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1.0 Abstract

Various sequential real sonar data files are analyzed through different signal processing
algorithms. Data files are divided into two groups: files consisting of a signal of interest
(SOI) with additive noise and files consisting of pure noise. The purpose of these analyses
is to determine if a given data record contains the SOI. Methods of Power Spectrum Den-
sity estimation, Higher-order Spectrum estimation and Local Intrinsic Dimension (LID)
estimation are applied. A new method is introduced in LID estimation using higher-order
off diagonal cumulants and shown to be more consistent in categorizing the SOIs. Further
work needs to be done using Higher-order spectra-based time-frequency techniques for
non-stationary analysis due to the time-varying nature of the signals.

2.0 Introduction

Six sequential real sonar data files (TP1, TP13, TP15, TP2, TP25, and TP6) have been
analyzed through various signal processing methods. Data files TP13, TP15, TP2, and
TP6 consist of a signal of interest component with additive noise, where data files TP1 and
TP25 consist of pure noise processes. The nature of noise is unknown. The purpose of this
work is to analyze the data and to present discrimination methods to identify the signal
plus noise data from the noise only data. Various methods were applied for this purpose.
The applied methods may be separated into three major groups: Power spectrum methods,
Higher-order spectrum methods, and local intrinsic dimension (LID) estimation methods.
Here, the Welch method and Yule-Walker method were used for power spectrum analysis.
The higher-order spectrum analysis consists of applying the bispectrum and Third-Order
Recursion (TOR) Methods. Covariance LID (CLID) [6], higher-order diagonal LID
(HOLID-D) [7], and a new method using higher-order off diagonal LID (HOLID-OD)
were applied under the LID category. A description of these methods is given in sections
3-5. In section 6, we present the test results of HOLID-OD for Lorenz and Henon Maps.
Section 7 demonstrates the results of applying these algorithms to the real sonar data files.
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3.0 Power Spectrum Methods

Power Spectral Density (PSD) by definition is the distribution of power among the fre-
quency components of the signal under consideration. This is equivalent to the discrete
time Fourier transform of the autocorrelation sequence. Since our data is finite and it con-
tains noise, an estimate of the PSD is achieved through using Welch and Yule-Walker
methods.

3.1 Welch Method

The Welch method is one of the classical power spectrum estimation methods [1]. It is
implemented as follows:

o Segment the data into non-overlapping M records of L samples each. {xf i)( n)} for
n=0,...L-1and i=1,...M

¢ Using a Hanning window, estimate periodogram of each segment

. L-1 -jz—nnk :
Jf‘) (k) = ﬁ Z x(l) (n)w(n)e L fori=1,2,....M
= . L-1 )
U= L—n§0|w(n)|
¢ Average periodogram y
JOESWIRN? for k=0,...(L12)-1

i=1
* S(k) is the Welch periodogram of the signal.

3.2 Yule-Walker Method

The Yule-Walker (YW) method is based on the assumption that the data is generated from
an autoregressive (AR) system [2]. In order to estimate the PSD, coefficients of the AR
model are calculated from the estimate of the autocorrelation lags of the data. The power
spectrum density will be defined from these system coefficients. The following steps dem-
onstrate the implementation of YW method:

¢ Estimate biased autocorrelation lags
N-—|1

R(T) = I%/ Z x(n)x(n+7) for 1=0,...M

n=1



» Form the YW equations or “normal equations”

i ) N
R(O) R(1) .. RWM) a | 0,
R() RO . RM-D)|g | -0
R(M) R(M-1) ... R(0) | “1;1“»1 0

e Use the Levinson-Durbin algorithm to solve for {ayy ;,....ap 4} and Oy

e PSD is defined as:

Q
S(w) = M 5

M
1+ ZaM ie—”’m for |@| ST
b4
i=1

4.0 Higher-Order spectra

The following properties of higher-order spectra (polyspectra) [3 and 4] make them very
attractive for use in signal processing: (1) suppress the additive Gaussian noise and in the
case of bispectrum this is also true for non-Gaussian noise processes with symmetric prob-
ability density function (pdf); (2) detect and characterize the nonlinearities in the data; and
(3) preserve the phase information of the system. Here, the conventional Bispectrum and
parametric TOR methods are the Higher-order spectrum methods used [3].

4.1 Bispectrum

The conventional method of determining the bispectrum is used here,
e Data is segmented in M parts of length L each

(x(n)) i=l,...M and n=0,....L-1
» Fourier transform of each segment is calculated,
X)) = FFT{Y)
 Bispectrum for each segment is:
BY(w,,0,) = X)X )X (0;+w))
for Iml + (02| <1 (assume T =1)

» Average bispectrum is calculated as:

M
i=1



4.2 TOR Method

This method was introduced by Raghuveer and Nikias [3]. The TOR method is a paramet-
ric technique based on autoregressive (AR) modeling of the third order cumulants. The
following steps describe the implementation of TOR.

¢ Form the biased third moment estimates as follows:

Q Segment the data into K records of M samples each

Q min (M, M = n, M — m)
F & (myn) = -514- Z Xl(i)Xl(i)mX,(i)n
I=min(1,1=n,1-m) fori=l,....K
Q

K
Rimn) = £ 3, r® (mn)
i=1

¢ Form the system of linear equations:

(RO0) ALY . RG] [
R(I, 1) R(O, 0) e ﬁ(p—l’p_l) a2 - 0
R(-p,—p) R(-p+1,-p+1) ... R(0,0) | a,, 0

* Solve for {a;}, i=1,...,p.
¢ The bispectrum estimate is

B(wy,0) = H(0)H(0p)H (07 +03))
1

where H(w) = r

1+ 2 ayexp (—jon)  for|w| <n

n=1
We present the value of H() in section 6.

5.0 LID Analysis

Passamante, Hediger and Gollub in [6], Passamante and Farrell in [7], and Broomhead,
Jones and King in [8] suggested different methods of estimating the fractal dimension

4



(FD) for chaotic signals using the local intrinsic dimension (LID). In [6] and [8] respec-
tively, the covariance (CLID) and higher-order diagonal (HOLID-D) information con-
tained in the local data points in the embedded space were analyzed. CLID and HOLID-D
methods demonstrate more robustness to the presence of additive noise than the traditional
FD estimation algorithms such as Grassberger and Procaccia algorithm (GPA) [5], but still
are very sensitive to the choice of embedding dimension r for fixed delay (or the window
size). Here, we introduce a new LID estimation method which is less sensitive to noise
and the embedding dimension r. This technique is based on the fourth order off diagonal
cumulant matrix of the chaotic signal. This new technique will be referred as HOLID-OD.

5.1 Description of CLID, HOLID-D, and HOLID-OD methods

Assume the chaotic system generating the signal consists of n differential equations in n
variables. These set of equations may be transformed into an n'h-order equation of just one
variable via successive differentiations and eliminations. Therefore, everything is known
about the system of equations, if one variable is known at all times. Lets say, we are able
to observe only the discrete data of one variable, {x;} for i=1,2,...,N (which is very typi-
cal). Here, {x;} consists of a deterministic signal of interest, s;, and additive mean-zero,
white Gaussian noise, w;,

X =S+ w; (EQ1)

Theorems of Takens [12] and Mane [15] state for infinitely long noiseless sequential data
{x;} and any non-zero time delay 7, an attractor may be constructed in an r-dimensional
space, which will be diffeomorphicaly equivalent to the attractor in the phase space. This
attractor is formed through embedding the sequential data {x;} in r-dimensional space as
follows:

X1=[1X 40X 14 (r-12)

Xo=[x2.X2 1) X24(r-11]

Xn=[nXpsv-Xns(r-1y) (EQ2)

where vectors Xj, X2..-.X, represent the attractor in the embedding space. For the theorem
to hold, it is required that r>2d+ 1, where d is the topological dimension of the attractor,
and it is usually unknown. Theoretically the choice of 7 is not important for noiseless data
of infinite length. In practical cases [15], the FD estimation is sensitive to the choice of the
window size T=(r-1)t. This sensitivity is not individual to the choice of embedding dimen-
sion r, or delay 7, but to the window size T.

Once the attractor is formed, for all the LID based methods, we start by choosing L arbi-
trary data samples on the attractor to serve as local centers, ¢;, for i=1,...,L. Next, we will
determine g nearest data vectors to these local centers in the embedded space. We refer to
q neighbors of ¢; as x;;,Xp,....Xig, Where x;; is the closest vector to the local center ¢; in the
embedded space and x;, is the ¢ farthest vector. Note that ¢ is a fixed number that should
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be large enough to reduce the effect of the noise, but small enough for the subspace con-
sisting of the ¢ neighbor vectors to be linear. At the local center ¢;, define vectors y;;=x;;-¢;
for j=1,...q. To calculate the CLID, y;; vectors are used to form (rx g) matrix X;. All the
LID methods introduced here only differ in the way X; is created. For CLID method, X; is
formed [6 and 8] at all the local centers as follows:

X = (%1 ¥i25---Yig] (EQ3)

LID of the data at the local center i is calculated by applying Singular Value Decomposi-
tion (SVD) on the X;. The singular values are the square roots of the eigenvalues of the
auto-covariance of the local data. For the noise free case, the rank of the matrix corre-
sponds to the degree of local nonlinearity. In our case, the eigenvalues of X; form two dis-
tinct groups: eigenvalues belonging to SOI and eigenvalues of additive noise. CLID is
defined as the number of eigenvalues corresponding to SOL A threshold value must be set
to separate two groups of eigenvalues. Since the values of CLID is different at each local
center the average of CLID, <CLID>, is calculated at all the local centers. <CLID> is a
measure of second-order dimensionality of the attractor.

In HOLID-D and HOLID-OD methods the fourth-order cumulant function is used to esti-
mate X;. Passamante et al introduced[7] HOLID-D using fourth-order symmetric cumu-
lant slice, ¢4(0,0,7). For HOLID-OD, we use two off-diagonal cumulant slices ¢4(0,7,27)
and c4(0,7,37).

Fourth-order cumulants of zero-mean real random variables is defined as [7]:

o (T Ty Ty) = E{x(),x(t471)),x(1+7), x(1+7,) }
—E{x(l)x(:+‘tl)}E{x(r+‘tz)x(l+‘l:3)}
“E{x()x(t+t ) }E{x(t+T)x(t+1)}
~E{x()x(t+1) }E{x(t+1)x(t+1,)} (EQ4)

In HOLID-D approach, the matrix X; is created using c4(0,0,7) slice as follows:

X;=C, »2 [)'x Yp o Y, (EQ5S)

where y; is the it" element of a neighborhood vector with the local center subtracted from
it. The statistical expectation values are calculated by averaging the ¢ local data points of
each local center. Using (EQ 1), each element of X; is estimated as:

X, = E{y}y;} -3EODE b)) (EQ6)



Similar to CLID method, the number of significant eigenvalues of X; correspond to
HOLID-D. The average HOLID-D, <HOLID-D>, is found for all the local centers.

In HOLID-OD algorithm, X; is an off diagonal (non- symmetric) fourth-order cumulant
matrix, where ¢4(0,7,27t) and c4(0,7,37) slices are used instead of ¢4(0,0,7). For ¢4(0,7,27)
and ¢4(0,t,37) slices matrices X;; (g x g) and X (7 x 7) are presented respectively as fol-
lows:

rr 7y
2 2 2
Y1Y2¥3 N¥s NI Vo
=+l —+1
3 3
2 2 2
_ Y2ys¥s YaYs - Y2Vr Vo
x‘.1 =C, §+2 ?4-2
2 2 2
)’ryr‘”yr+2 y:yr+2yr+4 YrYar¥r
\L33*3 i3%%3 37 ) (EQ7)

where y;’s are same as y;’s in HOLID-D. The i,j element of the X;; matrix is defined as:
2 2
XiliJ =Ca 0 ie2) = BV pisah (EQ8)

2
_E{yi l1E {’i+j’i+2j} -2E {)'5)“'”‘} E {yi’i+2j}

Similarly X, is defined as:
r 2 2 T
4% S B LI T
-+l —+1
4 4
2 2 2
121315 123438 aee ler Xsr
x%xr l' xzrxr lr x%xrx'
\-z Z-l-l z+3 zz"’z 24'6 25 1)
and its elements,
_ 2 _ 2
Xiz, ;= Cali%ieffins)) = E{xix;, iaajh (EQ10)

’E{‘?}E{‘uf‘usj} —2E {xpx; HELxx; 35}
Again, expectations are calculated by averaging the g local data points of each of the local
centers. Using SVD, the effective rank of the matrix X; are determined for each local cen-
ter, which represents the HOLID-OD of the attractor at that position in the phase space.
Average HOLID-OD, <HOLID-OD>, is calculated over all local centers.



6.0 Numerical Results for experimental data

To demonstrate the HOLID-OD approach, the results are tested for Lorenz and Henon sys-
tems and then applied to our real sonar data sequences. The simulation is done for CLID,
HOLID-D and HOLID-OD methods and results are compared. The Henon data is gener-
ated by

xn) =bx(n-2)+1-axn- l)2
where a=1.4 and b=0.3. The initial conditions are x(0)= x(-1)=0.

The Lorenz equations are defined as:

X=ay-x)
y=cx-y-xz
Z=-bz+xy

where a=10, ¢=28 and b=8/3. In generating the Lorenz data, the initial conditions are
x(0)=y(0)=2(0)=1. The data was generated via Runge-Kutta integration with a step size
equal to 0.003. For these results, the number of sample points, n, is 10,000 and the number
of vectors in each neighborhood, g=40. The time delay is kept fixed throughout the simu-
lations and the value of embedding dimension is varied.

Figures 6.1 and 6.2 illustrate that at thresholds of 15% and 30% of the largest eigenvalue,
for the Henon map, HOLID-ODs are less sensitive to changes of the embedding dimen-
sion . The solid straight line is the true fractal dimension of Henon map, which is equal to
1.21.

Figures 6.3 and 6.4 are similar to 6.1 and 6.2 for the Lorenz map. Here, we may observe
that at the presence of noise, the performance of CLID deteriorates. This is not true for
HOLID-OD. The solid straight line is the true fractal dimension of Lorenz map, which is
2.05.

Applying the methods to the real sonar data shows that HOLID-OD in their cases is also
less sensitive to changes of the embedding dimension r (figs. 6.5 and 6.6).

7.0 Numerical results for real data

Figures 7.1-7.21 present the results for the real data analysis. Figure 7.1 is a window of the
time representation of the signals. It shows that signals are very similar in the time
domain. Figure 7.2 is the PSD of the signals estimated through the Welch method. Each
data segment contains 2048 samples and about 5,000,000 to 6,000,000 samples were used
for the implementation of this method. We also estimated PSD using Yule-Walker for AR
model orders of 20,30,40, and 50 (figs. 7.3 - 7.6). As it is seen in fig. 7.7, AIC indicates a
model order of 20 is sufficient for the Yule-Walker method implementation. Auto-correla-



tion was estimated from 5,000,000 to 6,000,000 samples. Next, the Welch and Yule-
Walker methods were applied to 32768 data samples instead of the entire data to demon-
strate that smaller segments of the data has the same characteristic as the entire data, (figs.
7.8-7.11). With this in mind, the rest of the analyses are done for the same smaller segment
of the data files. None of PSD analyses are able to distinguish signal plus noise data files
from pure noise files.

The TOR method was applied to the data files and the magnitude and phase estimation of
H(w) is presented in figs. 7.12-7.15 for order, p, equal to 20 and 50. In fig. 7.16 we present
the singular values of cumulant matrix used for TOR estimation. Also, we were not able to
categorize the data files using TOR.

The Bispectrum of data files B(w;,0)) is presented in fig. 7.17. It is noticeable that there
exists a difference between the signal plus noise cases and the noise only cases. This dif-
ference is especially visible when either ®; or w, are fixed at a low frequency and the
other is varied. Therefore, bispectrum may be used as a visual tool to distinguish given
cases.

The next step of our analysis involves LID estimation. The results for CLID, HOLID-D
and HOLID-ODs are presented in figs. 7.18 and 7.19. for embedding dimension, r, equal
to 20, 30, 40, and 50 and for thresholds of 15% and 30% of the largest singular value. Set-
ting the optimum threshold is an area of research on its own. Here, the threshold values are
chosen arbitrarily. For r equal to 20, 40, or 50 and the threshold of 30%, the HOLID-OD,
using ¢4(0,7,31) cumulant slice, shows a higher value for the pure noise cases than the sig-
nal plus noise cases (fig 7.20). HOLID-OD methods are more consistent than other LID
estimation methods to categorize the data files.

Next, data files are passed through a low passed filter (fig. 7.21 is the PSD of the low pass
filtered the data files), and then LID estimation methods are applied. For r equals 30, CLID
demonstrates higher values for noise only cases and the same is true for HOLID-OD,
c4(0,7,37) slice, at r equals 20 (fig. 7.20), otherwise most of the methods failed for the low
pass filtered data.

8.0 Conclusion

While most of the applied methods failed to categorize the data files, careful examination
of the results reveals that we are able to utilize the bispectrum of data as a visual discrimi-
nation tool. Also, the average HOLID-OD using the C4(0,1,37) slice is able to distinguish
between the noise only and the signal plus noise cases, for r = 20, 40, 50 and the threshold
=30% of the largest singular value. The introduced methods of HOLID-OD are less sensi-
tive to the embedding dimension r and more robust in the presence of noise than the previ-
ously known LID methods. Let’s note that the average LIDs are random variables and
their statistical properties should be studied. One way to get more stable results is to
decrease the variance of average LID by increasing the number of local centers. This
would increase the computation. Because of the nature of the signal, further work needs to



be done using higher-order spectra-base time-frequency techniques for non-stationary sig-
nal analysis.

9.0 References

[1] S. L. Marple, Digital Spectral Analysis with Applications, Prentice-Hall, Englewood
Cliffs, NJ, 1987, pp. 154-158.

[2] S. L. Marple, Digital Speciral Analysis with Applications, Prentice-Hall, Englewood
Cliffs, NJ, 1987, pp. 172-188.

[3] C. L. Nikias and A. P. Petropulu, Higher - Order Spectral Analysis, Prentice Hall,
Englewood Cliffs, NJ, 1993.

[4] C. L. Nikias and M. R. Raghuveer, “Bispectrum Estimation: A Digital Signal Process-
ing Framework,” Proceedings IEEE, 75(7), pp. 869-891, July 1987.

[5] P. Grassberger and 1. Procaccia, Phys. Rev. Lett. 50, 346 (1983)

[6] A. Passamante, T. Hediger, and M. Gollub, Phys. Rev. A 39, 3640 (1989).

[7] A. Passamante and Mary Eileen Farrell, Phys. Rev. A 43, 5268 (1990).

[8] D. S. Broomhead, R. Jones, and G. P. King, J. Phys. A 20, L563 (1987)

[9]1 B. B. Mandelbrot, The Fractal Geometry of Nature, (Freeman, New York, 1982).
[10] T. Hediger, A. Passamante, and Mary Eileen Farrell, Phys. Rev. A 41, 5325 (1990).

[11] P. Flandrin and O. Michel, IEEE, Signal Processing Workshop on Higher-Order Sta-
tistics, 295, 1993.

[12] E. Takens, in Dynamical Systems of Turbulence, edited by D. A. Rand and L. S.
Young (Springer, Berlin, 1981).

[13] N. H. Packard, J.P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712
(1980).

[14] T. S. Parker and L. O. Chua, Proc. of The IEEE, Vol. 75, No. 8, 982 (1987).

[15] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, Phys. Rev. A, Vol.
38, No. 6, Spet. 15, 3017 (1980).

10



henon, snr inf, threshold =0.15 henon, snr 30, threshold =0.15

n

W b

dimensions

N

W B

dimensions

N

10.0 Figures

: . . 6 : .
R m L .
J w A. L J
c
9O
] m 3t ]
E
1 1 g T +% o g
2 1 2 o 2 " Y
10 20 30 0 10 20 30
r r L
id
henon, snr 20, threshold =0.15 henon, snr 10, threshold =0.15 J09J
| . . 6 . . . g
7 | mwmw
. o 1
- w4 .mmmmn
X RS
e i m 3 i
E
4 © N L 4
J ._ L 4
2 Iy 2 O 2 2 2
10 20 30 0 10 20 30



dimensions
N

henon, snr inf, threshold =0.30

dimensions
N

10 20 30

henon, snr 20, threshold =0.30

L L] T

10 20 30

fig. 6.2

henon, snr 30, threshold =0.30

4 : .
w |
2
S
m 2
E
© . :
%
| -
% 10 20 30
4
w L
(/3]
C
S
m 2
E
O
A L
% 10 20 30

+ e RO

C4(0,2.2t)
C4(0.£38)

HOLID-OD
HOLID-OD

CLID
BOLID-D



dimensions

N W b O N

dimensions

N W A~ 3 N

Lorenz, SNR inf, threshold =0.15

T

fig. 6.3

dimensions

dimensions
N w A (&) O) ~

0.15

Lorenz, SNR 30, threshold

10

Lorenz, SNR 10, threshold =0.15

L]

T

+8 KO

C4(0,8,21)
C4(0:2,3¢0)

HOLID-D
HOLID-OD
HOLID-OD

CLID



dimensions

Lorenz, SNR inf, threshold =0.30

L)

N

-’
-t

¥ - .l.\MH.I.%.\.lxl.\.x
‘Mr — Y

10 20 30

Lorenz, SNR 20, threshold =0.30

dimensions

w

N

10 20 30

Lorenz, SNR 30, threshold =0.30

W

[\

dimensions

10

Lorenz, SNR 10, threshold =0.30

20

30

W

N

dimensions

T

10

30

&8 O

Ci0t,20)
C4(0,t,3t)

CLID
BOLID-D
HOLID-OD
HOLID-OD



o @

dimensions

N b

D X

dimensions
S

(> 2 *-)

S

imensions

d

[\

signal#1, threshold=0.15

N

signal#2, threshold=0.15

&

dimensions

[\®)

signal#4, threshold=0.15

dimensions

o &

.

imensions
H

d
)

L L

T ¥ ¥ T T
...... R R R R R R R R R R TR
. . . .

. . v .
. . ’

’ ’

. .
.................... Poveseonsendoncs o

.

.

.
............................ ooe of
D LY T Do o - S Tecencnanne Peoononnane Pooee =

b .
—— .
- P—
7 T TR — e~ —— — — *.'...l.l*
A 1 1




signalit1, threshold =0.30

N W b O,

dimensions

b
H

9

NN

w

dimensions
N

—

N

imensions
W

d

—t

signalft2, threshold =0.30

193

24 :
Q
®3
()
E2
O
A_ L.
signal#4, threshold =0.30
m “ . T L} u “
)
C
O
(72}
o
<))
E
O

imensions
w

d

—

T T v ! 1)
...................................................... -
. .
. :
. .
. .
................ #Peeesscestgrssassscansgesncannasaqesay =f
. .
. .
e — — —
....................... €l ...
.
.
.
:
................ —K - - e -
. » . .
L [l ' ] A




0.5
_ _ A LA ' 11 J |
oKiEN B e
*. 1 HH Wi
-0.5 X .
0 500 1000
TP15
0.5 .
i | I8 |
O_ | _._ _m_ ~ _ _ _
| i e
|
0.5 [ d
0 500 1000
TP25
0.5
g N L AR
oM __ __,___ H AT _ﬁ ' ; | -
i L
-0.5 . R
0 500 1000

fig. 7.1



10

04

0.5

0.1

0.2

0.3

04

0.5

g

10 : . : .

-m . \ \ .
001 02z 03 04 05
TP2

10° : : :
10° : . : .
0 01 02 03 04 05
TP6
10° : . : .
10° : . . :
0 o041 02 03 04 05

fig. 7.2 |

Welch method



) Yule_Walker, order 20, TP 1 ) Yule_Walker, order 20, TP13

It

o
n

oo 4 1 VST,




Yule_Walker, oider 30,

0 Yule_Walker, order 30, TP13

e ¢ v, -

o
o
o
N
o
w
o
oS

: fig. 7.4



Yule_Walker, order 40,

* o ssveem
CF SNy

% 4,

41
<t
.
.
-
~e
.
i

o
PN

fig. 7.5

Yule_Walker, order 40, TP13

I 1 L doledde®

s sapsrans

e




Yule_Walker, order 50, TP

“rees s geaass

et e s ynanen

..

DGO T R )

Sostad *

Yule_Walker, order 50, TP13

i




107 AIC, TP1 . 10" NIC, TP13

4.8\ ... ........... .......... ........... .......... i 1.68 ........... .......... i
-1.3}-- ........... ........... ........... .......... . 167 ....... .. ......... ]
4.32F--\ - ........... ........... TR .......... J
: : : ; 1.66 reneeeaes Treeresees .
...-.w&....... ...m ........... m ........... m ........... m .......... . m m
m m 1.65 . .......... .m .......... N

w
o
&
o
194
Q

< 10° AIC, TP15 107 AIC, TP2

L 4 v ON ¥ L) 1] L
v . 1 aok - LR A, | PRI, Y e eeeceen R
. . * 3 . » .
._QO S . : : : :
. . 3 » » .
. . @ ._m. teesseesencan ctrsamesasaane vessenncnnsss weossennans .
. . . . . . .
Amb teeaensesssmmecnnnnnens . . . : .
. . . . : . .
. . .‘ ......... Zetaeacennee e ieasaanan leseveeoseoanctesrooncnns -
.— @N Teeorosnnans s acaeaeae . . . , ’
. ! . . . . .
: : Oomt ......... by N eceserenes R ceemessaan reeenl
3 : ° H 3 : H
—

v L L} ¥ v T T | |
LJ . . » . 1] . L]
. . » 3 » . . L]
. . » . dmm. ........ Perersinannen fenascveens Bevesnanne tdesesnnsane .
. . . . - . 0 . .
lllllllll \ll|‘.00.00!'uc:‘.no..ohllll.....lt...l.‘.....|. . . . -
1.52 : : : : : : :
: : : o......1 1 emal. \..... L AN  erenreenns ferereenans 4
151 \eeideeeni, N eererea, Peverennenns e . 1.64} . : : :
Am‘ . » . ﬁ J . * 4
-------- LR A R R I T T T cood ceos aesaat saaeanas esssaende ssew -
. v ' .—.mm ...... \ cteves feevencnnas
: ; i ; H e H H




TP

10

0.1

0.2 0.3

0.4

0.5

10

TP25

0.1

0.2

0.3

0.4

0.5

113

10

0.2 0.3 04 0.5

10° : : : .
0 0.1 02 03 04 05
TP6
10° : : : ;
-m . . X .
10, 0.1 0.2 0.3 04 - 05

Welch method using 32768 samples



Yule Walker, order 20, TP

. v eares
[°° 8t fatudn® % 0N &,

R R R R R

| R R vesen

10 hmnuninmm HIIHITHIG

- sesaerena

e
.
« e

10 0 0.1

.....-o..-s-.s..

.-o-..-..\-.s...-.-

ST

.

HE-R
Y

.

Yule Walker, order 20, TP13

-

s e

-
ssseredrerveen

R RS

b

-oo-ooo-o-\r

o
. ovesw
.

YT Y

P2 1 € Lobodn® % 0% Sol® S,

::::_z__::_i

ot
X
o
>

2 0.3 0.4
using 32768 samples




Yule Walker, order 30, TP Yule Walker, order 30, TIP13
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low passed, r=20, q=60,& Th=0.30
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