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Abstract

We describe conjugate gradient algorithms for reconstruction of transmission
and emission PET images. The reconstructions are based on a Bayesian formu-
lation where the data are modeled as a collection of independent Poisson random
variables and the image is modeled using a Markov random field. A conjugate
gradient algorithm is used to compute a maximum a posteriori (MAP) estimate
of the image by maximizing over the posterior density. To ensure non-negativity
of the solution a penalty function is used to convert the problem to one of uncon-
strained optimization. Preconditioners are used to enhance convergence rates.
These methods generally achieve effective convergence in 15-25 iterations. Re-
constructions are presented of an ®FDG whole body scan from data collected
using a Siemens/CTI ECAT931 whole body system. These results indicate sig-
nificant improvements in emission image quality using the Bayesian approach,
in comparison to filtered backprojection, particularly when reprojections of the
MAP transmission image are used in place of the standard attenuation correction
factors.

*This work was supported by a grant from the Whitaker Foundation
tPlease send all correspondence to Richard Leahy at the above address
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1 Introduction

One of the major factors limiting the clinical utility of iterative positron emission to-
mograpy (PET) image reconstruction schemes based on statistical formulations is the
computational cost involved in estimating the image. Although efficient implementa-
tion on a fast workstation or specialized processor can result in low per-iteration costs,
reconstruction times can still be prohibitive if a large number of iterations are required.
Here we describe penalized preconditioned conjugate gradient methods for both emis-
sion and transmission reconstruction in PET where eflective convergence can often
be attained in 15-25 iterations. The method forms a mazimum a posteriori (MAP)
estimate of the image based on a Poisson data model, which explicitly includes contri-
butions from scatter and random coincidences, and a Markov random field prior which
favors locally smooth images.

Our motivation for using Bayesian procedures for the reconstruction of PET
images is that this framework allows for the development of an accurate statistical
model for the observed data and also allows the inclusion of additional information
concerning the unknown image in the form of a prior distribution. In the following we
describe Bayesian procedures not only for reconstruction of the emission image, but also
for reconstruction of a transmission or attenuation image and for nonlinear smoothing
of measured randoms and blank sinograms. The smoothed randoms sinograms are used
in place of direct randoms subtraction in the coincidence data as described in Sections
(2.1) and (2.2). The smoothed blank sinogram is used as an estimate of the effective
transmission source activity as described in Section (2.1).

The methods described here are applicable to the general PET image reconstruc-
tion problem. However, we emphasize the application to whole body PET. Whole body
protocols call for multiple data sets (frames) corresponding to multiple positions of the
patient within the scanner. Consequently, the acquisition time per frame is necessarily
short. This results in poor signal to noise ratios in the data and correspondingly poor
images using standard correction and reconstruction methods [5). Here we demon-
strate the potential for substantial improvements in image quality using the Bayesian
estimation procedures described.

The primary problem in PET is to reconstruct spatial distributions of radio-
labeled compounds from measurements of coincidence emission data, i.e. the emission
sinogram. The main purpose for collecting the transmission sinogram is for comput-
ing attenuation correction factors for the emission data as the ratio of the blank to
transmission sinograms. However, there are several reasons why reconstruction of a
transmission image from this data is appropriate. First, correction factors based on
the ratio of the blank and transmission sinograms provide noisy and biased estimates
of the true attenuation factors. Linear smoothing of the transmission sinogram reduces
noise but does not provide sufficient accuracy [27]. Reconstruction of a transmission
image, followed by reprojection, can improve the accuracy of the estimated correction
factors provided additional information, in the form of a statistical data model and a
prior density on the image, is introduced. It is important to note that simply using fil-
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tered backprojection followed by reprojection of the reconstructed transmission image
is essentially equivalent to direct linear filtering of the attenuation correction factors
and should not be expected to yield further improvements. There are other advantages
to reconstruction of the transmission image. For example, if the patient moves between
the transmission and emission scans, they can be re-registered before reprojection for
computation of the attenuation correction factors. The attenuation images can also be
used in estimating scatter components in emission sinograms [30]. Finally, the trans-
mission images provide anatomical landmarks that are often not visible in the emission
images. These can be used when interpreting the emission images or for registration
of the PET images with other anatomical modalities [23].

Since its development in [36], the expectation-maximization (EM) algorithm for
maximum likelihood (ML) reconstruction of emission PET images has been the most
widely used iterative scheme for statistical reconstruction. There are however two
major problems with the application of this scheme to PET data. First, convergence
of the EM algorithm can be slow [20], [19] and second, the ML estimation problem in
PET is typically ill-conditioned. Here we avoid this ill-conditioning by using a Bayesian
formulation and consider alternatives to EM which exhibit faster convergence.

Lange et al [20] and others have noted that the EM algorithm for emission PET
can be recast as a gradient ascent algorithm in which the update vector is the product
of the gradient vector with a diagonal matrix with elements equal to a scaled version
of the current estimates of the pixel intensities (henceforth referred to as a precondi-
tioner). Over-relaxation schemes based on this observation have been proposed [25].
An alternative approach which uses a vector extrapolation technique to enhance the
convergence of the EM algorithm was proposed in [34]. This technique leads to im-
pressive gains in the convergence rate but no method for imposing a non-negativity
constraint is described. In [19] it was noted that the effect of the preconditioner asso-
ciated with the EM algorithm was to modify the update vector from the direction of
steepest ascent to one which reduces the gradient towards zero for pixels as their inten-
sities approach zero. In this manner the image is always constrained to be non-negative.
It was also argued that the effect of the preconditioner is to improve the convergence
rate by effectively improving the conditioning of the preconditioned Hessian relative
to the original Hessian of the log-likelihood function. Kaufman [19] also proposed two
important modifications to the basic EM approach: (i) to use the EM-direction vector
but to perform a line search for the optimal step length and (ii) to utilize a conjugate
gradient method with the EM preconditioner. Both techniques lead to improved con-
vergence rates for ML estimation but neither method is implicitly constrained to the
non-negative orthant, as is the case for the standard EM algorithm. To overcome this
problem, possible alternatives include using a suboptimal step size to avoid negative
values at each iteration or to truncate any negative values to zero once the pixels have
been updated using the optimal step size [19]. In either case, the effect of the positivity
constraint is to largely negate the improvements which may have otherwise resulted
from using a conjugate gradient method. In this paper we deal with the non-negativity
constraint using a penalty function. In this way we can replace the constrained problem
with an unconstrained one and apply conjugate gradient techniques directly.
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In the case of transmission PET, attempts at developing an EM algorithm have
not resulted in attractive closed form update procedures [21]. An approximate EM
algorithm was proposed in [3] but the computational cost remains high. Lange [20]
proposed a preconditioned gradient descent method by drawing an analogy to the EM
algorithm for the emission case. In this algorithm the update vector is again formed
by multiplying the gradient vector of the log likelihood function by a diagonal precon-
ditioner which is a function of the current estimate of the transmission image. When
combined with a line search and a positivity constraint, the algorithm should exhibit
monotonic increases in the log-likelihood. Similarly, the conjugate gradient scheme
proposed in [19] could be adapted to the transmission problem with an appropriate
preconditioner. However the benefits of the conjugate gradient approach will be lim-
ited by the presence of the positivity constraint. Below, we again apply the penalty
function approach to overcome this problem.

In both emission and transmission CT the standard ML estimation problem is
often ill-conditioned. This property is manifested in the high variance that is often
observed in ML reconstructions at high iteration numbers. Here we avoid this problem
by maximizing over the log posterior density rather than the log likelihood function.
Alternative ways of dealing with this problem include the use of sieves [28] or early
termination of the ML algorithm using a stopping rule [40]. To specify the posterior
density, we need to introduce a prior density which models the spatial configuration
of the image. A wide range of priors have been investigated for both transmission
and emission tomography as discussed in Section (2.3). In this work we use Markov
random field (MRF) priors. Using the Poisson data model and the MRF prior we
form a MAP estimate by maximizing over the posterior density. This can be achieved
by extending the EM ML algorithm to the MAP problem [24], [12], [14]. With the
exception of a restricted class of priors, there is no closed form solution for the M-step
for MAP estimation and the EM procedure is often relaxed to a generalized EM (GEM)
algorithm in which the maximization step in the EM algorithm is replaced with an
updating procedure which guarantees monotonic increase in the posterior probability
at each iteration. An alternative EM-type algorithm is described in [32] [15] in which
a closed form modified M-step is used. This algorithm has been shown to converge
to a MAP estimate when the log prior is concave. In the case where a line process is
also included in the MRF model optimization during the M-step becomes even more
difficult. Deterministic annealing schemes which are embedded in the GEM algorithm
are described in [22] and [11}. Here we avoid the use of the EM formalism entirely
and work directly with gradient based techniques similar to those discussed above.
We examine two MRF priors. The first of these, the Geman and McClure prior [10},
is differentiable and fits directly into the gradient based approach. The second is
the so-called weak membrane model [11] which includes a line process to represent
discontinuities in image intensity. In this case we use a continuation method similar to

that described in [11] except that again we use a gradient based procedure in place of
the GEM algorithm.
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2 The Statistical Model

Both transmission and emission PET data can be well modeled as a set of independent
Poisson random variables. Here we briefly describe the models for the data and the
manner in which scattered and random coincidences are included in the model. The
form of the prior is also discussed.

2.1 Transmission Data

Transmission PET data are collected using an external positron source. The two com-
mon configurations available are a fixed ring source [16] or a rotating rod source [38].
The major advantages of the rod source are that the scatter component in the trans-
mission data is greatly reduced and also that there is the potential for simultaneous
acquisition of transmission and emission data. The model below is appropriate for rod
and ring sources.

In order to reconstruct a transmission PET image, or to compute attenuation cor-
rection factors, it is necessary to collect both blank and transmission sinograms. The
blank sinogram is collected in the absence of a patient or other attenuating medium
and reflects the activity of the source. The transmission sinogram is then collected with
the patient in position. Both the blank and transmission sinograms are observations
of a random process and consequently should both be modeled as such. The likelihood
function for the transmission sinogram is a function of the expected value of the blank
sinogram, rather than the blank sinogram itself. In the Appendix we describe a non-
linear Bayesian smoothing technique for estimating the mean of the blank sinogram
using the observed blank sinogram.

Let y; denote the number of coincidences between the i** detector pair in the
transmission sinogram and %; the expected value of the corresponding element in the
blank sinogram. The transmission data, y;, can be modeled as independent Poisson
observations which consist of true, scattered and random coincidences, with respective
means ;(u), §; and #;:

gi = E(y:) = li(p) + & + 7 (1)
We assume that the image can be adequately represented as a set of pixels, each
with constant linear attenuation coefficient u;. The total attenuation between the it
detector pair is then determined by the sum of the attenuation coefficients u; multiplied
by their respective volume of intersection /;; with the i*» projection strip. Let 7, and
7. denote the data acquisition times for the transmission and blank scans respectively.
Similarly let §, and &, denote the system dead time (as a fraction of the total data
collection time) for the transmission and blank scans respectively. The mean of the
true coincidences in the transmission sinogram is then:

TyOy s

P00 = u.el=2ilioni) o _ Tyl
ti(p) = uje' ™ 2Ty L (2)

. . Fy . . . .
The normalization factor ¢ compensates for the difference in observation times
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for blank and transmission scans, and also for variations in system dead time, which
will generally be higher for the blank scan due to the higher singles rate. This model
assumes that for a given data set, deadtime is constant across all detector pairs in a
given plane and also that the deadtime of the system does not violate the assumption,
implicit in the Poisson model, that the probabilities of detection of each photon pair at
each detector pair are statistically independent. Currently, we simply use the deadtime
correction factors supplied in the header-file of the data which are calculated using an
empirical formula [37].

The scatter and randoms components are also functions of the unknown atten-
uation coefficients. Typically the data are precorrected for randoms by subtracting a
randoms sinogram from the transmission coincidence sinogram. The randoms sinogram
is collected using a delayed coincidence circuit with the same resolving time as that of
the coincidence sinogram. The delay that is introduced between the detection of the
first photon and the onset of the coincidence resolving window is sufficiently long that
a ’coincidence’ event detected during this time must be a random coincidence. The
subtraction of these two sinograms is performed automatically during data acquisition.
The effect of this correction is to compensate the data, in its mean, for the effect of
randoms. This follows since we are subtracting a random variable whose mean is equal
to the mean of the randoms component in the transmission sinogram. Unfortunately,
since corresponding elements of the transmission sinogram and randoms sinogram are
independent Poisson random variables, the randoms corrected sinogram is the differ-
ence of two Poissons whose variance is equal to the sum of their means. In other
words, randoms subtraction compensates in mean for randoms, but it also increases
the variance of the measurement by an amount equal to the mean of the randoms.
The measurement is no longer Poisson. To avoid this problem we must maintain the
transmission and randoms measurement as two separate sinograms.

There are many ways in which randoms may be treated within the model in
equation(1). We could jointly estimate the attenuation image and the randoms sino-
gram as proposed in [22]. Alternatively, we could assume a constant randoms contri-
bution as described in [33]. The method we have used here is to estimate the mean
of the randoms sinogram using the nonlinear Bayesian smoothing technique which is
described in the Appendix. This technique exploits the property that the randoms
sinogram at the surface of the detectors (i.e. before it is subject to spatial variations
in detector pair sensitivities) is usually very smooth. We use a Gaussian MRF model
for this smooth sinogram and compute a MAP estimate using a Poisson model for the
observed randoms. The resulting estimated mean randoms sinogram is then treated as
a constant in (1) when we optimize over the attenuation image.

The scatter component in (1) is highly dependent on the transmission image since
Compton scatter is the dominant attenuating mechanism at 511keV in human tissue. In
principal, the scatter component could be estimated at each iteration from the current
estimate of the transmission image [6]. Such a procedure would be exorbitantly costly.
However, it may be sufficient to use a fixed estimate of the scatter sinogram computed
from a preliminary estimate of the transmission image. Our basis for this claim is
that the scatter sinogram is typically very smooth and is robust to small variations in
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the image. Consequently, computation from an approximate attenuation image should
not differ considerably from computation using a more accurate image. Ollinger [30]
recently presented a technique for computation of the 3D scatter sinogram for emission
PET data. In [29] we describe a fast in-plane scatter computation for the transmission
case. In both cases, the scatter model is based on the Klein-Nishina distribution.

Given independent estimates of the blank sinogram, randoms sinogram and scat-
ter sinogram, we can write the likelihood function for the transmission image as:

plyle) = T8, i =l + 354 7 3)
Thus, the log-likelihood function is

in plylp) = 3_{~8i + wiln(§:)} (4)

2.2 Emission Data

The development of the emission model is very similar to that of the transmission
model. Again the data can be represented as a set of independent Poisson random
variables z; with mean Z; equal to the sum of three components: true coincidences
é;, randoms 7;, and scatter §;. The major difference is that in this case the unknown
parameters, the emission intensities in each pixel, are related to the mean of the data
through an affine transform rather than an exponential.

&= E(z:) = &(A) + 8 + 4 (5)

where

& = D pijhj (6)
2

In this case the elements p;; of the matrix P denote the probability of detecting an
emission from pixel site j at detector pair :. Assume that there are M detector pairs
and N2 pixels in the image. Then P is an M x N? matrix which may be factored as
follows:

P = P(detectors)P(attenuation)P(geometric)P(positron) (7

where P(detectors) is a banded M x M matrix that can include factors related to the de-
tectors including intrinsic and geometrical sensitivity, crystal penetration, inter-crystal
scatter and system deadtime; P(attenuation) is a diagonal M x M matrix that contains
the attenuation correction factors; P(geometric) is an M x N? matrix that contains the
probabilities that a photon pair produced in each pixel site, in the absence of an atten-
uating medium, reaches each of the detector pairs - this matrix contains terms for both
the geometrical relationship between the source volume and the detectors and for the
effect of uncertainties in the angular separation of the photon pair produced by annihi-
lation; P(positron) is an N? x N2 matrix that can model the effects of positron range. A
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similar factorization scheme for PET is described in [1]. The reconstruction schemes
described below utilize forward and backprojection operations. Forward projection
using equation (7) involves multiplying the image vector by each of these (sparse) ma-
trices in turn. Similarly, backprojection requires multiplying a vector of length M by
the transpose of each of these matrices in reverse order. Since these matrices are all
very sparse and can, for the most part, be pre-calculated, these computations are very
fast. A full model would include all of the above factors in P. Currently, we have
not included factors to model positron range and angular separation or inter-crystal
penetration and scatter. These factors while important, particularly in the latest gen-
eration of high resolution scanners, are probably second order in comparison to the
other factors listed above.

As with the transmission data model, we assume that the randoms and scatter
components are additive processes which can be estimated independently of the it-
erative reconstruction process. Randoms can be estimated from a separate randoms
sinogram using the nonlinear Bayesian smoothing technique described in the Appendix.
The scatter component can be estimated using a forward scatter computation based
on a preliminary reconstruction of the emission image as described above using the
methods in [6] or [30].

Using this model we can then write the log likelihood as

AT

pal) =[50, &= &(X) + 8+ (®)
Thus, the log-likelihood function is

In p(z|])) = Z{—:&; + z;in(%;)} (9)

Note that the only difference between the emission model (8) and the transmission
model (3) is the form of the relationship between the mean of the true coincidences and
the unknown parameters. Consequently, the algorithms for emission and transmission
reconstruction can be developed simultaneously.

2.3 The Prior and Posterior Densities

The reconstruction methods developed below are based on a Bayesian formulation
with the prior drawn from the class of Markov random fields. A wide range of MRF
priors have been studied for emission and transmission tomography including intensity
process models [10], [35], [12], [14] and intensity and line process models (18], [22],
[11). In this work we consider priors of both types. Since we will be using gradient
based optimization it is advantageous to work with a prior which has continuous first
derivatives such as the Geman and McClure [10] prior:

p(0) = 1 -sve _ %e'fﬂ'zs 2j5i Visl0::83) (10)

\\]
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where ¢ denotes either the attenuation image u or the emission image A. U(f) is a
Gibbs energy function defined as the sum of potential functions V;;(8;, 6;) on pairwise
cliques of neighboring pixels:

ki;(8; — 6:)°
11
82 + (0; - ;) (1)

The constants k;; are generally chosen as the inverse of the Euclidean distance between
the pixel centers for each pixel pair. This prior is applicable to both two and three
dimensional images with an appropriately defined neighborhood.

The potential function in (11) acts like a quadratic penalty for (9; — 6;)* < &
but is bounded above by unity. Consequently, the prior progressively penalizes inten-
sity differences and thus favors locally smooth images, but by controlling the behavior
for large intensity differences through 4, true discontinuities in the image are not over
penalized. We have found that with an appropriate choice of é this prior yields recon-
structions which are locally smooth but do not appear to over-smooth across intensity
boundaries. In the case of transmission images, we expect the discontinuities in the im-
ages to correspond to bone/soft-tissue and soft-tissue/air boundaries. At 511keV, the
attenuation coefficient for soft tissue is almost constant and the image histogram should
contain three distinct peaks centered around 0.0cm~!(air),0.095¢m ! (soft-tissue) and
0.151cm™!(bone)[17]. In the case of chest scans, lung tissue can have values distributed
from zero to 0.095¢cm™!. We have chosen the value of § = 0.025 as approximately
half the intensity difference between bone and soft-tissue as a compromise between
the desire for clean anatomical boundaries and smooth variations inside anatomical
structures. More restrictive priors have been proposed in [7] and [31]. These priors
specifically include the mean values for each tissue type. For emission imaging the
choice of a value for § in (11) is more difficult. Clearly the value should reflect the
absolute concentrations in each pixel, so that é should change linearly with dose. Cur-
rently we use a filtered backprojection reconstruction and choose § as approximately
half the intensity of the significant background activity (e.g. the white matter intensity
in an '8FDGQG brain image).

V".i(oh 0!') =

An alternative to (11) which explicitly models the presence of discontinuities in
the image are the class of MRFs which include a binary line process to represent these
discontinuities. In general the Gibbs energy function for these models may include
potentials on cliques which include neighboring line sites - these potentials are typically
defined to encourage the formation of continuous boundaries in the image. A more
restricted version of this model, the so-called weak membrane model, does not include
cliques containing more than one line site and has the following form:

p(0,1) = e 30D (12)
where
U@, =335 kii{(0: — 0,)°(1 — L) + as5li5} (13)
>t

Here the line process {;; represents the presence (=1) or absence (=0) of a discontinuity
between neighboring pixels ¢ and j. The model is general for two or three dimensional
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images and the line process can be defined for both directly and diagonally adjacent
pixel pairs. The constants k;; are again generally chosen as the inverse of the Euclidean
distance between pixels ¢ and 7 and the constants a;; represent the penalty associated
with introducing a discontinuity between pixels ¢ and j (note that when the line process
is ’on’ the first term in the energy function (13) becomes zero). The simplest choice
of a;; would be a constant for all pairs {ij}. However, if additional information were
available, in the form of anatomical boundary information for example, then this could
be used to influence the formation of the line process through spatially variant a;;’s [11].
In Section (3.5) we show how the gradient-based optimization schemes presented below
can be adapted to MAP estimation using this weak membrane model via a continuation
method similar to those in [2] and [11].

In the following section we describe a procedure for computing a MAP estimate
by maximizing over the posterior densities p(u|y) and p(A|z) for transmission and
emission reconstruction respectively. Applying Bayes theorem for the Geman and
McClure prior (11) we can write the log posterior probabilities as:

in p(uly) = In plolk) = GUG) + Ko

Z{ 9 + piln(f:) 221/.,(#.,p, + K, (14)

f >t

and

Inp(Alz) = Inp(z|r) - lU(z\) + K.

Z{—z. + ziln(2:)} - —'E 2 Vi(hi, A5) + K. (15)

t I>i

where K; and K, are constants. The extensions to the weak membrane prior are
described in Section (3.5).

3 Computing the MAP Estimate

3.1 The Preconditioned Conjugate Gradient Method

The classical approach to the maximization of an unconstrained functional ®(8) with
continuous derivatives is to use some form of gradient ascent:

o(n-l-l) — 0(") + a(”)p(“) (16)

where the direction vector p* is a function of the gradient vector g™ = V&®(8),_ym -
The scalar parameter o™ is usually chosen using a line search to maximize ®(8("+1)).
In the steepest ascent algorithm, the direction vector is simply the gradient vector g(").
In this case the convergence rate depends on the condition number of the Hessian H(6*)
of ®(0*). The rate of convergence can often be dramatically improved by modifying the
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direction vector. For example, Newton’s method uses the direction vector formed by
the product of the inverse of the Hessian with the gradient vector. Newton’s method
exhibits quadratic convergence properties, but exact computation of the inverse of the
Hessian is impractical and is often replaced with some approximate inverse (C). In
this case the convergence rate is determined by the condition number of C H(8*) [26).

An alternative to the steepest ascent and Newton methods is the method of
conjugate gradients. For quadratic cost functions convergence is attained in a finite
number of steps. When modified to non-quadratic problems, while the method no
longer converges in a finite number of steps, the conjugate gradient method often
exhibits favorable convergence rates. Convergence properties can be further enhanced
by the introduction of a positive definite preconditioning matrix C. The improvement
gained by the use of the preconditioner again depends on the condition number of
the preconditioned Hessian C H. The preconditioned Polak-Ribiere form of conjugate
gradient (PCG) is as follows:

gntl) = g(n) 4 oM p(n) : o™ by line search

) = 4 (n=1),,(n-1)

P + pgi"="p

dm = Cg (17)
g1 = (g™ —gtn=1))Ta(m)

g("—“Td(""l)

The PCG algorithm is initialized with p{® = d®, and iteratively computes the
conjugate directions, p™. Care must be exercised to ensure that p{® is an ascent
direction. If the p™ update equation is premultiplied by g7, then

n T n T n— ﬂT ”n—

The first term on the right hand side is positive by the positive definiteness of C. The
second term, though, can become negative which can potentially result in

g(ﬂ)Tp(") <0 (19)

which makes p'™ a descent direction. In these cases, we reinitialize the PCG algorithm
with p(® = d™,

3.2 Non-negativity and the Penalty Function

A major problem that arises with any of the gradient based methods discussed above
is that they are designed for unconstrained optimization, yet for both transmission and
emission PET, it is necessary to confine the image to the non-negative orthant. This can
be easily achieved by limiting the step size a{”) so that the image remains non-negative
at each iteration. In images with many zero valued pixels, convergence is very slow,
since the constraint boundary is hit at many iterations [19]. A more successful approach
is to use a clipping operator [39], i.e. if the n** iteration produces negative pixel
values, they are projected back onto the constraint surface using a clipping operator.
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A major disadvantage with this however, is that any time the clipping operator is
applied, a second forward projection of the new image will be required to proceed to
the next iteration because the new image is now a nonlinear function of the previous
image and the unconstrained update vector. This can almost double the per-iteration
computational cost.

An alternative to the two schemes outlined above is to convert the constrained
optimization problem into an unconstrained problem using either a barrier or penalty
function {26]. The barrier function method confines the search to the interior of the
constraint region (in our case the non-negative orthant) by adding to the cost func-
tion a term which increases unboundedly as the boundary of the constraint region is
approached. The penalty function method adds to the cost function a penalty term
which penalizes values which lie outside the allowed interval. Associated with these
methods is a parameter 4 that determines the relative weight of the penalty or barrier
function and the original cost function. In the limit as this parameter goes to zero,
the solution of the new unconstrained problem approaches the solution of the original
constrained problem.

In the following we use a penalty function method. Consider the problem

mazimize ®(6)

subject to 820 (20)

where @ is a continuous function on R™. The idea of the penalty function method is
to replace the problem (20) by an unconstrained problem of the form

magimize q(v,0) = () — %P(o) 1)

where 7 is a positive constant and P is a continuous function on R" satisfying (i)
P(0) > 0 for all 8 € R*, and (ii) P(8) =0 iff # > 0. When a gradient based technique
is used to solve the new problem, it is also preferable that the function has continuous
first derivatives. The procedure for solving (20) is the following : Let {%}, k =1,2,...
be a sequence tending to zero such that 4 > 0, 4x > 441 For each k, find the 0; that
maximizes (7, #). Then any limit point of the sequence 8 is a solution to (20) [26)].

For the transmission problem we use the following quadratic penalty function:
1 JTRR
=P(p) =3 (ZF) u(—p;) (22)
v ;i 7

where u(.) is the unit step function. Although in theory a sequence of solutions should
be generated corresponding to a decreasing sequence in the parameter «, in practice we
find that provided an appropriate value of + is used it can be held constant throughout
the iteration process without either significantly reducing the convergence rate of the
algorithm or resulting in significant negative pixel values. A value of ¥ = 0.010,14z,
where 0, is the maximum pixel intensity in the image was experimentally observed to
be a good choice for many computed phantom and clinical studies in both transmission
and emission reconstructions. In the transmission case 8,,,; &~ 0.151cm™!, but in the
emission case a preliminary FBP reconstruction is necessary to determine 0,,,;.
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In the emission case we use a modified form of (22):

2

%P(A) = Z(AJ ; 1’) "’(_’\J' + 73)) V.20 (23)

2

We found that this produced faster convergence than (22). We believe that the slower
convergence when using (22) is due to the fact that the log likelihood component of
the posterior in (15) diverges as the mean of any element Z; of the sinogram, for
which the data z; is non-zero, approaches zero. Therefore a negative gradient sum over
pixels associated with a projection which is already close to zero (for the current image
estimate) can produce a very small step size which in turn reduces the convergence rate
of the algorithm. The modified penalty (23) adds a small positive gradient to small
positive pixels and results in larger step sizes and faster convergence. As v, — 0 this
effect is gradually removed. We have observed empirically that reducing 4, according
to the sequence v,(n) = M)l-:%"—“ at iteration n, results in fast convergence. We note
that the slow convergence when using (22) was encountered primarily with real data
for which separate scatter and random components were not available. Since these
components are usually non-zero in all elements of the sinogram, we anticipate that
this problem will not arise when these components are included in the procedure.
Finally we note that in the transmission case there is no such problem, since even
when projections become negative, the log-likelihood function is still bounded.

3.3 Preconditioners

The trick to achieving fast convergence of the conjugate gradient method is to use an
appropriate preconditioner. Recall that the convergence characteristics of the conju-
gate gradient method are determined by the eigenstructure of the Hessian. When a
preconditioner is used, the convergence behavior is then dependent on the product of
the preconditioner and the Hessian. There are two problems that the preconditioner
is capable of dealing with. Firstly, the poor conditioning of the Hessian of the original
posterior probabilities can be circumvented through the use of a preconditioner. Sec-
ond, the conditioning of the Hessian can be greatly affected by the penalty function
if any of the constraints are active, i.e. if any pixels are negative. An appropriate
preconditioner can compensate for this effect.

Lange et al [20] noted that the EM-ML algorithm for emission reconstruction can
be viewed as a gradient ascent method where the gradient is modified by a diagonal
preconditioner:

A
Pik
i

CiM = diag{

} (24)

Kaufman [19] used this idea as the basis for a preconditioned conjugate gradient tech-
nique for maximum likelihood estimation. In the case of transmission imaging, Lange
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et al [20] propose the following preconditioner:

(n)
CiM = diag{LE—} (25)

> Yil

In the following we use the preconditioner Cg for emission reconstruction and the
following modified form of Lange’s preconditioner for transmission reconstruction:

(n)
C = diag{E:—)
ol

f

(26)

We find in practice that there is no noticeable difference in convergence behavior be-
tween (25) and (26). Note that the preconditioners above are positive definite only
when the current estimates of the image are strictly positive. They can be made pos-
itive definite by simply thresholding the A’s in (24) and the u’s in (26) at a small
positive constant. We use 0.01\,,, for (24) and 0.01y,,,, for (26) as threshold values.
We have also studied other more complex, non-diagonal forms of preconditioners simi-
lar to those investigated in [4], but again found no further improvement in convergence
rate.

When a penalty function is used to impose non-negativity, the preconditioners
above need to be modified. Since it is not practical to compute optimal solutions to
the unconstrained problem (21) for a large number of values of the parameter v, we
can instead try to maximize q(4, ) for a single small value of 4. Unfortunately,
as shown in [26], the eigenvalue structure of the Hessian of the modified objective
function becomes increasingly unfavorable as ¥ — 0. Following [26], we can partition
the Hessian () of the modified cost function g(yx,8) as

- _ | Hu Hp 0 0
H_H+F_[H;I; H22]+[0 dlag{—.vz_z} (27)

where H denotes the Hessian of the unpenalized functional ®(#) and I' denotes the
Hessian of the penalty function (22). Here, the elements of the vector # have been
rearranged as [0767] where 8, are the elements of § which currently do not violate
the positivity constraint, and @, are the remaining elements which do violate the con-
straint. The submatrices Hy k,! = 1,2 represent the corresponding partitions of the
unpenalized Hessian. Clearly H becomes increasingly ill-conditioned as + is reduced,
if any of the pixels violate the positivity constraint.

To overcome this problem we define a preconditioner which compensates for the
ill-conditioning;:

I 0
() _
Cpcnalty - [ 0 ¢ dzag{—?;} . (28)

where 9 is a scalar constant. For « sufficiently small, the lower-right block of H in
(27) is dominated by the penalty term and the rate of convergence of this method is
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determined by the eigenvalues of

n)  f H, H
C;(:er)mltyH = [ 0" wl; ] (29)

of which k should equal ¥, where k is the number of pixels violating the constraint. The
remaining eigenvalues are the eigenvalues of Hy;. Thus, if the smallest and largest eigen-
values of H), {a, A} are located such that the interval [a,A] contains 1, the convergence
rate of the conjugate gradient will be equal to the canonical rate [(A —a)/(A + a)]’.
To prevent the penalty function slowing the convergence rate it is necessary to choose
1 to lie in the interval [a,A]. Currently, we choose 3 by trial and error. However, we
have found that for fixed 4, (our choice of v is described in Section (3.2)), a single
value of 1 results in fast convergence over a wide range of clinical data sets.

In conclusion, we can introduce preconditioners to deal with the illcondition-
ing associated with both the original unconstrained function (using (24) or (26)) and
the penalty function (using (28)). The overall preconditioner is then the product
Chenaity Cr for transmission reconstruction and CpenqityCE for emission reconstruction.
In the standard applications of preconditioners, the preconditioner is not changed at
each iteration. Changing the preconditioner can certainly have adverse effects on the
convergence behavior, particularly for a conjugate gradient method. However, one
could argue that the preconditioner will not change rapidly from one iteration to the
next. It is certainly the case that practical benefits, in the form of fast convergence,
are realized.

3.4 Optimal Line Searches

The preconditioned conjugate gradient method in (17) requires a line search at each
step to compute the optimal step size o{”. To perform this line search we use a
Newton-Raphson procedure:

b+ _ o _ (99(7,00*1)/00)
(0%q(, 8n+1))/da?)

where 8(*+1) = g(*) 4 oy in (17) and g(v, #*+1) is the penalized posterior density
evaluated at 0(*+!), Here we consider the computation involved in (30) for both the
transmission and emission reconstruction.

(30)

In the transmission case, the penalized posterior density has the form:
In p(ut™+) = p® 4 ap™ly) = S{=(vf + & + ) + piln(e{” + & + 7:)} a1
=3U(pt1) — 1p(ulr1))
where ) )
v‘(”) = Uie(_ Zm limsm )e(-a Em limpm’) (32)

Taking first and second derivatives of this function with respect to the step size a gives
the following expressions:
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= ;{v(")(zlamp D)1 - —(,.)_*_—+

- BTt A

)} = GUGH) -~ ()

U s

—\72 {n+1)y _ 22 (n+1)
v U (#0) ,YV P(p'"*7)
(33)

Examination of equations (31) and (33) reveals that once the update direction
vector p(™ has been computed and forward projected, evaluation of the first and second
derivatives in (33) is fast. Therefore, at each iteration the heaviest computational work
is a backward projection to find the gradient vector, g™, and a forward projection of
the direction vector, p{"). The forward projection of u(**!) can be computed as a linear
combination of the projection of the previous estimate u(™ and the update direction
vector p®). Using an HP 9000(series 700) workstation we found that for a 128 x 128
pixel image forward and back projection require approximately five seconds each and
two to three iterations of the Newton-Raphson search requires less than one second.
The per-iteration computation cost of GEM and PCG are almost equal. The PCG line
search procedure is replaced in GEM by a coordinate ascent search procedure.

Although, the log-likelihood function for the transmission model without addi-
tional scatter and randoms terms is concave, when these terms are added this is no
longer true. Addition of the prior introduces additional non-concavity. Consequently,
at best we would expect to converge on a local maximum using our conjugate gradient
method. In the line search, the Newton-Raphson will fail for values of the step-size
parameter for which the corresponding behaviour of the cost function is non-concave.
This is simply checked by looking at the sign of the second derivative in (30). In the
event that the Newton-Raphson procedure fails, an approximate line search can be
performed using Armijo’s rule [26].

The development for the emission case is very similar to that described above.
The penalized posterior density has the form:

In p(A+) = X 4 opM|z) = E{—(v}") +8+7)+ :c.-ln(v,‘") + & + )}

_ Iy(AeH)) - Lp(a(t) (34)
B ¥
where
”a(n) ZP:J Ve + GZ Pi;p; (n) (35)

Taking first and second derivatives of this functlon with respect to the step size a gives
the following expressions:

gg; = _Z{ ZPUP," —(-J+—+—')} - EVU(,\("H)) —VP(,\("'H))
(n)y2

8% (ZJ Di;P; ) VQU ,\(n+l) _V2P A("'H)

a2 E{ O™ 45+ ‘}2} 3 ( ) — ( )

(36)
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As with the transmission case, once the new search direction vector p(™ has been
forward projected, the additional cost of performing the line search is small.

In the transmission case, range for the Newton-Raphson line search over which
P(u("*1|y) is bounded is a”¢[0,00). In the emission case, P(A("1)|z) is bounded for

a”e[0, o ,.) where

A(")

ZE TN
X, pispi (37)

at = min {

it Tippd) <0

3.5 Deterministic Annealing Techniques

The preconditioned conjugate gradient method can be modified for use in MAP esti-
mation in conjunction with the weak membrane prior defined in (12) using a contin-
uation method. The basic idea behind the continuation methods is to approximate a
non-concave function which has discontinuous derivatives with a sequence of smooth
functions that converges uniformly to the original function. Through this procedure
it is possible to avoid local maxima of the original function, and thus converge on a
more desirable maximum. Although in general no global convergence properties are
known, favorable behavior has been observed by several authors [2], [11] and [9]. Here
we briefly describe how this approach can be combined with the gradient methods de-
scribed here. Readers are referred to [2], [11] and [9] for a treatment of the underlying
theory.

It is straightforward to show that the MAP solution for the weak membrane
model (12) (with intensity and line processes) is identical to that obtained using a
"broken parabola” (with an intensity process only) with the following Gibbs energy

function:
U®) =223 Vii(6:,6;) (38)
1 >t
where ki (6 — 6 )2 if (6:; — 6 )2
0. oy — | Kii(0i—0; (6 —0;)° < o
Vi;(6;,05) = { kijou; if (6; — 6;)* > oy

Direct optimization using (38) is difficult as the function does not have continuous
derivatives and its gradient is zero once the intensity difference exceeds a given thresh-
old. The continuation methods approximate this function with a sequence of smooth
functions which converge to this broken parabola. In [11] it is shown that an appropri-
ate sequence can be found using a marginal posterior parameterized by a temperature
parameter T'. To briefly summarize this approach we first note that maximizing over
the posterior p(0,{/y) (where y is the data) is equivalent to maximizing over the mod-
ified posterior:

(39)

pr(6,1/3) = -p(6,1/u)* (40
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where K is the appropriate normalizing constant. Now let pr(8/y) denote the marginal
of the modified posterior:

pr(0/y) = X pr(6,1/y) = - ”(y/")’z: p(0, ) (1)
0 T p(y)* G

where the sum over {!} denotes the sum over all possible line configurations. It can be
shown that in the limit as T — 0 any  which maximizes pr(8/y) is also a maximizer
of the posterior with the broken parabolic prior (38). In turn, any § which is a MAP
estimate over the broken parabolic prior is also an image which maximizes the original
posterior density with the weak membrane prior. Thus T' parameterizes a sequence of
functions such that the 8% which maximizes these functions converges to the §* which
solves the original MAP optimization problem as 7' — 0.

It can be shown [2][11] that integrating over the line process yields the following
Gibbs potential function:

kij kijaig
VZ(8:,6;) = =T In [ T8 0~0F 4 5" 2)

It is easy to prove that

kii(0: — 0;)"  if (0: = 6;)% < o
ki:a

15 Oij if (0. - 0j)2 > s 1 (43)

lim V.7 (6:, ;) —{

i.e. the broken parabola.

For each T' we compute 6} as the maximizer over the log of the modified marginal
posterior
1
In pr(6/y) = in p(y/6) - ZZ 1(6;,6) (44)
T
f >t
By slowly reducing T as each new 87} is reached, we converge to a maximum of the
original posterior density. Since for large T the function In pr(6/y) is smoother than
In p(8/y), this annealing process can avoid local minima which may otherwise be
encountered by optimizing directy over the original posterior density. However, this is
a deterministic annealing scheme, so we would expect convergence to a local maximum
only.

A GEM-based continuation method for emission tomography which uses this ap-
proach is described in [11]. In order to obtain a closed form M-step in this algorithm
the line process (or more precisely, its conditional mean) is reintroduced at each iter-
ation. As an alternative, we can apply the penalized conjugate gradient procedure to
optimize over (44) with only minor modifications. Ideally, the algorithm should track
the solution 8% continuously with respect to T'. In practice, optimization can only be
performed at a finite number of temperatures. In the results presented below using this
method we used only six different values of T starting with an initial value T' = 2.0. T
was then halved every 10 iterations. The PCG algorithm was also reinitialized every
10 iterations, starting at the 20** iteration. The algorithm was terminated at the 60*»
iteration as compared to the 30%* iteration for the other PCG methods.
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4 Results and Discussion

Below we examine the performance of the PCG methods using simulated and phantom
data. In all these cases the Geman and McClure prior was used and two dimensional
images were reconstructed using an 8-nearest neighbor model, i.e. each plane was re-
constructed independently. Clinical results are then presented for a whole body study.
In this case the transmission images were reconstructed using a two dimensional 8-
nearest neighbor system and the emission images were reconstructed using both a two
dimensional 8-nearest neighbor system and a three dimensional MRF model with 18-
neighbors per interior pixel - 8 in the transaxial plane and 5 in each adjacent transaxial
plane. Three dimensional reconstructions are presented for both the Geman and Mc-
Clure prior and the weak membrane prior.

4.1 Simulations and Phantom Data

In Figure (1) we show convergence behavior using computer generated transmission
data for a chest phantom and the Geman and McClure prior for the following algo-
rithms: penalized preconditioned conjugate gradient (PCG) and preconditioned steep-
est ascent (PSA) as well as conjugate gradient (CG) and steepest ascent (SA) without
preconditioning. Figures (1a) and (1b) show the posterior probability as a function of
iteration number. These figures indicate significantly faster convergence using precon-
ditioning and further improvements using conjugate gradient as opposed to steepest
ascent. Figure (1c) shows the total squared error between the true image and the
reconstructed image as a function of iteration. Also shown are the values of the total
squared error for a PCG based maximum likelihood estimator and the fixed error as-
sociated with filtered backprojection. While squared error is a crude measure of image
quality we can see from this plot the regularizing influence of the prior (relative to the
maximum likelihood estimator) although at higher iterations the PCG method appears
to exhibit a slow deterioration. This could probably be reduced, at the risk of over
smoothing, by increasing the influence of the prior.

The convergence behavior for emission data for a computer based brain phantom
is shown in Figure (2). The emission data was simulated with a 10% randoms com-
ponent. Figure (2a) compares the posterior density as a function of iteration number
for PCG and the GEM [14] methods. Figure (2b) compares the [, error (scaled by the
l; norm of the true image) in the reconstruction using the PCG-MAP algorithm, in
comparison to the standard EM-maximum likelihood algorithm, the GEM algorithm
and FBP. Again we see the fast convergence behavior of PCG compared to GEM as
well as the superior performance of the MAP estimate compared to ML and FBP. In
these simulations, the reconstruction region was chosen as an elliptical region around
the head. Our simulations reveal that in the case when the reconstruction region con-
tains many zero-valued pixels outside the object, the convergence rate of PCG drops
while that of GEM does not. For practical purposes, smaller reconstruction regions
can be automatically estimated from the emission or transmission sinograms directly
or from a transmission image if one is available.
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In Figure (3) we show logarithmic plots of the {; and [, norm of the update vector
(times the step size) as a function of iteration number. These norms are scaled by the
corresponding norm of the true image. It is interesting to note that the PCG method
produces larger changes in the image in the earlier iterations than the GEM method.
At later iterations, the changes in the image using PCG decrease rapidly compared to
those using GEM. The [, norm may prove particularly useful as a practical measure of
convergence. Since this function is approximately monotonic in the earlier iterations,
it is possible to (approximately) bound the maximum change that can occur in the
image if further iterations are performed. To produce these plots, the software was
run with all variables declared as double-precision. If single precision is used, similar
behaviour is observed for approximately the first one hundred iterations. Beyond this
numerical errors begin to dominate.

Figure (4) illustrates the effect of applying FBP and PCG-MAP techniques to
transmission and emission data collected using a chest phantom in a Siemens/CTI
ECAT931 scanner. Figures (4a) and (4b) compare reconstructions of the transmis-
sion images from data collected for 2 minutes. The remaining images are emission
reconstructions comparing FBP and PCG-MAP with attenuation factors computed
using various techniques. To distinguish the effects of different attenuation correction
methods from the choice of emission reconstruction algorithm, we show in Figures (4c)
and (4d) MAP and FBP emission reconstructions respectively from attenuation factors
calculated using the standard procedure but using a transmission data set which was
collected for three hours and hence exhibits a very high signal to noise ratio. Figure
(4e) shows a MAP reconstruction from the same emission data set but using a reprojec-
tion of the two minute scan MAP-transmission image for attenuation correction. For
comparison Figures (4f) and (4g) show FBP and MAP reconstructions respectively,
both using standard attenuation correction factors calculated from the two minute
transmission scan. These images show that it is possible to reconstruct reasonable
attenuation images, and to achieve reasonably accurate attenuation correction, using
relatively short transmission scans. Of these results, using reprojections of the MAP
transmission image in conjunction with MAP reconstruction of the emission image
appears to give superior results.

4.2 Clinical Application to Whole Body Data

We have also applied the PCG techniques described here to the reconstruction of trans-
mission and '®FDG emission whole body scans collected using the 15 slice, Siemens/CTI
ECAT931 scanner. A total of 14 frames (4 minutes each) of emission data were col-
lected. To increase axial sampling, pairs of frames were interleaved by 1/2 of the slice
thickness resulting in an axial sample interval of 0.3375cm. Transmission sinograms
were also collected for 4 minutes each but no interleaving was performed resulting in
an axial sample interval of 0.675cm. In all reconstructions the transaxial pixel size is
0.44cm by 0.44cm. The method used to reconstruct the whole body images differed
slightly from that described above in one important respect. For a 3D reconstruction
the conjugate gradient method should update all pixels simultaneously. The dimen-
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sions of the image and the data are such that this becomes cumbersome. Rather, we
update each plane sequentially. We use a true 3D prior with an 18-nearest neighbor
model. Thus when we compute the gradient of the posterior, the contributions from
the prior require computation of the derivatives of the Gibbs potential functions across
planes. The resulting procedure can be viewed as a compromise between coordinate
ascent, such as that found in GEM-type algorithms, and true gradient based proce-
dure in which all pixels are updated simultaneously. When compared with 2D, the 3D
computation speed is reduced by about 20% due to the larger number of computations
associated with the larger neighborhood for the 3D prior and the delay incurred in
reading and writing intermediate vectors to the hard disk.

The transmission data were collected simultaneously with a randoms sinogram.
The emission data were collected using standard randoms subtraction techniques.
Transaxial images were reconstructed using the PCG method with 30 iterations per
image. Using an HP 9000(series 700) workstation we are able to reconstruct a full frame
of 15 transaxial slices in approximately 75 minutes. An additional 75 minutes/frame
was required to reconstruct the corresponding emission images. This time could prob-
ably be reduced by 33-50% by reducing the number of iterations with little noticeable
loss in image quality. Further savings could be achieved by dropping zero valued pixels
outside the patient from our updating procedure. Using the precomputed projection
matrices, the corresponding savings would be approximately linearly related to the
fraction of pixels removed.

Figures (5), (6) and (7) show transaxial, coronal and saggital sections through
reconstructions of the transmission and '®FDG emission images. The lettering (a) -
(h) below is consistent for each of Figures (5), (6) and (7). In (a) and (b) we com-
pare transmission reconstructions using filtered backprojection and MAP. The MAP
images exhibit significantly lower variance and sharper boundary definition although it
is difficult to clearly see the bone except for the skull and arms due to low count rates.
FBP reconstructions of the emission images using standard attenuation correction and
reprojections of the MAP transmission image are shown in (c) and (d) respectively.
The remainder of the images compare statistical emission reconstructions (all using
reprojections of the MAP transmission image) as follows: (e) ML; (f) MAP 2D Geman
McClure; (g) MAP 3D Geman McClure; and (h) MAP 3D weak membrane prior. The
overall quality of the MAP emission reconstructions, particularly in areas of low back-
ground activity, is superior to FBP, even when the FBP method uses the improved
attenuation correction. The results also indicate that it is beneficial to extend the 2D
spatial interaction terms in the prior to 3D interactions, since reconstructions with 2D
interactions only, show a higher degree of local smoothness in the transaxial direction
than in the axial direction.

5 Conclusions

We have presented a practical scheme for iterative Bayesian reconstruction of trans-
mission and emission PET images. Simulation studies indicate that the penalized,
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preconditioned conjugate gradient methods exhibit very favorable convergence rates
and the use of MRF priors produce relatively stable behavior. Phantom studies reveal
the potential for substantial improvement in image quality using MAP estimation in
the computation of both the attenuation factors (via the transmission image) and the
emission image, as compared to FBP. Results using clinical whole body data also ap-
pear to show a significant improvement in image quality compared to images formed
using current clinical methods. We hope to report shortly on whether this is borne out
by measurable improvements in lesion detectability.

The goal of this work was to produce a fast iterative procedure for PET recon-
struction. In order to achieve this goal we have departed somewhat from the stan-
dard procedures for the use of conjugate gradient techniques with preconditioning and
penalty functions. For example, the current preconditioner is changed at each iteration
- this has the potential to negate the advantages of using a conjugate gradient proce-
dure. However, our convergence plots appear to indicate that in practice the conjugate
gradient procedure does converge faster than a steepest ascent method. Furthermore,
we do check at each iteration to ensure that the update vector does increase the cost
function at each iteration - if not, the procedure is reinitialized. A second potential
source of problems is that the parameter of the non-negativity penalty function is held
constant throughout the reconstruction procedure. Although the theory calls for this
parameter to be decreased as each new optimum is reached, we find that in practice
it is fairly easy to choose a value of the parameter that neither results in significant
negative pixel values or noticeably reduces the convergence rate. As presented, these
approximate proccdures appear to work well in the sense that we observe significant
qualitative improvement in computer generated, phantom and clinical images using
these, as opposed to standard procedures. We are now in the process of performing
objective evaluations of these techniques.
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Appendix: Mean Sinogram Estimation

The elements of the blank sinogram (z;) are Poisson random variables. Here we describe
a Bayesian technique for estimating the mean of the sinogram from a single observation.
We then describe the extension of this technique to estimating the mean of a randoms
only sinogram.

Consider the following model parameters: (i) the intrinsic detector efficiencies,
¢(k), and (ii) the source sinogram f; which is a smoothly changing function that models
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the source ring projections and the geometric detector efficiencies. Then we can model
the mean of the true coincidences in the observed blank sinogram as:

M) = fie(ir)e(iz) (45)

where i; and i; are the indices of the detector pair corresponding to the i** element
of the sinogram. To model the blank sinogram accurately, randoms should also be
included in the model. The randoms component of the sinogram can be modeled as a
second Poisson process with mean

#; = 2rsingles(i,) singles(iz) (46)

where 7 is the coincidence timing window, and singles(.) represents the singles rate
at the individual detectors. Assuming that singles rates should vary smoothly (when
intrinsic detector efficiencies are factored out), an equivalent model for the randoms is

i = Fie(iy)e(d2) (47)

where 7; represents the smoothly changing mean of the randoms sinogram compensated
for intrinsic detector efficiencies. Since (45) and (47) are in the same form, the blank
sinogram can be modeled as

P10 =TI “ﬁ’,— AG) = fielin)elia), i = fi + 7 (48)

%

where f; now includes both random and true coincidences. The log-likelihood function

now becomes, X .

In p(z|f) = Y _{—fie(ir)e(ia) + ziln[fie(ir)e(i2)]} (49)
where the detector pair efficiencies are €(i;)e(iz). The detector normalization file, which
is usually acquired once a week using a planar source, provides a high count measure-
ment which can be used as a good estimate of €(i; )¢(22) after appropriate normalization
for geometric efficiency.

We use a Bayesian technique to compute an estimate of the mean of the blank
sinogram. A Gaussian Gibbs prior is used to reflect the expected smoothness of the
blank sinogram.

p(f) = ye H T Toni ¥l (50)

where
Vii(f) = kii(fi = f3)". (51)
for all two pixel cliques on an eight nearest neighbor system with k;; = 1 for vertical

and horizontal neighbors and k;; = 7‘; for diagonal neighbors. Maximizing the log of
the posterior density

In(flz) = In(z|f) - }—,zz V(). (52)

i 3>
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can be performed using any gradient type algorithm since the posterior density in this
case is concave. Once the mean blank sinogram has been estimated, it is possible to
subtract out the mean random component provided an independent randoms sinogram
is collected simultaneously. We use a simple modification of the above method to
smooth the randoms sinogram before subtraction.

Daily changes in intrinsic detector efficiencies are possible [16]. An alternative to
the use of the detector normalization file is to estimate the € vector directly from the
blank data set. Equating the derivative of (49) with respect to €(j) to zero yields a
simple update equation: E

2

() = —
+ (J) Zﬁf(n)(iz) (53)

where the summation index i is for all sinogram components in coincidence with detec-
tor j. A logical extension is to estimate f and e consecutively. The computation cost
is small in comparison to that of the MAP reconstruction of the transmission image.

The same idea can also be applied to perform a nonlinear smoothing of a standard
transmission or emission sinogram using the Bayesian method and the estimated €’s.
Although transmission or emission sinograms exhibit more variation than the blank
sinogram, a careful choice of prior will be very effective in reducing Poisson noise in
the measurement. Thus, an alternative to full MAP reconstruction of transmission or
emission PET images is to perform nonlinear Bayes smoothing of the sinograms via
MAP estimation and then apply filtered backprojection to the result. This is similar
to the methods presented in [13] and [8].

Finally, estimation of intrinsic detector efficiencies also provides an opportunity to
estimate a smoothed randoms sinogram, 7;, using a separately acquired randoms sino-
gram. Using the model for randoms in (47) (with estimated detector efficiencies) the
Bayesian estimation scheme described in (49)-(52) can be applied directly to estimate
rs.
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Figure 1: (a) Values of the posterior density versus iteration number for reconstructions
of a computer generated transmission phantom using steepest ascent (SA) and conju-
gate gradient (CG) methods, and preconditioned version of these methods (PCG,PSA).
(b) Zoomed in version of (a) showing (PSA,PCG) only. (c) Total squared error be-
tween the true and reconstructed image versus iteration number using steepest ascent
(SA) and conjugate gradient (CG) methods, preconditioned versions of these methods
(PSA,PCQ), filtered backprojection (FBP) and maximum-likelihood (PCG-ML).
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Figure 2: (a) Values of the posterior density versus iteration number for GEM and
PCG for a computer generated emission phantom. (b) A comparison of the {; norm
of the error between the reconstructed image and the true image (normalized by the
l> norm of the true image) as a function of iteration number for maximum likelihood
estimation via EM, and maximum a posteriori estimation using GEM and PCG. Also
shown is the total squared error of the filtered backprojection reconstruction.
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Figure 3: (a) !; norm of the update vector (times the step size) normalized to the !,
norm of the true image for PCG and GEM for a simulated emission brain phantom.
(b) I norm of the update vector (times the step size) normalized to the I, norm of
the true image for PCG and GEM for the same emission brain phantom.
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Figure 4: Transmission reconstructions of a chest phantom. (a) FBP reconstruction
using two minute data (2MD); (b) MAP reconstruction using 2MD. Emission recon-
structions using correction factors computed in each case from either 2MD or three
hour (3HD) transmission scans. (c) MAP reconstruction using 3HD, standard cor-
rection technique; (d) FBP reconstruction using 3HD, standard technique; (¢) MAP
reconstruction using 2MD, MAP-based attenuation correction; (f) FBP reconstruc-
tion using 2MD, standard technique; (g) MAP reconstruction using 2MD, standard
technique.
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Figure 5: Transaxial slices from the whole body study: (a) FBP reconstruction of
transmission data using the smoothed blank/transmission sinogram; (b) MAP recon-
struction from the transmission sinogram; (c) FBP reconstruction of the emission image
using smoothed blank/transmission attenuation correction factors; (d) FBP reconstruc-
tion of the emission image using reprojections of the MAP transmission image; (e) ML
reconstruction of the emission image using reprojection of the MAP transmission re-
construction; MAP reconstructions of the emission image using reprojection of the
MAP transmission reconstruction using different priors: (f) 2D Geman McClure prior;
(g) 3D Geman McClure prior; (h) 3D Continuation method.
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Figure 6: Coronal images from the whole body study: (a) FBP reconstruction of
transmission data using the smoothed blank/transmission sinogram; (b) MAP recon-
struction from the transmission sinogram; (c) FBP reconstruction of the emission image
using smoothed blank/transmission attenuation correction factors; (d) FBP reconstruc-
tion of the emission image using reprojections of the MAP transmission image; (e) ML
reconstruction of the emission image using reprojection of the MAP transmission re-
construction; MAP reconstructions of the emission image using reprojection of the
MAP transmission image using different priors: (f) 2D Geman McClure prior; (g) 3D
Geman McClure prior; (h) 3D Continuation method.
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Figure 7: Saggital sections of the whole body study: (a) FBP reconstruction of trans-
mission data using the smoothed blank/transmission sinogram; (b) MAP reconstruc-
tion from the transmission sinogram; (c) FBP reconstruction of the emission image
using smoothed blank/transmission attenuation correction factors; (d) FBP recon-
struction of the emission image using reprojections of the MAP transmission image;
(e) ML reconstruction of the emission image using reprojection of the MAP transmis-
sion reconstruction; MAP reconstructions of the emission image using reprojection of
the MAP transmission image using different priors: (f) 2D Geman McClure prior; (g)
3D Geman McClure prior; (h) 3D Continuation method.



