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Abstract

We study the structure of the probability density function of random variables which are formed as the
sum of two or more independent, symmetric stable random variables of different characteristic exponents.
We present two asymptotic series expansions, valid for small and for large arguments, respectively. As an
application of the theory, we develop a receiver which detects impulsive stochastic transients superimposed

on Gaussian background noise and show that the new detector outperforms square- and v*A-law detectors.
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1. INTRODUCTION

Statistical processing of physical signals has traditionally relied heavily on the assumption of Gaussian
models for the underlying random processes generating the data. However, this assumption is not always
justifiable and is often made only for simplicity, mathematical tractability and reduction of the higher
computational complexity usually associated with algorithms based on non~Gaussian models. With today’s
availability of inexpen.«;ive computer hardware of very high speed, a reduced algorithmic performance due
to simplistic mathematical modeling is no longer acceptable. Thus, the classes of non-Gaussian random
processes are becoming increasingly attractive to the signal processing community as models for signals
occurring naturally {1, 2].

One physical process, which is not adequately described in terms of Gaussian models, is the process
that generates “impulsive” noise bursts. Impulsive bursts occur in the form of short duration interferences,
attaining large amplitudes with probability significantly higher than the probability predicted by a Gaussian
pdf. Many natufal, as well as man~made, sources of impulsive interference exist, including lightning in the
atmosphere, switching transients in power lines and car ignitions, accidental hits in telephone lines, and
ice cracking in the arctic region [3, 4]. On several occasions, the impulsive interference causes significant
degradation of the performance of communication systems and needs to be filtered out [5]; on other
occasions, however, the interference carries information and its detection is, actually, the first goal of the
statistical signal processing [6, 7). In both cases, optimal or close to optimal signal processors can be
designed only if appropriate statistical models are defined for the impulsive interference.

Symmetric stable processes form a class of random models which present several similarities to the
Gaussian pro;msw, such as the stability property and a generalized form of the central limit theorem,
and, in fact, contain the Gaussian processes as a subclass. However, several differences exist between the
Gaussian and the non-Gaussian stable processes, as explained briefly in Section 2, which make the general
stable processes very attractive statistical models for several physical phenomena involving impulsive noise
(8, 2, 4]. For example, the Cauchy distribution, which is a stable distribution, was considered in [9] as
a model for severe impulsive noise, while Stuck and Kleiner [10] experimentally observed that the noise
over certain telephone lines was best described by almost Gaussian stable processes. Very recently, it was
theoretically shown that, under general assumptions, the first order statistics of a broad class of impulsive
noise can, indeed, be described via an analytically tractable and mathematically appealing model based
on the theory of symmetric stable distributions [4].

In this paper, we examine the structure of the probability density function (pdf) of random variables,
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which consist of sums of two or more independent, symmetric stable random variables of different char-
acteristic exponents, and present an application of the theory. In particular, the paper is organized as
follows: Section 2 provides a brief review of the basic definitions and properties associated with the theory
of symmetric stable pdfs and proceeds to study the pdf of the superposition of two independent, stable
random variables of different characteristic exponents. Since no closed form expression is available for this
pdf, we derive asymptotic series expansions, as well as polynomial fits, which allow the real time computa-
tion of this pdf at an arbitrary argument. In Section 3, we present an application of the theory of Section
2 in the detection of impulsive stochastic transients in a background of Gaussian noise. We show that
the derived optimum receiver outperforms the square— and v*A- law receivers previously presented in the

literature [6]. Finally, Section 4 summarizes the key results and suggests possible future research topics.

2. SYMMETRIC STABLE RANDOM VARIABLES AND THEIR SUMS

2.1 The clags of SaS pdfs

The general class of symmetric a—stable (SaS) pdfs fy of characteristic ezponent a (0 < a < 2) is obtained
[11] via the inverse Fourier transform

fam8i2)= 5= [ exp(itus — ylul)e=" do 2-1)

In this equation, § (—0o0 < § < 00) is the location parameter and v (¥ > 0) is the dispersion of the Sa$S pdf.
Closed form expressions for f, are available only for the cases of @ = 2, corresponding to the Gaussian
distribution with mean § and variance 27, and of a = 1, corresponding to the Cauchy distribution with
dispersion ¥ and median §:

1 _(z- 53

h(r.0;2) = m exP[ 4y ] \Ga‘"’sm’n) . (2“)
1
h(1,63) = =—m—— (Cauchy) . (2-3)

TP+ (=0

No closed form expressions exist for SaS pdfs other than the Gaussian and the Cauchy; however, asymptotic
expansions for all SaS pdfs are known [12, 13, 8], valid for either small (i.e., |z — §| — 0) or large (i.e.,
|z — §] = o0) argument z; a method for real time computation of fa(7,§;-) at arbitrary argument z was
devised in [5].

The SaS pdfs present several similarities to the Gaussian pdf: They are smooth and bell-shaped, have
the stability property, and naturally arise via a generalized form of the central limit theorem. However,
they also differ from the Gaussian pdf in several significant ways. For example, the SaS pdfs have sharper
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maxima than the Gaussian pdf and algebraic (inverse power) tails in contrast to the exponential tails of
the Gaussian pdf. As a result, the p** order moments of the Sa$ pdfs are finite only for 0 < p < a.
These properties of the SaS pdfs have allowed more accurate modeling of certain economical, physical,
biological, and hydrological phenomena and may also indicate applications in statistical signal processing
and communications (8].

Eventhough the SaS pdfs have been extensively studied in the literature [11, 13] and their applications
are sought in the area of statistical signal processing and communications, little study has been made of
sums of symmetric stable random variables of different characteristic exponents. However, such sums often
arise in practical problems (see Section 3 for one such case) and, thus, there is a need for expressions
and computation of their pdf in real time. We address and provide a solution to this problem here. For
simplicity, we restrict the presentation to sums of two symmetric stable random variables of different
exponents; however, the general case of sums of an arbitrary number of terms can be treated in a similar
straightforward manner.

2.2 Sums of symmetric stable random variables

Definition and general properties

Let X; and X; be two independent, symmetric stable random variables of characteristic exponents a; and
a3 and dispersions v; and vz, respectively!, and let X be their sum? X = X; + X3. Then, the pdf of X
will be given via the inverse Fourier transform

1 [ .
' f(ah a2, 71, TH z) = '2?/ e"p(-‘hlwlal - ‘hlwlaz)e wE dw’ (2 - 4)

-0

where we have used the discussion in [14, p. 189] concerning sums of independent random variables
and Eq.(2-1). No closed—form expression exists for the above integral, except for the special cases of
a; = a3 = 2 and a; = a3 = 1. Two asymptotic series representations will, however, be derived in the
following subsection, valid for small (i.e., |[z]| — 0) and for large (i.e., |z| — o0) argument z, respectively.
First, we present in Figs. 1a, 1b, and 1c plots of the sum of a Gaussian (i.e., a; = 2) and a non-Gaussian
S(az = 0.5)S random variable. The dispersions of the Gaussian and the non-Gaussian random variables
are 0.5, 1.5 and 0 and 1, 0 and 1.5, respectively. Therefore, Figs. 1b and lc correspond to a purely
Gaussian and a purely S(a; = 0.5)S random variable, respectively. Fig. 1d illustrates the pdf of the sum of

1Without loss of generality, we assume that the location parametess of both random variables are equal to zero. This
assumption is similar to the usual sero mean assumption concerning Gaussian processes and does not affect our results.
3For simplicity, we will refer to X as the “sum random variable® and to its pdf as the “sum pdf.”



a S(ay = 1.5)S and a S(a; = 0.5)S process, each of which has dispersion equal to one. Sums of Gaussian
and impulsive processes arise in communications systems operating in impulsive noise environments and
will, in fact, be considered as models for the stochastic transient detection problem of Section 3.

From the plots in Figs. 1, we observe that the sum variables maintain the general symmetric bell
shape, but the sharpness of their peaks and the heaviness of their tails depend on the relative values of
their characteristic exponents and their dispersions. Thus, a large variety of observed pdfs can be well
approximated with appropriate pdfs of sum variables. When at least one of the variables is non-Gaussian
stable, the resulting sum variable has finite p** order moments only for 0 < p < min{ay, a3}, as can be

seen from the asymptotic expansion of Eq.(2-6) below.
Asymptotic expansions

The following theorem gives asymptotic expansions for the sum pdf of Eq.(2-4):

Theorem Let,_‘f(ahag,-n,‘yg;-) be the sum pdf of Eq.(2-4). Then, for all ay, az, 11, and 72
)z 1['(2_*-&11_-!-_) _3htajisr

f(al’ a2, 14 T2 z) E (2k)' 2 ( 2 as 02 ] 2"1 (2 - 5)
as |z| — 0, and
' _ 1 &, e (T 773~ Tonl +ag(k - 1) +1]
f(alt Q3,71+ 723 z) ~ -; kgl(_l) lgosmlz (all + az(k - l))] l!(lk: l)! |3|01‘+az(k-l)+l (2 - 6)

as |z| — o0.

Proof The proof is given in the Appendix at the end of the paper.

Computation in real time

A combination of truncated versions of the asymptotic series of the previous subsection can be used
in the real time computation of sum pdfs. In particular, the asymptotic series of Eq.(2-5) provides a
good approximation to a sum pdf for small argument, while the asymptotic series of Eq.(2-6) provides a
good approximation to a sum pdf for large argument. There exists, however, an interval of values of the
argument of a sum pdf for which neither series provides a reasonable approximation and, therefore, different
mathematical expressions need to be considered. In [5], we faced the same problem when we considered
the computation of a SaS pdf at an arbitrary argument. The solution we devised in [5] consisted of first
establishing a cutoff argument beyond which a large argument asymptotic series of very few terms was
sufficiently accurate and then computing the coefficients of a polynomial of small degree which interpolated
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the pdf for argument values smaller than the cutoff. This procedure resulted in mathematical expressions
which were simple enough to be computable in real time and at the same time yielded a very small error.
We follow the same procedure for the sum pdfs of this paper. For illustration purposes, we compare in Fig.
2 the sum pdf of a Gaussian random variable of zero mean and unit variance and a S(a = 0.5)S random
variable of zero location parameter and unit dispersion, as computed via the Fourier inversion formula of
Eq.(2-4) (continuous line) and the procedure just described (point line). In the latter case, we used the
first two terms of the asymptotic series (2-6) and a fourth degree polynomial fit and we set the cutoff
argument to the value 3. Thus, the net formula utilized in the computation of this sum pdf is

—0.00462*% + 0.0377z° — 0.0929z2 + 0.0107z + 0.1861, if |z| < 3

1 ol w8 if |z] > 3.

Clearly, the above expression provides an excellent approximation to the true sum pdf and can be easily

£(2,0.5,0.5,1;z) =

computed in real time.

3. DETECTION OF IMPULSIVE TRANSIENTS

The detection of deterministic or stochastic transients in time series is often encountered in statistical
signal processing [15]. For example, the purpose of communication systems and active radar and sonar is
to detect deterministic transient signals with unknown parameters and to estimate their parameters. On
the other hand, transient events occurring in such natural phenomena, as seismic, biological, speech, and
underwater, are better described with stochastic models. In general, the detection of stochastic transients
is a more difficult problem than the detection of deterministic transients and requires the construction
of efficient statistical models for the transient and non-transient parts of the observed time series. When
both these paris of the observed daia are modeled as white Gaussian random processes of different variance
and the duration of the transient is known, the optimum detector is a square~law device. If the transient
duration is unknown, the square-law detector is only suboptimum. The optimum detector for this case
becomes a bank of square-law devices, each matched to a different transient duration. It was shown,
however, in [6], that a significant improvement in the performance of a fixed-law detector was possible
by choosing the law of the detector to be » > 2. The assumption, was, however, maintained in (6] of
Gaussian models for the transient signal and the background noise in the time series, eventhough it was
stated that the transient occurs in the form of an impulsive burst. In this paper, we model the transient
as an independent Sa$ process superimposed over a background of white Gaussian noise. We derive the

optimum detector on the basis of the results of the previous section and compare its performance to that
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of square- and v**-law detectors. As measure of performance of the detectors, we compute the probability
of detection for fixed (given) probability of false alarm.

3.1 Problem Formulation

We consider the following hypothesis testing problem:

Hyp:z = n,,

Hi:z = n3+n,,

where n; and n, are independent realizations of a Gaussian and a SaS random variable of variance 02 and
dispersion v, respectively. The receiver needs to make a decision on which hypothesis is true, i.e., whether

the current random observation z is due to background noise only, or if it contains an impulsive component
as well.

3.2 Optimum Detector

To decide between the two hypotheses Hy and H,, the optimum receiver computes the test statistic
! (2'°l£t‘,=:)

log[m], or, equivalently ,
z
253’

and compares it to a preset threshold 5. The receiver decides that H; is true when A > 7 and that

2
A =log f(2,0, 5, 7i2) + (3-1)

Hy is true when A < 7. The value of the threshold 7 is chosen so as to satisfy a certain performance
level. From Eq.(3-1) above, we observe that the optimum nonlinearity for the detection of stable transients
over a background of Gaussian noise consists of the sum of a square-law characteristic and an additional
nonlinearity arising from the non-Gaussianity of the transient. This fact should be contrasted with the
square-law characteristic of the optimum detector for Gaussian transients over a background of Gaussian

noise (see the following subsection).

8.3 Square—- and Other v**~Law Detectors

When a = 2 and 27 # 03, i.e., when we are detecting Gaussian stochastic transients over a background
of Gaussian noise, the optimum receiver reduces to a simple square-law device. The receiver, in this case,

computes the test statistic
A(z) = |22 (3-2)



and decides that a Gaussian transient is present when A, > 7, and that no transient is present when
A, <

Detectors based on a vt*-law test statistic

Afz)=lal’, v22 (3-3)

arise when detecting Gaussian transients of unknown duration in long time series. In particular, it was
shown in [6], that v**-law detectors, eventhough suboptimum, still present an improvement in performance
over square-law detectors, which may exceed 1 dB. We also consider, here, the magnitude detector, the
test statistic of which is derived from Eq.(3-3) with v = 1, and compare its performance to the performance

of the other detectors.

3.4 Performance Evaluation

The characteristic nonlinearities of the optimum detector of Eq.(3-1) and the power law detectors of Eq.(3-
3) are plotted in.*Fig. 3. We see that both the square-law and the magnitude detectors have a characteristic
which approximates that of the optimum detector everywhere except at small arguments. It is this small
argument behavior of the optimum nonlinearity that provides the highest performance. We compare the
performance of the optimum and the v*A-law detectors when detecting zero median, S(a = 0.5)S transients
over a background of zero mean Gaussian noise. The variance of the Gaussian process is taken equal to
o3 = 1 and the dispersion of the S(a = 0.5)S process is v = 1. The pdf under the hypothesis H, is,
therefore, presented in Fig. l1a. As measure of detector performance, we use the probability of detection
of the receivers for probability of false alarm fixed to Py, = 0.005. Since the pdf of the test statistic of
the detectors is not easy to derive, we compute the probabilities of false alarm and detection following a
method based on the characteristic function of the test statistics [16, 17]. In particular, let the characteristic
function of the test statistic L € {A,A,,v =1,2,3,4} be '

du(lfo) = [ e‘““"fz(% 0z)dz=2 [ e‘““ﬂfz(% 0;2) dz (3-4)
and 2 2
éL(w|H1) = /N eiWL(:)f(zv a, %” 7;z)dz = 2/0 eWL(z)f(zv «, '02—1 7;z)dz (3-5)

under the hypotheses Hy and H,, respectively. Then for L € {A,,v = 1,2, 3,4}, we have [18]

Pe(L > i} = 2 [ S{pulE o) 2, j=0,1. (-9



When L = A, we have [18]
1 [ Loy dw
Pr{L> i} = ¢ [ S{esulB)exp(-iwt)} Z, j=o0,1. 3-7)

In Eqs.(3-6) and (3-7)2 above, S denotes the imaginary part and 7 is the threshold to which the test
statistic is compared and, when j = 0 or j = 1, the probabilities of false alarm or of detection are obtained,
respectively, as a function of the detector threshold 7.

We numerically computed the right hand side of Eqs.(3-4) and (3-5) for 0 < w < 60. For higher
accuracy in the computations, we employed a rotation of the integration paths (6]. Then, the probability
of false alarm was computed as a function of the detector threshold from Eqs.(3-8) and (3-7). For accuracy
at high threshold values, the numerical integration procedure employed was Filon’s integration formula
(19, p. 890]. From this computation, we derived the detector threshold required to achieve a probability
of false alarm equal to Py, = 0.005. In the following table, we show these required thresholds for the

detectors that we examine:

Threshold Required to Achieve Py, = 0.005
detector threshold
Magnitude 2.8
Square-law 7.8
Cube-law 21.0
4*h—law 54.7
Optimum 2.2

1

For these thresholds, the resulting probability of detection was computed using Eqs.(3-5) and (3-6) and

is shown in the following table:

Probability of Detection for Py, = 0.005
detector Py
Magnitude 0.24
Square-law 0.34
Cube-law 0.17
45 -law 0.07
Optimum 0.46

3Eqs.(3-6) and (3-7) differ since the power-law test statistics assume only positive values, while the optimum test statistic
assumes both positive and negative values [18).



From the above table, we see that »*#-law detectors of » > 2 (and, in particular, cube— and 4**-law
detectors) do not present any improvement in the detection of impulsive transients over a background
of Gaussian noise when compared to square-law detectors. To the contrary, they have a probability of
detection smaller than the probability of detection of the square-law detector for the same probability of
false alarm. This can become clear by recalling Eq.(3-1), where the optimum test statistic is shown to
contain the square-law characteristic as part of its expression. The magnitude detector, on the other hand,

performs closely to the square-law detector, yet below it.

4. Conclusions

Sa$S random processes form a class of statistical models which present several similarities to the well known
Gaussian model, but at the same time differ from it in a number of ways. Because of their properties, SaS
pdfs receive increasing attention from the signal processing community and are expected to find a number
of applications in engineering and communications. In this paper, we examined the structure of the pdf of
sums of independent symmetric stable processes of different characteristic exponents and presented series
expansions which are computable in real time. As an application of the theory, we presented a processor
designed to detect stochastic impulsive transients over a background of Gaussian noise and showed that
this detector outperforms, in terms of probability of detection, the existing square- and v**~law detectors.

In the future, we intend to address the problem of detection of unknown signals in impulsive noise
modeled as a symmetric stable random process of zero median and unknown characteristic exponent and
dispersion. This problem is a generalization of the well studied problem of detection of an unknown signal
in zero mean Gaussian noise of unknown variance, for which Student’s ¢ test has been shown to satisfy
certain optimality requirements. Since it is known that Student’s ¢ test, as well as other nonparametric
detectors, perform poorly in impulsive noise environments, it is expected that our approach will provide
significant improvement, while at the same time maintaining an acceptable performance in Gaussian noise

environments. This research is currently pursued and its results will be announced shortly.

Appendix: Proof of the Asymptotic Expansions Theorem

Since f(ai,a2,71,73;2) = f(@1,a2,71,72; —2), We assume without loss of generality that z > 0. To prove
the expansion in Eq.(2-5), we begin with Eq.(2-1), which we rewrite as:

, 1 y
fle,a2,m,732) = 5=  exp(—mlw|™ - 1a|w]|™)e™ dw
2% Jeoo



1 .
= 22 [ ep(-mbol® - valol™)e ™ o, 1)

where R denotes the real part. We consider the identity [12, 6]

N +1 1
ef = i:-{-z;—' A e*(1-t)V dt, 2

where z can be complex, in general. We apply the relation in Eq.(2) twice, once for z = —y1;w and once

for z = —izw, and obtain the double series representation

iV (o
flar, a2, 1, 7252) = %Ez( w) 71) /Q neTktal 4y + En i(z)
k=0 1=0

(- 1)’ lr(ﬂb-_) _ktayt4l

-k Z
= %ag L In " +Ewis) ()

1=0
where, to get to Eq.(3), we used the result in [19, p. 255]. The error term in Eq.(3) is

EN.L(z) = R/ ("'Ylwm )Hl /0 e-‘"w?"(l - tl)L dtl]

- N+l
. [i“’)— / e T (1 - 1)V diy]le="v"™ dw
0

- ay\L+1 -
= N+l laj“’[( 71w ‘) /o e~y f;(l - tl)L dtl]

(—W)N+
N!

From Eqgs.(3) and (4), we clearly see that the ratio of the error term Ex r over the Nth term in the Eq.(3)

/0 e""‘"“(l = ta)N dtgle ™™ duw. | (4)

goes to zero as z goes to zero, for any N, L, therefore

-i)k -1)
flor, a2, 11,725 2) ~ —RZ 8t ) Z( ) (8)
1 k=0 k! i=0 a

Moreover, calculation of the real part of the double sum in the right hand side of Eq.(4) and reindexing of

r(b.-tm!.ﬂ) k+:,;+z

the terms yields Eq.(2-5) and proves the first part of the asymptotic expansions theorem.
The second part of the theorem, i.e. Eq.(2-6), can be proved in a similar manner. We begin again with
Eq.(1) of this appendix and use the identity of Eq.(2) with z = —y,w™ — y2w™ to obtain

N k
f(als az, 71,72 3) = %a E ( 1) ’ (‘hwal + 72“’02)" i dw + EN(Z)
k=0

N kK
1 (-1) k! —t [, aylan(k=l), i
= 1oy GRS it [Comem e i, o) @
where we have used the binomial expansion formula. We have
/oowail+az(lc-l)e—c‘audw = (_i)e-c'f[adm(k_()l /""e_,,-rrmlm(k-l) dr
[

...zg - I[a"i'a (k"l)+1]
4az(k-{ 1 2
= (-s)e i lonltas( )] itaa(k l)lll ’ (7)
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where we have used a rotation of the integration path in Eq.(7) and the result in [19, p. 255]. The error
term Ey can be computed in the same manner as the error term Ey,;, was computed in Eq.(4) and shown
again to form a ratio over the'N'th term in Eq.(6), which has zero limit as z — co. Thus, after computation

of the real part of the terms, the asymptotic series of Eq.(2-6) is obtained.
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Abstract

We study the structure of the probability density function of random variables which are formed as the
sum of two or more independent, symmetric stable random variables of different characteristic exponents.
We present two asymptotic series expansions, valid for small and for large arguments, respectively. As an
application of the theory, we develop a receiver which detects impulsive stochastic transients superimposed

on Gaussian background noise and show that the new detector outperforms square- and »**-law detectors.
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1. INTRODUCTION

Statistical processing of physical signals has traditionally relied heavily on the assumption of Gaussian
models for the underlying random processes generating the data. However, this assumption is not always
justifiable and is often made only for simplicity, mathematical tractability and reduction of the higher
computational complexity usually associated with algorithms based on non-Gaussian models. With today’s
availability of inexpensive computer hardware of very high speed, a reduced algorithmic performance due
to simplistic mathematical modeling is no longer acceptable. Thus, the classes of non-Gaussian random
processes are becoming increasingly attractive to the signal processing community as models for signals
occurring naturally (1, 2].

One physical process, which is not adequately described in terms of Gaussian models, is the process
that generates “impulsive” noise bursts. Impulsive bursts occur in the form of short duration interferences,
attaining large amplitudes with probability significantly higher than the probability predicted by a Gaussian
pdf. Many natufal, as well as man~made, sources of impulsive interference exist, including lightning in the
atmosphere, switching transients in power lines and car ignitions, accidental hits in telephone lines, and
ice cracking in the arctic region [3, 4]. On several occasions, the impulsive interference causes significant
degradation of the performance of communication systems and needs to be filtered out [5]; on other
occasions, however, the interference carries information and its detection is, actually, the first goal of the
statistical signal processing [6, 7). In both cases, optimal or close to optimal signal processors can be
designed only if appropriate statistical models are defined for the impulsive interference.

Symmetric stable processes form a class of random models which present several similarities to the
Gaussian pro::esses, such as the stability property and a generalized form of the central limit theorem,
and, in fact, contain the Gaussian processes as a subclass. However, several differences exist between the
Gaussian and the non-Gaussian stable processes, as explained briefly in Section 2, which make the general
stable processes very attractive statistical models for several physical phenomena involving impulsive noise
[8, 2, 4). For example, the Cauchy distribution, which is a stable distribution, was considered in [9] as
a model for severe impulsive noise, while Stuck and Kleiner [10] experimentally observed that the noise
over certain telephone lines was best described by almost Gaussian stable processes. Very recently, it was
theoretically shown that, under general assumptions, the first order statistics of a broad class of impulsive
noise can, indeed, be described via an analytically tractable and mathematically appealing model based
on the theory of symmetric stable distributions [4].

In this paper, we examine the structure of the probability density function (pdf) of random variables,



which consist of sums of two or more independent, symmetric stable random variables of different char-
acteristic exponents, and present an application of the theory. In particular, the paper is organized as
follows: Section 2 provides a brief review of the basic definitions and properties associated with the theory
of symmetric stable pdfs and proceeds to study the pdf of the superposition of two independent, stable
random variables of different characteristic exponents. Since no closed form expression is available for this
pdf, we derive asymptotic series expansions, as well as polynomial fits, which allow the real time computa-
tion of this pdf at an arbitrary argument. In Section 3, we present an application of the theory of Section
2 in the detection of impulsive stochastic transients in a background of Gaussian noise. We show that
the derived optimum receiver outperforms the square— and »**~ law receivers previously presented in the

literature [6]. Finally, Section 4 summarizes the key results and suggests possible future research topics.

2. SYMMETRIC STABLE RANDOM VARIABLES AND THEIR SUMS

2.1 The class of SaS pdfs

The general class of symmetric a-stable (SaS) pdfs f, of characteristic ezponent a (0 < a < 2) is obtained

(11] via the inverse Fourier transform

(- -]

falt,852)= 5 [ exp(ite - lole" do. (2-1)

In this equation, § (—00 < § < 00) is the location parameter and v (v > 0) is the dispersion of the SaS pdf.
Closed form expressions for f, are available only for the cases of @ = 2, corresponding to the Gaussian
distribution with mean § and variance 27, and of a = 1, corresponding to the Cauchy distribution with
dispersion ¥ and median 6:A

— 6
fimsi) = Zmenl-ETH] (Gausisa) @2
1 2

A(r,6i2) = (Cauchy) . (2-3)

Ty +(z- 0P
No closed form expressions exist for SaS pdfs other than the Gaussian and the Cauchy; however, asymptotic
expansions for all SaS pdfs are known [12, 13, 8], valid for either small (i.e., |z - §| — 0) or large (i.e.,
|z = 6] = 00) argument z; a method for real time computation of fa(7,d;-) at arbitrary argument z was
devised in [5].

The SaS pdfs present several similarities to the Gaussian pdf: They are smooth and bell-shaped, have
the stability property, and naturally arise via a generalized form of the central limit theorem. However,
they also differ from the Gaussian pdf in several significant ways. For example, the SaS pdfs have sharper
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maxima than the Gaussian pdf and algebraic (inverse power) tails in contrast to the exponential tails of
the Gaussian pdf. As a result, the p** order moments of the SaS pdfs are finite only for 0 < p < a.
These properties of the SaS pdfs have allowed more accurate modeling of certain economical, physical,
biological, and hydrological phenomena and may also indicate applications in statistical signal processing
and communications [8].

Eventhough the SaS pdfs have been extensively studied in the literature [11, 13] and their applications
are sought in the area of statistical signal processing and communications, little study has been made of
sums of symmetric stable random variables of different characteristic exponents. However, such sums often
arise in practical problems (see Section 3 for one such case) and, thus, there is a need for expressions
and computation of their pdf in real time. We address and provide a solution to this problem here. For
simplicity, we restrict the presentation to sums of two symmetric stable random variables of different
exponents; however, the general case of sums of an arbitrary number of terms can be treated in a similar
straightforward manner.

2.2 Sums of symmetric stable random variables

Definition and general properties

Let X; and X3 be two independent, symmetric stable random variables of characteristic exponents a; and
@, and dispersions 7; and 73, respectively!, and let X be their sum? X = X; + X3. Then, the pdf of X
will be given via the inverse Fourier transform

1 [ .
C Senammin)= o [ ep(-mlbel® - gl do, (2-4)

where we have used the discussion in [14, p. 189] concerning sums of independent random variables
and Eq.(2-1). No closed-form expression exists for the above integral, except for the special cases of
a = a3 = 2 and a3 = a3 = 1. Two asymptotic series representations will, however, be derived in the
following subsection, valid for small (i.e., |[z|] — 0) and for large (i.e., [z] — o0) argument z, respectively.
First, we present in Figs. 1a, 1b, and 1c plots of the sum of a Gaussian (i.e., @y = 2) and a non-Gaussian
S(az = 0.5)S random variable. The dispersions of the Gaussian and the non-Gaussian random variables
are 0.5, 1.5 and 0 and 1, 0 and 1.5, respectively. Therefore, Figs. 1b and 1c correspond to a purely
Gaaussian and a purely S(az = 0.5)S random variable, respectively. Fig. 1d illustrates the pdf of the sum of

1Without loss of generality, we assume that the location parameters of both random variables are equal to sero. This
assumption is similar to the usual sero mean assumption concerning Gaussian processes and does not affect our results.
2For simplicity, we will refer to X as the “sum random variable® and to its pdf as the “sum pdf.”



a S(a; = 1.5)S and a S(a; = 0.5)S process, each of which has dispersion equal to one. Sums of Gaussian
and impulsive processes arise in communications systems operating in impulsive noise environments and
will, in fact, be considered as models for the stochastic transient detection problem of Section 3.

From the plots in Figs. 1, we observe that the sum variables maintain the general symmetric bell
shape, but the sharpness of their peaks and the heaviness of their tails depend on the relative values of
their characteristic exponents and their dispersions. Thus, a large variety of observed pdfs can be well
approximated with appropriate pdfs of sum variables. When at least one of the variables is non~Gaussian
stable, the resulting sum variable has finite p** order moments only for 0 < p < min{a,,az}, as can be

seen from the asymptotic expansion of Eq.(2-6) below.

Asymptotic expansions
The following theorem gives asymptotic expansions for the sum pdf of Eq.(2-4):

Theorem Let f(a1,a2,1,72;-) be the sum pdf of Eq.(2-4). Then, for all @y, a3, 11, and v2

( l)kz( 1) r(_fﬁ:_hlt_) _3ktay it

flen, a2, 1, 1252) ~ = Z (2’3)' o = ]zzk» (2-5)

as |z| — 0, and

1 k=l _
flar, 02, m, 722 )"‘“Z( l)"gsm[ (! + ax(k - 1))],;{?i,)!r[allzl|::.:,(2,:,,_,)lz_:- 1 (2-6)

as |z| — oo.

Proof The proof is given in the Appendix at the end of the paper.

Computation in real time

A combination of truncated versions of the asymptotic series of the previous subsection can be used
in the real time computation of sum pdfs. In particular, the asymptotic series of Eq.(2-5) provides a
good approximation to a sum pdf for small argument, while the asymptotic series of Eq.(2-6) provides a
good approximation to a sum pdf for large argument. There exists, however, an interval of values of the
argument of a sum pdf for which neither series provides a reasonable appraximation and, therefore, different
mathematical expressions need to be considered. In [5], we faced the same problem when we considered
the computation of a SaS pdf at an arbitrary argument. The solution we devised in [5] consisted of first
establishing a cutoff argument beyond which a large argument asymptotic series of very few terms was
sufficiently accurate and then computing the coefficients of a polynomial of small degree which interpolated
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the pdf for argument values smaller than the cutoff. This procedure resulted in mathematical expressions
which were simple enough to be computable in real time and at the same time yielded a very small error.
We follow the same procedure for the sum pdfs of this paper. For illustration purposes, we compare in Fig.
2 the sum pdf of a Gaussian random variable of zero mean and unit variance and a S(a = 0.5)S random
variable of zero location parameter and unit dispersion, as computed via the Fourier inversion formula of
Eq.(2-4) (continuous line) and the procedure just described (point line). In the latter case, we used the
first two terms of the asymptotic series (2-6) and a fourth degree polynomial fit and we set the cutoff
argument to the value 3. Thus, the net formula utilized in the computation of this sum pdf is

—0.0046z* + 0.0377z3 — 0.0929z2 + 0.0107z + 0.1861, if |z| <3

R - R+ if |2] > 3.

Clearly, the above expression provides an excellent approximation to the true sum pdf and can be easily

£(2,0.5,0.5,1;7) =

computed in real time.

3. DETECTION OF IMPULSIVE TRANSIENTS

The detection of deterministic or stochastic transients in time series is often encountered in statistical
signal processing [15]. For example, the purpose of communication systems and active radar and sonar is
to detect deterministic transient signals with unknown parameters and to estimate their parameters. On
the other hand, transient events occurring in such natural phenomena, as seismic, biological, speech, and
underwater, are better described with stochastic models. In general, the detection of stochastic transients
is a more difficult problem than the detection of deterministic transients and requires the comstruction
of efficient statistical models for the transient and non-transient parts of the observed time series. When
both these parts of the observed daia are modeled as white Gaussian random processes of differeat variance
and the duration of the transient is known, the optimum detector is a square-law device. If the transient
duration is unknown, the square-law detector is only suboptimum. The optimum detector for this case
becomes a bank of square-law devices, each matched to a different transient duration. It was shown,
however, in (6], that a significant improvement in the performance of a fixed-law detector was possible
by choosing the law of the detector to be ¥ > 2. The assumption, was, however, maintained in [6] of
Gaussian models for the transient signal and the background noise in the time series, eventhough it was
stated that the transient occurs in the form of an impulsive burst. In this paper, we model the transient
as an independent SaS process superimposed over a background of white Gaussian noise. We derive the

optimum detector on the basis of the results of the previous section and compare its performance to that
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of square- and v*h-law detectors. As measure of performance of the detectors, we compute the probability
of detection for fixed (given) probability of false alarm.

3.1 Problem Formulation

We consider the following hypothesis testing problem:

Hy:z = ny,

Hi:z = n3+1n,,

where n; and n, are independent realizations of a Gaussian and a SaS random variable of variance 2 and
dispersion 7, respectively. The receiver needs to make a decision on which hypothesis is true, i.e., whether
the current random observation z is due to background noise only, or if it contains an impulsive component

as well.

3.2 Optimum Detector

To decide between the two hypotheses Hy and H,, the optimum receiver computes the test statistic

£(2,0,L miz) :

log{ A Z ) ], or, equivalently 2 2
4 z

A= logf(zya’?"’;z)'*' 203’

and compares it to a preset threshold 7. The receiver decides that H, is true when A > 5 and that

3-1)

Hy is true when A < 5. The value of the threshold n is chosen so as to satisfy a certain performance
level. From Eq.(3-1) above, we observe that the optimum nonlinearity for the detection of stable transients
over a background of Gaussian noise consists of the sum of a square-law characteristic and an additional
nonlinearity arising from the non-Gaussianity of the transient. This fact should be contrasted with the
square-law characteristic of the optimum detector for Gaussian transients over a background of Gaussian

noise (see the following subsection). /

3.3 Square— and Other v**-Law Detectors

When a = 2 and 27 # 03, i.e., when we are detecting Gaussian stochastic transients over a background
of Gaussian noise, the optimum receiver reduces to a simple square-law device. The receiver, in this case,

computes the test statistic
A,(2) = [z (3-2)



and decides that a Gaussian transient is present when A, > 7, and that no transient is present when
A, <1

Detectors based on a v**-law test statistic
A(z)=lzl", v22 (3-3)

arise when detecting Gaussian transients of unknown duration in long time series. In particular, it was
shown in [6), that v*#-law detectors, eventhough suboptimum, still present an improvement in performance
over square-law detectors, which may exceed 1 dB. We also consider, here, the magnitude detector, the
test statistic of which is derived from Eq.(3-3) with v = 1, and compare its performance to the performance

of the other detectors.

3.4 Performance Evaluation

The characteristic nonlinearities of the optimum detector of Eq.(3-1) and the power law detectors of Eq.(3-
3) are plotted ifoig. 3. We see that both the square-law and the magnitude detectors have a characteristic
which approximates that of the optimum detector everywhere except at small arguments. It is this small
argument behavior of the optimum nonlinearity that provides the highest performance. We compare the
performance of the optimum and the v**-law detectors when detecting zero median, S(a = 0.5)S transients
over a background of zero mean Gaussian noise. The variance of the Gaussian process is taken equal to
02 = 1 and the dispersion of the S(a = 0.5)S process is v = 1. The pdf under the hypothesis H; is,
therefore, presented in Fig. la. As measure of detector performance, we use the probability of detection
of the receivers for probability of false alarm fixed to Py, = 0.005. Since the pdf of the test statistic of
the detectors is not easy to derive, we compute the probabilities of false alarm and detection following a
method based on the charactaristic function of the test statistics [16, 17). In particular, let the characteristic
function of the test statistic L € {A,A,,v = 1,2,3,4} be .

sl = [ M (T 0i2)de =2 [ (T, 02) de @3-
and 2 ,
sl = [ #Hf,0 T mia)de=2 [ M f(2,0, T ma)de (3-9)

under the hypotheses Hy and H,, respectively. Then for L € {A,,» = 1,2,3,4}, we have [18]

PeiL >} = 2 [7 o(puulE eoso) 2, j=0,1. (3-6)



When L = A, we have [18]
1 [ Loy W
Pr(L > nl} = 2 [7 (ol em(-iwt)} 2, j=o,1. (3-7)

In Eqs.(3-6) and (3-7)2 above, § denotes the imaginary part and 75 is the threshold to which the test
statistic is compared and, when j = 0 or j = 1, the probabilities of false alarm or of detection are obtained,
respectively, as a function of the detector threshold 5.

We numerically computed the right hand side of Eqs.(3-4) and (3-5) for 0 < w < 60. For higher
accuracy in the computations, we employed a rotation of the integration paths [6]. Then, the probability
of false alarm was computed as a function of the detector threshold from Eqs.(3-6) and (3-7). For accuracy
at high threshold values, the numerical integration procedure employed was Filon’s integration formula
(19, p. 890]. From this computation, we derived the detector threshold required to achieve a probability
of false alarm equal to Py, = 0.005. In the following table, we show these required thresholds for the

detectors that we examine:

Threshold Required to Achieve Py, = 0.005
detector threshold
Magnitude 2.8
Square-law 7.8
Cube-law 21.0
4th-law 54.7
Optimum 2.2

3

For these thresholds, the resulting probability of detection was computed using Eqs.(3-5) and (3-6) and

is shown in the following table:

Probability of Detection for Py, = 0.005
detector Py
Magnitude 0.24
Square-law 0.34
Cube-law 0.17
4% Jaw 0.07
Optimum 0.46

3Egs.(3-6) and (3-7) differ since the power-law test statistics assume only positive values, while the optimum test statistic
assumes both positive and negative values [18].



From the above table, we see that v**~law detectors of v > 2 (and, in particular, cube- and 4**-law
detectors) do not present any improvement in the detection of impulsive transients over a background
of Gaussian noise when compared to square-law detectors. To the contrary, they have a probability of
detection smaller than the probability of detection of the square-law detector for the same probability of
false alarm. This can become clear by recalling Eq.(3-1), where the optimum test statistic is shown to
contain the square-law characteristic as part of its expression. The magnitude detector, on the other hand,

performs closely to the square-law detector, yet below it.

4. Conclusions

Sa$S random processes form a class of statistical models which present several similarities to the well known
Gaussian model, but at the same time differ from it in a number of ways. Because of their properties, Sa$S
pdfs receive increasing attention from the signal processing community and are expected to find a number
of applications in engineering and communications. In this paper, we examined the structure of the pdf of
sums of independent symmetric stable processes of different characteristic exponents and presented series
expansions which are computable in real time. As an application of the theory, we presented a processor
designed to detect stochastic impulsive transients over a background of Gaussian noise and showed that
this detector outperforms, in terms of probability of detection, the existing square- and »**~law detectors.

In the future, we intend to address the problem of detection of unknown signals in impulsive noise
modeled as a symmetric stable random process of zero median and unknown characteristic exponent and
dispersion. This problem is a generalization of the well studied problem of detection of an unknown signal
in zero mean Gaussian noise of unknown variance, for which Student’s ¢ test has been shown to satisfy
certain optimality requirements. Since it is known that Student’s ¢ test, as well as other nonparametric
detectors, perform poorly in impulsive noise environments, it is expected that our approach will provide
significant improvement, while at the same time maintaining an acceptable performance in Gaussian noise

environments. This research is currently pursued and its results will be announced shortly.

Appendix: Proof of the Asymptotic Expansions Theorem

Since f(a1,a2,11,73; z) = f(a1, 32,71, 732; —=Z), We assume without loss of generality that z > 0. To prove
the expansion in Eq.(2-5), we begin with Eq.(2-1), which we rewrite as:

| 1 )
flananmmiz) = 52 [ ep(-nlol™ - 1okl )e™ do



1 )
= & [ emplnll® - mlofm)e o, m
where R denotes the real part. We consider the identity [12, 6]

sz ZN+ L1 - b, )

where z can be complex, in general. We apply the relation in Eq.(2) twice, once for z = —y;w™ and once

for 2 = —izw, and obtain the double series representation

Har, a2, 71, 713i2) = Rzz(—w) (-71)‘/Q ekl gy, 4 Eni(z)

k—o =0
—i\k oy T _-LouL-l-_. ~Ataytd1
= *Z i ‘) Z S t.) ( ) 2+ Eny(z) (3)
1=0 “2
where, to get to Eq.(3), we used the result in [19, p. 255]. The error term in Eq.(3) is
- oy \L+1
EN'L(z) - 824/00 ( ‘71(0 ‘) -/o e-«nw{'tg(l —tl)L dtﬂ
_ N+1
. [( 12&)) /o e'w"(l tz)N dtzle—'nuﬂ dw
- oy \L+1 -
= N-l-lla‘/’(”[ 71“ l) / e-‘nthx(l_tl)bdtll
EEARY, 25 | ’
(—u;v)T/o e-w"(l - tz)" dtg)le ™" dw. (4)

From Eqgs.(3) and (4), we clearly see that the ratio of the error term Ey 1 over the Nth term in the Eq.(3)

goes to zero as z goes to zero, for any N, L, therefore

bimlsl) _peun
(01,02,71,‘72,3)"‘-532 b E E( l)l al )2 . (8)

az

3

Moreover, calculation of the real part of the double sum in the right hand side of Eq.(4) and reindexing of
the terms yields Eq.(2-5) and proves the first part of the asymptotic expansions theorem.

The second part of the theorem, i.e. Eq.(2-6), can be proved in a similar manner. We begin again with
Eq.(1) of this appendix and use the identity of Eq.(2) with z = —nw™ — y;w*? to obtain

fla,a3,m,712:2) = Z C /c (1w™ + 19w e~ dw + En(z)

k )
%ago( 1.) Z p(k ) yint / waltak=-Ne=izv 4,  En(z)  (6)

where we have used the binomial expansion formula. We have
/ ® weritarlk=D) mizw g, = (~i)eiFlai+as(e=D)] /"' == parltaa(k=1) gp
(]

- l‘[al+a(k—l)+1]
—i%{ar+as(k-1) 1 3 7
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where we have used a rotation of the integration path in Eq.(7) and the result in [19, p. 255]. The error
term Ey can be computed in the same manner as the error term Ey s, was computed in Eq.(4) and shown
again to form a ratio over the N'th term in Eq.(6), which has zero limit as z — 0o. Thus, after computation

of the real part of the terms, the asymptotic series of Eq.(2-6) is obtained.
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