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Abstract

Most conventional SFS (Shape from Shading) algorithms have been developed un-
der three basic assumptions on surface properties and imaging geometry to simplify the
problem, namely, a Lambertian surface, a distant point light source and orthographic
projection. In this research, we derive a general physics-based reflectance map model
which includes diffuse and specular reflection effects, a nearby point light source and
perspective projection, and then develop a new direct shape recovery algorithm from
shaded images. The basic idea of our solution method is to discretize the image irra-
diance equation with a finite triangular element surface model, to express the resulting
nonlinear system of equations in terms of depth variables only, and to recover the object
shape by linearizing the nonlinear equations and minimizing a quadratic cost functional.
We perform numerical experiments with one or multiple photometric stereo images to
demonstrate the performance of the derived physics-based reflectance map model and
the proposed SFS algorithm.

1 Introduction

There has been a considerable amount of interest and effort on shape extraction from image inten-
sities in computer vision research for the last several decades. The brightness of a pixel in an image
is generated through an image formation process governed by the optical, physical and geometri-
cal factors including the object shape, the surface reflectance property, and the illumination and
sensor characteristics. Thus, to get an accurate reconstructed surface, it is crucial to understand
and model the whole complicated imaging process. Most conventional SFS algorithms have been

developed under three simple but restrictive assumptions on the image formation model to simplify
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the problem, namely, the ideal Lambertian surface, a distant point light source and orthographic
projection (4], (8], [11], [14]), [16], [17], [22], (30], etc. However, these assumptions are not valid
in practical environments for the following reasons. First, surface reflection in general contains
both the diffuse and the specular components. Second, the light source is often located in a finite
distance from the object so that the image brightness depends on the distance between every object
point and the light source. Third, images are formed through a pin-hole camera which should be
modeled by perspective projection, Since conventional SFS algorithms do not use accurate phys-
ical and optical models, apparent distortions of reconstructed surfaces often occur in many real
applications.

To make SFS algorithms practically useful, we have to consider a more realistic model of surface
reflection and the imaging process. Several attempts to relax the above restrictive assumptions
have been made for recent years [2], (7], (10}, (13], [15), [18], [20], [25]. We summarize important
developments below. First, the use of more sophisticated non-Lambertian reflectance maps in
the SFS problem has been studied by quite a few researcher. Ikeuchi [10] used a double-delta
specular model to determine orientations of a specular surface with photometric stereo images
generated by distributed light sources. Coleman and Jain [2] used four light source photometric
stereo images to extract the shape of textured and specular surfaces. Healy and Binford [7) and
Tsai and Shah [29] employed the Torrance-Sparraw model in their work to determine the shape
of a specular surface with a single image. Recently, Tagare and deFigueiredo [25] presented and
analyzed a class of m-lobed non-Lambertian reflectance maps and developed a photometric stereo
SFS method to determine the local surface normal and the reflectance map parameters. Second,
the nearby point light source for the SFS problem was examined by Kim and Burger [13]. They
derived a reflectance map with a nearby point light source under the orthographic projection and
Lambertian surface assumptions, and determined local positions and orientations with photometric
stereo images. Finally, the perspective projection model has been applied to the SFS problem by
Penna [20], [21) and the authors [17]. Penna presented a local SFS analysis of a single perspective
image of a Lambertian polyhedron-shaped surface, and proposed an algorithm which recovers the
local shape of the polyhedron by solving a nonlinear system of algebraic equations. The potential
extension of his method to a non-Lambertian object was also mentioned. However, this algorithm is
practically unreliable due to its sensitivity to noise and numerical finite precision. Lee and Kuo [17)
developed a more robust SFS algorithm based on a triangular element surface model and a linear

approximation of a Lambertian reflectance map. It recovers the shape of a Lambertian surface
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directly with single or multiple photometric stereo images taken under perspective projection.

Despite the above efforts, there has been no reflectance map model developed which removes
all three constraints simultaneously. In this research, we derive a general physics-based reflectance
map model which includes diffuse and specular reflection effects, a nearby point light source and
perspective projection, and then develop a new unified algorithm for recovering depth variables
from shaded images with such a reflectance map. We employ the Torrance and Sparrow BRDF
(bidirectional reflectance distribution function) to model diffuse and specular reflections of the
reflectance map based on geometrical optics. Furthermore, we incorporate the nearby point light
source and perspective projection in the model. The complete model is quite com plicated where the
brightness at a surface point in an image depends on many factors including the surface property
parameters, the surface normal at that point, the light source direction, specular direction, the
viewer direction, and the distance between the surface point and the light source. The SFS problem
would be very difficult if we attempted to determine the surface orientation as well as the position
of a surface point by solving the nonlinear image irradiance equation with this general reflectance
map. However, the solution procedure can be greatly simplified by introducing a triangular element
surface model for the discretization and parameterization of the image irradiance equation. Through
such a procedure, we can express the resulting discrete nonlinear system of equations in terms of
depth variables only, and recover the object shape by linearizing the equations and minimizing
a quadratic cost functional. Since our method recovers depth variables directly, no integrability
constraint is required.

The paper is organized as follows. In Section 2, we derive a general reflectance map model
which takes the following factors into account: the specular and diffuse components of light reflec-
tion, a nearby point light source and perspective projection. We consider the discretization and
parameterization of the nonlinear reflectance map based on a triangular element surface model in
Section 3. We are able to simplify the discrete reflectance map for several special cases, and these
simplifications are examined also in this section. The formulation and solution of the SFS problem
is studied in Section 4. We perform numerical experiments with one or multiple photometric stereo
images to demonstrate the performance of the derived physics-based reflectance map model and

the proposed SFS algorithm in Section 5. Some concluding remarks are given in Section 6.



2 General Reflectance Map Model

We first review the BRDF consisting of both specular and diffuse reflections in Section 2.1. An
expression for the incident irradiance due to a nearby point light source is derived, and the radiance
of reflected light from a surface patch is expressed in terms of BRDF and the incident irradiance
in Section 2.2. Imaging geometry with perspective projection is examined in Section 2.3. Then, by
combining results in Sections 2.1-2.3, we obtain a general physics-based reflectance map model and

the corresponding image irradiance equation in Section 2.4.

2.1 BRDF with Specular and Diffuse Components

We illustrate the reflection geometry used in this paper in Fig. 1, where r is the distance between
a surface point P and a point light source S, n is the unit surface normal at P, i is the unit vector
toward the light source, v is the unit vector toward the camera and h is the unit vector along the
specular direction. By definition [26], the bisector of i and v specifies the specular direction so that

we have
i+v
i+ v’

The 9;, 9, and a denote the angles between n and i, n and v, and n and h, respectively. The

h=

zenith and azimuth angles (8, ¢) with a proper subscript represent a unit vector in a given polar
cordinate system. The irradiance L; of a surface patch is defined as the incident flux density with

unit W.m—2

d#;

dA,’

where d®; denotes the incident flux (in terms of Watts or simply W) arriving at the surface patch

L;=

of area dA, from an infinitesimal solid angle dw; along the direction i. The radiance L, is defined
as the flux emitted per unit foreshortened area per unit solid angle with unit W-m=2. sr-l,

d?d,

L=a2 cosd, dw,’

where d?®, denotes the radiant flux emitted into an infinitesimal solid angle dw, (in terms of
steradian or simply sr) along the direction v from the surface patch of area dA,.
The bidirectional reflectance distribution function (BRDF) proposed by Nicodemous et al. (19])

is a useful tool for characterizing light reflection from solid surfaces. It provides the information of

the brightness of a surface patch with given viewing and illumination directions. By definition, it
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Figure 1:  The reflection geometry.

is written as
L,
fr bl L—, (2'1)

where L, and L; denote the reflected radiance in the emitting direction and the irradiance in the
direction of incident light, respectively. To model general light reflection from optically rough
surfaces, the BRDF f; consists of both the diffuse component fa and the specular component f,
(18], [25), i.e.

fr=pdfi+psfs, (2.2)

where pg and p, are the weighting factors of diffuse and specular components.
Diffuse reflection is primarily due to internal scattering of the material, and obeys the Lambert’s
law in which the reflected radiance is proportional to the incident irradiance. The BRDF for

Lambertian diffuse reflection is equal to a constant. That is,

n&mﬂ=%, (2.3)

A direct consequence of (2.3) is that the brightness L, of a Lambertian surface is independent of
the viewing direction v. However, L, does depend on i and n since L; is a function of i and n.
Specular reflection also contributes radiance reflected from the surface of an object. Two dif-
ferent methods have been proposed to model specular reflection, i.e. the physical optics and ge-
ometrical optics approaches. The physical optics approach [1] describes the interaction between

incident light waves and the surface material with Maxwell’s equations and the model is derived



by solving them with boundary conditions imposed with properties of the reflecting surface. Even
though the model is accurate, it is very complicated. If the wavelength of incident light is much
smaller than the dimension of surface irregularities (3], [23], (26], [27], it is more convenient to
consider the geometrical optics approach. With this approach, a rough surface is modeled as a
collection of planar facets which are inclined randomly about the mean surface. The surface facets
are assumed to be isotropic and the distribution of facet orientations with respect to the mean
surface normal can be described by a certain monotonically decreasing function such as the Phong
[23], Torrance-Sparrow [26], and Trowbridge-Reitz [27) distribution functions. In this paper, we
employ the Torrance-Sparrow distribution since it is mathematically simpler than that obtained by
the physical optics approach and gives a better approximation than the Phong distribution. With

the Torrance-Sparrow distribution, the BRDF of the specular components can be represented as

. _ 1 2
fiim,v) = cos J; cos 9, exp{~ko’}

ayTay P{—Heos™ BT,

where k is the surface roughness parameter.

2.2 Reflection Due to a Nearby Point Light Source

As indicated in (2.1), reflected radiance L, depends on incident irradiance L; as well as the BRDF
fr- Irradiance of a surface patch due to a nearby point light source will be examined in this section.
Since the amount of light energy falling on a surface patch is proportional to the foreshortened
area, the irradiance at that patch is proportional to a cosine function of the angle between the
surface normal direction and the light source direction. Moreover, since the distance between the
surface patch and the light source is finite, the irradiance is inversely proportional to square of the
distance. Assume that the point light source has isotropic radiance fo. Then, the corresponding
solid angle §; subtended by the surface patch dA, viewed from the point light source is

aQ; = -‘-1;47’ max{0, cos 9],

and the radiant flux intercepted by this solid angle is

dd; = I(dQ; = %dA, max[0, cos 9;). (2.4)
The averaged irradiance on the surface patch dA, can be expressed as
dd; Ip L Ll .
A, =73 max[0, cos ¥;] = ‘/; ” -/o Li(0z, ¢z) sin8; db, do.. (2.5)
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Now, since the radiance of the point light source comes from only one direction i or (8;, ¢;), we can
deduce from (2.5) that

[ 6 o:: - ol' 6 r — @4
Li(6e, 62) = -2 max(0, cos 9] ( si)n g"s ) (2.6)

where § is the Dirac delta function. By defining a solid angle delta function (25]

ol = 1) = (0, = 81 6, - ¢) = == 0L~ )

we can write L; in vector form as
Li(x,n,r) = f_g max{0, iTn] 6, (x - i). @2.7)

Given a BRDF [, of a surface and a point light source, the radiance of reflected light along the

viewer direction v can be computed as
L.(iyn,v,r) = ; fr(x,m,v) Li(x,n, ) dw,
= . Jr(x,n,v) ’{—g max|0, iTn] Ou(x — i) dw
= f.(i,n,v) -'I_% max[0,i7n]. (2.8)
By substituting (2.2) into (2.8), we can represent the reflected hybrid radiance as

L.(i,n,v,r) = [pafs(i,n,v)+ p,fs(i,n,v)] :—g max[0, iTn]

= ded(i, nv, r) + PaLa (i, nv, 1‘), (2'9)

where

Io exp{~k[cos™! (hTn)J?}
r2 (iTn)(vTn)

are the diffuse and specular radiance components, respectively.

La= rf—oﬂ. max[0, iTn], and L, = max[0, iTn]. (2.10)

2.3 Imaging Geometry with Perspective Projection

Imaging geometry defines the mapping between a surface point and its corresponding projected
point in the image plane. Besides, it relates image irradiance to scene radiance. The general
perspective projection, which models the ideal pinhole camera, is employed in this work. As

depicted in Fig. 2, we consider a camera-centered Cartesian coordinate system with the lens at the
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Figure 2: The imaging geometry.

origin called the center of projection and the optical axis aligned with the ~Z-axis. The actual film
is located at Z = f where f is the focal length behind the lens. However, to avoid the sign reversal
of the coordinates, we assume without loss of generality that the image plane z — y is located at
Z = ~f in front of the lens. With this model, the mapping between a surface point P = (X, Y, 2)T
and the projected image point p = (z,y,—f)7 obeys the following relationship,

x=—f§, and y=—f§. (2.11)

The irradiance E at an image point of the film is obtained through the lens system via the
radiance L, of the corresponding surface point. It was shown in [9] that not all but only a portion
of reflected light comes through the lens system which is known as the lens collection effect [6]. By
assuming that the object distance is much larger than the focal length and the diameter of the lens
and neglecting the transmission loss of the lens system, we can take the lens collection into account
and have

= géy costy L,, (2.12)

where d is the diameter of the lens and 7 is the angle between the ray from the object point to the

center of projection and the optical axis.
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2.4 Derived Reflectance Map Model and Image Irradiance Equation

As a direct consequence of (2.12), we can define the reflectance map function
. T d 2 q .
R(i,n,v,r) = 1 (?) cos®y L.(i,n, v,r), (2.13)

so that the image irradiance E at a point p in the image plane can be characterized by the image

irradiance equation

E(p) = R(i(S, P),n(P), v(P),r(S,P)), (2.14)
where the relatonship between the image point p and the corresponding surface point P is defined
by the perspective law in (2.11). The cosine function of off-axis angle v can be written as

cosy = ~vTn,,

where n; = (0,0, 1) is the unit normal of X-Y plane. By substituting (2.9) and (2.10) into (2.13),

the general reflectance map can be written as

- - T
( vin )4 (= )2 ( + ’exp{ (%[":lo)s(‘:% n)]z}) max{0, iTn]

& (vTn,)* (6¢i n+ g, 2pl=Hen T}y Ty 5 g,

R(i,n,v,r)

0, otherwise,

where B4 and 8, are constants of proper dimension that makes R a valid reflectance map. The
values of 34 and B, depend on the reflectivity of the object material, and can be estimated. We
refer to [12] and [25] for more detailed discussion.

3 Discrete Reflectance Map Parameterized by Depth Variables

The SFS problem can be viewed as a problem of solving the image irradiance equation (2.14) with
given (observed) image intensity at p. The general reflectance map R in (2.13) is a function of
the light source position S, the position of a surface point P and the surface normal at that point
which can be expressed as

- (_pi-qu) _Z(X7Y) __Z(X)Y)
n-—-——\/m, where p= ax ' 1= a7

Once the light source position and the projected point p in the image plane are specified, R reduces

to a function of three variables, i.e. the depth Z and the gradients p and g, since the components
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of P can be represented in terms of Z by the perspective law with known p. Thus, we are lead
to a problem of solving three dependent variables Z, p and ¢ characterizing the underlying surface
with one given equation. To solve them uniquely, conventional photometric stereo methods use
additional image irradiance equations due to other light sources as constraints [13], [25). This
approach has one difficulty, namely, since the variables Z, p and ¢ are viewed as independent
variables, the recovered depth variables and surface normals are often inconsistent. This is known
as the integrability problem. Note also that the idea of using discrete approximations of p and
g by a straightforward finite difference method, which has been applied to the orthographic SFS
problem [14], {28], is no longer applicable in this context since the position components (X, Y) are
in fact functions of the depth Z.

By introducing a triangular element surface model, we represent the surface normal as functions
of the nodal depth. Consequently, the reflectance map R can be discretized and parameterized with
only the nodal depth variables. Such a procedure greatly simplify the SFS problem formulation

and its solution.

3.1 Discretization and Parameterization with Triangular Element Surface Model

Our basic idea of discretization and parameterization is to approximate a smooth object surface
by the union of triangular surface patches called triangular elements such that the approximating
surface can be written as a linear combination of a set of nodal basis functions of compact support.
Let us triangulate a square image domain Q by dividing it into a set of M; nonoverlapping triangles
T, i=1,..., M,, with M;, nodal points p;, i = 1,..., M, so that the intensity within each triangle
is almost homogeneous. Then, we approximate a smooth object surface by a piecewise linear surface
consisting of triangular surface patches S; with nodal points P; in such a way that S; and P; are
perspectively projected to T; and p;, respectively, in the image plane. The aproximating surface
can be uniquely specified by P;, or equivalently the surface nodal depth variables Z; associated
with p;,i=1=1,..., M,.

Let us now focus on a triangular surface patch Si and the corresponding projected triangle
Ty on the image plane as shown in Fig. 3. We denote the nodal vectors (control points) of three

vertices of S; as

P" = (Xl') Y;) Zt')! PJ = (XJS ),jv ZJ)' Pl = (le }’h Zl)a
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Figure 3:  Projection of a triangular surface patch to the image plane.
and the corresponding projected nodal points in the image plane as

Pi=(zuvi—-f), Pi= (¥ ~f), pi=(zi 0, -f).

The center of S; is

Xi+Xi i+Y;+Y Zi+zj+zl)
3 ’ 3 ’ 3 )

Xi+
Py = (ka )/km ZkC) = (

By using the perspective relationship in (2.11), we can rewrite the components of Pi. in matrix

Xke 1 % % @ Z;
YVie | = IF| % 4w Z; |.
Ze -f -f -f 4

We assume that f is known and the points (zi» %), (zj,¥;) and (zi, y;) are observed in the image
plane. Then, Py, depends only on the depth values of three nodal points Z;, Z; and Z;. The unit

form as

vector i of the light source direction at the center of the surface patch Sy can be written as

. 1 1
b = ;(S -Pi) = ;(Sz = Xke) Sy — Yee, Ss — Zke),

11



where
rk = ||S = Piell = [(Sz = Xke)® + (Sy = Yic)® + (S: = Zac)]"/? (3.1)
is the distance between the light source S and Pj.. Similarly, the unit vector v, along the viewing

directon from the surface patch S can be represented by
O - Py, 1
YT O Pall ~ (KL F V% R ke Yoo ke @)
The unit vector hi along the specular direction on Sy can also be determined by
ir + v
ik + vl
Besides, the surface normal n; of the triangular surface patch S; can be uniquely determined

hy =

by its three nodal vectors P;, P; and P; via
(P —P;) x (P = P))
| (P; = P;) x (P —Py) |
(X; - X:,Y;-Y,2; - Z)) x (Xi— Xy V1 - Y5, 21— Z)
I (XJ—XH}’J - K)ZJ -Zi) X (Xl-xit},l- },i:Zl- Zt) l-

By using the perspective relationship in (2.11), we can rewrite nj in terms of the location of the

ng

(3.3)

image points as
(}(2:Zi — 2;2;), }(4:Zi - 4;2;), Z; - Zi) x (}(2:Zi — 1121), Y (i Zi - w2)), Z1 - Z;)

o | (}(2:Zi - 2;2;), Y (:Zi - i Z;), Z; - Zi) x (}(2:Zi — 2120), } (i Zi - w21), Z1 - Z3) |
(-‘Pln =V, “k)T
(o} + v + up)/?
where
Pk ( fyi—v)  fu-w)  flyi-w) Z:Z
v | =1 flzi-z) flzi-=)  flzi—=2;) Z,Z;
i (ziyj — zi%) (zyi = zaw) (20 ~ 21y;5) ZiZ;

Note that since the vectors iz, vz, ni, he and ry are all expressed in terms of Z;, Z; and Z; in
the above discussion, the reflectance map R; is only a function of Z;, Z; and Z), i.e. the depth
variables of three vertices of Si.

Finally, by using the image irradiance equation, we can relate the image intensity Ej of a

triangle T directly to the nodal depth values of the corresponding surface patch Si:

Ey = Ri(ik, 0k Vi, %)
{ 52' (vIn.)4 (Bail nx + B, “p{'k[‘“"(hz"n)l’}), ifng > 0,

vz'n. -

(3.4)
0, otherwise,
= Rw(Z;,Z;,Zy)

12
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3.2 Special Cases

We discuss several simplified reflectance map models for some special cases below.

3.2.1 Distant Light Source

If the light source is located far away from the object and the camera, the relative depth difference
between surface points is negligible compared to the average distance from the object to the light

source. For this case, the radiant flux in (2.4) arriving at a surface patch can be approximated as
dd; = 'I_—gdA, max[0, cos ¥;} = I} dA, max[0, cos 9;), (3.5)

where

I _
r—g = I) = I/,

and where T is the average distance between the object surface and the light source. Besides, since
the light source is far away, we can assume that incident rays from the light source are in parallel
with each other. Then, the unit vector i of the light source direction in (3.1) is independent of the
position of the surface patch so that we can drop the subscription and approximate it as

o §-0 _ _ (5,5,
T Is-ofl  (S2+52+ 87

(3.6)

3.2.2 Distant Object

When an object is far away from the camera while the light source is near the object, the perspec-
tive projection model can be approximated by the simpler orthographic projection model. With

orthogonal projection, we have the following relationship,
z=X, y=Y. (3.7)

For this case, since all rays from the surface points are in parallel with each other and orthogonal
to the image plane, the unit vector v; along the viewer direction from the surface patch Sj in (3.2)

becomes independent on the position of the patch, i.e.

vi=v=n, =(0,0,1)T. (3.8)
Moreover, since
cosy = —nln, = -1, (3.9)
13



the lens collection is independent on the surface position and (2.12) reduces to
E=CL,,

where C is the constant collection factor wd?/(4f2). Besides, by using the orthographic projection
relationship in (3.7), the surface normal in (3.3) can be approximated by
iy (z; — =i Yi = ¥ir Zi — Zi) X (=1 — Ti 1 = ¥i» Zi = Zi)
(25— 20y -4, Z5 — Z) X (m -z m ~ ¥, 21 - Zi) |
(=P =ik, tix) T

’ 3.10
(B +0c® + 4ia*)/2 (310
where

vk = (Yi—wZi+ (v —y)Zi+ (v — v)Z;,

v = (21-25)Z;+ (2 — 2:) 21 + (zi — 1) Z;j,

dx = (2y - 2y;) + (zay; — 250) + (2w = zaw).

3.2.3 Distant Light Source and Object

If the light source, the object and the camera are far away from one another, both the distant light
point source and orthographic projection assumptions hold. For this case, the vectors iz, vy and
h; are no longer dependent on the surface position. Once the light source direction is specified,
the brightness of a pixel in an image plan is determined only by the surface normal ni. By using
(3.5), (3.6), (3.8), (3.9), (3.10) and dropping off the unnecessary subscripts, we obtain the simplified

reflectance map

I (ﬂd iTﬁk +ﬂ’°_"ﬂ;.|_,‘,"°:~"'%£h_r"!tm), inlk >0,

0, otherwise,

Rk(iv ﬁk’ V) =

and where V}. denotes the index set of vertices of T}.

4 Formulation of the SFS Problem

The shape of an object, which is approximated with a union of linear triangular surface patches,
can be characterized by the coordinates of the nodal points Py, = (Xm, Y, Zm), m=1,..., M.
Since the positions of the points pp, = (Zm, ¥m, —f), m = 1,..., M,, in the image plane are given,
one can determine the positions of Py, by calculating the nodal depths Z,, m = 1,..., M, and
applying the perspective law (2.11) to find out the corresponding X,, and Y,,. The reflectance
map Ry given by (3.4) is a nonlinear function of depth variables Z;, Z; and Z; which makes the

14
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SFS problem difficult to solve. However, we can simplify the solution process by linearizing the
reflectance map, solving the linearized problem, and then applying a successive linearization scheme
to improve the accuracy of the computed solution.

By successive linearization, we mean that the nodal values obtained from the previous iteration
are used as the reference points for linearization for the current iteration. In terms of mathematics,
we can derive a linear approximation of Ry at the nth iteration by taking the Taylor series expansion

about the reference depth values obtained at the (n — 1)th iteration as

Re(Z:, Z;, Z))

1 omel ne -1.9R(Z;, 2}, Z))
~ R(277,277%, 27 l)+m-§.-,,:- ’(zm-z,';, l)—-—E’Zml— (20,20 2pY)
ORw(2i, Z;, Z1)
= X ez |azge Zn
m=i,j,l m
- - _ O0R(Z;,Z;,Z)) _
1 ) ) 1
+{Rk(zp 1,227, 27 1)_m§;‘_#|(z?_,'z;-.z‘,-.) Ziy.

Since the second term of the above equation is equal to a constant, the reflectance map R over S
is a linear function of depth values Z;, Z; and Z; of the three vertices of Sx. We may rewrite R; in
terms of all nodal depth variables Z,,, m = 1,..., M,. That is,

My,
Re= ) wimZm + &k, (4.1)
m=l
where
aR,.gz.-.Z,A.Z;! . f: s
Wim = 0Zm (Z?-'-z;"-lvzt"-l) ! if meV,= {‘1]: ‘} of Tk, (4.2)
0, otherwise,
and
Mn
& = Re(Z77, 2770, 2070 = ) wemZpt (4.3)
m=]

Our objective is to determine the nodal depth Z,, with one or multiple images. To achieve
this goal, we employ a cost functional minimization approach with J different photometric stereo
images taken by various illumination directions while keeping the camera position fixed. The scheme
reduces to the single image SFS algorithm for J = 1. The cost functional is chosen to be

M J M, J . .
£= 58S 6= 3 S (i - Ry, (49

k=1 j=1 k=1 j=1
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where 6’;: denotes the cost term corresponding to the kth triangular domain of the jth image, and
E,’; and Ri are the observed image irradiance and the reflectance map over the kth triangular
domain of the jth image, respectively. It is worthwhile to emphasize that no regularization term is
used in (4.4).
By substituting (4.1) into (4.4) and simplifying the expression, we obtain
M‘ J . Mn . ‘ -
£ = Y YIE - (2 winZm + &)
k=1 3=1 m=1

= %zTAz -bTz+e, 2={2,2,...,21.)%, (4.5)

where the stiffness matrix A and the load vector b are the sum of each individual stiffness matrix

A; and the load vector b; of jth image, respectively. In terms of mathematics, we have

J J
A=ZA,‘, and b:ij

=1 =1

where the individual stiffness matrix A; and the load vector b; can be determined by

M . M . ..
(Ajlmn =2 wacmwin' and [bjlm =2 E(E}: - fi)“}:ms 1<mn<M,,
k=1 k=1

and where w’ and & are the coefficients in (4.2) and (4.3) for the jth image. The minimization of
the quadratic functional in (4.5) with respect to the nodal variables z is equivalent to the solution
of a linear system of equations

Az =Dh.

Since the stiffness matrix A is sparse and symmetric, the system can be efficiently solved by iterative

methods such as the multigrid method and the preconditioned conjugate gradient method [5), [24].

5 Experimental Results

We present some experimental results to demonstrate the performance of the proposed SFS algo-
rithm in this section. In the experiment, we put light sources on the Z = 0 plane centered around
the origin. When two light sources are used, they are chosen to be orthogonal to each other in the
azimuth angle, and when three are used, they are placed to be 120° apart in the azimuth angle.
Unless specified otherwise, the initial depth estimates Z?, i = 1,...M, are set to be an arbitrary

constant and no a priori knowledge about the true depth is assumed. Since the nodal points whose
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depth values can be determined by the SFS algorithm are irregular and sparse on the object domain,
we perform interpolation to increase the resolution and visibility of the reconstructed surface.
Test Problem 1: Spherical polyhedron X

We examine the performance of the proposed algorithm applied to a spherical polyhedron whose
surface is composed of piecewise triangular patches so that it fits the model described in Section
3.1. The 17 x 17 surface depth values associated with image nodal points are shown in Fig. 4(a).
The ideal image intensity Ej of each triangle Ty with respect to each triangular surface patch S;
can be exactly determined by (3.8) so that Ej contains no noise except quantization error. We
set the focal length f = 30, the source radiance Jo = 1.5 x 10%, the diffuse and specular weighting
factors B4 = 0.6, B, = 0.4 and the surface roughness parameter k = 10, respectively.

The recovered surface depth values with a single image generated by a light source located at
(Sz, Sy, Sz) = (52,30,0) is shown in Fig. 4(b). The result with two photometric stereo images
generated by two light sources (S;, Sy, S:) = (52,30,0) and (-30,52,0) is shown in Fig. 4(c).
We also show in Fig. 4(d) the reconstructed surface with three photometric stereo images with
light sources at (S, Sy, S;) = (60,0,0), (-30,52,0) and (—-30, —52,0). To see the accuracy of the
recovery results more clearly, we present the 1-D sliced view of three reconstructed surfaces along
with the original one in Fig. 4(e), where the solid, dotted, dashdot, and '+’ marked lines are used
to represent the ground truth and the results depicted in Figs. 4 (b), (c) and (d), respectively.
In this experiment, we set the initial surface to be the plane Z = —100. Our algorithm is in fact
very robust and not sensitive to the initial condition and it converges to a unique solution. We
observe from the results in Fig. 4 that a single image does not provide accurate depth information.
Moreover it is interesting to see that unlike the Lambertian case where two images are sufficient
to recover accurate results [15], [17], non-Lambertian surface can hardly be recovered correctly
with two photometric stereo images. The result in Fig. 4 shows that with three photometric
stereo images, we can obtain quite robust and accurate reconstructions of the non-Lambertian test
surface. However, we observe that when the specular factor 8, or the surface roughness k& becomes
very large, the accuracy of the reconstructed depth even with three images becomes degraded.
Test Problem 2: Sphere

We synthesize test images by illuminating a 129 x 129 spherical surface as shown in Fig. 5(a)
via a pointwise mapping of (2.14) with the surface normal approximated by

—_ - T
n= %\/_Z_;—lll, where p=Z(X +1,Y) - Z(X,Y), q=Z(X,Y +1)— Z(X,Y),
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and estimate the average intensity E} of each image triangle T} on the tessellated image domain as
discussed in [17). By setting f = 200 and Iy = 5.6 X 107, we obtain a set of test images of size 64 x 64
by varying both surface reflection parameters and the source position as shown in Figs. 5(b)-(g).
Figs. 5(b) and (c) are two photometric stereo images of a Lambertian surface (Ba=1,8,=0)
with light sources at (S, Sy, S:) = (~150, 260, 0) and (260, 150,0), while Figs. 5(d)-(g) are those
of a hybrid surface with (84, 8,, k) = (0.5,0.5,7) and light sources at (Sz, Sy, S2) = (-150,260,0),
(—260, 150, 0), (260, 150,0) and (0, -300, 0), respectively.

Figs. 6(2) and (b) show the reconstructed Lambertian and non-Lambertian surfaces by using
a Lambertian reflectance map model with two sets of photometric stereo images in Figs. 5(b) and
(c) and Figs. 5(d) and (f), respectively. The results of applying the Lambertian reflectance map
and the general reflectance map to three photometric images of the hybrid surface in Figs. 5(e),
(f) and (g) are shown in Figs. 6(c) and (d), respectively. By comparing the results in Figs. 6(b),
(c) an (d), we see clearly that applying the Lambertian model to a non-Lambertian hybrid surface
produces a substantial amount of reconstruction error, and is thus not appropriate in practice.

In Figs. 6(e) and (f), we show the 1-D sliced view of reconstructed surfaces, where the solid
lines denote the ground truth while the dotted lines represent results by using correct reflectance
maps (i.e. results in Figs. 6(a) and (d) ). Compared to the absolute depth of the ground truth,
the reconstructed surfaces are shifted globally by a certain amount. By referring the results of the
ideal case in Fig. 4(c), this discrepancy is primarily due to the noise caused by estimating the
image intensity Ey via a averaging process. However, this depth discrepancy can be reduced by
incorporating the depth information of a single surface point. We used Z(0, 0) = —380, the depth of
the center point, as a hard constraint. We show the results in Figs. 6(e) and (f) with dashed lines.
It is clear from these figures that almost exact depth is reconstructed by using three photometric
stereo images with a depth constraint.

Test Problem 3: Cylinder

The test object is a cylindrical surface as shown in Fig. 7(a). Figs. 7(b)-(d) are the test images
synthesized with parameters f = 200, Io = 5.6 x 107, 84 = 0.5, 8, = 0.5, k = 10 and light sources
at (S;, Sy, S:) = (260, 150, 0), (—260, 150, 0) and (0, —300, 0), respectively. The recovered depth by
applying the Lambertian reflectance map to this hybrid surface with the three test images are shown
in Fig. 8(a) while Figs. 8(b) and (c) show the recovered depth of using the general reflectance map
without and with a depth constraint Z(0,0) = —380, respectively. We also show the 1-D slice plot
in Fig. 8(d) to illustrate the accuracy of reconstructed surfaces, where the solid, dashdot, dotted
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and dashed lines are used to represent the ground truth and the results depicted in Figs. 8 (a), (b)
and (c}, respectively. We see that the error of applying the Lambertian model to a hybrid surface
is obvious and the general reflectance map model with a depth constraint gives the almost exact
reconstruction.
Test Problem 4: Penny

The Penny surface is shown in Fig. 9 (a), and test images synthesized with parameters f = 250,
Io = 9.0 x 107, B4 = 0.4, B, = 0.6, k = 10 and light sources at (Sz, Sy, S:) = (285,285,0),
(—386, 104, 0) and (104, —-386,0), are given in Figs. 9(b)-(d), respectively. Fig. 10(a) is the recon-
structed depth by applying the general reflectance map with a depth constraint Z(0,0) = —491.
In this case, the reconstruction error at the depth discontinuities is quite visible. For comparison,
we show in Fig. 10(b) the 1-D slice plot of several reconstructed surfaces, where the solid, dashdot,
dotted and dashed lines denote the ground truth and the results obtained by applying a Lamber-
tian model, a general reflectance model without and with a depth constraint, respectively. Since
the test surface is more complicate than the spherical and cylindrical surfaces with considerable
local depth variation, the averaging effect in estimating E} is more serious. This explains why the
reconstructed surface with the general reflectance model but without using the depth constraint

becomes worse for this problem than that of Test Problem 3.

6 Conclusion

A new general physics-based reflectance map model which includes diffuse and specular reflection
effects, a nearby point light source and perspective projection was derived in this research. We
discussed the discretization and parameterization of the derived reflectance map in terms of nodal
depth variables by using a triangular element surface representation, and proposed a direct shape
recovery algorithm from shaded images by successively linearizing the reflectance map and mini-
mizing a quadratic cost functional. The proposed method is practically attractive, since it recovers
a broad range of object surfaces with different reflective properties and under various geometric and
lighting environments. We have used some experiments to demonstrate the excellent performance

of the new method.
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Figure 4: Test Problem 1: (a) ground truth, and reconstructed results with (b) a single image,
(c) two photometric stereo images and (d) three photometric stereo images.
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Figure 4:

(Cont.) (e) the 1-D sliced plot of several reconstructed resuits.
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Figure 5:  Test Problem 2: (a) ground truth of a spherical surface; (b) - (c) photometric stereo
images of a Lambertian surface; (d) - (g) photometric stereo images of a hybrid surface.

24

| G



oy

[&5

e

]
J

-370

440

v
ETAATRITT AN
A “".‘ul"“lu"‘\‘.'\‘y
TR TAN
Sibub i

ROTWTIHITING
.l'||l‘“m\“llu

(a) (b)

3704

588 §

LTI HES AN
Ao

(<) (d)

Figure 6: Reconstruction results of the spherical surface test problem: (a) applying the Lamber-
tian model to two photometric stereo images of a Lambertian surface; (b) applying the Lambertian
model to two photometric stereo images of a hybrid surface; (c) applying the Lambertian model to
three photometric stereo images of a hybrid surface; (d) applying the general reflectance model to
three photometric stereo images of a hybrid surface;
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Figure 6:  (Cont.): (e) 1-D sliced plot of reconstructed Lambertian surfaces, and (f) 1-D sliced
plot of reconstructed hybrid surfaces.
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Figure 7:  Test Problem 3: (a) ground truth of a cylindrical surface, and (b)-(d) photometric
stereo images.
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Figure 8:

constraint; and (d) their 1-D sliced plots.
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Reconstructed results of the cylindrical surface test problem with (a) a Lambertian
model, (b) a general reflectance map, and (c) a general reflectance map model and a single depth
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Figure 9:  Test Problem 4: (a) ground truth of a penny surface; and (b)-(d) photometric stereo
images.
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Figure 10:  Results of the penny surface test problem: (a) reconstructed surface using a general

reflectance map model with a single depth constraint; (b) 1-D sliced view of several reconstructed
surfaces.
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