensors or at the peak field among all sen-
sors), then we observe that SNR(array) will drop as the dipole is moved deeper.
Maintaining the SNR(array) as a constant over all dipole locations requires deeper
dipoles to have correspondingly stronger intensities.

Variations of SNR(array) are common definitions in other studies, including
(Cuffin and Cohen 1979, Cuffin 1986, Mosher et al. 1990, Oshiro et al. 1992), in which
itis therefore not necessary to assign explicit units of amps to the dipole current. In such
studies, all of the calculations are carried out in “relative units,” where the signal at the
array is set to one unit and the noise standard deviation is set to some ratio of this unit,
for instance, 10 percent. We argue that the alternative SNR(dipole) is the preferred def-
inition when the intent is to study the location error for a dipole or sets of dipoles arbi-
trarily located in the head. For SNR(array), adjusting the dipole intensity as a function
of location will lead to distorted comparisons between different array configurations,
because dipole intensity implicitly becomes a function of sensor location, and, in this
study, a function of sensor type (EEG or MEG). Deeper dipoles may also be assigned
unrealistically high currents simply to keep the SNR(array) constant. A fixed dipole
intensity at a physically plausible current leads to a more informative accuracy analysis
and to more direct comparisons between configurations.

In (Cohen and Cuffin 1983), a relatively strong dipole was estimated to have a
dipole intensity of 2.1 pA-cm (21 nA-m). In (Cohen et al. 1990), an implanted dipole of
16 mm length was stimulated with 4 pA current, for an equivalent 64 nA-m current
dipole. We wished to establish a baseline dipole intensity of the proper order of magni-
tude that was readily scaled to other intensities, and that appeared physically plausible.

We selected 10 nA-m as our dipole intensity. With this selection, we can present accu-
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racy bounds in units of meters, but we emphasize, however, that all of the examples pre-

sented can easily be rescaled to any other choice of dipole intensity.

Noise Variance

The selection of a standard deviation for the noise is not immediately obvious,
in part because of the widespread practice of averaging experimental data. In theory, we
could average the trials until the noise is reduced to any arbitrary low value. In this EEG/
MEG comparison, the noise standard deviation is in units of either volts or teslas, respec-
tively; thus we cannot easily set a standard deviation general to both sensor types as we
did with the dipole intensity.

A dipole of intensity 10 nA-m near the cerebral spinal fluid layer can generate a
field that peaks roughly at 350 fT in MEG sensors, or at 4 iV in nearby EEG sensors,
for the sensor patterns and model examined in this chapter. In research such as that of
(Cuffin 1986), the standard deviation is expressed as a percentage of the peak, approxi-
mately 10 percent. This definition roughly translates into similar SNRs examined in
(Westerkamp and Aunon 1987, Stok 1987, Achim et al. 1991). We therefore, somewhat
arbitrarily, set the MEG noise standard deviation to 35 fT and the EEG noise standard
deviation to 0.4 pV, to reflect this 10:1 ratio. We compare with (Balish et al. 1991), who
had a stated noise level of 50 fT after averaging 200 trials. We note the difficulty in
extracting absolute noise levels from other reports for comparison because of the wide-
spread practice of normalizing the noise standard deviation into the field levels. As with
the dipole intensity, we emphasize that all of the examples presented can easily be

rescaled to any other choice of noise variance.
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Sensor Assumptions

In all cases, the EEG sensors are assumed to be affixed directly to the 88 mm
scalp sphere, and they acquire an absolute voltage potential referenced to “infinity.” In
reality, EEG measurements are acquired as differential measurements with reference to
a common local sensor or adjacent sensors. Here, however, we ignore this common use
of a “switching” matrix. We also ignore the physical diameters of the sensors and
assume that they make a point voltage measurement.

The MEG coils are placed 105 mm from the head center, representing a 17 mm
offset from the scalp surface. This distance was chosen to represent the Dewar wall
thickness of the larger sensor arrays and the air gap, both of which prevent the placement
of the coils closer to the subject’s scalp. Although these coils are often 20 mm in diam-
eter, we also assume that they make a point magnetic field measurement and that they
are oriented in the radial direction. (Jeffs et al. 1987) showed that this practice is a rea-
sonable approximation by comparing point models with integrations across the coil
diameters. Since most MEG sensors are arranged in a first or second order gradiometer
configuration to control external field noise, we ran a CRLB comparison between a per-
fect point measurement and a perfect first order gradiometer, with a coil baseline sepa-
ration of 50 mm. Our CRLB results for a 37 channel comparison showed that the only
differences were minor, in the deep regions of the upper hemisphere. Thus, to simplify
the comparisons, we ignored any considerations of gradiometers for the MEG examples

presented here.

Array Patterns

The sensor array patterns presented here are identically arranged in angular sep-
aration for both the EEG and the MEG cases, and they were designed to mimic possible

MEG sensor patterns because MEG sensors are much larger than EEG probes. Although
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EEG probes are much smaller, they, too, have practical limitations in placement, because
gels may form salt bridges for electrodes spaced too closely. In the following examples,
we present the error lower bounds for 127 sensors spread first over the entire upper
hemisphere and then densely in one region. We then present, for comparison, the results
for just 37 sensors arranged in an array pattern similar to that of commercially available
37 sensor MEG instruments. The 127 sensor dense pattern was chosen to cover the same
spatial area as a 37 channel system. We also present, for comparison, the accuracy
bounds of the standard EEG Ten-Twenty array pattern, which provides a wide spatial
coverage, similar to the 127 upper hemisphere pattern presented, but at a much more
sparse spatial sampling.

The overall emphasis is to show which accuracies are possible for the wide spa-
tial coverage or the dense local coverage, or the accuracy achievable with an array pat-
tern similar to that of existing technologies or practices. Direct comparisons among
different EEG and different MEG patterns are warranted, since dipole intensity and
noise were held constant; however, comparisons between EEG and MEG results must
consider the differences in noise assumptions and the uncertainties in model parameters.
While our MEG model is relatively simple, the equivalent simple EEG model depends

on many more assumptions of conductivities and sphere radii.

8.1.2 Upper Hemisphere 127 Sensor Pattern Results

We designed a simple pattern to cover the entire upper hemisphere without plac-
ing the sensors too close together. The first sensor is placed on the z-axis, then six sen-
sors are placed evenly around a circle 15 degrees down from the z-axis. The next ring is
30 degrees from the z-axis, along which are twelve sensors evenly arranged. The pattern
is repeated at 15 degree intervals for a total of 6 rings, with the rings containing 6, 12,
18, 24, 30, and 36 sensors, respectively, for a total of 127 sensors. The last ring lies com-
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pletely in the x-y plane, such that the entire array provides full upper hemisphere spatial
coverage. The MEG sensors are oriented radially.

This pattern was chosen as a natural extension of commercially available 7 and
37 channel MEG sensor arrays. The sensors are spaced roughly two centimeters apart,
which is about the diameter of a single MEG coil. EEG and MEG instruments are now
in the design phases with roughly 100 sensors. The analysis here for 127 sensors should
represent the potential accuracy of these new instruments when they are used for whole

head coverage.

One Tangential Dipole

In the first study, we calculated the lower bound for a single dipole located any-
where in the positive x-z plane (y = 0). The dipole was stepped along at 1 mm intervals
within the brain sphere. At each location, the moment angle was stepped in 1 degree
increments from O to 179 degrees, and at each angle the RMS lower bound was calcu-
lated using (70). The average RMS lower bound was calculated over all 180 degrees, and
the best and worst angles were located. At these extrema, either a minimization or a
maximization algorithm was initiated to refine the estimate of the best and the worst
RMS errors, respectively. Three different bounds were retained for each location point
in the grid, representing the best, average, and worst RMS errors.

In this case, the best, average, and worst bounds were similar. Fig. 29 shows the
average RMS results for the EEG and MEG cases as contours representing lines of equal
RMS error. For much of the upper head region, the error curves are approximately con-
centric. For this upper hemisphere sensor pattern, the RMS lower bounds are primarily
a function of radial depth and are largely independent of orientation. Since dipole
sources oriented radially produce no external magnetic field, we see an increasing MEG

error as the dipole’s location approaches the center. In contrast, the EEG error near the
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center flattens out, because this inner region is approximately equally located from all
sensors. Near the surface of the sphere, both modalities exhibit similar changes in error

as a function of radial depth.

Two Tangential Dipoles

We now examine the rapid degradation in performance that occurs by introduc-
ing a second dipole. For simplicity in examining the effect of an additional dipole on the
localization accuracy of the original dipole, we fixed the location of the second dipole
on the z-axis at z=7.5 cm, directly under the center of the array. Both dipoles had equal
intensity Q, so all results are directly scalable to any other arbitrary intensity. By the
symmetry of the location of the additional dipole on the z-axis, we can restrict our anal-
ysis region to the positive x-z plane and infer the results for the remainder of the upper
hemisphere.

As in the single dipole studies, the first dipole was stepped along on a 1 mm grid
within the positive x-z plane. At each location point, the angles of both of the dipoles
were stepped in 10 degree increments from O to 170 degrees, resulting in a grid of 18 by
18 different angle combinations. For each angle pair, the RMS error bounds for the first
dipole were calculated using (70). The average errors were then calculated from this
two-dimensional grid of error bounds, and the best and worst angle pairs were found. At
these grid point extrema, a Nelder-Meade simplex minimization or maximization algo-
rithm was initiated to refine the estimate of the best or worst RMS error bounds.

Fig. 30 presents the best and worst orientation results for the EEG and MEG
cases. These cases, unlike that of the single dipole, have a strong dependency on dipole
orientation. A wide range of error is possible between the best and worst orientation
pairs. In comparison with the one dipole case above, we note that the results do not differ

much along the x-axis, because the additional dipole on the z-axis is far enough away
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FIGURE 29. 127 upper hemisphere sensor case for a single tangential dipole, EEG (top)
and MEG (bottom) Cramer-Rao lower bounds. The 127 electrode pattern consists of an
electrode on the z-axis and six concentric rings separated by 15 degrees, consisting of 6,
12, 18, 24, 30, and 36 electrodes per ring, respectively. The 127 MEG sensors are
arranged in the same angular pattem, but they are located 10.5 cm from the head origin.
The contour lines are labeled with the standard deviation of the error (in cm). Linear scaling
factors of (0,/Q) = 40 V/(Am) and (0y/Q) = 3. 5x10° T/Am for the EEG and MEG
cases respectively are assumed. These factors correspond to a noise standard deviation
of 0.4 microvolts (EEG) or 35 femtoteslas (MEG) and a dipole strength (both cases) of
10 nanoamp meters. The plots show the average of the error bound calculations for the
dipole orientation stepped in one degree increments around a full circle. Both the EEG and
MEG results show little sensitivity to moment orientation for this pattern and single dipole.
We emphasize that the curves can be linearly scaled for arbitrary 6/Q.
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that it has little effect. As we follow along the inner radial cerebrospinal fluid layer, we
see that the second dipole can affect the accuracy of the first dipole as far as 4 cm away,
rapidly doubling the standard deviation error. In general, in the best moment orientation
pairs, the two dipoles were pointed in orthogonal directions, so their corresponding field
intensities across the array were separated better than at any of the other angle combina-
tions. The worst orientations occurred when both dipoles pointed in the same parallel
direction, so that their fields had the greatest overlap.

This study has presented only a few of the endless possible combinations for two
dipole intensities and positions. However, this one study shows the rapid degradation in
accuracy that occurs when trying to localize two equal intensity dipoles that are rela-
tively well situated within the array. We also see that localization error is not simply a
function of the relative distance between the two dipoles, but rather a complex function
of absolute dipole position and orientation. We contrast this with the results in (Oshiro
et al. 1992). Through a limited Monte Carlo analysis (Oshiro et al. 1992) erroneously
claimed to show that the error is a only function of the distance between dipoles and does
not depend on the orientation. While this may be true in specific instances, it is clearly
not true in general. By comparing the best and worst standard deviation curves presented
here, we see that their conclusion applies only to limited regions of the sphere. In gen-

eral, the relative orientation between the two dipoles is very important.

8.1.3 Dense 127 Sensor Pattern

The upper hemisphere pattern examined above exhibits some variations near the
inner surface of the cerebrospinal fluid, primarily because of the somewhat coarse 2 cm
spacing of the sensors. Here we examine the same 127 probes, concentrated in a much
smaller region, to observe more directly the effects of spatial sampling. The array was
constructed as described in Section 8.1.2, with six rings of sensors; however, the spacing
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FIGURE 30. 127 upper hemisphere sensor case for two tangential dipoles, EEG (top) and
MEG (bottom) Cramer-Rao lower bounds. The sensor pattern is identical to that of Fig. 29.
The first dipole is at any given point in the positive x-z plane and the second is located on
the z-axis at 7.5 cm. The contour level (in cm}) is the RMS error bound of the first dipole
because of the presence of the second dipole. Dipole intensity and noise levels are the
same as in Fig. 29. The left-side figures show the CRLBs for the best possible orientation
combination, and the right-side show the CRLBs for the worst.
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between each of the circles and the z-axis was in 6 degree increments rather than

15 degrees. The MEG sensors were oriented radially. The result was an array that sub-
tends a 72 degree angle, which is of approximately the same spatial coverage as that of
commercially available 37 channel MEG instruments, but with a much denser spatial
sampling. Here, the spacing is, in general, less than 1 cm between sensors, which would
prove to be impossible for the larger MEG coils and daunting for the placement of sur-
face EEG electrodes. Hence, this case might represent one of the densest patterns pres-

ently possible for either modality.

One Tangential Dipole

The analysis procedure here was identical to that of the 127 sensor upper hemi-
sphere pattern. Fig. 31 displays the average RMS results for the EEG and MEG cases.
Here we note the immediate impact of the limited spatial coverage on overall dipole
accuracy, particularly on the increased sensitivity to moment orientation caused by the
array edges. Directly under the array, where array edge effects are minimized, we see an
overall factor of about two improvement in the variance, relative to the upper hemisphere
array, because of the increased number of sensors in the proximity of the dipole. The
error bound rises rapidly in the lower regions of the sphere because of the combined
effects of the squared distance to the sensor array and the poor spatial coverage of the
field peaks. This latter effect is most notable on the deeper dipoles located directly on
the z-axis. By offsetting the deeper dipoles from the center of the array, we are able to
position the peak of the field intensity such that it falls across the array, and achieve a
slightly improved lower bound.

Comparing EEG and MEG results, we see that MEG suffers more rapidly in the

lower regions as a function of the three effects of depth, proximity to the sphere center,
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FIGURE 31. Dense 127 sensor case for a single tangential dipole, EEG (top) and MEG
(bottom) Cramer-Rao lower bounds. The array patter is constructed as in Fig. 29 for the
case of the 127 sensor upper hemisphere pattern, but is now separated by 6 degrees,
instead of 15 degrees. Dipole intensity and noise levels are the same as in Fig. 29. The
plots show the average RMS lower bound for all orientations. Increased sensitivity to
moment orientation was noted near the edges of the array pattern. The increased sam-
pling density gives better lower bounds than in Fig. 29, but only in a greatly reduced region
of the head.
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and poor spatial coverage. By comparison, EEG has a more gradually increasing error

as a function of just the two effects of depth and coverage.

Two Tangential Dipoles
The analysis procedure here was identical to that of the two dipole study for the
127 upper hemisphere pattern. Fig. 32 presents the results of the two dipole study for the
EEG and MEG cases. The lower bounds in the deep regions and regions outside of the
array have risen sharply, compared with their one dipole counterparts. Compared with
the two dipole 127 upper hemisphere pattern in Fig. 30, the increased sensor density in
Fig. 32 allows the two dipoles to be placed somewhat closer together, but the edge of the

array confines the region with low error bounds to a relatively small area.

8.1.4 Thirty-Seven Sensor Pattern Results

In this study, we arranged three rings of sensors, with each spaced in increments
of 12 degrees from the z-axis and each containing 6, 12, and 18 sensors, respectively, for
a total of 37 sensors, as displayed in Figure 6 on page 28. The MEG sensors were ori-
ented radially. This pattern approximates that of commercially available 37-channel
MEG instruments. We note that the upper hemisphere pattern for 127 sensors has a
slightly coarser spatial sampling than this 37 channel pattern (15 degree spacing versus
12 degree), but the upper hemisphere pattern covers a much wider spatial area. The
dense pattern with 127 sensors has the same spatial coverage as this 37 channel instru-
ment at roughly twice the spatial sampling density (6 degree spacing versus 12 degree).
Thus the 37 channel suffers in comparison with both poorer spatial coverage and spatial

sampling.
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FIGURE 32. Dense 127 sensor case for two tangential dipoles, EEG (top) and MEG (bot-
tom) Cramer-Rao lower bounds. The analysis procedure was identical to that in Fig. 30,
but with the sensor pattern of Fig. 31. Compared with Fig. 30, the increased sampling den-
sity does allow the two dipoles to be placed more closely together, but only in a greatly
reduced region of the head.
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Single Tangential Dipole
The analysis procedure for the single tangential dipole was identical to that of

the127 sensor upper hemisphere study. Fig. 33 (top) shows the average RMS EEG and
MEG case for the single dipole restricted to the tangential plane. The accuracy directly
under the array is comparable to that of the upper hemisphere array, but the accuracy
declines much more rapidly as a function of depth. Also noticeable was a stronger
dependency on dipole orientation, similar to that of the dense array above. The overall
effect is a greatly reduced area directly under the array that has an accuracy comparable

to that of the larger arrays.

Two Tangential Dipoles

The two dipole analysis procedure was identical to that of the 127 sensor upper
hemisphere study. Fig. 33 (bottom) shows the average RMS EEG and MEG error
bounds of a dipole when an additional dipole of equal intensity was placed on the z-axis
at z=7.5 cm. We can see that, in almost all regions, the dipole’s error bound is at least
double that in the single dipole study. In the worst case, we also found that it is impos-
sible to place two dipoles on the z-axis in the same orientation and still resolve them.
This perfect array ambiguity is a consequence of the three perfectly symmetric rings of
sensors. The general overall accuracy region is greatly reduced from that of either of the

previous sensor patterns.

8.1.5 EEG Single Unconstrained Dipole

The dipole was restricted to the tangential plane in our other studies, so that com-
parisons could be made more readily between EEG and MEG results. In this study, we
allow the EEG dipole to be unconstrained in orientation to study whether there was any

significant improvement for the single dipole case. We used the same 37 sensor arrange-
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FIGURE 33. The 37 sensor case with a single tangential dipole (top) or with two tangential
dipoles (bottom). EEG (left) and MEG (right) CRLBs are shown for any given point in the
positive x-z plane. All plots show the average RMS lower bound. The analysis procedures
and scaling factors were identical to those in Fig. 29 and Fig. 30. Compared with the 127
sensor studies, the combination here of relatively coarse spatial sampling and limited spa-
tial coverage result in overall markedly poorer lower bounds.
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ment, and at each location point, we calculated all possible combinations of radial and
tangential moment orientations in 10 degree increments over the range 0 to 170 degrees.
The minimization/maximization analysis was carried out in a manner identical to the
two dipole studies above, except in this study the two angles were for the one dipole.
Fig. 34 displays the average EEG RMS error bounds for the single unconstrained
dipole. In the near region of the array there was only a slight improvement of the best
error bounds and a slight degradation of the worst error bounds, but on average, the
results remained fairly consistent with those presented in Fig. 33. In the deeper regions,
the relaxation of the tangential restriction allowed the dipole to swing into a radial direc-
tion and direct more of its surface potential across the array, thereby smoothing the error
curves in these deeper regions; nonetheless, the error values are quite comparable to the
tangentially restricted dipoles. Overall, the tangential restriction allowed for simpler
studies, because the moment was a function of only one angle parameter, and this restric-
tion does not appear to have degraded the localization accuracy for the single dipole

case.

8.1.6 EEG Ten-Twenty Sensor Pattern Results

Since EEG data have historically been collected in the Ten-Twenty array pattern
using 21 electrodes, we performed a study with this sensor pattern, which features wide
spatial coverage and poor spatial sampling. Fig. 35 shows the average RMS results,
again using the same analysis procedure as was used for the other studies. We note that
a source directly underneath the sensor at approximately x=6 cm and z=6 cm shows no
significant improvement in accuracy over radially deeper sources. Although a shallow
source generates a significantly stronger signal at the surface, the spatial undersampling
is such that only one nearby sensor receives a significant signal. One sensor cannot ade-
quately locate the source, regardless of the source intensity. The deeper sources generate
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FIGURE 34. EEG CRLBs for the 37 electrode case and a single freely oriented dipole (the
dipole can have tangential and radial components) at any given point in the positive x-z
plane. The plot shows the average RMS lower bound for all possible dipole orientations.
The dipole intensity and EEG noise level are the same as in Fig. 29. The tangential restric-
tion used in Fig. 33 (top left) has little effect on the lower bounds in the regions near the
sensors; the deeper regions show relatively inconsequential shifts.

a signal across enough surface sensors to compensate for their relatively weaker surface
signal. The overall effect of this sparse array of sensors is a relatively flat and larger

lower bound error surface compared with that of the other studies.

8.1.7 EEG and MEG Fusion

The field pattern generated by a dipole across an array of EEG sensors peaks
roughly along the axis of the dipole moment. In contrast, the MEG pattern peaks to the
sides of the dipole moment, roughly perpendicular to the EEG pattern. In this study, we
assume that both the EEG and MEG data are acquired, and we observe the improvement
generated from this diversity in the information content. The sensor pattern was the same

as that in the 37 sensor system, except that here we have a total of 74 measurements for
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FIGURE 35. EEG CRLBs for the 21 electrode arrangement for the standard Ten-Twenty
arrangement and a single tangential dipole at any given point in the positive x-z plane. The

dipole intensity and EEG noise level are the same as in Fig. 29. The plot shows the aver-
age RMS lower bound for all possible dipole orientations.

the two combined sensor systems. The analysis procedure was identical to that in the
other studies. Unlike the other studies, the results do not scale with arbitrary dipole
intensity and noise variance, because both the EEG and MEG noise must be considered
simultaneously. To bring the two modalities into relatively scaled units, we multiplied
one of the arrays by the ratio of the two noise variances, which introduces a more com-
plex relationship between standard deviation, dipole intensity, and noise variances.
Fig. 36 shows the bound for a dipole restricted to the tangential plane. In contrast
with Fig. 33 for the same array pattern and respective noise variances, we note almost
no difference among the best and worst moment orientations. Since the EEG and MEG
arrays complement each other so well in their field patterns, the dipole always points in
a direction that is captured well by one of the two arrays. In the regions directly below

the center of the array, an improvement occurs simply because there is twice as many
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measurement points. In the deeper regions, the EEG sensors have obviously improved
the response near the center, and both sensor modalities have greatly improved the other
deep regions.

This analysis confirms the hypotheses of (Cohen and Cuffin 1983, Anogianakis
et al. 1992, Therapeutics and Technology Assessment Subcommittee 1992) concerning
the potential for directly combining EEG and MEG measurements into an overall supe-
rior resolution ability, unachievable by either modality alone. One extension of this
study would be to augment fixed MEG sensor arrays with a smaller array of EEG sensors

to determine whether similar improvements could be obtained.

8.1.8 Discussion

The results presented in these exemplar studies focus on the single time slice
problem, but the formulas presented for the CRLB are for the more general temporal
problem. The CRLB formulas show the improvement achievable by considering multi-
ple time slices, in which the sample spacing is large enough to decorrelate the noise. In
the simplest case of the fixed dipole moment, the standard deviations are, at a minimum,
improved by the square root of the number of time slices. This effect is analogous to sig-
nal averaging over time. If the time series of the dipole moments have any algebraic
independence, the results are improved further. An addition to the formulas would be the
inclusion of the fixed moment dipole model, which would improve the lower bounds by
incorporating the knowledge that the dipole does not “rotate”; however, the “rotating”
formulas presented here are more general. The work of (Baumgartner et al. 1991, Achim
et al. 1991) may have benefited from using these spatiotemporal CRLBs as a rapid anal-
ysis tool in interpreting their specific case studies of dipole locations and time series.

The RMS errors presented in this study do not consider the directional bias that
could occur. In the case of EEG and MEG, with data measured from external sensors
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FIGURE 36. Combined EEG/MEG CRLBs for the 37 electrode and 37 magnetic sensor
array and a single tangential dipole at any given point in the positive x-z plane. As in the
other studies, (0, /Q) = 40 VI(Am), ((G5/Q) = 3.5x107°T/Am) ; however unlike all
other results presented in this chapter, these results do not scale linearly with other values
of noise variance and dipole intensity. The best and worst moment orientations are pre-
sented in the left and right plots, respectively. Compared with Fig. 33 (top), notable here
are the greatly improved lower bounds and the lack of any appreciable sensitivity to dipole
orientation.
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(i.e., no invasive probes), the greatest localization error will, in general, be in the radial
direction, because the tangential directions are more accurately measured by the surface
arrays (the “preferred directions,” as noted by (Cohen and Cuffin 1983)). If we were to
model the cortex as a simple thin shell beneath the skull, we might be able to ignore this
radial error; the tangential errors were in general much smaller. In reality, the cortical
folds (analyzed in some detail in (Kaufman et al. 1991)) also force consideration of the
radial location of the dipole. In the absence of any prior information regarding the
importance of one direction over another, we argue here that error in all directions is
equally important.

The approaches presented here will also assist in the analysis of novel sensor
locations, orientations, and parameter sensitivities by providing a preliminary CRLB
baseline. We emphasize that while small CRLB bounds will not guarantee that such
standard deviations will ever be achievable, large CRLB bounds will steer us clear of

situations where the desired accuracy would be impossible.

8.2 Thunderstorm Localization

To motivate the utility of the CRLB equations for the NASA KSC problem, we
specialize the analysis here to a few relatively simple cases of one or two sources. By
examining such simple cases, the attempt is to infer the relatively worse accuracies pos-

sibly encountered with more complicated models.

8.2.1 Point Charge

In this study, a point charge is moved about the KSC area at fixed altitudes of
1000 and 6000 meters. We examine the horizontal and vertical error in locating such a
charge. Fig. 37 presents the results for the charge at 1000 meters. The top figure shows
the lower bound on the root mean square (RMS) error in locating the source in the hor-
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izontal plane. We have isolated out and plotted separately the vertical component in the
bottom figure. Horizontally, we see excellent lower bounds within the cape, with rapidly
increasing bounds outside the cape. This kind of result is consistent with the well known
problem of attempting to extrapolate beyond the bounds of your data. The sources
within the cape represent loosely interpolation, a more accurate approach in general. We
note that the vertical lower bounds are roughly a factor of ten higher. This preference to
the horizontal directions is a consequence of all sensors lying in the plane of the earth.
We could anticipate reduced vertical bounds if some sort of airborne sensor were in
place.

Fig. 38 presents the same situation for the charge at 6000 meters. Here we see
much broader lower bound surfaces, in contrast to the 10600 meters. This smoothing is a
consequence of the charge not being too close to a single ground sensor, but rather being
high enough to be accurately located by several sensors.

We emphasize that the linearity of the parameters allows the user to arbitrarily
scale our results to any desired ratio of noise standard deviation versus dipole intensity.
Thus these graphs are not necessarily specialized to just the 10 coulomb, 10 volts stan-

dard deviation presented here.

8.2.2 Two Positive Charges

Two equal positive charges are placed at 6000 meters, then moved about the
area. We examine the horizontal and vertical error in still locating the 6000 meter charge
in the presence of a second charge. Fig. 39 presents the results, which can be compared
with Fig. 38 for the same charge. Here we see the “jamming” influence the second
source at 10,000 meters has in locating the original source. The vertical error has partic-
ularly climbed. We interpret this result to say that attempting to model a storm cell as
two isolated charges may prove difficult in many regions of the cape, if we insist on
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FIGURE 37. Point charge at a fixed altitude of 1000 meters. The top figure represents the
lower bound on the horizontal error, and the bottom figure is the lower bound on the vertical
error. Values represent the one standard deviation in meters.
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FIGURE 38. Point charge at a fixed aititude of 6000 meters.
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identifying each charge individually. The situation worsened dramatically when we
modeled a triple charge air mass, with the bottom charge at 2,000 meters suffering very
large error bounds.

The Cramer-Rao bound shows us (1) that within the KSC array the possibilities
are excellent for good localization for simple storm models, and (2) that outside the array
the possibilities are poor. In other words, attempting to accurately localize storm cells
over the Atlantic would be fruitless, since there are presently no sea-based electric field
sensors. On the other hand, research is quite warranted in tracking small storms within

the Cape.
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FIGURE 39. Dual point charge at 6,000 and 10,000 meters. The figures represent the one
standard deviation error in locating the source (horizontally and vertically) at 6,000 meters.
Compare with Fig. 38.
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Chapter 9
Time-Eigenspectrum Analysis

Time-eigenspectrum (TE) analysis is a novel method of examining the similarity
of the response of several sensors over a prescribed block of time. In MEG data, the
evoked response is quasi-static transient, sometimes separated in time into distinct
response regions. Between the regions lies very low SNR data that corrupts the localiza-
tion estimates. In thunderstorm data, the response of the array between lightning strikes
exhibits a strong degree of correlation, consistent with the simple quasi-static charge
model. The lightning strikes result in field changes quite dissimilar at the sensors, due
to the non-static nature of the excitation and the nonlinear reaction of the nearby sensors.
In either situation, we objectively seek a suitable window in time that surrounds the
quasi-static signal and excludes either the very noisy regions or the dissimilar lightning

strikes.

9.1 Statement of Problem

Least-squares and subspace estimators implicitly or explicitly make use of the
spatial correlation matrix. In a typical MEG application, we might collect 200 ms of
data, yet observe that the signal only exists from about 75 ms to 125 ms. If we form the
spatial correlation matrix from the entire 200 ms of data, we reduce the SNR in the cor-
relation matrix by effectively averaging in too much noise, which degrades estimator
performance.

As an example, we simulated a spherical head model and 37 sensor array pattern,

as described in Chapter 8 and (Mosher et al. 1993). We simulated the placement of two
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dipoles spaced two cm apart just under the surface of the skull, and gave each dipole a
Hamming window shaped activation sequence with a peak amplitude of 10 nanoamps.
The sequences were arranged such that the first dipole fired completely, then the second
dipole fired with no overlap with the first. The overlay of all simulated time series mea-
sured at the 37 sensors is shown in the top portion of Fig. 40.

A nonlinear least squares estimator (as described in Chapter 4 and in (Mosher et
al. 1992)) was then run with 200 different realizations of white random noise with a stan-
dard deviation of 70 femtoteslas. The choice of signal strength and noise selections are
described in Section 8.1 and in (Mosher et al. 1993). The standard deviations on the
localization error for the two dipoles was 1.81 mm and 2.14 mm, when estimated using
all of the data.

We then partitioned the sequence in half, reducing the estimation to two one-
dipole problems. The standard deviation on the localization error drops to 1.00 mm and
1.13 mm for the two dipoles. Thus the partitioning of the data from one two-dipole prob-
lem into two one-dipole problems improved the efficiency of the estimator.

This simulation assumed known model order. By focusing the problem to two
one-dipole problems, the nonlinear estimator can discard noisy snapshots that degrade
its performance. As discussed in Chapter 5, MEG-MUSIC was introduced to overcome
some of the problems with order selection and local minima encountered in nonlinear
least-squares. However, estimating the subspace also requires careful attention to parti-
tioning, since the subspace estimates are sensitive to noisy snapshots.

In order to improve the subspace and localization estimates, we must identify the
extents of the events of interest and partition the time series accordingly. Most signal
detection algorithms rely on an explicit temporal model, but temporal models in MEG
research are subject to controversy. Consequently, a nonparametric approach to parti-

tioning is more appropriate.
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9.2 Solution Approach

We approach the partitioning problem by using the temporal coherence across
the sensors evident from the quasi-static formulation of the problem. As the intensity of
a dipolar source fluctuates, its signal arrives simultaneously at all sensors. If we place an
appropriately sized window at the proper instance in time around a single dipole, we find
that the rank of this window is one, i.e., the temporal signals arriving at all sensors are
perfectly coherent. If two independent signals are active in this window, we observe that
the rank is two.

At a particular instance in time, we begin the analysis by creating a window of
width one. Obviously, a single time slice is perfectly similar with itself. We proceed by
adding the previous time slice to form a window of width two, then three, four, etc., until
we reach some upper window width by design or data limitation. For each window
width, we take a measure of the similarity of the window, described below. We then slide
this window forward one time slice, and repeat the process. The result is a two-dimen-
sional function, f{t,w), with one dimension corresponding to the most recent sample, ¢,
in the window and the other the window width, w.

The similarity measure we employ is multidimensional and is derived from the
singular values obtained from an SVD of the window. We form a matrix from w sequen-
tial snapshots of the data, ending at time slice A(t). Denoting the singular values by the

ordered vector s(t,w), we form a vector of the cumulative square of the singular values,
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normalized by the sum of the squared singular values. Thus, the jth element of the vector

similarity measure at time ¢ for window width w is calculated as

s(t, w) =svd([A(t—=w+1)...A()])

J
Y s, w) (EQ75)

f(tw) = is1
! lIsce, w)li?

for j = 1,..., min(w,m), where m is the number of sensors.

The element of our measure vector that approaches unity is our indication of the
rank of the window; the last element of fis always unity. Thus a rank two window would
have its second and greater elements equal to 1. In practice, noise always prevents such
a perfect rank estimate, but this SVD-based measure f allows us to observe at which ele-

ment we are “close enough” to a lower rank matrix.

9.2.1 Simulation

Using the Hamming-shaped activation sequence described in Section 9.1, we
simulated two dipoles firing sequentially. The noiseless time series was five points of no
signal, then a 40 point Hamming sequence for the first dipole, then a 40 point Hamming
sequence for the second, then finally 5 points of no signal, for a total of 90 samples. The
time trace across all 37 simulated sensors is shown in the top portions of Fig. 40 and
Fig. 41, with additive random white noise; the standard deviation was 70 femtoteslas.
The bottom portions of these figures show the rank 1 and rank 2 time-eigenanalysis con-
tours, i.e., fj(t,w) and f5(t,w) respectively. The abscissa gives the time index of the lead-
ing edge of the window, and the ordinate gives the width of the sliding window.

The contour intervals indicate the percentage of total “energy” (square of the
Frobenius norm) in the window contained in the subspace. In Fig. 40, the contours are
above 80% for small windows centered on the responses, indicating that 80% of the sig-
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First eigenvalue

FIGURE 40. Simulation Time-Eigenspectrum. The rank 1 contour plots reveal that the two
signals together are insufficiently described by a rank one subspace. Each signal can
however be temporally isolated.

nal energy in the given window can be described by the first eigenvalue. The contours
rapidly drop for small windows centered on the noise intervals, and the contour shows
that the first eigenvalue only accounts for 25% of the signal energy in the transition and
end regions. Although the center of the responses is visible in this simulated data, the
transitions in the contours more clearly show the segments dominated by either noise or
signal.
In Fig. 41, the contours represent the percentage energy contained by the first

two dipoles. The windows containing only one active dipole show small increases in per-
centage energy that those containing both dipoles. The 75% contours are beginning to
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FIGURE 41. Simulation Time-Eigenspectrum (cont'd). The rank 2 contour plots reveal that
the individual responses are not much improved with a second eigenvalue.

merge in the upper regions which represent windows that encompass both dipoles.
Although the noiseless data is rank two, the proximity of the dipoles and the intensity of
the noise make it difficult in this simulation to distinguish the overall data as rank two;
however, we do appear clearly justified in partitioning the data into two distinct sets.
This simulation is somewhat transparent, since the two response sequences are
mostly visible, and prudent partitioning might be possible by inspection alone. However,
the simulation was simplified to highlight some of the contours seen in actual data and
to assist in their interpretation. In this next example, we show the utility in partitioning

a less obvious simulation.
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FIGURE 42. Rank 1 analysis of one simulated signal buried inside the other. The sym-
bols “A” and “B” delineate the rank 1 regions.

In this simulation, one signal is of a relatively constant amplitude for about 60
samples, while the second signal is a bipolar signal of about 30 samples, generated from
a double Hamming sequence. The second signal begins about 25 samples into the sim-
ulation. Fig. 42 and Fig. 43 show the rank 1 and rank 2 analysis. The rank 2 analysis
clearly shows only two signals exist, while the rank 1 analysis allows us to partition the
region around the second signal. The letters “A” and “B” in the contours correspond to
the partitioned regions similarly marked in the overlay.

In the next example, we apply this technique to MEG somatosensory data.
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FIGURE 43. Rank 2 analysis of simulated signal buried within another. The signal is
everywhere described by a rank 2 model.

9.2.2 Somatosensory Response

In this experiment, biomagnetic sensors at 77 positions about the surface of the
head recorded the evoked response of the ring finger to piezoelectric stimulation. Fig. 45
and Fig. 45 show in their top portions the overlay of the response (averaged from 300
trials) across all sensors. The time index corresponds to 2 ms intervals, and the first 20
samples visible are part of the pre-stimulus interval. A stimulus artifact is present at time
sample 55, and the first dominant neural response occurs 40 ms later at time index 75.
A secondary response is evident beginning around time sample 100.
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First eigenvalue

FIGURE 44. Ring Finger Stimulation, Rank 1 analysis.

We ignore the stimulus artifact and focus on the two evoked responses. The con-
tours indicate that the first response is of low rank for only about 15 samples and is pre-
ceded and followed by relatively incoherent and low power regions. The second
response appears to lie more appropriately in a rank 2 subspace, but only up to about
time sample 125. Although the signal levels remain relatively active beyond sample 125,
the contours indicate a drop in similarity.

The contour transitions guide how we might partition the data to extract the two
responses. The first response region is also obvious in the data, but not so obvious is the

high rank of the low power regions surrounding it. The onset of the second response is
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FIGURE 45. Ring Finger Stimulation, Rank 2 analysis.

also somewhat visible in the data, but the contours assist in trimming the late time of the

response, where visible inspection of the data does not indicate where we should trim.
Finally, we comment on the computational load in performing the numerous

SVDs required. The examples presented each required about five minutes on a SPARC

330 or fifteen minutes on a 486-33 MHz, both running MATLAB.

9.3 Thunderstorm Time-Eigenspectrum

The thunderstorm application of time-eigenanalysis offers a novel method for
isolating the lightning strikes from the more static regions of the field mill data streams.

Present NASA KSC methods center on attempting to detect large discontinuities in indi-
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vidual mill streams, then confirming that several other mills have observed a similar
jump. The time-eigenspectrum displays graphically display the lightning strikes quite
visibly, and the time-eigenspectrum images appear to proportionately respond to the
intensity of the flash; distant flashes appear only as minor changes in the images, but
they are apparent.

If the window contains a lightning strike segment, the dissimilarity (or signal
processing incoherence) of the event will decrease our similarity measure. For the quasi-
static MUSIC processing, we desire as large a processing window as possible, yet still
avoid these incoherent lightning strikes. Interpretation of the time-eigenanalysis gives us
just such a partitioning tool objectively.

We present a simulated thunderstorm example, then follow with two actual thun-

derstorm studies.

9.3.1 Two Charge Simulation

In this simulation, rather than simulate lightning strikes, we instead abruptly
jump the storm cell to the next spatial position in a sequence of positions. Fig. 46 pre-
sents the time-eigenspectrum of the simulated data. The top portion of the figure repeats
the overlay of all time series for reference. The middle portion of the figure is the rank
one spectrum and the bottom portion the rank two. We see in the rank one analysis ver-
tical drops in the contour lines. These lines occur on the transition boundaries between
two distinct storm positions. In this simulated data, we could select a horizontal thresh-
old boundary to trigger on these collapsing spectral contours and partition the data

accordingly.
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FIGURE 46. Simulation time sigenanalysis. The top portion of the figure shows the same
overlay as shown in Figure 21 on page 70 for reference here. The lower portion of the fig-
ure shows the rank 1 time-eigenanalysis. The abrupt vertical changes in the time-eigenan-
alysis match identically with the obvious changes in the field overlay. Thus time-
eigenanalysis gives us an objective indicator of sudden changes in the field.

9.3.2 Intense lightning example

Fig. 47 is 200 seconds of thunderstorm data during heavy lightning activity. In
contrast to the simulation above, the discontinuities in the data are now due to lightning
strikes disrupting the quasi-static electric field of the charged sources. The maximum
window width was arbitrarily set to 60 seconds, and we see particularly in the rank one
analysis no window that would have allowed such a wide window without including
some lightning activity. We observe how each lightning strike apparent in the field mill
data corresponds to a rapid vertical collapse of the contour lines in the time-eigenspec-
trum analysis. In the time window immediately preceding many of the major strikes, we
see relatively clear time-eigenspectrum regions, represented by the right triangular
shapes in the lowest portions of the contours. We thus have many small windows that

can be extracted out of the overall disrupting lightning activity for further processing.
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FIGURE 47. Time-eigenspectrum. Over a 200 second segment, we see the electric fields
climbing to about 10 kV/m before a strike. After the strike, the spectrum lines condense,
the gradually relax as the field mill data resumes a quasi-static state. These quasi-static
regions are exactly the regions we need to process for successful point charge modeling.

Using the initial time-eigenanalysis, we stripped out many of the large lightning
events, reducing 600 seconds of thunderstorm data down to 360 seconds. We then reran
the time-eigenanalysis to again check the coherence of these mill data without many of
the intervening lightning strikes. We note that this “strip and reanalyze” method can be
repeated until most significant lightning events have been detected and removed. Here
we stopped the process after just one iteration to test the robustness of the MUSIC algo-
rithm. We also note the significant coronal damping of the fields, as seen by the expo-
nential clamping of the signals.

Fig. 48 presents the time-eigenanalysis of these 360 seconds. Now we note much

wider processing windows of high coherence. Rather than handpick these windows, we
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FIGURE 48. Time-eigenspectrum for trimmed data. 600 seconds were trimmed of major
lightning events into the 360 total seconds seen here. Significant coronal damping of the
fields were occurring, as seen by the exponential clamping of the signals. Rather than
carefully select time segments, we evenly divided the entire time segment into six seg-
ments of 60 seconds each to test the robustness of the MUSIC algorithm.

instead divided these data into six even windows of 60 seconds each. Clearly some of
these six windows contain incoherent time slices, as indicated by the vertical contour
lines. We reasoned that an on-line processing algorithm may unavoidably retain such
incoherent data, since an experienced operator may not be available to hand pick these
processing windows. We therefore sought to examine the MUSIC results under a range
of data quality, to stress the emphasis of successful processing under somewhat realistic
on-line decisions. The MUSIC results for this set of parsed windows is presented in

Figure 25 on page 75.
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9.3.3 End-of-Storm-Oscillations example

We present here an intriguing novel look at an End-of-Storm-Oscillation
(EOSO). In Fig. 49, the figures are an enlargement of just the last hour of the August 5,
1991 data, shown completely in Figure 4 on page 14. The MUSIC processing was
applied to test the robustness of the point charge model with relatively static data, yet
this data is believed to be degenerating from a point charge into wide spread electrical
storm debris. No lightning strikes were observed during the EOSO.

Fig. 50 is the EOSO time-eigenspectrum. The spectrum shows relatively good
coherence over five minutes, but does not appear to warrant a much wider window. This
observation would be consistent with a storm cell either moving or dispersing. We
selected a five minute segment early and late in the EOSO for MUSIC processing.

Fig. 51 is the EOSO MUSIC scans. The top figure is approximately 20 minutes
into the EOSOQ, the bottom figure approximately 50 minutes. Both MUSIC spectra were
based on a five minute window. Although the field levels were still above 2 kV/m in the
right figure, and the eigenspectrum indicated good coherence, the point charge model
intersected quite poorly with the data. We contrast this result with the earlier EOSO data
at the top, where still get relatively good intersection of the MUSIC scan. This lack of
intersection in the late time is quite consistent with the belief that the storm center should

then be well dispersed and poorly modeled as a point charge.

9.3.4 Time-Eigenanalysis Summary

Time-eigenanalysis is an effective tool for measuring the subspace dimension of
the KSC array. During time regions of low dimensionality, namely between lightning
strikes, then we have a greatly improved opportunities for applying the simplistic point

charge model and the MUSIC processing. Conversely, the high rank regions give an

136



“"“"(.""-.

& “@-‘VA

o 3 L P ittt @ Lot e oy
w&‘é??;

2005

\ﬁ\\ Eﬁ; ' 4957_36 i
1957:2057
-e-r
§ 2= T
o ‘\\ -
15 .
21 il
{ 223;5L )27
30
| \ 234 &2;4—-23 |
Okv
Ef"12“""s 1* 2o
5. UKV [y . 4
4957 30
| aky 1957:2057 .
- Bk A X .

2014 2022 2030 2038 2047 2055

FIGURE 49. End-of-storm oscillation study. The figures are an enlargement of just the last

hour of the August 5, 1991 data. The time-eigenspectrum and MUSIC processing were
applied to test the robustness of the point charge model with relatively static data.
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FIGURE 50. The time-eigenspectrum shows relatively good coherence over five minutes,
but does not appear to warrant a much wider window. This observation would be consis-
tent with a storm cell either moving or dispersing. We selected five minute segments early
and late in the EOSO for MUSIC processing.

excellent indication of the lightning strike temporal extent. These regions could be
extracted for further lightning based processing. Proper thresholding of the time-
eigenspectrum contour lines would allow the automatic switching between source mod-

els and lightning models during the real-time progress of the storm.
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FIGURE 51. EOSO MUSIC. The top figure is approximately 20 minutes into the EOSO, the
bottom approximately 50 minutes. Both MUSIC spectra were based on five minute win-
dows.
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Chapter 10
Summary and Further Research

Sometimes a scream is better than a thesis. —Ralph Waldo Emerson

We have presented general descriptive models for spatiotemporal data and have
shown the separability of the linear moment parameters and nonlinear location parame-
ters in the MEG problem. A forward model with current dipoles in a spherically sym-
metric conductor was used as an example; however, by the superposition of
electromagnetic sources, other more advanced MEG models, as well as many EEG mod-
els, can also be formulated in a similar linear algebraic framework. A subspace method-
ology and computational approach to solving the conventional least-squares problem
was then presented. A secondary application of these techniques to the thunderstorm
localization problem was also presented.

A new scanning approach, equivalent to the statistical MUSIC method, was
developed. This subspace method scans three-dimensional space with a one dipole
model, making it computationally feasible to scan the complete head volume. Least-
squares and MUSIC demonstrations were presented using simulated noisy data, phan-
tom data and somatosensory MEG data. In general, MUSIC may fail when the noise is
of sufficient strength to corrupt the estimates of the noise subspace, when the time series
are strongly correlated, or when the sources are closely spaced. Many other authors have
analyzed the performance of MUSIC, particularly the sensitivity of the results to errors
in estimation of the noise subspace, and have also suggested many modifications of the
algorithm (Stoica and Nehorai 1989, Stoica and Sharman 1990, Cadzow 1990, Viberg

1989, Viberg and Ottersten 1991). These results may prove useful in improving the sub-
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space scanning method described here. The challenge lies in advancing these methods
for actual data where the noise statistics are unknown. The appeal lies in the relative sim-
plicity with which the entire head region is scanned.

General formulas were presented for computing the lower bound in localization
and moment error. Specific MEG and EEG formulas were presented for multiple dipoles
in a head model with four spherical shells. Localization error bounds were presented for
MEG, EEG, and thunderstorm models with different sensor and source configurations.
Both one and two dipole cases were examined for all possible dipole orientations and
locations within a head quadrant. The results showed a strong dependence on absolute
dipole location and orientation. The results also showed that fusion of the EEG and
MEG measurements into a combined model reduced the lower bounds. The thunder-
storm results showed good localization potential within the Cape Canaveral region.

The time-eigenspectrum analysis provided a novel and objective means of pars-
ing the time data into processing segments. Simulations were presented for multiple
sources, then the technique was applied to somatosensory and thunderstorm data. The
results appear useful in characterizing the temporal extent of the MEG transient evoked
response, and the results appear particularly useful in removing unwanted lightning
strikes from the thunderstorm data.

In the application of these methods to data, practical questions arise which are of
future interest. Overspecifying the signal subspace domain by one or two dimensions
does not appear to significantly alter the results. The original peaks increase somewhat,
but spurious peaks do not necessarily appear; however, it is not immediately obvious as
to what degree we can exceed the true dimension of the subspace. Linked to this problem
is distinguishing a “significant” MUSIC peak from a local maximum in the MUSIC

images, i.e., how far reduced from unity are the noisy source peaks. The SNR threshold
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and signal subspace small perturbation work of Li and Vacarro (1991) appears to provide
preliminary approaches to the problem.

This work has investigated the modeling for the spatial component of the spa-
tiotemporal data matrix. Models for temporal component of the data are more difficult
to assign, yet their inclusion will assist in an overall better understanding of the neural
signals. The preliminary models must be quite general, to prevent us from unduly con-
straining the class of signals accepted. High dimensional state-space identification tech-
niques such as Kung’s (1979) appear promising for exploiting the multi-channel data

information available from the array of sensors.
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